xref: /linux/drivers/scsi/aacraid/linit.c (revision 5144c534d16529bc469396211131e8935589f833)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *   linit.c
26  *
27  * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
28  */
29 
30 
31 #include <linux/compat.h>
32 #include <linux/blkdev.h>
33 #include <linux/completion.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <linux/slab.h>
41 #include <linux/mutex.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51 #include <scsi/scsi_tcq.h>
52 #include <scsi/scsicam.h>
53 #include <scsi/scsi_eh.h>
54 
55 #include "aacraid.h"
56 
57 #define AAC_DRIVER_VERSION		"1.1-5"
58 #ifndef AAC_DRIVER_BRANCH
59 #define AAC_DRIVER_BRANCH		""
60 #endif
61 #define AAC_DRIVER_BUILD_DATE		__DATE__ " " __TIME__
62 #define AAC_DRIVERNAME			"aacraid"
63 
64 #ifdef AAC_DRIVER_BUILD
65 #define _str(x) #x
66 #define str(x) _str(x)
67 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
68 #else
69 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION AAC_DRIVER_BRANCH " " AAC_DRIVER_BUILD_DATE
70 #endif
71 
72 MODULE_AUTHOR("Red Hat Inc and Adaptec");
73 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
74 		   "Adaptec Advanced Raid Products, "
75 		   "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
76 MODULE_LICENSE("GPL");
77 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
78 
79 static DEFINE_MUTEX(aac_mutex);
80 static LIST_HEAD(aac_devices);
81 static int aac_cfg_major = -1;
82 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
83 
84 /*
85  * Because of the way Linux names scsi devices, the order in this table has
86  * become important.  Check for on-board Raid first, add-in cards second.
87  *
88  * Note: The last field is used to index into aac_drivers below.
89  */
90 #ifdef DECLARE_PCI_DEVICE_TABLE
91 static DECLARE_PCI_DEVICE_TABLE(aac_pci_tbl) = {
92 #elif defined(__devinitconst)
93 static const struct pci_device_id aac_pci_tbl[] __devinitconst = {
94 #else
95 static const struct pci_device_id aac_pci_tbl[] __devinitdata = {
96 #endif
97 	{ 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
98 	{ 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
99 	{ 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
100 	{ 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
101 	{ 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
102 	{ 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
103 	{ 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
104 	{ 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
105 	{ 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
106 	{ 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
107 	{ 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
108 	{ 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
109 	{ 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
110 	{ 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
111 	{ 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
112 	{ 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
113 
114 	{ 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
115 	{ 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
116 	{ 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
117 	{ 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
118 	{ 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
119 	{ 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
120 	{ 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
121 	{ 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
122 	{ 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
123 	{ 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
124 	{ 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
125 	{ 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
126 	{ 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
127 	{ 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
128 	{ 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
129 	{ 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
130 	{ 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
131 	{ 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
132 	{ 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
133 	{ 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
134 	{ 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
135 	{ 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
136 	{ 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
137 	{ 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
138 	{ 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
139 	{ 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
140 	{ 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
141 	{ 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
142 	{ 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
143 	{ 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
144 	{ 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
145 	{ 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
146 	{ 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
147 	{ 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
148 	{ 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
149 	{ 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
150 	{ 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
151 	{ 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
152 
153 	{ 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
154 	{ 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
155 	{ 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
156 	{ 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
157 	{ 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
158 
159 	{ 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
160 	{ 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
161 	{ 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
162 	{ 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
163 	{ 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
164 	{ 0,}
165 };
166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
167 
168 /*
169  * dmb - For now we add the number of channels to this structure.
170  * In the future we should add a fib that reports the number of channels
171  * for the card.  At that time we can remove the channels from here
172  */
173 static struct aac_driver_ident aac_drivers[] = {
174 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
175 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
176 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
177 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
178 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
179 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
180 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
181 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
182 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
183 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
184 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
185 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2120S (Crusader) */
186 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2200S (Vulcan) */
187 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
188 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
189 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
190 
191 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
192 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
193 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
194 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
195 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
196 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
197 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
198 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
199 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
200 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
201 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
202 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
203 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
204 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
205 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
206 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
207 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
208 	{ NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
209 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
210 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
211 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
212 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
213 	{ aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
214 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
215 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
216 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
217 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
218 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
219 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
220 	{ aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
221 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
222 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
223 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
224 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
225 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
226 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */
227 
228 	{ aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
229 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
230 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
231 	{ aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
232 	{ aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
233 
234 	{ aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
235 	{ aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
236 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
237 	{ aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
238 	{ aac_nark_init, "aacraid", "ADAPTEC ", "RAID            ", 2 } /* Adaptec NEMER/ARK Catch All */
239 };
240 
241 /**
242  *	aac_queuecommand	-	queue a SCSI command
243  *	@cmd:		SCSI command to queue
244  *	@done:		Function to call on command completion
245  *
246  *	Queues a command for execution by the associated Host Adapter.
247  *
248  *	TODO: unify with aac_scsi_cmd().
249  */
250 
251 static int aac_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
252 {
253 	struct Scsi_Host *host = cmd->device->host;
254 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
255 	u32 count = 0;
256 	cmd->scsi_done = done;
257 	for (; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
258 		struct fib * fib = &dev->fibs[count];
259 		struct scsi_cmnd * command;
260 		if (fib->hw_fib_va->header.XferState &&
261 		    ((command = fib->callback_data)) &&
262 		    (command == cmd) &&
263 		    (cmd->SCp.phase == AAC_OWNER_FIRMWARE))
264 			return 0; /* Already owned by Adapter */
265 	}
266 	cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
267 	return (aac_scsi_cmd(cmd) ? FAILED : 0);
268 }
269 
270 /**
271  *	aac_info		-	Returns the host adapter name
272  *	@shost:		Scsi host to report on
273  *
274  *	Returns a static string describing the device in question
275  */
276 
277 static const char *aac_info(struct Scsi_Host *shost)
278 {
279 	struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
280 	return aac_drivers[dev->cardtype].name;
281 }
282 
283 /**
284  *	aac_get_driver_ident
285  *	@devtype: index into lookup table
286  *
287  *	Returns a pointer to the entry in the driver lookup table.
288  */
289 
290 struct aac_driver_ident* aac_get_driver_ident(int devtype)
291 {
292 	return &aac_drivers[devtype];
293 }
294 
295 /**
296  *	aac_biosparm	-	return BIOS parameters for disk
297  *	@sdev: The scsi device corresponding to the disk
298  *	@bdev: the block device corresponding to the disk
299  *	@capacity: the sector capacity of the disk
300  *	@geom: geometry block to fill in
301  *
302  *	Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
303  *	The default disk geometry is 64 heads, 32 sectors, and the appropriate
304  *	number of cylinders so as not to exceed drive capacity.  In order for
305  *	disks equal to or larger than 1 GB to be addressable by the BIOS
306  *	without exceeding the BIOS limitation of 1024 cylinders, Extended
307  *	Translation should be enabled.   With Extended Translation enabled,
308  *	drives between 1 GB inclusive and 2 GB exclusive are given a disk
309  *	geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
310  *	are given a disk geometry of 255 heads and 63 sectors.  However, if
311  *	the BIOS detects that the Extended Translation setting does not match
312  *	the geometry in the partition table, then the translation inferred
313  *	from the partition table will be used by the BIOS, and a warning may
314  *	be displayed.
315  */
316 
317 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
318 			sector_t capacity, int *geom)
319 {
320 	struct diskparm *param = (struct diskparm *)geom;
321 	unsigned char *buf;
322 
323 	dprintk((KERN_DEBUG "aac_biosparm.\n"));
324 
325 	/*
326 	 *	Assuming extended translation is enabled - #REVISIT#
327 	 */
328 	if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
329 		if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
330 			param->heads = 255;
331 			param->sectors = 63;
332 		} else {
333 			param->heads = 128;
334 			param->sectors = 32;
335 		}
336 	} else {
337 		param->heads = 64;
338 		param->sectors = 32;
339 	}
340 
341 	param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
342 
343 	/*
344 	 *	Read the first 1024 bytes from the disk device, if the boot
345 	 *	sector partition table is valid, search for a partition table
346 	 *	entry whose end_head matches one of the standard geometry
347 	 *	translations ( 64/32, 128/32, 255/63 ).
348 	 */
349 	buf = scsi_bios_ptable(bdev);
350 	if (!buf)
351 		return 0;
352 	if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
353 		struct partition *first = (struct partition * )buf;
354 		struct partition *entry = first;
355 		int saved_cylinders = param->cylinders;
356 		int num;
357 		unsigned char end_head, end_sec;
358 
359 		for(num = 0; num < 4; num++) {
360 			end_head = entry->end_head;
361 			end_sec = entry->end_sector & 0x3f;
362 
363 			if(end_head == 63) {
364 				param->heads = 64;
365 				param->sectors = 32;
366 				break;
367 			} else if(end_head == 127) {
368 				param->heads = 128;
369 				param->sectors = 32;
370 				break;
371 			} else if(end_head == 254) {
372 				param->heads = 255;
373 				param->sectors = 63;
374 				break;
375 			}
376 			entry++;
377 		}
378 
379 		if (num == 4) {
380 			end_head = first->end_head;
381 			end_sec = first->end_sector & 0x3f;
382 		}
383 
384 		param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
385 		if (num < 4 && end_sec == param->sectors) {
386 			if (param->cylinders != saved_cylinders)
387 				dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
388 					param->heads, param->sectors, num));
389 		} else if (end_head > 0 || end_sec > 0) {
390 			dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
391 				end_head + 1, end_sec, num));
392 			dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
393 					param->heads, param->sectors));
394 		}
395 	}
396 	kfree(buf);
397 	return 0;
398 }
399 
400 /**
401  *	aac_slave_configure		-	compute queue depths
402  *	@sdev:	SCSI device we are considering
403  *
404  *	Selects queue depths for each target device based on the host adapter's
405  *	total capacity and the queue depth supported by the target device.
406  *	A queue depth of one automatically disables tagged queueing.
407  */
408 
409 static int aac_slave_configure(struct scsi_device *sdev)
410 {
411 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
412 	if (aac->jbod && (sdev->type == TYPE_DISK))
413 		sdev->removable = 1;
414 	if ((sdev->type == TYPE_DISK) &&
415 			(sdev_channel(sdev) != CONTAINER_CHANNEL) &&
416 			(!aac->jbod || sdev->inq_periph_qual) &&
417 			(!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
418 		if (expose_physicals == 0)
419 			return -ENXIO;
420 		if (expose_physicals < 0)
421 			sdev->no_uld_attach = 1;
422 	}
423 	if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
424 			(!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) &&
425 			!sdev->no_uld_attach) {
426 		struct scsi_device * dev;
427 		struct Scsi_Host *host = sdev->host;
428 		unsigned num_lsu = 0;
429 		unsigned num_one = 0;
430 		unsigned depth;
431 		unsigned cid;
432 
433 		/*
434 		 * Firmware has an individual device recovery time typically
435 		 * of 35 seconds, give us a margin.
436 		 */
437 		if (sdev->request_queue->rq_timeout < (45 * HZ))
438 			blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
439 		for (cid = 0; cid < aac->maximum_num_containers; ++cid)
440 			if (aac->fsa_dev[cid].valid)
441 				++num_lsu;
442 		__shost_for_each_device(dev, host) {
443 			if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
444 					(!aac->raid_scsi_mode ||
445 						(sdev_channel(sdev) != 2)) &&
446 					!dev->no_uld_attach) {
447 				if ((sdev_channel(dev) != CONTAINER_CHANNEL)
448 				 || !aac->fsa_dev[sdev_id(dev)].valid)
449 					++num_lsu;
450 			} else
451 				++num_one;
452 		}
453 		if (num_lsu == 0)
454 			++num_lsu;
455 		depth = (host->can_queue - num_one) / num_lsu;
456 		if (depth > 256)
457 			depth = 256;
458 		else if (depth < 2)
459 			depth = 2;
460 		scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
461 	} else
462 		scsi_adjust_queue_depth(sdev, 0, 1);
463 
464 	return 0;
465 }
466 
467 /**
468  *	aac_change_queue_depth		-	alter queue depths
469  *	@sdev:	SCSI device we are considering
470  *	@depth:	desired queue depth
471  *
472  *	Alters queue depths for target device based on the host adapter's
473  *	total capacity and the queue depth supported by the target device.
474  */
475 
476 static int aac_change_queue_depth(struct scsi_device *sdev, int depth,
477 				  int reason)
478 {
479 	if (reason != SCSI_QDEPTH_DEFAULT)
480 		return -EOPNOTSUPP;
481 
482 	if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
483 	    (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
484 		struct scsi_device * dev;
485 		struct Scsi_Host *host = sdev->host;
486 		unsigned num = 0;
487 
488 		__shost_for_each_device(dev, host) {
489 			if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
490 			    (sdev_channel(dev) == CONTAINER_CHANNEL))
491 				++num;
492 			++num;
493 		}
494 		if (num >= host->can_queue)
495 			num = host->can_queue - 1;
496 		if (depth > (host->can_queue - num))
497 			depth = host->can_queue - num;
498 		if (depth > 256)
499 			depth = 256;
500 		else if (depth < 2)
501 			depth = 2;
502 		scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
503 	} else
504 		scsi_adjust_queue_depth(sdev, 0, 1);
505 	return sdev->queue_depth;
506 }
507 
508 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
509 {
510 	struct scsi_device *sdev = to_scsi_device(dev);
511 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
512 	if (sdev_channel(sdev) != CONTAINER_CHANNEL)
513 		return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
514 		  ? "Hidden\n" :
515 		  ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
516 	return snprintf(buf, PAGE_SIZE, "%s\n",
517 	  get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
518 }
519 
520 static struct device_attribute aac_raid_level_attr = {
521 	.attr = {
522 		.name = "level",
523 		.mode = S_IRUGO,
524 	},
525 	.show = aac_show_raid_level
526 };
527 
528 static struct device_attribute *aac_dev_attrs[] = {
529 	&aac_raid_level_attr,
530 	NULL,
531 };
532 
533 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
534 {
535 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
536 	if (!capable(CAP_SYS_RAWIO))
537 		return -EPERM;
538 	return aac_do_ioctl(dev, cmd, arg);
539 }
540 
541 static int aac_eh_abort(struct scsi_cmnd* cmd)
542 {
543 	struct scsi_device * dev = cmd->device;
544 	struct Scsi_Host * host = dev->host;
545 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
546 	int count;
547 	int ret = FAILED;
548 
549 	printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%d)\n",
550 		AAC_DRIVERNAME,
551 		host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun);
552 	switch (cmd->cmnd[0]) {
553 	case SERVICE_ACTION_IN:
554 		if (!(aac->raw_io_interface) ||
555 		    !(aac->raw_io_64) ||
556 		    ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
557 			break;
558 	case INQUIRY:
559 	case READ_CAPACITY:
560 		/* Mark associated FIB to not complete, eh handler does this */
561 		for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
562 			struct fib * fib = &aac->fibs[count];
563 			if (fib->hw_fib_va->header.XferState &&
564 			  (fib->flags & FIB_CONTEXT_FLAG) &&
565 			  (fib->callback_data == cmd)) {
566 				fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
567 				cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
568 				ret = SUCCESS;
569 			}
570 		}
571 		break;
572 	case TEST_UNIT_READY:
573 		/* Mark associated FIB to not complete, eh handler does this */
574 		for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
575 			struct scsi_cmnd * command;
576 			struct fib * fib = &aac->fibs[count];
577 			if ((fib->hw_fib_va->header.XferState & cpu_to_le32(Async | NoResponseExpected)) &&
578 			  (fib->flags & FIB_CONTEXT_FLAG) &&
579 			  ((command = fib->callback_data)) &&
580 			  (command->device == cmd->device)) {
581 				fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
582 				command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
583 				if (command == cmd)
584 					ret = SUCCESS;
585 			}
586 		}
587 	}
588 	return ret;
589 }
590 
591 /*
592  *	aac_eh_reset	- Reset command handling
593  *	@scsi_cmd:	SCSI command block causing the reset
594  *
595  */
596 static int aac_eh_reset(struct scsi_cmnd* cmd)
597 {
598 	struct scsi_device * dev = cmd->device;
599 	struct Scsi_Host * host = dev->host;
600 	struct scsi_cmnd * command;
601 	int count;
602 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
603 	unsigned long flags;
604 
605 	/* Mark the associated FIB to not complete, eh handler does this */
606 	for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
607 		struct fib * fib = &aac->fibs[count];
608 		if (fib->hw_fib_va->header.XferState &&
609 		  (fib->flags & FIB_CONTEXT_FLAG) &&
610 		  (fib->callback_data == cmd)) {
611 			fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
612 			cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
613 		}
614 	}
615 	printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n",
616 					AAC_DRIVERNAME);
617 
618 	if ((count = aac_check_health(aac)))
619 		return count;
620 	/*
621 	 * Wait for all commands to complete to this specific
622 	 * target (block maximum 60 seconds).
623 	 */
624 	for (count = 60; count; --count) {
625 		int active = aac->in_reset;
626 
627 		if (active == 0)
628 		__shost_for_each_device(dev, host) {
629 			spin_lock_irqsave(&dev->list_lock, flags);
630 			list_for_each_entry(command, &dev->cmd_list, list) {
631 				if ((command != cmd) &&
632 				    (command->SCp.phase == AAC_OWNER_FIRMWARE)) {
633 					active++;
634 					break;
635 				}
636 			}
637 			spin_unlock_irqrestore(&dev->list_lock, flags);
638 			if (active)
639 				break;
640 
641 		}
642 		/*
643 		 * We can exit If all the commands are complete
644 		 */
645 		if (active == 0)
646 			return SUCCESS;
647 		ssleep(1);
648 	}
649 	printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME);
650 	/*
651 	 * This adapter needs a blind reset, only do so for Adapters that
652 	 * support a register, instead of a commanded, reset.
653 	 */
654 	if ((aac->supplement_adapter_info.SupportedOptions2 &
655 	   AAC_OPTION_MU_RESET) &&
656 	  aac_check_reset &&
657 	  ((aac_check_reset != 1) ||
658 	   !(aac->supplement_adapter_info.SupportedOptions2 &
659 	    AAC_OPTION_IGNORE_RESET)))
660 		aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */
661 	return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */
662 }
663 
664 /**
665  *	aac_cfg_open		-	open a configuration file
666  *	@inode: inode being opened
667  *	@file: file handle attached
668  *
669  *	Called when the configuration device is opened. Does the needed
670  *	set up on the handle and then returns
671  *
672  *	Bugs: This needs extending to check a given adapter is present
673  *	so we can support hot plugging, and to ref count adapters.
674  */
675 
676 static int aac_cfg_open(struct inode *inode, struct file *file)
677 {
678 	struct aac_dev *aac;
679 	unsigned minor_number = iminor(inode);
680 	int err = -ENODEV;
681 
682 	mutex_lock(&aac_mutex);  /* BKL pushdown: nothing else protects this list */
683 	list_for_each_entry(aac, &aac_devices, entry) {
684 		if (aac->id == minor_number) {
685 			file->private_data = aac;
686 			err = 0;
687 			break;
688 		}
689 	}
690 	mutex_unlock(&aac_mutex);
691 
692 	return err;
693 }
694 
695 /**
696  *	aac_cfg_ioctl		-	AAC configuration request
697  *	@inode: inode of device
698  *	@file: file handle
699  *	@cmd: ioctl command code
700  *	@arg: argument
701  *
702  *	Handles a configuration ioctl. Currently this involves wrapping it
703  *	up and feeding it into the nasty windowsalike glue layer.
704  *
705  *	Bugs: Needs locking against parallel ioctls lower down
706  *	Bugs: Needs to handle hot plugging
707  */
708 
709 static long aac_cfg_ioctl(struct file *file,
710 		unsigned int cmd, unsigned long arg)
711 {
712 	int ret;
713 	if (!capable(CAP_SYS_RAWIO))
714 		return -EPERM;
715 	mutex_lock(&aac_mutex);
716 	ret = aac_do_ioctl(file->private_data, cmd, (void __user *)arg);
717 	mutex_unlock(&aac_mutex);
718 
719 	return ret;
720 }
721 
722 #ifdef CONFIG_COMPAT
723 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
724 {
725 	long ret;
726 	mutex_lock(&aac_mutex);
727 	switch (cmd) {
728 	case FSACTL_MINIPORT_REV_CHECK:
729 	case FSACTL_SENDFIB:
730 	case FSACTL_OPEN_GET_ADAPTER_FIB:
731 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
732 	case FSACTL_SEND_RAW_SRB:
733 	case FSACTL_GET_PCI_INFO:
734 	case FSACTL_QUERY_DISK:
735 	case FSACTL_DELETE_DISK:
736 	case FSACTL_FORCE_DELETE_DISK:
737 	case FSACTL_GET_CONTAINERS:
738 	case FSACTL_SEND_LARGE_FIB:
739 		ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
740 		break;
741 
742 	case FSACTL_GET_NEXT_ADAPTER_FIB: {
743 		struct fib_ioctl __user *f;
744 
745 		f = compat_alloc_user_space(sizeof(*f));
746 		ret = 0;
747 		if (clear_user(f, sizeof(*f)))
748 			ret = -EFAULT;
749 		if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
750 			ret = -EFAULT;
751 		if (!ret)
752 			ret = aac_do_ioctl(dev, cmd, f);
753 		break;
754 	}
755 
756 	default:
757 		ret = -ENOIOCTLCMD;
758 		break;
759 	}
760 	mutex_unlock(&aac_mutex);
761 	return ret;
762 }
763 
764 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
765 {
766 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
767 	return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
768 }
769 
770 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
771 {
772 	if (!capable(CAP_SYS_RAWIO))
773 		return -EPERM;
774 	return aac_compat_do_ioctl(file->private_data, cmd, arg);
775 }
776 #endif
777 
778 static ssize_t aac_show_model(struct device *device,
779 			      struct device_attribute *attr, char *buf)
780 {
781 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
782 	int len;
783 
784 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
785 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
786 		while (*cp && *cp != ' ')
787 			++cp;
788 		while (*cp == ' ')
789 			++cp;
790 		len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
791 	} else
792 		len = snprintf(buf, PAGE_SIZE, "%s\n",
793 		  aac_drivers[dev->cardtype].model);
794 	return len;
795 }
796 
797 static ssize_t aac_show_vendor(struct device *device,
798 			       struct device_attribute *attr, char *buf)
799 {
800 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
801 	int len;
802 
803 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
804 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
805 		while (*cp && *cp != ' ')
806 			++cp;
807 		len = snprintf(buf, PAGE_SIZE, "%.*s\n",
808 		  (int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText),
809 		  dev->supplement_adapter_info.AdapterTypeText);
810 	} else
811 		len = snprintf(buf, PAGE_SIZE, "%s\n",
812 		  aac_drivers[dev->cardtype].vname);
813 	return len;
814 }
815 
816 static ssize_t aac_show_flags(struct device *cdev,
817 			      struct device_attribute *attr, char *buf)
818 {
819 	int len = 0;
820 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
821 
822 	if (nblank(dprintk(x)))
823 		len = snprintf(buf, PAGE_SIZE, "dprintk\n");
824 #ifdef AAC_DETAILED_STATUS_INFO
825 	len += snprintf(buf + len, PAGE_SIZE - len,
826 			"AAC_DETAILED_STATUS_INFO\n");
827 #endif
828 	if (dev->raw_io_interface && dev->raw_io_64)
829 		len += snprintf(buf + len, PAGE_SIZE - len,
830 				"SAI_READ_CAPACITY_16\n");
831 	if (dev->jbod)
832 		len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
833 	if (dev->supplement_adapter_info.SupportedOptions2 &
834 		AAC_OPTION_POWER_MANAGEMENT)
835 		len += snprintf(buf + len, PAGE_SIZE - len,
836 				"SUPPORTED_POWER_MANAGEMENT\n");
837 	if (dev->msi)
838 		len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
839 	return len;
840 }
841 
842 static ssize_t aac_show_kernel_version(struct device *device,
843 				       struct device_attribute *attr,
844 				       char *buf)
845 {
846 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
847 	int len, tmp;
848 
849 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
850 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
851 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
852 	  le32_to_cpu(dev->adapter_info.kernelbuild));
853 	return len;
854 }
855 
856 static ssize_t aac_show_monitor_version(struct device *device,
857 					struct device_attribute *attr,
858 					char *buf)
859 {
860 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
861 	int len, tmp;
862 
863 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
864 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
865 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
866 	  le32_to_cpu(dev->adapter_info.monitorbuild));
867 	return len;
868 }
869 
870 static ssize_t aac_show_bios_version(struct device *device,
871 				     struct device_attribute *attr,
872 				     char *buf)
873 {
874 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
875 	int len, tmp;
876 
877 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
878 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
879 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
880 	  le32_to_cpu(dev->adapter_info.biosbuild));
881 	return len;
882 }
883 
884 static ssize_t aac_show_serial_number(struct device *device,
885 			       struct device_attribute *attr, char *buf)
886 {
887 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
888 	int len = 0;
889 
890 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
891 		len = snprintf(buf, PAGE_SIZE, "%06X\n",
892 		  le32_to_cpu(dev->adapter_info.serial[0]));
893 	if (len &&
894 	  !memcmp(&dev->supplement_adapter_info.MfgPcbaSerialNo[
895 	    sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo)-len],
896 	  buf, len-1))
897 		len = snprintf(buf, PAGE_SIZE, "%.*s\n",
898 		  (int)sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo),
899 		  dev->supplement_adapter_info.MfgPcbaSerialNo);
900 	return len;
901 }
902 
903 static ssize_t aac_show_max_channel(struct device *device,
904 				    struct device_attribute *attr, char *buf)
905 {
906 	return snprintf(buf, PAGE_SIZE, "%d\n",
907 	  class_to_shost(device)->max_channel);
908 }
909 
910 static ssize_t aac_show_max_id(struct device *device,
911 			       struct device_attribute *attr, char *buf)
912 {
913 	return snprintf(buf, PAGE_SIZE, "%d\n",
914 	  class_to_shost(device)->max_id);
915 }
916 
917 static ssize_t aac_store_reset_adapter(struct device *device,
918 				       struct device_attribute *attr,
919 				       const char *buf, size_t count)
920 {
921 	int retval = -EACCES;
922 
923 	if (!capable(CAP_SYS_ADMIN))
924 		return retval;
925 	retval = aac_reset_adapter((struct aac_dev*)class_to_shost(device)->hostdata, buf[0] == '!');
926 	if (retval >= 0)
927 		retval = count;
928 	return retval;
929 }
930 
931 static ssize_t aac_show_reset_adapter(struct device *device,
932 				      struct device_attribute *attr,
933 				      char *buf)
934 {
935 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
936 	int len, tmp;
937 
938 	tmp = aac_adapter_check_health(dev);
939 	if ((tmp == 0) && dev->in_reset)
940 		tmp = -EBUSY;
941 	len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
942 	return len;
943 }
944 
945 static struct device_attribute aac_model = {
946 	.attr = {
947 		.name = "model",
948 		.mode = S_IRUGO,
949 	},
950 	.show = aac_show_model,
951 };
952 static struct device_attribute aac_vendor = {
953 	.attr = {
954 		.name = "vendor",
955 		.mode = S_IRUGO,
956 	},
957 	.show = aac_show_vendor,
958 };
959 static struct device_attribute aac_flags = {
960 	.attr = {
961 		.name = "flags",
962 		.mode = S_IRUGO,
963 	},
964 	.show = aac_show_flags,
965 };
966 static struct device_attribute aac_kernel_version = {
967 	.attr = {
968 		.name = "hba_kernel_version",
969 		.mode = S_IRUGO,
970 	},
971 	.show = aac_show_kernel_version,
972 };
973 static struct device_attribute aac_monitor_version = {
974 	.attr = {
975 		.name = "hba_monitor_version",
976 		.mode = S_IRUGO,
977 	},
978 	.show = aac_show_monitor_version,
979 };
980 static struct device_attribute aac_bios_version = {
981 	.attr = {
982 		.name = "hba_bios_version",
983 		.mode = S_IRUGO,
984 	},
985 	.show = aac_show_bios_version,
986 };
987 static struct device_attribute aac_serial_number = {
988 	.attr = {
989 		.name = "serial_number",
990 		.mode = S_IRUGO,
991 	},
992 	.show = aac_show_serial_number,
993 };
994 static struct device_attribute aac_max_channel = {
995 	.attr = {
996 		.name = "max_channel",
997 		.mode = S_IRUGO,
998 	},
999 	.show = aac_show_max_channel,
1000 };
1001 static struct device_attribute aac_max_id = {
1002 	.attr = {
1003 		.name = "max_id",
1004 		.mode = S_IRUGO,
1005 	},
1006 	.show = aac_show_max_id,
1007 };
1008 static struct device_attribute aac_reset = {
1009 	.attr = {
1010 		.name = "reset_host",
1011 		.mode = S_IWUSR|S_IRUGO,
1012 	},
1013 	.store = aac_store_reset_adapter,
1014 	.show = aac_show_reset_adapter,
1015 };
1016 
1017 static struct device_attribute *aac_attrs[] = {
1018 	&aac_model,
1019 	&aac_vendor,
1020 	&aac_flags,
1021 	&aac_kernel_version,
1022 	&aac_monitor_version,
1023 	&aac_bios_version,
1024 	&aac_serial_number,
1025 	&aac_max_channel,
1026 	&aac_max_id,
1027 	&aac_reset,
1028 	NULL
1029 };
1030 
1031 ssize_t aac_get_serial_number(struct device *device, char *buf)
1032 {
1033 	return aac_show_serial_number(device, &aac_serial_number, buf);
1034 }
1035 
1036 static const struct file_operations aac_cfg_fops = {
1037 	.owner		= THIS_MODULE,
1038 	.unlocked_ioctl	= aac_cfg_ioctl,
1039 #ifdef CONFIG_COMPAT
1040 	.compat_ioctl   = aac_compat_cfg_ioctl,
1041 #endif
1042 	.open		= aac_cfg_open,
1043 	.llseek		= noop_llseek,
1044 };
1045 
1046 static struct scsi_host_template aac_driver_template = {
1047 	.module				= THIS_MODULE,
1048 	.name				= "AAC",
1049 	.proc_name			= AAC_DRIVERNAME,
1050 	.info				= aac_info,
1051 	.ioctl				= aac_ioctl,
1052 #ifdef CONFIG_COMPAT
1053 	.compat_ioctl			= aac_compat_ioctl,
1054 #endif
1055 	.queuecommand			= aac_queuecommand,
1056 	.bios_param			= aac_biosparm,
1057 	.shost_attrs			= aac_attrs,
1058 	.slave_configure		= aac_slave_configure,
1059 	.change_queue_depth		= aac_change_queue_depth,
1060 	.sdev_attrs			= aac_dev_attrs,
1061 	.eh_abort_handler		= aac_eh_abort,
1062 	.eh_host_reset_handler		= aac_eh_reset,
1063 	.can_queue			= AAC_NUM_IO_FIB,
1064 	.this_id			= MAXIMUM_NUM_CONTAINERS,
1065 	.sg_tablesize			= 16,
1066 	.max_sectors			= 128,
1067 #if (AAC_NUM_IO_FIB > 256)
1068 	.cmd_per_lun			= 256,
1069 #else
1070 	.cmd_per_lun			= AAC_NUM_IO_FIB,
1071 #endif
1072 	.use_clustering			= ENABLE_CLUSTERING,
1073 	.emulated			= 1,
1074 };
1075 
1076 static void __aac_shutdown(struct aac_dev * aac)
1077 {
1078 	if (aac->aif_thread)
1079 		kthread_stop(aac->thread);
1080 	aac_send_shutdown(aac);
1081 	aac_adapter_disable_int(aac);
1082 	free_irq(aac->pdev->irq, aac);
1083 	if (aac->msi)
1084 		pci_disable_msi(aac->pdev);
1085 }
1086 
1087 static int __devinit aac_probe_one(struct pci_dev *pdev,
1088 		const struct pci_device_id *id)
1089 {
1090 	unsigned index = id->driver_data;
1091 	struct Scsi_Host *shost;
1092 	struct aac_dev *aac;
1093 	struct list_head *insert = &aac_devices;
1094 	int error = -ENODEV;
1095 	int unique_id = 0;
1096 	u64 dmamask;
1097 
1098 	list_for_each_entry(aac, &aac_devices, entry) {
1099 		if (aac->id > unique_id)
1100 			break;
1101 		insert = &aac->entry;
1102 		unique_id++;
1103 	}
1104 
1105 	error = pci_enable_device(pdev);
1106 	if (error)
1107 		goto out;
1108 	error = -ENODEV;
1109 
1110 	/*
1111 	 * If the quirk31 bit is set, the adapter needs adapter
1112 	 * to driver communication memory to be allocated below 2gig
1113 	 */
1114 	if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1115 		dmamask = DMA_BIT_MASK(31);
1116 	else
1117 		dmamask = DMA_BIT_MASK(32);
1118 
1119 	if (pci_set_dma_mask(pdev, dmamask) ||
1120 			pci_set_consistent_dma_mask(pdev, dmamask))
1121 		goto out_disable_pdev;
1122 
1123 	pci_set_master(pdev);
1124 
1125 	shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1126 	if (!shost)
1127 		goto out_disable_pdev;
1128 
1129 	shost->irq = pdev->irq;
1130 	shost->base = pci_resource_start(pdev, 0);
1131 	shost->unique_id = unique_id;
1132 	shost->max_cmd_len = 16;
1133 
1134 	aac = (struct aac_dev *)shost->hostdata;
1135 	aac->scsi_host_ptr = shost;
1136 	aac->pdev = pdev;
1137 	aac->name = aac_driver_template.name;
1138 	aac->id = shost->unique_id;
1139 	aac->cardtype = index;
1140 	INIT_LIST_HEAD(&aac->entry);
1141 
1142 	aac->fibs = kmalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL);
1143 	if (!aac->fibs)
1144 		goto out_free_host;
1145 	spin_lock_init(&aac->fib_lock);
1146 
1147 	/*
1148 	 *	Map in the registers from the adapter.
1149 	 */
1150 	aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1151 	if ((*aac_drivers[index].init)(aac))
1152 		goto out_unmap;
1153 
1154 	/*
1155 	 *	Start any kernel threads needed
1156 	 */
1157 	aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1158 	if (IS_ERR(aac->thread)) {
1159 		printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1160 		error = PTR_ERR(aac->thread);
1161 		goto out_deinit;
1162 	}
1163 
1164 	/*
1165 	 * If we had set a smaller DMA mask earlier, set it to 4gig
1166 	 * now since the adapter can dma data to at least a 4gig
1167 	 * address space.
1168 	 */
1169 	if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
1170 		if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
1171 			goto out_deinit;
1172 
1173 	aac->maximum_num_channels = aac_drivers[index].channels;
1174 	error = aac_get_adapter_info(aac);
1175 	if (error < 0)
1176 		goto out_deinit;
1177 
1178 	/*
1179 	 * Lets override negotiations and drop the maximum SG limit to 34
1180 	 */
1181 	if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1182 			(shost->sg_tablesize > 34)) {
1183 		shost->sg_tablesize = 34;
1184 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1185 	}
1186 
1187 	if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1188 			(shost->sg_tablesize > 17)) {
1189 		shost->sg_tablesize = 17;
1190 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1191 	}
1192 
1193 	error = pci_set_dma_max_seg_size(pdev,
1194 		(aac->adapter_info.options & AAC_OPT_NEW_COMM) ?
1195 			(shost->max_sectors << 9) : 65536);
1196 	if (error)
1197 		goto out_deinit;
1198 
1199 	/*
1200 	 * Firmware printf works only with older firmware.
1201 	 */
1202 	if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1203 		aac->printf_enabled = 1;
1204 	else
1205 		aac->printf_enabled = 0;
1206 
1207 	/*
1208 	 * max channel will be the physical channels plus 1 virtual channel
1209 	 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1210 	 * physical channels are address by their actual physical number+1
1211 	 */
1212 	if (aac->nondasd_support || expose_physicals || aac->jbod)
1213 		shost->max_channel = aac->maximum_num_channels;
1214 	else
1215 		shost->max_channel = 0;
1216 
1217 	aac_get_config_status(aac, 0);
1218 	aac_get_containers(aac);
1219 	list_add(&aac->entry, insert);
1220 
1221 	shost->max_id = aac->maximum_num_containers;
1222 	if (shost->max_id < aac->maximum_num_physicals)
1223 		shost->max_id = aac->maximum_num_physicals;
1224 	if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1225 		shost->max_id = MAXIMUM_NUM_CONTAINERS;
1226 	else
1227 		shost->this_id = shost->max_id;
1228 
1229 	/*
1230 	 * dmb - we may need to move the setting of these parms somewhere else once
1231 	 * we get a fib that can report the actual numbers
1232 	 */
1233 	shost->max_lun = AAC_MAX_LUN;
1234 
1235 	pci_set_drvdata(pdev, shost);
1236 
1237 	error = scsi_add_host(shost, &pdev->dev);
1238 	if (error)
1239 		goto out_deinit;
1240 	scsi_scan_host(shost);
1241 
1242 	return 0;
1243 
1244  out_deinit:
1245 	__aac_shutdown(aac);
1246  out_unmap:
1247 	aac_fib_map_free(aac);
1248 	if (aac->comm_addr)
1249 		pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1250 		  aac->comm_phys);
1251 	kfree(aac->queues);
1252 	aac_adapter_ioremap(aac, 0);
1253 	kfree(aac->fibs);
1254 	kfree(aac->fsa_dev);
1255  out_free_host:
1256 	scsi_host_put(shost);
1257  out_disable_pdev:
1258 	pci_disable_device(pdev);
1259  out:
1260 	return error;
1261 }
1262 
1263 static void aac_shutdown(struct pci_dev *dev)
1264 {
1265 	struct Scsi_Host *shost = pci_get_drvdata(dev);
1266 	scsi_block_requests(shost);
1267 	__aac_shutdown((struct aac_dev *)shost->hostdata);
1268 }
1269 
1270 static void __devexit aac_remove_one(struct pci_dev *pdev)
1271 {
1272 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1273 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1274 
1275 	scsi_remove_host(shost);
1276 
1277 	__aac_shutdown(aac);
1278 	aac_fib_map_free(aac);
1279 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
1280 			aac->comm_phys);
1281 	kfree(aac->queues);
1282 
1283 	aac_adapter_ioremap(aac, 0);
1284 
1285 	kfree(aac->fibs);
1286 	kfree(aac->fsa_dev);
1287 
1288 	list_del(&aac->entry);
1289 	scsi_host_put(shost);
1290 	pci_disable_device(pdev);
1291 	if (list_empty(&aac_devices)) {
1292 		unregister_chrdev(aac_cfg_major, "aac");
1293 		aac_cfg_major = -1;
1294 	}
1295 }
1296 
1297 static struct pci_driver aac_pci_driver = {
1298 	.name		= AAC_DRIVERNAME,
1299 	.id_table	= aac_pci_tbl,
1300 	.probe		= aac_probe_one,
1301 	.remove		= __devexit_p(aac_remove_one),
1302 	.shutdown	= aac_shutdown,
1303 };
1304 
1305 static int __init aac_init(void)
1306 {
1307 	int error;
1308 
1309 	printk(KERN_INFO "Adaptec %s driver %s\n",
1310 	  AAC_DRIVERNAME, aac_driver_version);
1311 
1312 	error = pci_register_driver(&aac_pci_driver);
1313 	if (error < 0)
1314 		return error;
1315 
1316 	aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops);
1317 	if (aac_cfg_major < 0) {
1318 		printk(KERN_WARNING
1319 			"aacraid: unable to register \"aac\" device.\n");
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static void __exit aac_exit(void)
1326 {
1327 	if (aac_cfg_major > -1)
1328 		unregister_chrdev(aac_cfg_major, "aac");
1329 	pci_unregister_driver(&aac_pci_driver);
1330 }
1331 
1332 module_init(aac_init);
1333 module_exit(aac_exit);
1334