1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * linit.c 15 * 16 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 17 */ 18 19 20 #include <linux/compat.h> 21 #include <linux/blkdev.h> 22 #include <linux/completion.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/pci.h> 29 #include <linux/aer.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/spinlock.h> 33 #include <linux/syscalls.h> 34 #include <linux/delay.h> 35 #include <linux/kthread.h> 36 #include <linux/msdos_partition.h> 37 38 #include <scsi/scsi.h> 39 #include <scsi/scsi_cmnd.h> 40 #include <scsi/scsi_device.h> 41 #include <scsi/scsi_host.h> 42 #include <scsi/scsi_tcq.h> 43 #include <scsi/scsicam.h> 44 #include <scsi/scsi_eh.h> 45 46 #include "aacraid.h" 47 48 #define AAC_DRIVER_VERSION "1.2.1" 49 #ifndef AAC_DRIVER_BRANCH 50 #define AAC_DRIVER_BRANCH "" 51 #endif 52 #define AAC_DRIVERNAME "aacraid" 53 54 #ifdef AAC_DRIVER_BUILD 55 #define _str(x) #x 56 #define str(x) _str(x) 57 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 58 #else 59 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 60 #endif 61 62 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 63 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 64 "Adaptec Advanced Raid Products, " 65 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 66 MODULE_LICENSE("GPL"); 67 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 68 69 static DEFINE_MUTEX(aac_mutex); 70 static LIST_HEAD(aac_devices); 71 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; 72 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 73 74 /* 75 * Because of the way Linux names scsi devices, the order in this table has 76 * become important. Check for on-board Raid first, add-in cards second. 77 * 78 * Note: The last field is used to index into aac_drivers below. 79 */ 80 static const struct pci_device_id aac_pci_tbl[] = { 81 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 82 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 83 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 84 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 85 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 86 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 87 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 88 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 89 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 90 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 91 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 92 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 93 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 94 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 95 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 96 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 97 98 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 99 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 100 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 101 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 102 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 103 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 104 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 105 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 106 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 107 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 108 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 109 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 110 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 111 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 112 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 113 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 114 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 115 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 116 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 117 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 118 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 119 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 120 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 121 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 122 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 123 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 124 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 125 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 126 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 127 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 128 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 129 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 130 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 131 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 132 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 133 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 134 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 135 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 136 137 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 138 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 139 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 140 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 141 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 142 143 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 144 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 145 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 146 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 147 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 148 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 149 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 150 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 151 { 0,} 152 }; 153 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 154 155 /* 156 * dmb - For now we add the number of channels to this structure. 157 * In the future we should add a fib that reports the number of channels 158 * for the card. At that time we can remove the channels from here 159 */ 160 static struct aac_driver_ident aac_drivers[] = { 161 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 162 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 163 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 164 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 165 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 166 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 167 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 168 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 169 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 170 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 171 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 172 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 173 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 174 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 175 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 176 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 177 178 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 179 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 180 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 181 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 182 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 183 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 184 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 185 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 186 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 187 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 188 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 189 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 190 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 191 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 192 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 193 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 194 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 195 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 197 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 198 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 199 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 200 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 201 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 202 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 203 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 204 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 205 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 206 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 207 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 208 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 209 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 213 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 214 215 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 216 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 217 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 218 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 219 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 220 221 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 222 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 224 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 225 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 226 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ 227 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ 228 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ 229 }; 230 231 /** 232 * aac_queuecommand - queue a SCSI command 233 * @cmd: SCSI command to queue 234 * @done: Function to call on command completion 235 * 236 * Queues a command for execution by the associated Host Adapter. 237 * 238 * TODO: unify with aac_scsi_cmd(). 239 */ 240 241 static int aac_queuecommand(struct Scsi_Host *shost, 242 struct scsi_cmnd *cmd) 243 { 244 int r = 0; 245 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 246 r = (aac_scsi_cmd(cmd) ? FAILED : 0); 247 return r; 248 } 249 250 /** 251 * aac_info - Returns the host adapter name 252 * @shost: Scsi host to report on 253 * 254 * Returns a static string describing the device in question 255 */ 256 257 static const char *aac_info(struct Scsi_Host *shost) 258 { 259 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 260 return aac_drivers[dev->cardtype].name; 261 } 262 263 /** 264 * aac_get_driver_ident 265 * @devtype: index into lookup table 266 * 267 * Returns a pointer to the entry in the driver lookup table. 268 */ 269 270 struct aac_driver_ident* aac_get_driver_ident(int devtype) 271 { 272 return &aac_drivers[devtype]; 273 } 274 275 /** 276 * aac_biosparm - return BIOS parameters for disk 277 * @sdev: The scsi device corresponding to the disk 278 * @bdev: the block device corresponding to the disk 279 * @capacity: the sector capacity of the disk 280 * @geom: geometry block to fill in 281 * 282 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 283 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 284 * number of cylinders so as not to exceed drive capacity. In order for 285 * disks equal to or larger than 1 GB to be addressable by the BIOS 286 * without exceeding the BIOS limitation of 1024 cylinders, Extended 287 * Translation should be enabled. With Extended Translation enabled, 288 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 289 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 290 * are given a disk geometry of 255 heads and 63 sectors. However, if 291 * the BIOS detects that the Extended Translation setting does not match 292 * the geometry in the partition table, then the translation inferred 293 * from the partition table will be used by the BIOS, and a warning may 294 * be displayed. 295 */ 296 297 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 298 sector_t capacity, int *geom) 299 { 300 struct diskparm *param = (struct diskparm *)geom; 301 unsigned char *buf; 302 303 dprintk((KERN_DEBUG "aac_biosparm.\n")); 304 305 /* 306 * Assuming extended translation is enabled - #REVISIT# 307 */ 308 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 309 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 310 param->heads = 255; 311 param->sectors = 63; 312 } else { 313 param->heads = 128; 314 param->sectors = 32; 315 } 316 } else { 317 param->heads = 64; 318 param->sectors = 32; 319 } 320 321 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 322 323 /* 324 * Read the first 1024 bytes from the disk device, if the boot 325 * sector partition table is valid, search for a partition table 326 * entry whose end_head matches one of the standard geometry 327 * translations ( 64/32, 128/32, 255/63 ). 328 */ 329 buf = scsi_bios_ptable(bdev); 330 if (!buf) 331 return 0; 332 if (*(__le16 *)(buf + 0x40) == cpu_to_le16(MSDOS_LABEL_MAGIC)) { 333 struct msdos_partition *first = (struct msdos_partition *)buf; 334 struct msdos_partition *entry = first; 335 int saved_cylinders = param->cylinders; 336 int num; 337 unsigned char end_head, end_sec; 338 339 for(num = 0; num < 4; num++) { 340 end_head = entry->end_head; 341 end_sec = entry->end_sector & 0x3f; 342 343 if(end_head == 63) { 344 param->heads = 64; 345 param->sectors = 32; 346 break; 347 } else if(end_head == 127) { 348 param->heads = 128; 349 param->sectors = 32; 350 break; 351 } else if(end_head == 254) { 352 param->heads = 255; 353 param->sectors = 63; 354 break; 355 } 356 entry++; 357 } 358 359 if (num == 4) { 360 end_head = first->end_head; 361 end_sec = first->end_sector & 0x3f; 362 } 363 364 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 365 if (num < 4 && end_sec == param->sectors) { 366 if (param->cylinders != saved_cylinders) 367 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 368 param->heads, param->sectors, num)); 369 } else if (end_head > 0 || end_sec > 0) { 370 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 371 end_head + 1, end_sec, num)); 372 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 373 param->heads, param->sectors)); 374 } 375 } 376 kfree(buf); 377 return 0; 378 } 379 380 /** 381 * aac_slave_configure - compute queue depths 382 * @sdev: SCSI device we are considering 383 * 384 * Selects queue depths for each target device based on the host adapter's 385 * total capacity and the queue depth supported by the target device. 386 * A queue depth of one automatically disables tagged queueing. 387 */ 388 389 static int aac_slave_configure(struct scsi_device *sdev) 390 { 391 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 392 int chn, tid; 393 unsigned int depth = 0; 394 unsigned int set_timeout = 0; 395 int timeout = 0; 396 bool set_qd_dev_type = false; 397 u8 devtype = 0; 398 399 chn = aac_logical_to_phys(sdev_channel(sdev)); 400 tid = sdev_id(sdev); 401 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) { 402 devtype = aac->hba_map[chn][tid].devtype; 403 404 if (devtype == AAC_DEVTYPE_NATIVE_RAW) { 405 depth = aac->hba_map[chn][tid].qd_limit; 406 set_timeout = 1; 407 goto common_config; 408 } 409 if (devtype == AAC_DEVTYPE_ARC_RAW) { 410 set_qd_dev_type = true; 411 set_timeout = 1; 412 goto common_config; 413 } 414 } 415 416 if (aac->jbod && (sdev->type == TYPE_DISK)) 417 sdev->removable = 1; 418 419 if (sdev->type == TYPE_DISK 420 && sdev_channel(sdev) != CONTAINER_CHANNEL 421 && (!aac->jbod || sdev->inq_periph_qual) 422 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 423 424 if (expose_physicals == 0) 425 return -ENXIO; 426 427 if (expose_physicals < 0) 428 sdev->no_uld_attach = 1; 429 } 430 431 if (sdev->tagged_supported 432 && sdev->type == TYPE_DISK 433 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 434 && !sdev->no_uld_attach) { 435 436 struct scsi_device * dev; 437 struct Scsi_Host *host = sdev->host; 438 unsigned num_lsu = 0; 439 unsigned num_one = 0; 440 unsigned cid; 441 442 set_timeout = 1; 443 444 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 445 if (aac->fsa_dev[cid].valid) 446 ++num_lsu; 447 448 __shost_for_each_device(dev, host) { 449 if (dev->tagged_supported 450 && dev->type == TYPE_DISK 451 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 452 && !dev->no_uld_attach) { 453 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 454 || !aac->fsa_dev[sdev_id(dev)].valid) { 455 ++num_lsu; 456 } 457 } else { 458 ++num_one; 459 } 460 } 461 462 if (num_lsu == 0) 463 ++num_lsu; 464 465 depth = (host->can_queue - num_one) / num_lsu; 466 467 if (sdev_channel(sdev) != NATIVE_CHANNEL) 468 goto common_config; 469 470 set_qd_dev_type = true; 471 472 } 473 474 common_config: 475 476 /* 477 * Check if SATA drive 478 */ 479 if (set_qd_dev_type) { 480 if (strncmp(sdev->vendor, "ATA", 3) == 0) 481 depth = 32; 482 else 483 depth = 64; 484 } 485 486 /* 487 * Firmware has an individual device recovery time typically 488 * of 35 seconds, give us a margin. Thor devices can take longer in 489 * error recovery, hence different value. 490 */ 491 if (set_timeout) { 492 timeout = aac->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT; 493 blk_queue_rq_timeout(sdev->request_queue, timeout * HZ); 494 } 495 496 if (depth > 256) 497 depth = 256; 498 else if (depth < 1) 499 depth = 1; 500 501 scsi_change_queue_depth(sdev, depth); 502 503 sdev->tagged_supported = 1; 504 505 return 0; 506 } 507 508 /** 509 * aac_change_queue_depth - alter queue depths 510 * @sdev: SCSI device we are considering 511 * @depth: desired queue depth 512 * 513 * Alters queue depths for target device based on the host adapter's 514 * total capacity and the queue depth supported by the target device. 515 */ 516 517 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 518 { 519 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 520 int chn, tid, is_native_device = 0; 521 522 chn = aac_logical_to_phys(sdev_channel(sdev)); 523 tid = sdev_id(sdev); 524 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 525 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) 526 is_native_device = 1; 527 528 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 529 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 530 struct scsi_device * dev; 531 struct Scsi_Host *host = sdev->host; 532 unsigned num = 0; 533 534 __shost_for_each_device(dev, host) { 535 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 536 (sdev_channel(dev) == CONTAINER_CHANNEL)) 537 ++num; 538 ++num; 539 } 540 if (num >= host->can_queue) 541 num = host->can_queue - 1; 542 if (depth > (host->can_queue - num)) 543 depth = host->can_queue - num; 544 if (depth > 256) 545 depth = 256; 546 else if (depth < 2) 547 depth = 2; 548 return scsi_change_queue_depth(sdev, depth); 549 } else if (is_native_device) { 550 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); 551 } else { 552 scsi_change_queue_depth(sdev, 1); 553 } 554 return sdev->queue_depth; 555 } 556 557 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 558 { 559 struct scsi_device *sdev = to_scsi_device(dev); 560 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 561 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 562 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 563 ? "Hidden\n" : 564 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 565 return snprintf(buf, PAGE_SIZE, "%s\n", 566 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 567 } 568 569 static struct device_attribute aac_raid_level_attr = { 570 .attr = { 571 .name = "level", 572 .mode = S_IRUGO, 573 }, 574 .show = aac_show_raid_level 575 }; 576 577 static ssize_t aac_show_unique_id(struct device *dev, 578 struct device_attribute *attr, char *buf) 579 { 580 struct scsi_device *sdev = to_scsi_device(dev); 581 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 582 unsigned char sn[16]; 583 584 memset(sn, 0, sizeof(sn)); 585 586 if (sdev_channel(sdev) == CONTAINER_CHANNEL) 587 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); 588 589 return snprintf(buf, 16 * 2 + 2, 590 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", 591 sn[0], sn[1], sn[2], sn[3], 592 sn[4], sn[5], sn[6], sn[7], 593 sn[8], sn[9], sn[10], sn[11], 594 sn[12], sn[13], sn[14], sn[15]); 595 } 596 597 static struct device_attribute aac_unique_id_attr = { 598 .attr = { 599 .name = "unique_id", 600 .mode = 0444, 601 }, 602 .show = aac_show_unique_id 603 }; 604 605 606 607 static struct device_attribute *aac_dev_attrs[] = { 608 &aac_raid_level_attr, 609 &aac_unique_id_attr, 610 NULL, 611 }; 612 613 static int aac_ioctl(struct scsi_device *sdev, unsigned int cmd, 614 void __user *arg) 615 { 616 int retval; 617 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 618 if (!capable(CAP_SYS_RAWIO)) 619 return -EPERM; 620 retval = aac_adapter_check_health(dev); 621 if (retval) 622 return -EBUSY; 623 return aac_do_ioctl(dev, cmd, arg); 624 } 625 626 static int get_num_of_incomplete_fibs(struct aac_dev *aac) 627 { 628 629 unsigned long flags; 630 struct scsi_device *sdev = NULL; 631 struct Scsi_Host *shost = aac->scsi_host_ptr; 632 struct scsi_cmnd *scmnd = NULL; 633 struct device *ctrl_dev; 634 635 int mlcnt = 0; 636 int llcnt = 0; 637 int ehcnt = 0; 638 int fwcnt = 0; 639 int krlcnt = 0; 640 641 __shost_for_each_device(sdev, shost) { 642 spin_lock_irqsave(&sdev->list_lock, flags); 643 list_for_each_entry(scmnd, &sdev->cmd_list, list) { 644 switch (scmnd->SCp.phase) { 645 case AAC_OWNER_FIRMWARE: 646 fwcnt++; 647 break; 648 case AAC_OWNER_ERROR_HANDLER: 649 ehcnt++; 650 break; 651 case AAC_OWNER_LOWLEVEL: 652 llcnt++; 653 break; 654 case AAC_OWNER_MIDLEVEL: 655 mlcnt++; 656 break; 657 default: 658 krlcnt++; 659 break; 660 } 661 } 662 spin_unlock_irqrestore(&sdev->list_lock, flags); 663 } 664 665 ctrl_dev = &aac->pdev->dev; 666 667 dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt); 668 dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt); 669 dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt); 670 dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt); 671 dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt); 672 673 return mlcnt + llcnt + ehcnt + fwcnt; 674 } 675 676 static int aac_eh_abort(struct scsi_cmnd* cmd) 677 { 678 struct scsi_device * dev = cmd->device; 679 struct Scsi_Host * host = dev->host; 680 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 681 int count, found; 682 u32 bus, cid; 683 int ret = FAILED; 684 685 if (aac_adapter_check_health(aac)) 686 return ret; 687 688 bus = aac_logical_to_phys(scmd_channel(cmd)); 689 cid = scmd_id(cmd); 690 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 691 struct fib *fib; 692 struct aac_hba_tm_req *tmf; 693 int status; 694 u64 address; 695 696 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", 697 AAC_DRIVERNAME, 698 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); 699 700 found = 0; 701 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 702 fib = &aac->fibs[count]; 703 if (*(u8 *)fib->hw_fib_va != 0 && 704 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 705 (fib->callback_data == cmd)) { 706 found = 1; 707 break; 708 } 709 } 710 if (!found) 711 return ret; 712 713 /* start a HBA_TMF_ABORT_TASK TMF request */ 714 fib = aac_fib_alloc(aac); 715 if (!fib) 716 return ret; 717 718 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 719 memset(tmf, 0, sizeof(*tmf)); 720 tmf->tmf = HBA_TMF_ABORT_TASK; 721 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 722 tmf->lun[1] = cmd->device->lun; 723 724 address = (u64)fib->hw_error_pa; 725 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 726 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 727 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 728 729 fib->hbacmd_size = sizeof(*tmf); 730 cmd->SCp.sent_command = 0; 731 732 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, 733 (fib_callback) aac_hba_callback, 734 (void *) cmd); 735 736 /* Wait up to 15 secs for completion */ 737 for (count = 0; count < 15; ++count) { 738 if (cmd->SCp.sent_command) { 739 ret = SUCCESS; 740 break; 741 } 742 msleep(1000); 743 } 744 745 if (ret != SUCCESS) 746 pr_err("%s: Host adapter abort request timed out\n", 747 AAC_DRIVERNAME); 748 } else { 749 pr_err( 750 "%s: Host adapter abort request.\n" 751 "%s: Outstanding commands on (%d,%d,%d,%d):\n", 752 AAC_DRIVERNAME, AAC_DRIVERNAME, 753 host->host_no, sdev_channel(dev), sdev_id(dev), 754 (int)dev->lun); 755 switch (cmd->cmnd[0]) { 756 case SERVICE_ACTION_IN_16: 757 if (!(aac->raw_io_interface) || 758 !(aac->raw_io_64) || 759 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 760 break; 761 /* fall through */ 762 case INQUIRY: 763 case READ_CAPACITY: 764 /* 765 * Mark associated FIB to not complete, 766 * eh handler does this 767 */ 768 for (count = 0; 769 count < (host->can_queue + AAC_NUM_MGT_FIB); 770 ++count) { 771 struct fib *fib = &aac->fibs[count]; 772 773 if (fib->hw_fib_va->header.XferState && 774 (fib->flags & FIB_CONTEXT_FLAG) && 775 (fib->callback_data == cmd)) { 776 fib->flags |= 777 FIB_CONTEXT_FLAG_TIMED_OUT; 778 cmd->SCp.phase = 779 AAC_OWNER_ERROR_HANDLER; 780 ret = SUCCESS; 781 } 782 } 783 break; 784 case TEST_UNIT_READY: 785 /* 786 * Mark associated FIB to not complete, 787 * eh handler does this 788 */ 789 for (count = 0; 790 count < (host->can_queue + AAC_NUM_MGT_FIB); 791 ++count) { 792 struct scsi_cmnd *command; 793 struct fib *fib = &aac->fibs[count]; 794 795 command = fib->callback_data; 796 797 if ((fib->hw_fib_va->header.XferState & 798 cpu_to_le32 799 (Async | NoResponseExpected)) && 800 (fib->flags & FIB_CONTEXT_FLAG) && 801 ((command)) && 802 (command->device == cmd->device)) { 803 fib->flags |= 804 FIB_CONTEXT_FLAG_TIMED_OUT; 805 command->SCp.phase = 806 AAC_OWNER_ERROR_HANDLER; 807 if (command == cmd) 808 ret = SUCCESS; 809 } 810 } 811 break; 812 } 813 } 814 return ret; 815 } 816 817 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info, 818 struct fib *fib, u64 tmf_lun) 819 { 820 struct aac_hba_tm_req *tmf; 821 u64 address; 822 823 /* start a HBA_TMF_LUN_RESET TMF request */ 824 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 825 memset(tmf, 0, sizeof(*tmf)); 826 tmf->tmf = HBA_TMF_LUN_RESET; 827 tmf->it_nexus = info->rmw_nexus; 828 int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun); 829 830 address = (u64)fib->hw_error_pa; 831 tmf->error_ptr_hi = cpu_to_le32 832 ((u32)(address >> 32)); 833 tmf->error_ptr_lo = cpu_to_le32 834 ((u32)(address & 0xffffffff)); 835 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 836 fib->hbacmd_size = sizeof(*tmf); 837 838 return HBA_IU_TYPE_SCSI_TM_REQ; 839 } 840 841 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info, 842 struct fib *fib) 843 { 844 struct aac_hba_reset_req *rst; 845 u64 address; 846 847 /* already tried, start a hard reset now */ 848 rst = (struct aac_hba_reset_req *)fib->hw_fib_va; 849 memset(rst, 0, sizeof(*rst)); 850 rst->it_nexus = info->rmw_nexus; 851 852 address = (u64)fib->hw_error_pa; 853 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 854 rst->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 855 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 856 fib->hbacmd_size = sizeof(*rst); 857 858 return HBA_IU_TYPE_SATA_REQ; 859 } 860 861 void aac_tmf_callback(void *context, struct fib *fibptr) 862 { 863 struct aac_hba_resp *err = 864 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 865 struct aac_hba_map_info *info = context; 866 int res; 867 868 switch (err->service_response) { 869 case HBA_RESP_SVCRES_TMF_REJECTED: 870 res = -1; 871 break; 872 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 873 res = 0; 874 break; 875 case HBA_RESP_SVCRES_TMF_COMPLETE: 876 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 877 res = 0; 878 break; 879 default: 880 res = -2; 881 break; 882 } 883 aac_fib_complete(fibptr); 884 885 info->reset_state = res; 886 } 887 888 /* 889 * aac_eh_dev_reset - Device reset command handling 890 * @scsi_cmd: SCSI command block causing the reset 891 * 892 */ 893 static int aac_eh_dev_reset(struct scsi_cmnd *cmd) 894 { 895 struct scsi_device * dev = cmd->device; 896 struct Scsi_Host * host = dev->host; 897 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 898 struct aac_hba_map_info *info; 899 int count; 900 u32 bus, cid; 901 struct fib *fib; 902 int ret = FAILED; 903 int status; 904 u8 command; 905 906 bus = aac_logical_to_phys(scmd_channel(cmd)); 907 cid = scmd_id(cmd); 908 909 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 910 return FAILED; 911 912 info = &aac->hba_map[bus][cid]; 913 914 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && 915 info->reset_state > 0) 916 return FAILED; 917 918 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 919 AAC_DRIVERNAME); 920 921 fib = aac_fib_alloc(aac); 922 if (!fib) 923 return ret; 924 925 /* start a HBA_TMF_LUN_RESET TMF request */ 926 command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun); 927 928 info->reset_state = 1; 929 930 status = aac_hba_send(command, fib, 931 (fib_callback) aac_tmf_callback, 932 (void *) info); 933 934 /* Wait up to 15 seconds for completion */ 935 for (count = 0; count < 15; ++count) { 936 if (info->reset_state == 0) { 937 ret = info->reset_state == 0 ? SUCCESS : FAILED; 938 break; 939 } 940 msleep(1000); 941 } 942 943 return ret; 944 } 945 946 /* 947 * aac_eh_target_reset - Target reset command handling 948 * @scsi_cmd: SCSI command block causing the reset 949 * 950 */ 951 static int aac_eh_target_reset(struct scsi_cmnd *cmd) 952 { 953 struct scsi_device * dev = cmd->device; 954 struct Scsi_Host * host = dev->host; 955 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 956 struct aac_hba_map_info *info; 957 int count; 958 u32 bus, cid; 959 int ret = FAILED; 960 struct fib *fib; 961 int status; 962 u8 command; 963 964 bus = aac_logical_to_phys(scmd_channel(cmd)); 965 cid = scmd_id(cmd); 966 967 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 968 return FAILED; 969 970 info = &aac->hba_map[bus][cid]; 971 972 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && 973 info->reset_state > 0) 974 return FAILED; 975 976 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 977 AAC_DRIVERNAME); 978 979 fib = aac_fib_alloc(aac); 980 if (!fib) 981 return ret; 982 983 984 /* already tried, start a hard reset now */ 985 command = aac_eh_tmf_hard_reset_fib(info, fib); 986 987 info->reset_state = 2; 988 989 status = aac_hba_send(command, fib, 990 (fib_callback) aac_tmf_callback, 991 (void *) info); 992 993 /* Wait up to 15 seconds for completion */ 994 for (count = 0; count < 15; ++count) { 995 if (info->reset_state <= 0) { 996 ret = info->reset_state == 0 ? SUCCESS : FAILED; 997 break; 998 } 999 msleep(1000); 1000 } 1001 1002 return ret; 1003 } 1004 1005 /* 1006 * aac_eh_bus_reset - Bus reset command handling 1007 * @scsi_cmd: SCSI command block causing the reset 1008 * 1009 */ 1010 static int aac_eh_bus_reset(struct scsi_cmnd* cmd) 1011 { 1012 struct scsi_device * dev = cmd->device; 1013 struct Scsi_Host * host = dev->host; 1014 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1015 int count; 1016 u32 cmd_bus; 1017 int status = 0; 1018 1019 1020 cmd_bus = aac_logical_to_phys(scmd_channel(cmd)); 1021 /* Mark the assoc. FIB to not complete, eh handler does this */ 1022 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 1023 struct fib *fib = &aac->fibs[count]; 1024 1025 if (fib->hw_fib_va->header.XferState && 1026 (fib->flags & FIB_CONTEXT_FLAG) && 1027 (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) { 1028 struct aac_hba_map_info *info; 1029 u32 bus, cid; 1030 1031 cmd = (struct scsi_cmnd *)fib->callback_data; 1032 bus = aac_logical_to_phys(scmd_channel(cmd)); 1033 if (bus != cmd_bus) 1034 continue; 1035 cid = scmd_id(cmd); 1036 info = &aac->hba_map[bus][cid]; 1037 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS || 1038 info->devtype != AAC_DEVTYPE_NATIVE_RAW) { 1039 fib->flags |= FIB_CONTEXT_FLAG_EH_RESET; 1040 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1041 } 1042 } 1043 } 1044 1045 pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); 1046 1047 /* 1048 * Check the health of the controller 1049 */ 1050 status = aac_adapter_check_health(aac); 1051 if (status) 1052 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status); 1053 1054 count = get_num_of_incomplete_fibs(aac); 1055 return (count == 0) ? SUCCESS : FAILED; 1056 } 1057 1058 /* 1059 * aac_eh_host_reset - Host reset command handling 1060 * @scsi_cmd: SCSI command block causing the reset 1061 * 1062 */ 1063 int aac_eh_host_reset(struct scsi_cmnd *cmd) 1064 { 1065 struct scsi_device * dev = cmd->device; 1066 struct Scsi_Host * host = dev->host; 1067 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1068 int ret = FAILED; 1069 __le32 supported_options2 = 0; 1070 bool is_mu_reset; 1071 bool is_ignore_reset; 1072 bool is_doorbell_reset; 1073 1074 /* 1075 * Check if reset is supported by the firmware 1076 */ 1077 supported_options2 = aac->supplement_adapter_info.supported_options2; 1078 is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET; 1079 is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET; 1080 is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET; 1081 /* 1082 * This adapter needs a blind reset, only do so for 1083 * Adapters that support a register, instead of a commanded, 1084 * reset. 1085 */ 1086 if ((is_mu_reset || is_doorbell_reset) 1087 && aac_check_reset 1088 && (aac_check_reset != -1 || !is_ignore_reset)) { 1089 /* Bypass wait for command quiesce */ 1090 if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0) 1091 ret = SUCCESS; 1092 } 1093 /* 1094 * Reset EH state 1095 */ 1096 if (ret == SUCCESS) { 1097 int bus, cid; 1098 struct aac_hba_map_info *info; 1099 1100 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1101 for (cid = 0; cid < AAC_MAX_TARGETS; cid++) { 1102 info = &aac->hba_map[bus][cid]; 1103 if (info->devtype == AAC_DEVTYPE_NATIVE_RAW) 1104 info->reset_state = 0; 1105 } 1106 } 1107 } 1108 return ret; 1109 } 1110 1111 /** 1112 * aac_cfg_open - open a configuration file 1113 * @inode: inode being opened 1114 * @file: file handle attached 1115 * 1116 * Called when the configuration device is opened. Does the needed 1117 * set up on the handle and then returns 1118 * 1119 * Bugs: This needs extending to check a given adapter is present 1120 * so we can support hot plugging, and to ref count adapters. 1121 */ 1122 1123 static int aac_cfg_open(struct inode *inode, struct file *file) 1124 { 1125 struct aac_dev *aac; 1126 unsigned minor_number = iminor(inode); 1127 int err = -ENODEV; 1128 1129 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 1130 list_for_each_entry(aac, &aac_devices, entry) { 1131 if (aac->id == minor_number) { 1132 file->private_data = aac; 1133 err = 0; 1134 break; 1135 } 1136 } 1137 mutex_unlock(&aac_mutex); 1138 1139 return err; 1140 } 1141 1142 /** 1143 * aac_cfg_ioctl - AAC configuration request 1144 * @inode: inode of device 1145 * @file: file handle 1146 * @cmd: ioctl command code 1147 * @arg: argument 1148 * 1149 * Handles a configuration ioctl. Currently this involves wrapping it 1150 * up and feeding it into the nasty windowsalike glue layer. 1151 * 1152 * Bugs: Needs locking against parallel ioctls lower down 1153 * Bugs: Needs to handle hot plugging 1154 */ 1155 1156 static long aac_cfg_ioctl(struct file *file, 1157 unsigned int cmd, unsigned long arg) 1158 { 1159 struct aac_dev *aac = (struct aac_dev *)file->private_data; 1160 1161 if (!capable(CAP_SYS_RAWIO)) 1162 return -EPERM; 1163 1164 return aac_do_ioctl(aac, cmd, (void __user *)arg); 1165 } 1166 1167 #ifdef CONFIG_COMPAT 1168 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) 1169 { 1170 long ret; 1171 switch (cmd) { 1172 case FSACTL_MINIPORT_REV_CHECK: 1173 case FSACTL_SENDFIB: 1174 case FSACTL_OPEN_GET_ADAPTER_FIB: 1175 case FSACTL_CLOSE_GET_ADAPTER_FIB: 1176 case FSACTL_SEND_RAW_SRB: 1177 case FSACTL_GET_PCI_INFO: 1178 case FSACTL_QUERY_DISK: 1179 case FSACTL_DELETE_DISK: 1180 case FSACTL_FORCE_DELETE_DISK: 1181 case FSACTL_GET_CONTAINERS: 1182 case FSACTL_SEND_LARGE_FIB: 1183 ret = aac_do_ioctl(dev, cmd, (void __user *)arg); 1184 break; 1185 1186 case FSACTL_GET_NEXT_ADAPTER_FIB: { 1187 struct fib_ioctl __user *f; 1188 1189 f = compat_alloc_user_space(sizeof(*f)); 1190 ret = 0; 1191 if (clear_user(f, sizeof(*f))) 1192 ret = -EFAULT; 1193 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) 1194 ret = -EFAULT; 1195 if (!ret) 1196 ret = aac_do_ioctl(dev, cmd, f); 1197 break; 1198 } 1199 1200 default: 1201 ret = -ENOIOCTLCMD; 1202 break; 1203 } 1204 return ret; 1205 } 1206 1207 static int aac_compat_ioctl(struct scsi_device *sdev, unsigned int cmd, 1208 void __user *arg) 1209 { 1210 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 1211 if (!capable(CAP_SYS_RAWIO)) 1212 return -EPERM; 1213 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); 1214 } 1215 1216 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1217 { 1218 if (!capable(CAP_SYS_RAWIO)) 1219 return -EPERM; 1220 return aac_compat_do_ioctl(file->private_data, cmd, arg); 1221 } 1222 #endif 1223 1224 static ssize_t aac_show_model(struct device *device, 1225 struct device_attribute *attr, char *buf) 1226 { 1227 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1228 int len; 1229 1230 if (dev->supplement_adapter_info.adapter_type_text[0]) { 1231 char *cp = dev->supplement_adapter_info.adapter_type_text; 1232 while (*cp && *cp != ' ') 1233 ++cp; 1234 while (*cp == ' ') 1235 ++cp; 1236 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 1237 } else 1238 len = snprintf(buf, PAGE_SIZE, "%s\n", 1239 aac_drivers[dev->cardtype].model); 1240 return len; 1241 } 1242 1243 static ssize_t aac_show_vendor(struct device *device, 1244 struct device_attribute *attr, char *buf) 1245 { 1246 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1247 struct aac_supplement_adapter_info *sup_adap_info; 1248 int len; 1249 1250 sup_adap_info = &dev->supplement_adapter_info; 1251 if (sup_adap_info->adapter_type_text[0]) { 1252 char *cp = sup_adap_info->adapter_type_text; 1253 while (*cp && *cp != ' ') 1254 ++cp; 1255 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 1256 (int)(cp - (char *)sup_adap_info->adapter_type_text), 1257 sup_adap_info->adapter_type_text); 1258 } else 1259 len = snprintf(buf, PAGE_SIZE, "%s\n", 1260 aac_drivers[dev->cardtype].vname); 1261 return len; 1262 } 1263 1264 static ssize_t aac_show_flags(struct device *cdev, 1265 struct device_attribute *attr, char *buf) 1266 { 1267 int len = 0; 1268 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 1269 1270 if (nblank(dprintk(x))) 1271 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 1272 #ifdef AAC_DETAILED_STATUS_INFO 1273 len += snprintf(buf + len, PAGE_SIZE - len, 1274 "AAC_DETAILED_STATUS_INFO\n"); 1275 #endif 1276 if (dev->raw_io_interface && dev->raw_io_64) 1277 len += snprintf(buf + len, PAGE_SIZE - len, 1278 "SAI_READ_CAPACITY_16\n"); 1279 if (dev->jbod) 1280 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); 1281 if (dev->supplement_adapter_info.supported_options2 & 1282 AAC_OPTION_POWER_MANAGEMENT) 1283 len += snprintf(buf + len, PAGE_SIZE - len, 1284 "SUPPORTED_POWER_MANAGEMENT\n"); 1285 if (dev->msi) 1286 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 1287 return len; 1288 } 1289 1290 static ssize_t aac_show_kernel_version(struct device *device, 1291 struct device_attribute *attr, 1292 char *buf) 1293 { 1294 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1295 int len, tmp; 1296 1297 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1298 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1299 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1300 le32_to_cpu(dev->adapter_info.kernelbuild)); 1301 return len; 1302 } 1303 1304 static ssize_t aac_show_monitor_version(struct device *device, 1305 struct device_attribute *attr, 1306 char *buf) 1307 { 1308 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1309 int len, tmp; 1310 1311 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1312 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1313 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1314 le32_to_cpu(dev->adapter_info.monitorbuild)); 1315 return len; 1316 } 1317 1318 static ssize_t aac_show_bios_version(struct device *device, 1319 struct device_attribute *attr, 1320 char *buf) 1321 { 1322 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1323 int len, tmp; 1324 1325 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1326 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1327 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1328 le32_to_cpu(dev->adapter_info.biosbuild)); 1329 return len; 1330 } 1331 1332 static ssize_t aac_show_driver_version(struct device *device, 1333 struct device_attribute *attr, 1334 char *buf) 1335 { 1336 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); 1337 } 1338 1339 static ssize_t aac_show_serial_number(struct device *device, 1340 struct device_attribute *attr, char *buf) 1341 { 1342 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1343 int len = 0; 1344 1345 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 1346 len = snprintf(buf, 16, "%06X\n", 1347 le32_to_cpu(dev->adapter_info.serial[0])); 1348 if (len && 1349 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ 1350 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], 1351 buf, len-1)) 1352 len = snprintf(buf, 16, "%.*s\n", 1353 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), 1354 dev->supplement_adapter_info.mfg_pcba_serial_no); 1355 1356 return min(len, 16); 1357 } 1358 1359 static ssize_t aac_show_max_channel(struct device *device, 1360 struct device_attribute *attr, char *buf) 1361 { 1362 return snprintf(buf, PAGE_SIZE, "%d\n", 1363 class_to_shost(device)->max_channel); 1364 } 1365 1366 static ssize_t aac_show_max_id(struct device *device, 1367 struct device_attribute *attr, char *buf) 1368 { 1369 return snprintf(buf, PAGE_SIZE, "%d\n", 1370 class_to_shost(device)->max_id); 1371 } 1372 1373 static ssize_t aac_store_reset_adapter(struct device *device, 1374 struct device_attribute *attr, 1375 const char *buf, size_t count) 1376 { 1377 int retval = -EACCES; 1378 1379 if (!capable(CAP_SYS_ADMIN)) 1380 return retval; 1381 1382 retval = aac_reset_adapter(shost_priv(class_to_shost(device)), 1383 buf[0] == '!', IOP_HWSOFT_RESET); 1384 if (retval >= 0) 1385 retval = count; 1386 1387 return retval; 1388 } 1389 1390 static ssize_t aac_show_reset_adapter(struct device *device, 1391 struct device_attribute *attr, 1392 char *buf) 1393 { 1394 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1395 int len, tmp; 1396 1397 tmp = aac_adapter_check_health(dev); 1398 if ((tmp == 0) && dev->in_reset) 1399 tmp = -EBUSY; 1400 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 1401 return len; 1402 } 1403 1404 static struct device_attribute aac_model = { 1405 .attr = { 1406 .name = "model", 1407 .mode = S_IRUGO, 1408 }, 1409 .show = aac_show_model, 1410 }; 1411 static struct device_attribute aac_vendor = { 1412 .attr = { 1413 .name = "vendor", 1414 .mode = S_IRUGO, 1415 }, 1416 .show = aac_show_vendor, 1417 }; 1418 static struct device_attribute aac_flags = { 1419 .attr = { 1420 .name = "flags", 1421 .mode = S_IRUGO, 1422 }, 1423 .show = aac_show_flags, 1424 }; 1425 static struct device_attribute aac_kernel_version = { 1426 .attr = { 1427 .name = "hba_kernel_version", 1428 .mode = S_IRUGO, 1429 }, 1430 .show = aac_show_kernel_version, 1431 }; 1432 static struct device_attribute aac_monitor_version = { 1433 .attr = { 1434 .name = "hba_monitor_version", 1435 .mode = S_IRUGO, 1436 }, 1437 .show = aac_show_monitor_version, 1438 }; 1439 static struct device_attribute aac_bios_version = { 1440 .attr = { 1441 .name = "hba_bios_version", 1442 .mode = S_IRUGO, 1443 }, 1444 .show = aac_show_bios_version, 1445 }; 1446 static struct device_attribute aac_lld_version = { 1447 .attr = { 1448 .name = "driver_version", 1449 .mode = 0444, 1450 }, 1451 .show = aac_show_driver_version, 1452 }; 1453 static struct device_attribute aac_serial_number = { 1454 .attr = { 1455 .name = "serial_number", 1456 .mode = S_IRUGO, 1457 }, 1458 .show = aac_show_serial_number, 1459 }; 1460 static struct device_attribute aac_max_channel = { 1461 .attr = { 1462 .name = "max_channel", 1463 .mode = S_IRUGO, 1464 }, 1465 .show = aac_show_max_channel, 1466 }; 1467 static struct device_attribute aac_max_id = { 1468 .attr = { 1469 .name = "max_id", 1470 .mode = S_IRUGO, 1471 }, 1472 .show = aac_show_max_id, 1473 }; 1474 static struct device_attribute aac_reset = { 1475 .attr = { 1476 .name = "reset_host", 1477 .mode = S_IWUSR|S_IRUGO, 1478 }, 1479 .store = aac_store_reset_adapter, 1480 .show = aac_show_reset_adapter, 1481 }; 1482 1483 static struct device_attribute *aac_attrs[] = { 1484 &aac_model, 1485 &aac_vendor, 1486 &aac_flags, 1487 &aac_kernel_version, 1488 &aac_monitor_version, 1489 &aac_bios_version, 1490 &aac_lld_version, 1491 &aac_serial_number, 1492 &aac_max_channel, 1493 &aac_max_id, 1494 &aac_reset, 1495 NULL 1496 }; 1497 1498 ssize_t aac_get_serial_number(struct device *device, char *buf) 1499 { 1500 return aac_show_serial_number(device, &aac_serial_number, buf); 1501 } 1502 1503 static const struct file_operations aac_cfg_fops = { 1504 .owner = THIS_MODULE, 1505 .unlocked_ioctl = aac_cfg_ioctl, 1506 #ifdef CONFIG_COMPAT 1507 .compat_ioctl = aac_compat_cfg_ioctl, 1508 #endif 1509 .open = aac_cfg_open, 1510 .llseek = noop_llseek, 1511 }; 1512 1513 static struct scsi_host_template aac_driver_template = { 1514 .module = THIS_MODULE, 1515 .name = "AAC", 1516 .proc_name = AAC_DRIVERNAME, 1517 .info = aac_info, 1518 .ioctl = aac_ioctl, 1519 #ifdef CONFIG_COMPAT 1520 .compat_ioctl = aac_compat_ioctl, 1521 #endif 1522 .queuecommand = aac_queuecommand, 1523 .bios_param = aac_biosparm, 1524 .shost_attrs = aac_attrs, 1525 .slave_configure = aac_slave_configure, 1526 .change_queue_depth = aac_change_queue_depth, 1527 .sdev_attrs = aac_dev_attrs, 1528 .eh_abort_handler = aac_eh_abort, 1529 .eh_device_reset_handler = aac_eh_dev_reset, 1530 .eh_target_reset_handler = aac_eh_target_reset, 1531 .eh_bus_reset_handler = aac_eh_bus_reset, 1532 .eh_host_reset_handler = aac_eh_host_reset, 1533 .can_queue = AAC_NUM_IO_FIB, 1534 .this_id = MAXIMUM_NUM_CONTAINERS, 1535 .sg_tablesize = 16, 1536 .max_sectors = 128, 1537 #if (AAC_NUM_IO_FIB > 256) 1538 .cmd_per_lun = 256, 1539 #else 1540 .cmd_per_lun = AAC_NUM_IO_FIB, 1541 #endif 1542 .emulated = 1, 1543 .no_write_same = 1, 1544 }; 1545 1546 static void __aac_shutdown(struct aac_dev * aac) 1547 { 1548 int i; 1549 1550 mutex_lock(&aac->ioctl_mutex); 1551 aac->adapter_shutdown = 1; 1552 mutex_unlock(&aac->ioctl_mutex); 1553 1554 if (aac->aif_thread) { 1555 int i; 1556 /* Clear out events first */ 1557 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1558 struct fib *fib = &aac->fibs[i]; 1559 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1560 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1561 complete(&fib->event_wait); 1562 } 1563 kthread_stop(aac->thread); 1564 aac->thread = NULL; 1565 } 1566 1567 aac_send_shutdown(aac); 1568 1569 aac_adapter_disable_int(aac); 1570 1571 if (aac_is_src(aac)) { 1572 if (aac->max_msix > 1) { 1573 for (i = 0; i < aac->max_msix; i++) { 1574 free_irq(pci_irq_vector(aac->pdev, i), 1575 &(aac->aac_msix[i])); 1576 } 1577 } else { 1578 free_irq(aac->pdev->irq, 1579 &(aac->aac_msix[0])); 1580 } 1581 } else { 1582 free_irq(aac->pdev->irq, aac); 1583 } 1584 if (aac->msi) 1585 pci_disable_msi(aac->pdev); 1586 else if (aac->max_msix > 1) 1587 pci_disable_msix(aac->pdev); 1588 } 1589 static void aac_init_char(void) 1590 { 1591 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); 1592 if (aac_cfg_major < 0) { 1593 pr_err("aacraid: unable to register \"aac\" device.\n"); 1594 } 1595 } 1596 1597 void aac_reinit_aif(struct aac_dev *aac, unsigned int index) 1598 { 1599 /* 1600 * Firmware may send a AIF messages very early and the Driver may have 1601 * ignored as it is not fully ready to process the messages. Send 1602 * AIF to firmware so that if there are any unprocessed events they 1603 * can be processed now. 1604 */ 1605 if (aac_drivers[index].quirks & AAC_QUIRK_SRC) 1606 aac_intr_normal(aac, 0, 2, 0, NULL); 1607 1608 } 1609 1610 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1611 { 1612 unsigned index = id->driver_data; 1613 struct Scsi_Host *shost; 1614 struct aac_dev *aac; 1615 struct list_head *insert = &aac_devices; 1616 int error = -ENODEV; 1617 int unique_id = 0; 1618 u64 dmamask; 1619 int mask_bits = 0; 1620 extern int aac_sync_mode; 1621 1622 /* 1623 * Only series 7 needs freset. 1624 */ 1625 if (pdev->device == PMC_DEVICE_S7) 1626 pdev->needs_freset = 1; 1627 1628 list_for_each_entry(aac, &aac_devices, entry) { 1629 if (aac->id > unique_id) 1630 break; 1631 insert = &aac->entry; 1632 unique_id++; 1633 } 1634 1635 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1636 PCIE_LINK_STATE_CLKPM); 1637 1638 error = pci_enable_device(pdev); 1639 if (error) 1640 goto out; 1641 error = -ENODEV; 1642 1643 if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) { 1644 error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1645 if (error) { 1646 dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed"); 1647 goto out_disable_pdev; 1648 } 1649 } 1650 1651 /* 1652 * If the quirk31 bit is set, the adapter needs adapter 1653 * to driver communication memory to be allocated below 2gig 1654 */ 1655 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) { 1656 dmamask = DMA_BIT_MASK(31); 1657 mask_bits = 31; 1658 } else { 1659 dmamask = DMA_BIT_MASK(32); 1660 mask_bits = 32; 1661 } 1662 1663 error = pci_set_consistent_dma_mask(pdev, dmamask); 1664 if (error) { 1665 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n" 1666 , mask_bits); 1667 goto out_disable_pdev; 1668 } 1669 1670 pci_set_master(pdev); 1671 1672 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1673 if (!shost) 1674 goto out_disable_pdev; 1675 1676 shost->irq = pdev->irq; 1677 shost->unique_id = unique_id; 1678 shost->max_cmd_len = 16; 1679 shost->use_cmd_list = 1; 1680 1681 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) 1682 aac_init_char(); 1683 1684 aac = (struct aac_dev *)shost->hostdata; 1685 aac->base_start = pci_resource_start(pdev, 0); 1686 aac->scsi_host_ptr = shost; 1687 aac->pdev = pdev; 1688 aac->name = aac_driver_template.name; 1689 aac->id = shost->unique_id; 1690 aac->cardtype = index; 1691 INIT_LIST_HEAD(&aac->entry); 1692 1693 if (aac_reset_devices || reset_devices) 1694 aac->init_reset = true; 1695 1696 aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB, 1697 sizeof(struct fib), 1698 GFP_KERNEL); 1699 if (!aac->fibs) 1700 goto out_free_host; 1701 spin_lock_init(&aac->fib_lock); 1702 1703 mutex_init(&aac->ioctl_mutex); 1704 mutex_init(&aac->scan_mutex); 1705 1706 INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker); 1707 INIT_DELAYED_WORK(&aac->src_reinit_aif_worker, 1708 aac_src_reinit_aif_worker); 1709 /* 1710 * Map in the registers from the adapter. 1711 */ 1712 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1713 if ((*aac_drivers[index].init)(aac)) { 1714 error = -ENODEV; 1715 goto out_unmap; 1716 } 1717 1718 if (aac->sync_mode) { 1719 if (aac_sync_mode) 1720 printk(KERN_INFO "%s%d: Sync. mode enforced " 1721 "by driver parameter. This will cause " 1722 "a significant performance decrease!\n", 1723 aac->name, 1724 aac->id); 1725 else 1726 printk(KERN_INFO "%s%d: Async. mode not supported " 1727 "by current driver, sync. mode enforced." 1728 "\nPlease update driver to get full performance.\n", 1729 aac->name, 1730 aac->id); 1731 } 1732 1733 /* 1734 * Start any kernel threads needed 1735 */ 1736 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1737 if (IS_ERR(aac->thread)) { 1738 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1739 error = PTR_ERR(aac->thread); 1740 aac->thread = NULL; 1741 goto out_deinit; 1742 } 1743 1744 aac->maximum_num_channels = aac_drivers[index].channels; 1745 error = aac_get_adapter_info(aac); 1746 if (error < 0) 1747 goto out_deinit; 1748 1749 /* 1750 * Lets override negotiations and drop the maximum SG limit to 34 1751 */ 1752 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1753 (shost->sg_tablesize > 34)) { 1754 shost->sg_tablesize = 34; 1755 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1756 } 1757 1758 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1759 (shost->sg_tablesize > 17)) { 1760 shost->sg_tablesize = 17; 1761 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1762 } 1763 1764 if (aac->adapter_info.options & AAC_OPT_NEW_COMM) 1765 shost->max_segment_size = shost->max_sectors << 9; 1766 else 1767 shost->max_segment_size = 65536; 1768 1769 /* 1770 * Firmware printf works only with older firmware. 1771 */ 1772 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1773 aac->printf_enabled = 1; 1774 else 1775 aac->printf_enabled = 0; 1776 1777 /* 1778 * max channel will be the physical channels plus 1 virtual channel 1779 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1780 * physical channels are address by their actual physical number+1 1781 */ 1782 if (aac->nondasd_support || expose_physicals || aac->jbod) 1783 shost->max_channel = aac->maximum_num_channels; 1784 else 1785 shost->max_channel = 0; 1786 1787 aac_get_config_status(aac, 0); 1788 aac_get_containers(aac); 1789 list_add(&aac->entry, insert); 1790 1791 shost->max_id = aac->maximum_num_containers; 1792 if (shost->max_id < aac->maximum_num_physicals) 1793 shost->max_id = aac->maximum_num_physicals; 1794 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1795 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1796 else 1797 shost->this_id = shost->max_id; 1798 1799 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) 1800 aac_intr_normal(aac, 0, 2, 0, NULL); 1801 1802 /* 1803 * dmb - we may need to move the setting of these parms somewhere else once 1804 * we get a fib that can report the actual numbers 1805 */ 1806 shost->max_lun = AAC_MAX_LUN; 1807 1808 pci_set_drvdata(pdev, shost); 1809 1810 error = scsi_add_host(shost, &pdev->dev); 1811 if (error) 1812 goto out_deinit; 1813 1814 aac_scan_host(aac); 1815 1816 pci_enable_pcie_error_reporting(pdev); 1817 pci_save_state(pdev); 1818 1819 return 0; 1820 1821 out_deinit: 1822 __aac_shutdown(aac); 1823 out_unmap: 1824 aac_fib_map_free(aac); 1825 if (aac->comm_addr) 1826 dma_free_coherent(&aac->pdev->dev, aac->comm_size, 1827 aac->comm_addr, aac->comm_phys); 1828 kfree(aac->queues); 1829 aac_adapter_ioremap(aac, 0); 1830 kfree(aac->fibs); 1831 kfree(aac->fsa_dev); 1832 out_free_host: 1833 scsi_host_put(shost); 1834 out_disable_pdev: 1835 pci_disable_device(pdev); 1836 out: 1837 return error; 1838 } 1839 1840 static void aac_release_resources(struct aac_dev *aac) 1841 { 1842 aac_adapter_disable_int(aac); 1843 aac_free_irq(aac); 1844 } 1845 1846 static int aac_acquire_resources(struct aac_dev *dev) 1847 { 1848 unsigned long status; 1849 /* 1850 * First clear out all interrupts. Then enable the one's that we 1851 * can handle. 1852 */ 1853 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1854 || status == 0xffffffff) 1855 msleep(20); 1856 1857 aac_adapter_disable_int(dev); 1858 aac_adapter_enable_int(dev); 1859 1860 1861 if (aac_is_src(dev)) 1862 aac_define_int_mode(dev); 1863 1864 if (dev->msi_enabled) 1865 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1866 1867 if (aac_acquire_irq(dev)) 1868 goto error_iounmap; 1869 1870 aac_adapter_enable_int(dev); 1871 1872 /*max msix may change after EEH 1873 * Re-assign vectors to fibs 1874 */ 1875 aac_fib_vector_assign(dev); 1876 1877 if (!dev->sync_mode) { 1878 /* After EEH recovery or suspend resume, max_msix count 1879 * may change, therefore updating in init as well. 1880 */ 1881 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); 1882 aac_adapter_start(dev); 1883 } 1884 return 0; 1885 1886 error_iounmap: 1887 return -1; 1888 1889 } 1890 1891 #if (defined(CONFIG_PM)) 1892 static int aac_suspend(struct pci_dev *pdev, pm_message_t state) 1893 { 1894 1895 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1896 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1897 1898 scsi_block_requests(shost); 1899 aac_cancel_rescan_worker(aac); 1900 aac_send_shutdown(aac); 1901 1902 aac_release_resources(aac); 1903 1904 pci_set_drvdata(pdev, shost); 1905 pci_save_state(pdev); 1906 pci_disable_device(pdev); 1907 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1908 1909 return 0; 1910 } 1911 1912 static int aac_resume(struct pci_dev *pdev) 1913 { 1914 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1915 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1916 int r; 1917 1918 pci_set_power_state(pdev, PCI_D0); 1919 pci_enable_wake(pdev, PCI_D0, 0); 1920 pci_restore_state(pdev); 1921 r = pci_enable_device(pdev); 1922 1923 if (r) 1924 goto fail_device; 1925 1926 pci_set_master(pdev); 1927 if (aac_acquire_resources(aac)) 1928 goto fail_device; 1929 /* 1930 * reset this flag to unblock ioctl() as it was set at 1931 * aac_send_shutdown() to block ioctls from upperlayer 1932 */ 1933 aac->adapter_shutdown = 0; 1934 scsi_unblock_requests(shost); 1935 1936 return 0; 1937 1938 fail_device: 1939 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1940 scsi_host_put(shost); 1941 pci_disable_device(pdev); 1942 return -ENODEV; 1943 } 1944 #endif 1945 1946 static void aac_shutdown(struct pci_dev *dev) 1947 { 1948 struct Scsi_Host *shost = pci_get_drvdata(dev); 1949 scsi_block_requests(shost); 1950 __aac_shutdown((struct aac_dev *)shost->hostdata); 1951 } 1952 1953 static void aac_remove_one(struct pci_dev *pdev) 1954 { 1955 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1956 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1957 1958 aac_cancel_rescan_worker(aac); 1959 scsi_remove_host(shost); 1960 1961 __aac_shutdown(aac); 1962 aac_fib_map_free(aac); 1963 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1964 aac->comm_phys); 1965 kfree(aac->queues); 1966 1967 aac_adapter_ioremap(aac, 0); 1968 1969 kfree(aac->fibs); 1970 kfree(aac->fsa_dev); 1971 1972 list_del(&aac->entry); 1973 scsi_host_put(shost); 1974 pci_disable_device(pdev); 1975 if (list_empty(&aac_devices)) { 1976 unregister_chrdev(aac_cfg_major, "aac"); 1977 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; 1978 } 1979 } 1980 1981 static void aac_flush_ios(struct aac_dev *aac) 1982 { 1983 int i; 1984 struct scsi_cmnd *cmd; 1985 1986 for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) { 1987 cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data; 1988 if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) { 1989 scsi_dma_unmap(cmd); 1990 1991 if (aac->handle_pci_error) 1992 cmd->result = DID_NO_CONNECT << 16; 1993 else 1994 cmd->result = DID_RESET << 16; 1995 1996 cmd->scsi_done(cmd); 1997 } 1998 } 1999 } 2000 2001 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, 2002 enum pci_channel_state error) 2003 { 2004 struct Scsi_Host *shost = pci_get_drvdata(pdev); 2005 struct aac_dev *aac = shost_priv(shost); 2006 2007 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); 2008 2009 switch (error) { 2010 case pci_channel_io_normal: 2011 return PCI_ERS_RESULT_CAN_RECOVER; 2012 case pci_channel_io_frozen: 2013 aac->handle_pci_error = 1; 2014 2015 scsi_block_requests(aac->scsi_host_ptr); 2016 aac_cancel_rescan_worker(aac); 2017 aac_flush_ios(aac); 2018 aac_release_resources(aac); 2019 2020 pci_disable_pcie_error_reporting(pdev); 2021 aac_adapter_ioremap(aac, 0); 2022 2023 return PCI_ERS_RESULT_NEED_RESET; 2024 case pci_channel_io_perm_failure: 2025 aac->handle_pci_error = 1; 2026 2027 aac_flush_ios(aac); 2028 return PCI_ERS_RESULT_DISCONNECT; 2029 } 2030 2031 return PCI_ERS_RESULT_NEED_RESET; 2032 } 2033 2034 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) 2035 { 2036 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); 2037 return PCI_ERS_RESULT_NEED_RESET; 2038 } 2039 2040 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) 2041 { 2042 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); 2043 pci_restore_state(pdev); 2044 if (pci_enable_device(pdev)) { 2045 dev_warn(&pdev->dev, 2046 "aacraid: failed to enable slave\n"); 2047 goto fail_device; 2048 } 2049 2050 pci_set_master(pdev); 2051 2052 if (pci_enable_device_mem(pdev)) { 2053 dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); 2054 goto fail_device; 2055 } 2056 2057 return PCI_ERS_RESULT_RECOVERED; 2058 2059 fail_device: 2060 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); 2061 return PCI_ERS_RESULT_DISCONNECT; 2062 } 2063 2064 2065 static void aac_pci_resume(struct pci_dev *pdev) 2066 { 2067 struct Scsi_Host *shost = pci_get_drvdata(pdev); 2068 struct scsi_device *sdev = NULL; 2069 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); 2070 2071 if (aac_adapter_ioremap(aac, aac->base_size)) { 2072 2073 dev_err(&pdev->dev, "aacraid: ioremap failed\n"); 2074 /* remap failed, go back ... */ 2075 aac->comm_interface = AAC_COMM_PRODUCER; 2076 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { 2077 dev_warn(&pdev->dev, 2078 "aacraid: unable to map adapter.\n"); 2079 2080 return; 2081 } 2082 } 2083 2084 msleep(10000); 2085 2086 aac_acquire_resources(aac); 2087 2088 /* 2089 * reset this flag to unblock ioctl() as it was set 2090 * at aac_send_shutdown() to block ioctls from upperlayer 2091 */ 2092 aac->adapter_shutdown = 0; 2093 aac->handle_pci_error = 0; 2094 2095 shost_for_each_device(sdev, shost) 2096 if (sdev->sdev_state == SDEV_OFFLINE) 2097 sdev->sdev_state = SDEV_RUNNING; 2098 scsi_unblock_requests(aac->scsi_host_ptr); 2099 aac_scan_host(aac); 2100 pci_save_state(pdev); 2101 2102 dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); 2103 } 2104 2105 static struct pci_error_handlers aac_pci_err_handler = { 2106 .error_detected = aac_pci_error_detected, 2107 .mmio_enabled = aac_pci_mmio_enabled, 2108 .slot_reset = aac_pci_slot_reset, 2109 .resume = aac_pci_resume, 2110 }; 2111 2112 static struct pci_driver aac_pci_driver = { 2113 .name = AAC_DRIVERNAME, 2114 .id_table = aac_pci_tbl, 2115 .probe = aac_probe_one, 2116 .remove = aac_remove_one, 2117 #if (defined(CONFIG_PM)) 2118 .suspend = aac_suspend, 2119 .resume = aac_resume, 2120 #endif 2121 .shutdown = aac_shutdown, 2122 .err_handler = &aac_pci_err_handler, 2123 }; 2124 2125 static int __init aac_init(void) 2126 { 2127 int error; 2128 2129 printk(KERN_INFO "Adaptec %s driver %s\n", 2130 AAC_DRIVERNAME, aac_driver_version); 2131 2132 error = pci_register_driver(&aac_pci_driver); 2133 if (error < 0) 2134 return error; 2135 2136 aac_init_char(); 2137 2138 2139 return 0; 2140 } 2141 2142 static void __exit aac_exit(void) 2143 { 2144 if (aac_cfg_major > -1) 2145 unregister_chrdev(aac_cfg_major, "aac"); 2146 pci_unregister_driver(&aac_pci_driver); 2147 } 2148 2149 module_init(aac_init); 2150 module_exit(aac_exit); 2151