1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * linit.c 28 * 29 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 30 */ 31 32 33 #include <linux/compat.h> 34 #include <linux/blkdev.h> 35 #include <linux/completion.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/moduleparam.h> 41 #include <linux/pci.h> 42 #include <linux/aer.h> 43 #include <linux/pci-aspm.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/spinlock.h> 47 #include <linux/syscalls.h> 48 #include <linux/delay.h> 49 #include <linux/kthread.h> 50 51 #include <scsi/scsi.h> 52 #include <scsi/scsi_cmnd.h> 53 #include <scsi/scsi_device.h> 54 #include <scsi/scsi_host.h> 55 #include <scsi/scsi_tcq.h> 56 #include <scsi/scsicam.h> 57 #include <scsi/scsi_eh.h> 58 59 #include "aacraid.h" 60 61 #define AAC_DRIVER_VERSION "1.2.1" 62 #ifndef AAC_DRIVER_BRANCH 63 #define AAC_DRIVER_BRANCH "" 64 #endif 65 #define AAC_DRIVERNAME "aacraid" 66 67 #ifdef AAC_DRIVER_BUILD 68 #define _str(x) #x 69 #define str(x) _str(x) 70 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 71 #else 72 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 73 #endif 74 75 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 77 "Adaptec Advanced Raid Products, " 78 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 79 MODULE_LICENSE("GPL"); 80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 81 82 static DEFINE_MUTEX(aac_mutex); 83 static LIST_HEAD(aac_devices); 84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; 85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 86 87 /* 88 * Because of the way Linux names scsi devices, the order in this table has 89 * become important. Check for on-board Raid first, add-in cards second. 90 * 91 * Note: The last field is used to index into aac_drivers below. 92 */ 93 static const struct pci_device_id aac_pci_tbl[] = { 94 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 95 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 96 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 97 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 98 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 99 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 100 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 101 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 102 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 103 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 104 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 105 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 106 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 107 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 108 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 109 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 110 111 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 112 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 113 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 114 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 115 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 116 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 117 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 118 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 119 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 120 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 121 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 122 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 123 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 124 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 125 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 126 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 127 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 128 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 129 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 130 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 131 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 132 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 133 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 134 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 135 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 136 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 137 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 138 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 139 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 140 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 141 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 142 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 143 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 144 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 145 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 146 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 147 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 148 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 149 150 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 151 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 152 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 153 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 154 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 155 156 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 157 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 158 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 159 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 160 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 161 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 162 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 163 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 164 { 0,} 165 }; 166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 167 168 /* 169 * dmb - For now we add the number of channels to this structure. 170 * In the future we should add a fib that reports the number of channels 171 * for the card. At that time we can remove the channels from here 172 */ 173 static struct aac_driver_ident aac_drivers[] = { 174 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 175 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 176 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 177 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 178 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 179 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 180 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 181 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 182 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 183 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 184 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 185 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 186 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 187 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 188 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 189 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 190 191 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 192 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 193 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 194 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 195 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 197 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 198 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 199 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 200 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 201 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 202 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 203 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 204 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 205 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 206 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 207 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 208 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 209 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 213 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 214 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 215 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 216 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 217 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 218 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 219 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 220 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 221 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 222 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 224 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 225 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 226 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 227 228 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 229 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 230 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 231 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 232 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 233 234 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 235 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 236 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 237 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 238 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 239 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ 240 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ 241 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ 242 }; 243 244 /** 245 * aac_queuecommand - queue a SCSI command 246 * @cmd: SCSI command to queue 247 * @done: Function to call on command completion 248 * 249 * Queues a command for execution by the associated Host Adapter. 250 * 251 * TODO: unify with aac_scsi_cmd(). 252 */ 253 254 static int aac_queuecommand(struct Scsi_Host *shost, 255 struct scsi_cmnd *cmd) 256 { 257 int r = 0; 258 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 259 r = (aac_scsi_cmd(cmd) ? FAILED : 0); 260 return r; 261 } 262 263 /** 264 * aac_info - Returns the host adapter name 265 * @shost: Scsi host to report on 266 * 267 * Returns a static string describing the device in question 268 */ 269 270 static const char *aac_info(struct Scsi_Host *shost) 271 { 272 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 273 return aac_drivers[dev->cardtype].name; 274 } 275 276 /** 277 * aac_get_driver_ident 278 * @devtype: index into lookup table 279 * 280 * Returns a pointer to the entry in the driver lookup table. 281 */ 282 283 struct aac_driver_ident* aac_get_driver_ident(int devtype) 284 { 285 return &aac_drivers[devtype]; 286 } 287 288 /** 289 * aac_biosparm - return BIOS parameters for disk 290 * @sdev: The scsi device corresponding to the disk 291 * @bdev: the block device corresponding to the disk 292 * @capacity: the sector capacity of the disk 293 * @geom: geometry block to fill in 294 * 295 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 296 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 297 * number of cylinders so as not to exceed drive capacity. In order for 298 * disks equal to or larger than 1 GB to be addressable by the BIOS 299 * without exceeding the BIOS limitation of 1024 cylinders, Extended 300 * Translation should be enabled. With Extended Translation enabled, 301 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 302 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 303 * are given a disk geometry of 255 heads and 63 sectors. However, if 304 * the BIOS detects that the Extended Translation setting does not match 305 * the geometry in the partition table, then the translation inferred 306 * from the partition table will be used by the BIOS, and a warning may 307 * be displayed. 308 */ 309 310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 311 sector_t capacity, int *geom) 312 { 313 struct diskparm *param = (struct diskparm *)geom; 314 unsigned char *buf; 315 316 dprintk((KERN_DEBUG "aac_biosparm.\n")); 317 318 /* 319 * Assuming extended translation is enabled - #REVISIT# 320 */ 321 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 322 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 323 param->heads = 255; 324 param->sectors = 63; 325 } else { 326 param->heads = 128; 327 param->sectors = 32; 328 } 329 } else { 330 param->heads = 64; 331 param->sectors = 32; 332 } 333 334 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 335 336 /* 337 * Read the first 1024 bytes from the disk device, if the boot 338 * sector partition table is valid, search for a partition table 339 * entry whose end_head matches one of the standard geometry 340 * translations ( 64/32, 128/32, 255/63 ). 341 */ 342 buf = scsi_bios_ptable(bdev); 343 if (!buf) 344 return 0; 345 if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { 346 struct partition *first = (struct partition * )buf; 347 struct partition *entry = first; 348 int saved_cylinders = param->cylinders; 349 int num; 350 unsigned char end_head, end_sec; 351 352 for(num = 0; num < 4; num++) { 353 end_head = entry->end_head; 354 end_sec = entry->end_sector & 0x3f; 355 356 if(end_head == 63) { 357 param->heads = 64; 358 param->sectors = 32; 359 break; 360 } else if(end_head == 127) { 361 param->heads = 128; 362 param->sectors = 32; 363 break; 364 } else if(end_head == 254) { 365 param->heads = 255; 366 param->sectors = 63; 367 break; 368 } 369 entry++; 370 } 371 372 if (num == 4) { 373 end_head = first->end_head; 374 end_sec = first->end_sector & 0x3f; 375 } 376 377 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 378 if (num < 4 && end_sec == param->sectors) { 379 if (param->cylinders != saved_cylinders) 380 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 381 param->heads, param->sectors, num)); 382 } else if (end_head > 0 || end_sec > 0) { 383 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 384 end_head + 1, end_sec, num)); 385 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 386 param->heads, param->sectors)); 387 } 388 } 389 kfree(buf); 390 return 0; 391 } 392 393 /** 394 * aac_slave_configure - compute queue depths 395 * @sdev: SCSI device we are considering 396 * 397 * Selects queue depths for each target device based on the host adapter's 398 * total capacity and the queue depth supported by the target device. 399 * A queue depth of one automatically disables tagged queueing. 400 */ 401 402 static int aac_slave_configure(struct scsi_device *sdev) 403 { 404 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 405 int chn, tid; 406 unsigned int depth = 0; 407 unsigned int set_timeout = 0; 408 bool set_qd_dev_type = false; 409 u8 devtype = 0; 410 411 chn = aac_logical_to_phys(sdev_channel(sdev)); 412 tid = sdev_id(sdev); 413 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) { 414 devtype = aac->hba_map[chn][tid].devtype; 415 416 if (devtype == AAC_DEVTYPE_NATIVE_RAW) { 417 depth = aac->hba_map[chn][tid].qd_limit; 418 set_timeout = 1; 419 goto common_config; 420 } 421 if (devtype == AAC_DEVTYPE_ARC_RAW) { 422 set_qd_dev_type = true; 423 set_timeout = 1; 424 goto common_config; 425 } 426 } 427 428 if (aac->jbod && (sdev->type == TYPE_DISK)) 429 sdev->removable = 1; 430 431 if (sdev->type == TYPE_DISK 432 && sdev_channel(sdev) != CONTAINER_CHANNEL 433 && (!aac->jbod || sdev->inq_periph_qual) 434 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 435 436 if (expose_physicals == 0) 437 return -ENXIO; 438 439 if (expose_physicals < 0) 440 sdev->no_uld_attach = 1; 441 } 442 443 if (sdev->tagged_supported 444 && sdev->type == TYPE_DISK 445 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 446 && !sdev->no_uld_attach) { 447 448 struct scsi_device * dev; 449 struct Scsi_Host *host = sdev->host; 450 unsigned num_lsu = 0; 451 unsigned num_one = 0; 452 unsigned cid; 453 454 set_timeout = 1; 455 456 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 457 if (aac->fsa_dev[cid].valid) 458 ++num_lsu; 459 460 __shost_for_each_device(dev, host) { 461 if (dev->tagged_supported 462 && dev->type == TYPE_DISK 463 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 464 && !dev->no_uld_attach) { 465 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 466 || !aac->fsa_dev[sdev_id(dev)].valid) { 467 ++num_lsu; 468 } 469 } else { 470 ++num_one; 471 } 472 } 473 474 if (num_lsu == 0) 475 ++num_lsu; 476 477 depth = (host->can_queue - num_one) / num_lsu; 478 479 if (sdev_channel(sdev) != NATIVE_CHANNEL) 480 goto common_config; 481 482 set_qd_dev_type = true; 483 484 } 485 486 common_config: 487 488 /* 489 * Check if SATA drive 490 */ 491 if (set_qd_dev_type) { 492 if (strncmp(sdev->vendor, "ATA", 3) == 0) 493 depth = 32; 494 else 495 depth = 64; 496 } 497 498 /* 499 * Firmware has an individual device recovery time typically 500 * of 35 seconds, give us a margin. 501 */ 502 if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ)) 503 blk_queue_rq_timeout(sdev->request_queue, 45*HZ); 504 505 if (depth > 256) 506 depth = 256; 507 else if (depth < 1) 508 depth = 1; 509 510 scsi_change_queue_depth(sdev, depth); 511 512 sdev->tagged_supported = 1; 513 514 return 0; 515 } 516 517 /** 518 * aac_change_queue_depth - alter queue depths 519 * @sdev: SCSI device we are considering 520 * @depth: desired queue depth 521 * 522 * Alters queue depths for target device based on the host adapter's 523 * total capacity and the queue depth supported by the target device. 524 */ 525 526 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 527 { 528 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 529 int chn, tid, is_native_device = 0; 530 531 chn = aac_logical_to_phys(sdev_channel(sdev)); 532 tid = sdev_id(sdev); 533 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 534 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) 535 is_native_device = 1; 536 537 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 538 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 539 struct scsi_device * dev; 540 struct Scsi_Host *host = sdev->host; 541 unsigned num = 0; 542 543 __shost_for_each_device(dev, host) { 544 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 545 (sdev_channel(dev) == CONTAINER_CHANNEL)) 546 ++num; 547 ++num; 548 } 549 if (num >= host->can_queue) 550 num = host->can_queue - 1; 551 if (depth > (host->can_queue - num)) 552 depth = host->can_queue - num; 553 if (depth > 256) 554 depth = 256; 555 else if (depth < 2) 556 depth = 2; 557 return scsi_change_queue_depth(sdev, depth); 558 } else if (is_native_device) { 559 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); 560 } else { 561 scsi_change_queue_depth(sdev, 1); 562 } 563 return sdev->queue_depth; 564 } 565 566 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 567 { 568 struct scsi_device *sdev = to_scsi_device(dev); 569 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 570 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 571 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 572 ? "Hidden\n" : 573 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 574 return snprintf(buf, PAGE_SIZE, "%s\n", 575 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 576 } 577 578 static struct device_attribute aac_raid_level_attr = { 579 .attr = { 580 .name = "level", 581 .mode = S_IRUGO, 582 }, 583 .show = aac_show_raid_level 584 }; 585 586 static ssize_t aac_show_unique_id(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct scsi_device *sdev = to_scsi_device(dev); 590 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 591 unsigned char sn[16]; 592 593 memset(sn, 0, sizeof(sn)); 594 595 if (sdev_channel(sdev) == CONTAINER_CHANNEL) 596 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); 597 598 return snprintf(buf, 16 * 2 + 2, 599 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", 600 sn[0], sn[1], sn[2], sn[3], 601 sn[4], sn[5], sn[6], sn[7], 602 sn[8], sn[9], sn[10], sn[11], 603 sn[12], sn[13], sn[14], sn[15]); 604 } 605 606 static struct device_attribute aac_unique_id_attr = { 607 .attr = { 608 .name = "unique_id", 609 .mode = 0444, 610 }, 611 .show = aac_show_unique_id 612 }; 613 614 615 616 static struct device_attribute *aac_dev_attrs[] = { 617 &aac_raid_level_attr, 618 &aac_unique_id_attr, 619 NULL, 620 }; 621 622 static int aac_ioctl(struct scsi_device *sdev, unsigned int cmd, 623 void __user *arg) 624 { 625 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 626 if (!capable(CAP_SYS_RAWIO)) 627 return -EPERM; 628 return aac_do_ioctl(dev, cmd, arg); 629 } 630 631 static int get_num_of_incomplete_fibs(struct aac_dev *aac) 632 { 633 634 unsigned long flags; 635 struct scsi_device *sdev = NULL; 636 struct Scsi_Host *shost = aac->scsi_host_ptr; 637 struct scsi_cmnd *scmnd = NULL; 638 struct device *ctrl_dev; 639 640 int mlcnt = 0; 641 int llcnt = 0; 642 int ehcnt = 0; 643 int fwcnt = 0; 644 int krlcnt = 0; 645 646 __shost_for_each_device(sdev, shost) { 647 spin_lock_irqsave(&sdev->list_lock, flags); 648 list_for_each_entry(scmnd, &sdev->cmd_list, list) { 649 switch (scmnd->SCp.phase) { 650 case AAC_OWNER_FIRMWARE: 651 fwcnt++; 652 break; 653 case AAC_OWNER_ERROR_HANDLER: 654 ehcnt++; 655 break; 656 case AAC_OWNER_LOWLEVEL: 657 llcnt++; 658 break; 659 case AAC_OWNER_MIDLEVEL: 660 mlcnt++; 661 break; 662 default: 663 krlcnt++; 664 break; 665 } 666 } 667 spin_unlock_irqrestore(&sdev->list_lock, flags); 668 } 669 670 ctrl_dev = &aac->pdev->dev; 671 672 dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt); 673 dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt); 674 dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt); 675 dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt); 676 dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt); 677 678 return mlcnt + llcnt + ehcnt + fwcnt; 679 } 680 681 static int aac_eh_abort(struct scsi_cmnd* cmd) 682 { 683 struct scsi_device * dev = cmd->device; 684 struct Scsi_Host * host = dev->host; 685 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 686 int count, found; 687 u32 bus, cid; 688 int ret = FAILED; 689 690 if (aac_adapter_check_health(aac)) 691 return ret; 692 693 bus = aac_logical_to_phys(scmd_channel(cmd)); 694 cid = scmd_id(cmd); 695 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 696 struct fib *fib; 697 struct aac_hba_tm_req *tmf; 698 int status; 699 u64 address; 700 701 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", 702 AAC_DRIVERNAME, 703 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); 704 705 found = 0; 706 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 707 fib = &aac->fibs[count]; 708 if (*(u8 *)fib->hw_fib_va != 0 && 709 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 710 (fib->callback_data == cmd)) { 711 found = 1; 712 break; 713 } 714 } 715 if (!found) 716 return ret; 717 718 /* start a HBA_TMF_ABORT_TASK TMF request */ 719 fib = aac_fib_alloc(aac); 720 if (!fib) 721 return ret; 722 723 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 724 memset(tmf, 0, sizeof(*tmf)); 725 tmf->tmf = HBA_TMF_ABORT_TASK; 726 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 727 tmf->lun[1] = cmd->device->lun; 728 729 address = (u64)fib->hw_error_pa; 730 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 731 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 732 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 733 734 fib->hbacmd_size = sizeof(*tmf); 735 cmd->SCp.sent_command = 0; 736 737 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, 738 (fib_callback) aac_hba_callback, 739 (void *) cmd); 740 741 /* Wait up to 15 secs for completion */ 742 for (count = 0; count < 15; ++count) { 743 if (cmd->SCp.sent_command) { 744 ret = SUCCESS; 745 break; 746 } 747 msleep(1000); 748 } 749 750 if (ret != SUCCESS) 751 pr_err("%s: Host adapter abort request timed out\n", 752 AAC_DRIVERNAME); 753 } else { 754 pr_err( 755 "%s: Host adapter abort request.\n" 756 "%s: Outstanding commands on (%d,%d,%d,%d):\n", 757 AAC_DRIVERNAME, AAC_DRIVERNAME, 758 host->host_no, sdev_channel(dev), sdev_id(dev), 759 (int)dev->lun); 760 switch (cmd->cmnd[0]) { 761 case SERVICE_ACTION_IN_16: 762 if (!(aac->raw_io_interface) || 763 !(aac->raw_io_64) || 764 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 765 break; 766 /* fall through */ 767 case INQUIRY: 768 case READ_CAPACITY: 769 /* 770 * Mark associated FIB to not complete, 771 * eh handler does this 772 */ 773 for (count = 0; 774 count < (host->can_queue + AAC_NUM_MGT_FIB); 775 ++count) { 776 struct fib *fib = &aac->fibs[count]; 777 778 if (fib->hw_fib_va->header.XferState && 779 (fib->flags & FIB_CONTEXT_FLAG) && 780 (fib->callback_data == cmd)) { 781 fib->flags |= 782 FIB_CONTEXT_FLAG_TIMED_OUT; 783 cmd->SCp.phase = 784 AAC_OWNER_ERROR_HANDLER; 785 ret = SUCCESS; 786 } 787 } 788 break; 789 case TEST_UNIT_READY: 790 /* 791 * Mark associated FIB to not complete, 792 * eh handler does this 793 */ 794 for (count = 0; 795 count < (host->can_queue + AAC_NUM_MGT_FIB); 796 ++count) { 797 struct scsi_cmnd *command; 798 struct fib *fib = &aac->fibs[count]; 799 800 command = fib->callback_data; 801 802 if ((fib->hw_fib_va->header.XferState & 803 cpu_to_le32 804 (Async | NoResponseExpected)) && 805 (fib->flags & FIB_CONTEXT_FLAG) && 806 ((command)) && 807 (command->device == cmd->device)) { 808 fib->flags |= 809 FIB_CONTEXT_FLAG_TIMED_OUT; 810 command->SCp.phase = 811 AAC_OWNER_ERROR_HANDLER; 812 if (command == cmd) 813 ret = SUCCESS; 814 } 815 } 816 break; 817 } 818 } 819 return ret; 820 } 821 822 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info, 823 struct fib *fib, u64 tmf_lun) 824 { 825 struct aac_hba_tm_req *tmf; 826 u64 address; 827 828 /* start a HBA_TMF_LUN_RESET TMF request */ 829 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 830 memset(tmf, 0, sizeof(*tmf)); 831 tmf->tmf = HBA_TMF_LUN_RESET; 832 tmf->it_nexus = info->rmw_nexus; 833 int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun); 834 835 address = (u64)fib->hw_error_pa; 836 tmf->error_ptr_hi = cpu_to_le32 837 ((u32)(address >> 32)); 838 tmf->error_ptr_lo = cpu_to_le32 839 ((u32)(address & 0xffffffff)); 840 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 841 fib->hbacmd_size = sizeof(*tmf); 842 843 return HBA_IU_TYPE_SCSI_TM_REQ; 844 } 845 846 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info, 847 struct fib *fib) 848 { 849 struct aac_hba_reset_req *rst; 850 u64 address; 851 852 /* already tried, start a hard reset now */ 853 rst = (struct aac_hba_reset_req *)fib->hw_fib_va; 854 memset(rst, 0, sizeof(*rst)); 855 rst->it_nexus = info->rmw_nexus; 856 857 address = (u64)fib->hw_error_pa; 858 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 859 rst->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 860 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 861 fib->hbacmd_size = sizeof(*rst); 862 863 return HBA_IU_TYPE_SATA_REQ; 864 } 865 866 void aac_tmf_callback(void *context, struct fib *fibptr) 867 { 868 struct aac_hba_resp *err = 869 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 870 struct aac_hba_map_info *info = context; 871 int res; 872 873 switch (err->service_response) { 874 case HBA_RESP_SVCRES_TMF_REJECTED: 875 res = -1; 876 break; 877 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 878 res = 0; 879 break; 880 case HBA_RESP_SVCRES_TMF_COMPLETE: 881 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 882 res = 0; 883 break; 884 default: 885 res = -2; 886 break; 887 } 888 aac_fib_complete(fibptr); 889 890 info->reset_state = res; 891 } 892 893 /* 894 * aac_eh_dev_reset - Device reset command handling 895 * @scsi_cmd: SCSI command block causing the reset 896 * 897 */ 898 static int aac_eh_dev_reset(struct scsi_cmnd *cmd) 899 { 900 struct scsi_device * dev = cmd->device; 901 struct Scsi_Host * host = dev->host; 902 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 903 struct aac_hba_map_info *info; 904 int count; 905 u32 bus, cid; 906 struct fib *fib; 907 int ret = FAILED; 908 int status; 909 u8 command; 910 911 bus = aac_logical_to_phys(scmd_channel(cmd)); 912 cid = scmd_id(cmd); 913 914 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 915 return FAILED; 916 917 info = &aac->hba_map[bus][cid]; 918 919 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && 920 info->reset_state > 0) 921 return FAILED; 922 923 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 924 AAC_DRIVERNAME); 925 926 fib = aac_fib_alloc(aac); 927 if (!fib) 928 return ret; 929 930 /* start a HBA_TMF_LUN_RESET TMF request */ 931 command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun); 932 933 info->reset_state = 1; 934 935 status = aac_hba_send(command, fib, 936 (fib_callback) aac_tmf_callback, 937 (void *) info); 938 939 /* Wait up to 15 seconds for completion */ 940 for (count = 0; count < 15; ++count) { 941 if (info->reset_state == 0) { 942 ret = info->reset_state == 0 ? SUCCESS : FAILED; 943 break; 944 } 945 msleep(1000); 946 } 947 948 return ret; 949 } 950 951 /* 952 * aac_eh_target_reset - Target reset command handling 953 * @scsi_cmd: SCSI command block causing the reset 954 * 955 */ 956 static int aac_eh_target_reset(struct scsi_cmnd *cmd) 957 { 958 struct scsi_device * dev = cmd->device; 959 struct Scsi_Host * host = dev->host; 960 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 961 struct aac_hba_map_info *info; 962 int count; 963 u32 bus, cid; 964 int ret = FAILED; 965 struct fib *fib; 966 int status; 967 u8 command; 968 969 bus = aac_logical_to_phys(scmd_channel(cmd)); 970 cid = scmd_id(cmd); 971 972 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 973 return FAILED; 974 975 info = &aac->hba_map[bus][cid]; 976 977 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && 978 info->reset_state > 0) 979 return FAILED; 980 981 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 982 AAC_DRIVERNAME); 983 984 fib = aac_fib_alloc(aac); 985 if (!fib) 986 return ret; 987 988 989 /* already tried, start a hard reset now */ 990 command = aac_eh_tmf_hard_reset_fib(info, fib); 991 992 info->reset_state = 2; 993 994 status = aac_hba_send(command, fib, 995 (fib_callback) aac_tmf_callback, 996 (void *) info); 997 998 /* Wait up to 15 seconds for completion */ 999 for (count = 0; count < 15; ++count) { 1000 if (info->reset_state <= 0) { 1001 ret = info->reset_state == 0 ? SUCCESS : FAILED; 1002 break; 1003 } 1004 msleep(1000); 1005 } 1006 1007 return ret; 1008 } 1009 1010 /* 1011 * aac_eh_bus_reset - Bus reset command handling 1012 * @scsi_cmd: SCSI command block causing the reset 1013 * 1014 */ 1015 static int aac_eh_bus_reset(struct scsi_cmnd* cmd) 1016 { 1017 struct scsi_device * dev = cmd->device; 1018 struct Scsi_Host * host = dev->host; 1019 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1020 int count; 1021 u32 cmd_bus; 1022 int status = 0; 1023 1024 1025 cmd_bus = aac_logical_to_phys(scmd_channel(cmd)); 1026 /* Mark the assoc. FIB to not complete, eh handler does this */ 1027 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 1028 struct fib *fib = &aac->fibs[count]; 1029 1030 if (fib->hw_fib_va->header.XferState && 1031 (fib->flags & FIB_CONTEXT_FLAG) && 1032 (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) { 1033 struct aac_hba_map_info *info; 1034 u32 bus, cid; 1035 1036 cmd = (struct scsi_cmnd *)fib->callback_data; 1037 bus = aac_logical_to_phys(scmd_channel(cmd)); 1038 if (bus != cmd_bus) 1039 continue; 1040 cid = scmd_id(cmd); 1041 info = &aac->hba_map[bus][cid]; 1042 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS || 1043 info->devtype != AAC_DEVTYPE_NATIVE_RAW) { 1044 fib->flags |= FIB_CONTEXT_FLAG_EH_RESET; 1045 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1046 } 1047 } 1048 } 1049 1050 pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); 1051 1052 /* 1053 * Check the health of the controller 1054 */ 1055 status = aac_adapter_check_health(aac); 1056 if (status) 1057 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status); 1058 1059 count = get_num_of_incomplete_fibs(aac); 1060 return (count == 0) ? SUCCESS : FAILED; 1061 } 1062 1063 /* 1064 * aac_eh_host_reset - Host reset command handling 1065 * @scsi_cmd: SCSI command block causing the reset 1066 * 1067 */ 1068 int aac_eh_host_reset(struct scsi_cmnd *cmd) 1069 { 1070 struct scsi_device * dev = cmd->device; 1071 struct Scsi_Host * host = dev->host; 1072 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1073 int ret = FAILED; 1074 __le32 supported_options2 = 0; 1075 bool is_mu_reset; 1076 bool is_ignore_reset; 1077 bool is_doorbell_reset; 1078 1079 /* 1080 * Check if reset is supported by the firmware 1081 */ 1082 supported_options2 = aac->supplement_adapter_info.supported_options2; 1083 is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET; 1084 is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET; 1085 is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET; 1086 /* 1087 * This adapter needs a blind reset, only do so for 1088 * Adapters that support a register, instead of a commanded, 1089 * reset. 1090 */ 1091 if ((is_mu_reset || is_doorbell_reset) 1092 && aac_check_reset 1093 && (aac_check_reset != -1 || !is_ignore_reset)) { 1094 /* Bypass wait for command quiesce */ 1095 if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0) 1096 ret = SUCCESS; 1097 } 1098 /* 1099 * Reset EH state 1100 */ 1101 if (ret == SUCCESS) { 1102 int bus, cid; 1103 struct aac_hba_map_info *info; 1104 1105 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1106 for (cid = 0; cid < AAC_MAX_TARGETS; cid++) { 1107 info = &aac->hba_map[bus][cid]; 1108 if (info->devtype == AAC_DEVTYPE_NATIVE_RAW) 1109 info->reset_state = 0; 1110 } 1111 } 1112 } 1113 return ret; 1114 } 1115 1116 /** 1117 * aac_cfg_open - open a configuration file 1118 * @inode: inode being opened 1119 * @file: file handle attached 1120 * 1121 * Called when the configuration device is opened. Does the needed 1122 * set up on the handle and then returns 1123 * 1124 * Bugs: This needs extending to check a given adapter is present 1125 * so we can support hot plugging, and to ref count adapters. 1126 */ 1127 1128 static int aac_cfg_open(struct inode *inode, struct file *file) 1129 { 1130 struct aac_dev *aac; 1131 unsigned minor_number = iminor(inode); 1132 int err = -ENODEV; 1133 1134 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 1135 list_for_each_entry(aac, &aac_devices, entry) { 1136 if (aac->id == minor_number) { 1137 file->private_data = aac; 1138 err = 0; 1139 break; 1140 } 1141 } 1142 mutex_unlock(&aac_mutex); 1143 1144 return err; 1145 } 1146 1147 /** 1148 * aac_cfg_ioctl - AAC configuration request 1149 * @inode: inode of device 1150 * @file: file handle 1151 * @cmd: ioctl command code 1152 * @arg: argument 1153 * 1154 * Handles a configuration ioctl. Currently this involves wrapping it 1155 * up and feeding it into the nasty windowsalike glue layer. 1156 * 1157 * Bugs: Needs locking against parallel ioctls lower down 1158 * Bugs: Needs to handle hot plugging 1159 */ 1160 1161 static long aac_cfg_ioctl(struct file *file, 1162 unsigned int cmd, unsigned long arg) 1163 { 1164 struct aac_dev *aac = (struct aac_dev *)file->private_data; 1165 1166 if (!capable(CAP_SYS_RAWIO)) 1167 return -EPERM; 1168 1169 return aac_do_ioctl(aac, cmd, (void __user *)arg); 1170 } 1171 1172 #ifdef CONFIG_COMPAT 1173 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) 1174 { 1175 long ret; 1176 switch (cmd) { 1177 case FSACTL_MINIPORT_REV_CHECK: 1178 case FSACTL_SENDFIB: 1179 case FSACTL_OPEN_GET_ADAPTER_FIB: 1180 case FSACTL_CLOSE_GET_ADAPTER_FIB: 1181 case FSACTL_SEND_RAW_SRB: 1182 case FSACTL_GET_PCI_INFO: 1183 case FSACTL_QUERY_DISK: 1184 case FSACTL_DELETE_DISK: 1185 case FSACTL_FORCE_DELETE_DISK: 1186 case FSACTL_GET_CONTAINERS: 1187 case FSACTL_SEND_LARGE_FIB: 1188 ret = aac_do_ioctl(dev, cmd, (void __user *)arg); 1189 break; 1190 1191 case FSACTL_GET_NEXT_ADAPTER_FIB: { 1192 struct fib_ioctl __user *f; 1193 1194 f = compat_alloc_user_space(sizeof(*f)); 1195 ret = 0; 1196 if (clear_user(f, sizeof(*f))) 1197 ret = -EFAULT; 1198 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) 1199 ret = -EFAULT; 1200 if (!ret) 1201 ret = aac_do_ioctl(dev, cmd, f); 1202 break; 1203 } 1204 1205 default: 1206 ret = -ENOIOCTLCMD; 1207 break; 1208 } 1209 return ret; 1210 } 1211 1212 static int aac_compat_ioctl(struct scsi_device *sdev, unsigned int cmd, 1213 void __user *arg) 1214 { 1215 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 1216 if (!capable(CAP_SYS_RAWIO)) 1217 return -EPERM; 1218 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); 1219 } 1220 1221 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1222 { 1223 if (!capable(CAP_SYS_RAWIO)) 1224 return -EPERM; 1225 return aac_compat_do_ioctl(file->private_data, cmd, arg); 1226 } 1227 #endif 1228 1229 static ssize_t aac_show_model(struct device *device, 1230 struct device_attribute *attr, char *buf) 1231 { 1232 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1233 int len; 1234 1235 if (dev->supplement_adapter_info.adapter_type_text[0]) { 1236 char *cp = dev->supplement_adapter_info.adapter_type_text; 1237 while (*cp && *cp != ' ') 1238 ++cp; 1239 while (*cp == ' ') 1240 ++cp; 1241 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 1242 } else 1243 len = snprintf(buf, PAGE_SIZE, "%s\n", 1244 aac_drivers[dev->cardtype].model); 1245 return len; 1246 } 1247 1248 static ssize_t aac_show_vendor(struct device *device, 1249 struct device_attribute *attr, char *buf) 1250 { 1251 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1252 struct aac_supplement_adapter_info *sup_adap_info; 1253 int len; 1254 1255 sup_adap_info = &dev->supplement_adapter_info; 1256 if (sup_adap_info->adapter_type_text[0]) { 1257 char *cp = sup_adap_info->adapter_type_text; 1258 while (*cp && *cp != ' ') 1259 ++cp; 1260 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 1261 (int)(cp - (char *)sup_adap_info->adapter_type_text), 1262 sup_adap_info->adapter_type_text); 1263 } else 1264 len = snprintf(buf, PAGE_SIZE, "%s\n", 1265 aac_drivers[dev->cardtype].vname); 1266 return len; 1267 } 1268 1269 static ssize_t aac_show_flags(struct device *cdev, 1270 struct device_attribute *attr, char *buf) 1271 { 1272 int len = 0; 1273 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 1274 1275 if (nblank(dprintk(x))) 1276 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 1277 #ifdef AAC_DETAILED_STATUS_INFO 1278 len += snprintf(buf + len, PAGE_SIZE - len, 1279 "AAC_DETAILED_STATUS_INFO\n"); 1280 #endif 1281 if (dev->raw_io_interface && dev->raw_io_64) 1282 len += snprintf(buf + len, PAGE_SIZE - len, 1283 "SAI_READ_CAPACITY_16\n"); 1284 if (dev->jbod) 1285 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); 1286 if (dev->supplement_adapter_info.supported_options2 & 1287 AAC_OPTION_POWER_MANAGEMENT) 1288 len += snprintf(buf + len, PAGE_SIZE - len, 1289 "SUPPORTED_POWER_MANAGEMENT\n"); 1290 if (dev->msi) 1291 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 1292 return len; 1293 } 1294 1295 static ssize_t aac_show_kernel_version(struct device *device, 1296 struct device_attribute *attr, 1297 char *buf) 1298 { 1299 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1300 int len, tmp; 1301 1302 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1303 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1304 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1305 le32_to_cpu(dev->adapter_info.kernelbuild)); 1306 return len; 1307 } 1308 1309 static ssize_t aac_show_monitor_version(struct device *device, 1310 struct device_attribute *attr, 1311 char *buf) 1312 { 1313 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1314 int len, tmp; 1315 1316 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1317 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1318 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1319 le32_to_cpu(dev->adapter_info.monitorbuild)); 1320 return len; 1321 } 1322 1323 static ssize_t aac_show_bios_version(struct device *device, 1324 struct device_attribute *attr, 1325 char *buf) 1326 { 1327 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1328 int len, tmp; 1329 1330 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1331 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1332 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1333 le32_to_cpu(dev->adapter_info.biosbuild)); 1334 return len; 1335 } 1336 1337 static ssize_t aac_show_driver_version(struct device *device, 1338 struct device_attribute *attr, 1339 char *buf) 1340 { 1341 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); 1342 } 1343 1344 static ssize_t aac_show_serial_number(struct device *device, 1345 struct device_attribute *attr, char *buf) 1346 { 1347 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1348 int len = 0; 1349 1350 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 1351 len = snprintf(buf, 16, "%06X\n", 1352 le32_to_cpu(dev->adapter_info.serial[0])); 1353 if (len && 1354 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ 1355 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], 1356 buf, len-1)) 1357 len = snprintf(buf, 16, "%.*s\n", 1358 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), 1359 dev->supplement_adapter_info.mfg_pcba_serial_no); 1360 1361 return min(len, 16); 1362 } 1363 1364 static ssize_t aac_show_max_channel(struct device *device, 1365 struct device_attribute *attr, char *buf) 1366 { 1367 return snprintf(buf, PAGE_SIZE, "%d\n", 1368 class_to_shost(device)->max_channel); 1369 } 1370 1371 static ssize_t aac_show_max_id(struct device *device, 1372 struct device_attribute *attr, char *buf) 1373 { 1374 return snprintf(buf, PAGE_SIZE, "%d\n", 1375 class_to_shost(device)->max_id); 1376 } 1377 1378 static ssize_t aac_store_reset_adapter(struct device *device, 1379 struct device_attribute *attr, 1380 const char *buf, size_t count) 1381 { 1382 int retval = -EACCES; 1383 1384 if (!capable(CAP_SYS_ADMIN)) 1385 return retval; 1386 1387 retval = aac_reset_adapter(shost_priv(class_to_shost(device)), 1388 buf[0] == '!', IOP_HWSOFT_RESET); 1389 if (retval >= 0) 1390 retval = count; 1391 1392 return retval; 1393 } 1394 1395 static ssize_t aac_show_reset_adapter(struct device *device, 1396 struct device_attribute *attr, 1397 char *buf) 1398 { 1399 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1400 int len, tmp; 1401 1402 tmp = aac_adapter_check_health(dev); 1403 if ((tmp == 0) && dev->in_reset) 1404 tmp = -EBUSY; 1405 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 1406 return len; 1407 } 1408 1409 static struct device_attribute aac_model = { 1410 .attr = { 1411 .name = "model", 1412 .mode = S_IRUGO, 1413 }, 1414 .show = aac_show_model, 1415 }; 1416 static struct device_attribute aac_vendor = { 1417 .attr = { 1418 .name = "vendor", 1419 .mode = S_IRUGO, 1420 }, 1421 .show = aac_show_vendor, 1422 }; 1423 static struct device_attribute aac_flags = { 1424 .attr = { 1425 .name = "flags", 1426 .mode = S_IRUGO, 1427 }, 1428 .show = aac_show_flags, 1429 }; 1430 static struct device_attribute aac_kernel_version = { 1431 .attr = { 1432 .name = "hba_kernel_version", 1433 .mode = S_IRUGO, 1434 }, 1435 .show = aac_show_kernel_version, 1436 }; 1437 static struct device_attribute aac_monitor_version = { 1438 .attr = { 1439 .name = "hba_monitor_version", 1440 .mode = S_IRUGO, 1441 }, 1442 .show = aac_show_monitor_version, 1443 }; 1444 static struct device_attribute aac_bios_version = { 1445 .attr = { 1446 .name = "hba_bios_version", 1447 .mode = S_IRUGO, 1448 }, 1449 .show = aac_show_bios_version, 1450 }; 1451 static struct device_attribute aac_lld_version = { 1452 .attr = { 1453 .name = "driver_version", 1454 .mode = 0444, 1455 }, 1456 .show = aac_show_driver_version, 1457 }; 1458 static struct device_attribute aac_serial_number = { 1459 .attr = { 1460 .name = "serial_number", 1461 .mode = S_IRUGO, 1462 }, 1463 .show = aac_show_serial_number, 1464 }; 1465 static struct device_attribute aac_max_channel = { 1466 .attr = { 1467 .name = "max_channel", 1468 .mode = S_IRUGO, 1469 }, 1470 .show = aac_show_max_channel, 1471 }; 1472 static struct device_attribute aac_max_id = { 1473 .attr = { 1474 .name = "max_id", 1475 .mode = S_IRUGO, 1476 }, 1477 .show = aac_show_max_id, 1478 }; 1479 static struct device_attribute aac_reset = { 1480 .attr = { 1481 .name = "reset_host", 1482 .mode = S_IWUSR|S_IRUGO, 1483 }, 1484 .store = aac_store_reset_adapter, 1485 .show = aac_show_reset_adapter, 1486 }; 1487 1488 static struct device_attribute *aac_attrs[] = { 1489 &aac_model, 1490 &aac_vendor, 1491 &aac_flags, 1492 &aac_kernel_version, 1493 &aac_monitor_version, 1494 &aac_bios_version, 1495 &aac_lld_version, 1496 &aac_serial_number, 1497 &aac_max_channel, 1498 &aac_max_id, 1499 &aac_reset, 1500 NULL 1501 }; 1502 1503 ssize_t aac_get_serial_number(struct device *device, char *buf) 1504 { 1505 return aac_show_serial_number(device, &aac_serial_number, buf); 1506 } 1507 1508 static const struct file_operations aac_cfg_fops = { 1509 .owner = THIS_MODULE, 1510 .unlocked_ioctl = aac_cfg_ioctl, 1511 #ifdef CONFIG_COMPAT 1512 .compat_ioctl = aac_compat_cfg_ioctl, 1513 #endif 1514 .open = aac_cfg_open, 1515 .llseek = noop_llseek, 1516 }; 1517 1518 static struct scsi_host_template aac_driver_template = { 1519 .module = THIS_MODULE, 1520 .name = "AAC", 1521 .proc_name = AAC_DRIVERNAME, 1522 .info = aac_info, 1523 .ioctl = aac_ioctl, 1524 #ifdef CONFIG_COMPAT 1525 .compat_ioctl = aac_compat_ioctl, 1526 #endif 1527 .queuecommand = aac_queuecommand, 1528 .bios_param = aac_biosparm, 1529 .shost_attrs = aac_attrs, 1530 .slave_configure = aac_slave_configure, 1531 .change_queue_depth = aac_change_queue_depth, 1532 .sdev_attrs = aac_dev_attrs, 1533 .eh_abort_handler = aac_eh_abort, 1534 .eh_device_reset_handler = aac_eh_dev_reset, 1535 .eh_target_reset_handler = aac_eh_target_reset, 1536 .eh_bus_reset_handler = aac_eh_bus_reset, 1537 .eh_host_reset_handler = aac_eh_host_reset, 1538 .can_queue = AAC_NUM_IO_FIB, 1539 .this_id = MAXIMUM_NUM_CONTAINERS, 1540 .sg_tablesize = 16, 1541 .max_sectors = 128, 1542 #if (AAC_NUM_IO_FIB > 256) 1543 .cmd_per_lun = 256, 1544 #else 1545 .cmd_per_lun = AAC_NUM_IO_FIB, 1546 #endif 1547 .emulated = 1, 1548 .no_write_same = 1, 1549 }; 1550 1551 static void __aac_shutdown(struct aac_dev * aac) 1552 { 1553 int i; 1554 1555 mutex_lock(&aac->ioctl_mutex); 1556 aac->adapter_shutdown = 1; 1557 mutex_unlock(&aac->ioctl_mutex); 1558 1559 if (aac->aif_thread) { 1560 int i; 1561 /* Clear out events first */ 1562 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1563 struct fib *fib = &aac->fibs[i]; 1564 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1565 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1566 complete(&fib->event_wait); 1567 } 1568 kthread_stop(aac->thread); 1569 aac->thread = NULL; 1570 } 1571 1572 aac_send_shutdown(aac); 1573 1574 aac_adapter_disable_int(aac); 1575 1576 if (aac_is_src(aac)) { 1577 if (aac->max_msix > 1) { 1578 for (i = 0; i < aac->max_msix; i++) { 1579 free_irq(pci_irq_vector(aac->pdev, i), 1580 &(aac->aac_msix[i])); 1581 } 1582 } else { 1583 free_irq(aac->pdev->irq, 1584 &(aac->aac_msix[0])); 1585 } 1586 } else { 1587 free_irq(aac->pdev->irq, aac); 1588 } 1589 if (aac->msi) 1590 pci_disable_msi(aac->pdev); 1591 else if (aac->max_msix > 1) 1592 pci_disable_msix(aac->pdev); 1593 } 1594 static void aac_init_char(void) 1595 { 1596 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); 1597 if (aac_cfg_major < 0) { 1598 pr_err("aacraid: unable to register \"aac\" device.\n"); 1599 } 1600 } 1601 1602 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1603 { 1604 unsigned index = id->driver_data; 1605 struct Scsi_Host *shost; 1606 struct aac_dev *aac; 1607 struct list_head *insert = &aac_devices; 1608 int error = -ENODEV; 1609 int unique_id = 0; 1610 u64 dmamask; 1611 int mask_bits = 0; 1612 extern int aac_sync_mode; 1613 1614 /* 1615 * Only series 7 needs freset. 1616 */ 1617 if (pdev->device == PMC_DEVICE_S7) 1618 pdev->needs_freset = 1; 1619 1620 list_for_each_entry(aac, &aac_devices, entry) { 1621 if (aac->id > unique_id) 1622 break; 1623 insert = &aac->entry; 1624 unique_id++; 1625 } 1626 1627 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1628 PCIE_LINK_STATE_CLKPM); 1629 1630 error = pci_enable_device(pdev); 1631 if (error) 1632 goto out; 1633 error = -ENODEV; 1634 1635 if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) { 1636 error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1637 if (error) { 1638 dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed"); 1639 goto out_disable_pdev; 1640 } 1641 } 1642 1643 /* 1644 * If the quirk31 bit is set, the adapter needs adapter 1645 * to driver communication memory to be allocated below 2gig 1646 */ 1647 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) { 1648 dmamask = DMA_BIT_MASK(31); 1649 mask_bits = 31; 1650 } else { 1651 dmamask = DMA_BIT_MASK(32); 1652 mask_bits = 32; 1653 } 1654 1655 error = pci_set_consistent_dma_mask(pdev, dmamask); 1656 if (error) { 1657 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n" 1658 , mask_bits); 1659 goto out_disable_pdev; 1660 } 1661 1662 pci_set_master(pdev); 1663 1664 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1665 if (!shost) 1666 goto out_disable_pdev; 1667 1668 shost->irq = pdev->irq; 1669 shost->unique_id = unique_id; 1670 shost->max_cmd_len = 16; 1671 shost->use_cmd_list = 1; 1672 1673 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) 1674 aac_init_char(); 1675 1676 aac = (struct aac_dev *)shost->hostdata; 1677 aac->base_start = pci_resource_start(pdev, 0); 1678 aac->scsi_host_ptr = shost; 1679 aac->pdev = pdev; 1680 aac->name = aac_driver_template.name; 1681 aac->id = shost->unique_id; 1682 aac->cardtype = index; 1683 INIT_LIST_HEAD(&aac->entry); 1684 1685 if (aac_reset_devices || reset_devices) 1686 aac->init_reset = true; 1687 1688 aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB, 1689 sizeof(struct fib), 1690 GFP_KERNEL); 1691 if (!aac->fibs) 1692 goto out_free_host; 1693 spin_lock_init(&aac->fib_lock); 1694 1695 mutex_init(&aac->ioctl_mutex); 1696 mutex_init(&aac->scan_mutex); 1697 1698 INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker); 1699 /* 1700 * Map in the registers from the adapter. 1701 */ 1702 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1703 if ((*aac_drivers[index].init)(aac)) { 1704 error = -ENODEV; 1705 goto out_unmap; 1706 } 1707 1708 if (aac->sync_mode) { 1709 if (aac_sync_mode) 1710 printk(KERN_INFO "%s%d: Sync. mode enforced " 1711 "by driver parameter. This will cause " 1712 "a significant performance decrease!\n", 1713 aac->name, 1714 aac->id); 1715 else 1716 printk(KERN_INFO "%s%d: Async. mode not supported " 1717 "by current driver, sync. mode enforced." 1718 "\nPlease update driver to get full performance.\n", 1719 aac->name, 1720 aac->id); 1721 } 1722 1723 /* 1724 * Start any kernel threads needed 1725 */ 1726 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1727 if (IS_ERR(aac->thread)) { 1728 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1729 error = PTR_ERR(aac->thread); 1730 aac->thread = NULL; 1731 goto out_deinit; 1732 } 1733 1734 aac->maximum_num_channels = aac_drivers[index].channels; 1735 error = aac_get_adapter_info(aac); 1736 if (error < 0) 1737 goto out_deinit; 1738 1739 /* 1740 * Lets override negotiations and drop the maximum SG limit to 34 1741 */ 1742 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1743 (shost->sg_tablesize > 34)) { 1744 shost->sg_tablesize = 34; 1745 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1746 } 1747 1748 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1749 (shost->sg_tablesize > 17)) { 1750 shost->sg_tablesize = 17; 1751 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1752 } 1753 1754 if (aac->adapter_info.options & AAC_OPT_NEW_COMM) 1755 shost->max_segment_size = shost->max_sectors << 9; 1756 else 1757 shost->max_segment_size = 65536; 1758 1759 /* 1760 * Firmware printf works only with older firmware. 1761 */ 1762 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1763 aac->printf_enabled = 1; 1764 else 1765 aac->printf_enabled = 0; 1766 1767 /* 1768 * max channel will be the physical channels plus 1 virtual channel 1769 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1770 * physical channels are address by their actual physical number+1 1771 */ 1772 if (aac->nondasd_support || expose_physicals || aac->jbod) 1773 shost->max_channel = aac->maximum_num_channels; 1774 else 1775 shost->max_channel = 0; 1776 1777 aac_get_config_status(aac, 0); 1778 aac_get_containers(aac); 1779 list_add(&aac->entry, insert); 1780 1781 shost->max_id = aac->maximum_num_containers; 1782 if (shost->max_id < aac->maximum_num_physicals) 1783 shost->max_id = aac->maximum_num_physicals; 1784 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1785 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1786 else 1787 shost->this_id = shost->max_id; 1788 1789 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) 1790 aac_intr_normal(aac, 0, 2, 0, NULL); 1791 1792 /* 1793 * dmb - we may need to move the setting of these parms somewhere else once 1794 * we get a fib that can report the actual numbers 1795 */ 1796 shost->max_lun = AAC_MAX_LUN; 1797 1798 pci_set_drvdata(pdev, shost); 1799 1800 error = scsi_add_host(shost, &pdev->dev); 1801 if (error) 1802 goto out_deinit; 1803 1804 aac_scan_host(aac); 1805 1806 pci_enable_pcie_error_reporting(pdev); 1807 pci_save_state(pdev); 1808 1809 return 0; 1810 1811 out_deinit: 1812 __aac_shutdown(aac); 1813 out_unmap: 1814 aac_fib_map_free(aac); 1815 if (aac->comm_addr) 1816 dma_free_coherent(&aac->pdev->dev, aac->comm_size, 1817 aac->comm_addr, aac->comm_phys); 1818 kfree(aac->queues); 1819 aac_adapter_ioremap(aac, 0); 1820 kfree(aac->fibs); 1821 kfree(aac->fsa_dev); 1822 out_free_host: 1823 scsi_host_put(shost); 1824 out_disable_pdev: 1825 pci_disable_device(pdev); 1826 out: 1827 return error; 1828 } 1829 1830 static void aac_release_resources(struct aac_dev *aac) 1831 { 1832 aac_adapter_disable_int(aac); 1833 aac_free_irq(aac); 1834 } 1835 1836 static int aac_acquire_resources(struct aac_dev *dev) 1837 { 1838 unsigned long status; 1839 /* 1840 * First clear out all interrupts. Then enable the one's that we 1841 * can handle. 1842 */ 1843 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1844 || status == 0xffffffff) 1845 msleep(20); 1846 1847 aac_adapter_disable_int(dev); 1848 aac_adapter_enable_int(dev); 1849 1850 1851 if (aac_is_src(dev)) 1852 aac_define_int_mode(dev); 1853 1854 if (dev->msi_enabled) 1855 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1856 1857 if (aac_acquire_irq(dev)) 1858 goto error_iounmap; 1859 1860 aac_adapter_enable_int(dev); 1861 1862 /*max msix may change after EEH 1863 * Re-assign vectors to fibs 1864 */ 1865 aac_fib_vector_assign(dev); 1866 1867 if (!dev->sync_mode) { 1868 /* After EEH recovery or suspend resume, max_msix count 1869 * may change, therefore updating in init as well. 1870 */ 1871 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); 1872 aac_adapter_start(dev); 1873 } 1874 return 0; 1875 1876 error_iounmap: 1877 return -1; 1878 1879 } 1880 1881 #if (defined(CONFIG_PM)) 1882 static int aac_suspend(struct pci_dev *pdev, pm_message_t state) 1883 { 1884 1885 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1886 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1887 1888 scsi_block_requests(shost); 1889 aac_cancel_safw_rescan_worker(aac); 1890 aac_send_shutdown(aac); 1891 1892 aac_release_resources(aac); 1893 1894 pci_set_drvdata(pdev, shost); 1895 pci_save_state(pdev); 1896 pci_disable_device(pdev); 1897 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1898 1899 return 0; 1900 } 1901 1902 static int aac_resume(struct pci_dev *pdev) 1903 { 1904 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1905 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1906 int r; 1907 1908 pci_set_power_state(pdev, PCI_D0); 1909 pci_enable_wake(pdev, PCI_D0, 0); 1910 pci_restore_state(pdev); 1911 r = pci_enable_device(pdev); 1912 1913 if (r) 1914 goto fail_device; 1915 1916 pci_set_master(pdev); 1917 if (aac_acquire_resources(aac)) 1918 goto fail_device; 1919 /* 1920 * reset this flag to unblock ioctl() as it was set at 1921 * aac_send_shutdown() to block ioctls from upperlayer 1922 */ 1923 aac->adapter_shutdown = 0; 1924 scsi_unblock_requests(shost); 1925 1926 return 0; 1927 1928 fail_device: 1929 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1930 scsi_host_put(shost); 1931 pci_disable_device(pdev); 1932 return -ENODEV; 1933 } 1934 #endif 1935 1936 static void aac_shutdown(struct pci_dev *dev) 1937 { 1938 struct Scsi_Host *shost = pci_get_drvdata(dev); 1939 scsi_block_requests(shost); 1940 __aac_shutdown((struct aac_dev *)shost->hostdata); 1941 } 1942 1943 static void aac_remove_one(struct pci_dev *pdev) 1944 { 1945 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1946 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1947 1948 aac_cancel_safw_rescan_worker(aac); 1949 scsi_remove_host(shost); 1950 1951 __aac_shutdown(aac); 1952 aac_fib_map_free(aac); 1953 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1954 aac->comm_phys); 1955 kfree(aac->queues); 1956 1957 aac_adapter_ioremap(aac, 0); 1958 1959 kfree(aac->fibs); 1960 kfree(aac->fsa_dev); 1961 1962 list_del(&aac->entry); 1963 scsi_host_put(shost); 1964 pci_disable_device(pdev); 1965 if (list_empty(&aac_devices)) { 1966 unregister_chrdev(aac_cfg_major, "aac"); 1967 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; 1968 } 1969 } 1970 1971 static void aac_flush_ios(struct aac_dev *aac) 1972 { 1973 int i; 1974 struct scsi_cmnd *cmd; 1975 1976 for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) { 1977 cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data; 1978 if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) { 1979 scsi_dma_unmap(cmd); 1980 1981 if (aac->handle_pci_error) 1982 cmd->result = DID_NO_CONNECT << 16; 1983 else 1984 cmd->result = DID_RESET << 16; 1985 1986 cmd->scsi_done(cmd); 1987 } 1988 } 1989 } 1990 1991 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, 1992 enum pci_channel_state error) 1993 { 1994 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1995 struct aac_dev *aac = shost_priv(shost); 1996 1997 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); 1998 1999 switch (error) { 2000 case pci_channel_io_normal: 2001 return PCI_ERS_RESULT_CAN_RECOVER; 2002 case pci_channel_io_frozen: 2003 aac->handle_pci_error = 1; 2004 2005 scsi_block_requests(aac->scsi_host_ptr); 2006 aac_cancel_safw_rescan_worker(aac); 2007 aac_flush_ios(aac); 2008 aac_release_resources(aac); 2009 2010 pci_disable_pcie_error_reporting(pdev); 2011 aac_adapter_ioremap(aac, 0); 2012 2013 return PCI_ERS_RESULT_NEED_RESET; 2014 case pci_channel_io_perm_failure: 2015 aac->handle_pci_error = 1; 2016 2017 aac_flush_ios(aac); 2018 return PCI_ERS_RESULT_DISCONNECT; 2019 } 2020 2021 return PCI_ERS_RESULT_NEED_RESET; 2022 } 2023 2024 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) 2025 { 2026 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); 2027 return PCI_ERS_RESULT_NEED_RESET; 2028 } 2029 2030 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) 2031 { 2032 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); 2033 pci_restore_state(pdev); 2034 if (pci_enable_device(pdev)) { 2035 dev_warn(&pdev->dev, 2036 "aacraid: failed to enable slave\n"); 2037 goto fail_device; 2038 } 2039 2040 pci_set_master(pdev); 2041 2042 if (pci_enable_device_mem(pdev)) { 2043 dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); 2044 goto fail_device; 2045 } 2046 2047 return PCI_ERS_RESULT_RECOVERED; 2048 2049 fail_device: 2050 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); 2051 return PCI_ERS_RESULT_DISCONNECT; 2052 } 2053 2054 2055 static void aac_pci_resume(struct pci_dev *pdev) 2056 { 2057 struct Scsi_Host *shost = pci_get_drvdata(pdev); 2058 struct scsi_device *sdev = NULL; 2059 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); 2060 2061 if (aac_adapter_ioremap(aac, aac->base_size)) { 2062 2063 dev_err(&pdev->dev, "aacraid: ioremap failed\n"); 2064 /* remap failed, go back ... */ 2065 aac->comm_interface = AAC_COMM_PRODUCER; 2066 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { 2067 dev_warn(&pdev->dev, 2068 "aacraid: unable to map adapter.\n"); 2069 2070 return; 2071 } 2072 } 2073 2074 msleep(10000); 2075 2076 aac_acquire_resources(aac); 2077 2078 /* 2079 * reset this flag to unblock ioctl() as it was set 2080 * at aac_send_shutdown() to block ioctls from upperlayer 2081 */ 2082 aac->adapter_shutdown = 0; 2083 aac->handle_pci_error = 0; 2084 2085 shost_for_each_device(sdev, shost) 2086 if (sdev->sdev_state == SDEV_OFFLINE) 2087 sdev->sdev_state = SDEV_RUNNING; 2088 scsi_unblock_requests(aac->scsi_host_ptr); 2089 aac_scan_host(aac); 2090 pci_save_state(pdev); 2091 2092 dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); 2093 } 2094 2095 static struct pci_error_handlers aac_pci_err_handler = { 2096 .error_detected = aac_pci_error_detected, 2097 .mmio_enabled = aac_pci_mmio_enabled, 2098 .slot_reset = aac_pci_slot_reset, 2099 .resume = aac_pci_resume, 2100 }; 2101 2102 static struct pci_driver aac_pci_driver = { 2103 .name = AAC_DRIVERNAME, 2104 .id_table = aac_pci_tbl, 2105 .probe = aac_probe_one, 2106 .remove = aac_remove_one, 2107 #if (defined(CONFIG_PM)) 2108 .suspend = aac_suspend, 2109 .resume = aac_resume, 2110 #endif 2111 .shutdown = aac_shutdown, 2112 .err_handler = &aac_pci_err_handler, 2113 }; 2114 2115 static int __init aac_init(void) 2116 { 2117 int error; 2118 2119 printk(KERN_INFO "Adaptec %s driver %s\n", 2120 AAC_DRIVERNAME, aac_driver_version); 2121 2122 error = pci_register_driver(&aac_pci_driver); 2123 if (error < 0) 2124 return error; 2125 2126 aac_init_char(); 2127 2128 2129 return 0; 2130 } 2131 2132 static void __exit aac_exit(void) 2133 { 2134 if (aac_cfg_major > -1) 2135 unregister_chrdev(aac_cfg_major, "aac"); 2136 pci_unregister_driver(&aac_pci_driver); 2137 } 2138 2139 module_init(aac_init); 2140 module_exit(aac_exit); 2141