1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * linit.c 28 * 29 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 30 */ 31 32 33 #include <linux/compat.h> 34 #include <linux/blkdev.h> 35 #include <linux/completion.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/moduleparam.h> 41 #include <linux/pci.h> 42 #include <linux/aer.h> 43 #include <linux/pci-aspm.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/spinlock.h> 47 #include <linux/syscalls.h> 48 #include <linux/delay.h> 49 #include <linux/kthread.h> 50 51 #include <scsi/scsi.h> 52 #include <scsi/scsi_cmnd.h> 53 #include <scsi/scsi_device.h> 54 #include <scsi/scsi_host.h> 55 #include <scsi/scsi_tcq.h> 56 #include <scsi/scsicam.h> 57 #include <scsi/scsi_eh.h> 58 59 #include "aacraid.h" 60 61 #define AAC_DRIVER_VERSION "1.2.1" 62 #ifndef AAC_DRIVER_BRANCH 63 #define AAC_DRIVER_BRANCH "" 64 #endif 65 #define AAC_DRIVERNAME "aacraid" 66 67 #ifdef AAC_DRIVER_BUILD 68 #define _str(x) #x 69 #define str(x) _str(x) 70 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 71 #else 72 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 73 #endif 74 75 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 77 "Adaptec Advanced Raid Products, " 78 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 79 MODULE_LICENSE("GPL"); 80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 81 82 static DEFINE_MUTEX(aac_mutex); 83 static LIST_HEAD(aac_devices); 84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; 85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 86 87 /* 88 * Because of the way Linux names scsi devices, the order in this table has 89 * become important. Check for on-board Raid first, add-in cards second. 90 * 91 * Note: The last field is used to index into aac_drivers below. 92 */ 93 static const struct pci_device_id aac_pci_tbl[] = { 94 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 95 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 96 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 97 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 98 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 99 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 100 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 101 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 102 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 103 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 104 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 105 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 106 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 107 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 108 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 109 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 110 111 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 112 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 113 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 114 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 115 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 116 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 117 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 118 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 119 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 120 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 121 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 122 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 123 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 124 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 125 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 126 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 127 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 128 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 129 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 130 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 131 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 132 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 133 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 134 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 135 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 136 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 137 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 138 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 139 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 140 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 141 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 142 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 143 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 144 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 145 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 146 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 147 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 148 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 149 150 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 151 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 152 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 153 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 154 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 155 156 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 157 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 158 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 159 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 160 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 161 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 162 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 163 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 164 { 0,} 165 }; 166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 167 168 /* 169 * dmb - For now we add the number of channels to this structure. 170 * In the future we should add a fib that reports the number of channels 171 * for the card. At that time we can remove the channels from here 172 */ 173 static struct aac_driver_ident aac_drivers[] = { 174 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 175 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 176 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 177 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 178 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 179 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 180 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 181 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 182 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 183 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 184 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 185 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 186 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 187 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 188 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 189 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 190 191 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 192 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 193 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 194 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 195 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 197 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 198 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 199 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 200 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 201 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 202 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 203 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 204 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 205 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 206 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 207 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 208 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 209 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 213 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 214 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 215 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 216 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 217 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 218 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 219 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 220 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 221 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 222 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 224 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 225 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 226 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 227 228 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 229 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 230 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 231 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 232 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 233 234 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 235 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 236 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 237 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 238 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 239 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ 240 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ 241 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ 242 }; 243 244 /** 245 * aac_queuecommand - queue a SCSI command 246 * @cmd: SCSI command to queue 247 * @done: Function to call on command completion 248 * 249 * Queues a command for execution by the associated Host Adapter. 250 * 251 * TODO: unify with aac_scsi_cmd(). 252 */ 253 254 static int aac_queuecommand(struct Scsi_Host *shost, 255 struct scsi_cmnd *cmd) 256 { 257 int r = 0; 258 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 259 r = (aac_scsi_cmd(cmd) ? FAILED : 0); 260 return r; 261 } 262 263 /** 264 * aac_info - Returns the host adapter name 265 * @shost: Scsi host to report on 266 * 267 * Returns a static string describing the device in question 268 */ 269 270 static const char *aac_info(struct Scsi_Host *shost) 271 { 272 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 273 return aac_drivers[dev->cardtype].name; 274 } 275 276 /** 277 * aac_get_driver_ident 278 * @devtype: index into lookup table 279 * 280 * Returns a pointer to the entry in the driver lookup table. 281 */ 282 283 struct aac_driver_ident* aac_get_driver_ident(int devtype) 284 { 285 return &aac_drivers[devtype]; 286 } 287 288 /** 289 * aac_biosparm - return BIOS parameters for disk 290 * @sdev: The scsi device corresponding to the disk 291 * @bdev: the block device corresponding to the disk 292 * @capacity: the sector capacity of the disk 293 * @geom: geometry block to fill in 294 * 295 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 296 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 297 * number of cylinders so as not to exceed drive capacity. In order for 298 * disks equal to or larger than 1 GB to be addressable by the BIOS 299 * without exceeding the BIOS limitation of 1024 cylinders, Extended 300 * Translation should be enabled. With Extended Translation enabled, 301 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 302 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 303 * are given a disk geometry of 255 heads and 63 sectors. However, if 304 * the BIOS detects that the Extended Translation setting does not match 305 * the geometry in the partition table, then the translation inferred 306 * from the partition table will be used by the BIOS, and a warning may 307 * be displayed. 308 */ 309 310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 311 sector_t capacity, int *geom) 312 { 313 struct diskparm *param = (struct diskparm *)geom; 314 unsigned char *buf; 315 316 dprintk((KERN_DEBUG "aac_biosparm.\n")); 317 318 /* 319 * Assuming extended translation is enabled - #REVISIT# 320 */ 321 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 322 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 323 param->heads = 255; 324 param->sectors = 63; 325 } else { 326 param->heads = 128; 327 param->sectors = 32; 328 } 329 } else { 330 param->heads = 64; 331 param->sectors = 32; 332 } 333 334 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 335 336 /* 337 * Read the first 1024 bytes from the disk device, if the boot 338 * sector partition table is valid, search for a partition table 339 * entry whose end_head matches one of the standard geometry 340 * translations ( 64/32, 128/32, 255/63 ). 341 */ 342 buf = scsi_bios_ptable(bdev); 343 if (!buf) 344 return 0; 345 if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { 346 struct partition *first = (struct partition * )buf; 347 struct partition *entry = first; 348 int saved_cylinders = param->cylinders; 349 int num; 350 unsigned char end_head, end_sec; 351 352 for(num = 0; num < 4; num++) { 353 end_head = entry->end_head; 354 end_sec = entry->end_sector & 0x3f; 355 356 if(end_head == 63) { 357 param->heads = 64; 358 param->sectors = 32; 359 break; 360 } else if(end_head == 127) { 361 param->heads = 128; 362 param->sectors = 32; 363 break; 364 } else if(end_head == 254) { 365 param->heads = 255; 366 param->sectors = 63; 367 break; 368 } 369 entry++; 370 } 371 372 if (num == 4) { 373 end_head = first->end_head; 374 end_sec = first->end_sector & 0x3f; 375 } 376 377 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 378 if (num < 4 && end_sec == param->sectors) { 379 if (param->cylinders != saved_cylinders) 380 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 381 param->heads, param->sectors, num)); 382 } else if (end_head > 0 || end_sec > 0) { 383 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 384 end_head + 1, end_sec, num)); 385 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 386 param->heads, param->sectors)); 387 } 388 } 389 kfree(buf); 390 return 0; 391 } 392 393 /** 394 * aac_slave_configure - compute queue depths 395 * @sdev: SCSI device we are considering 396 * 397 * Selects queue depths for each target device based on the host adapter's 398 * total capacity and the queue depth supported by the target device. 399 * A queue depth of one automatically disables tagged queueing. 400 */ 401 402 static int aac_slave_configure(struct scsi_device *sdev) 403 { 404 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 405 int chn, tid; 406 unsigned int depth = 0; 407 unsigned int set_timeout = 0; 408 bool set_qd_dev_type = false; 409 u8 devtype = 0; 410 411 chn = aac_logical_to_phys(sdev_channel(sdev)); 412 tid = sdev_id(sdev); 413 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) { 414 devtype = aac->hba_map[chn][tid].devtype; 415 416 if (devtype == AAC_DEVTYPE_NATIVE_RAW) 417 depth = aac->hba_map[chn][tid].qd_limit; 418 else if (devtype == AAC_DEVTYPE_ARC_RAW) 419 set_qd_dev_type = true; 420 421 set_timeout = 1; 422 goto common_config; 423 } 424 425 if (aac->jbod && (sdev->type == TYPE_DISK)) 426 sdev->removable = 1; 427 428 if (sdev->type == TYPE_DISK 429 && sdev_channel(sdev) != CONTAINER_CHANNEL 430 && (!aac->jbod || sdev->inq_periph_qual) 431 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 432 433 if (expose_physicals == 0) 434 return -ENXIO; 435 436 if (expose_physicals < 0) 437 sdev->no_uld_attach = 1; 438 } 439 440 if (sdev->tagged_supported 441 && sdev->type == TYPE_DISK 442 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 443 && !sdev->no_uld_attach) { 444 445 struct scsi_device * dev; 446 struct Scsi_Host *host = sdev->host; 447 unsigned num_lsu = 0; 448 unsigned num_one = 0; 449 unsigned cid; 450 451 set_timeout = 1; 452 453 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 454 if (aac->fsa_dev[cid].valid) 455 ++num_lsu; 456 457 __shost_for_each_device(dev, host) { 458 if (dev->tagged_supported 459 && dev->type == TYPE_DISK 460 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 461 && !dev->no_uld_attach) { 462 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 463 || !aac->fsa_dev[sdev_id(dev)].valid) { 464 ++num_lsu; 465 } 466 } else { 467 ++num_one; 468 } 469 } 470 471 if (num_lsu == 0) 472 ++num_lsu; 473 474 depth = (host->can_queue - num_one) / num_lsu; 475 476 if (sdev_channel(sdev) != NATIVE_CHANNEL) 477 goto common_config; 478 479 set_qd_dev_type = true; 480 481 } 482 483 common_config: 484 485 /* 486 * Check if SATA drive 487 */ 488 if (set_qd_dev_type) { 489 if (strncmp(sdev->vendor, "ATA", 3) == 0) 490 depth = 32; 491 else 492 depth = 64; 493 } 494 495 /* 496 * Firmware has an individual device recovery time typically 497 * of 35 seconds, give us a margin. 498 */ 499 if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ)) 500 blk_queue_rq_timeout(sdev->request_queue, 45*HZ); 501 502 if (depth > 256) 503 depth = 256; 504 else if (depth < 1) 505 depth = 1; 506 507 scsi_change_queue_depth(sdev, depth); 508 509 sdev->tagged_supported = 1; 510 511 return 0; 512 } 513 514 /** 515 * aac_change_queue_depth - alter queue depths 516 * @sdev: SCSI device we are considering 517 * @depth: desired queue depth 518 * 519 * Alters queue depths for target device based on the host adapter's 520 * total capacity and the queue depth supported by the target device. 521 */ 522 523 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 524 { 525 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 526 int chn, tid, is_native_device = 0; 527 528 chn = aac_logical_to_phys(sdev_channel(sdev)); 529 tid = sdev_id(sdev); 530 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 531 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) 532 is_native_device = 1; 533 534 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 535 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 536 struct scsi_device * dev; 537 struct Scsi_Host *host = sdev->host; 538 unsigned num = 0; 539 540 __shost_for_each_device(dev, host) { 541 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 542 (sdev_channel(dev) == CONTAINER_CHANNEL)) 543 ++num; 544 ++num; 545 } 546 if (num >= host->can_queue) 547 num = host->can_queue - 1; 548 if (depth > (host->can_queue - num)) 549 depth = host->can_queue - num; 550 if (depth > 256) 551 depth = 256; 552 else if (depth < 2) 553 depth = 2; 554 return scsi_change_queue_depth(sdev, depth); 555 } else if (is_native_device) { 556 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); 557 } else { 558 scsi_change_queue_depth(sdev, 1); 559 } 560 return sdev->queue_depth; 561 } 562 563 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 564 { 565 struct scsi_device *sdev = to_scsi_device(dev); 566 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 567 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 568 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 569 ? "Hidden\n" : 570 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 571 return snprintf(buf, PAGE_SIZE, "%s\n", 572 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 573 } 574 575 static struct device_attribute aac_raid_level_attr = { 576 .attr = { 577 .name = "level", 578 .mode = S_IRUGO, 579 }, 580 .show = aac_show_raid_level 581 }; 582 583 static ssize_t aac_show_unique_id(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct scsi_device *sdev = to_scsi_device(dev); 587 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 588 unsigned char sn[16]; 589 590 memset(sn, 0, sizeof(sn)); 591 592 if (sdev_channel(sdev) == CONTAINER_CHANNEL) 593 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); 594 595 return snprintf(buf, 16 * 2 + 2, 596 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", 597 sn[0], sn[1], sn[2], sn[3], 598 sn[4], sn[5], sn[6], sn[7], 599 sn[8], sn[9], sn[10], sn[11], 600 sn[12], sn[13], sn[14], sn[15]); 601 } 602 603 static struct device_attribute aac_unique_id_attr = { 604 .attr = { 605 .name = "unique_id", 606 .mode = 0444, 607 }, 608 .show = aac_show_unique_id 609 }; 610 611 612 613 static struct device_attribute *aac_dev_attrs[] = { 614 &aac_raid_level_attr, 615 &aac_unique_id_attr, 616 NULL, 617 }; 618 619 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg) 620 { 621 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 622 if (!capable(CAP_SYS_RAWIO)) 623 return -EPERM; 624 return aac_do_ioctl(dev, cmd, arg); 625 } 626 627 static int get_num_of_incomplete_fibs(struct aac_dev *aac) 628 { 629 630 unsigned long flags; 631 struct scsi_device *sdev = NULL; 632 struct Scsi_Host *shost = aac->scsi_host_ptr; 633 struct scsi_cmnd *scmnd = NULL; 634 struct device *ctrl_dev; 635 636 int mlcnt = 0; 637 int llcnt = 0; 638 int ehcnt = 0; 639 int fwcnt = 0; 640 int krlcnt = 0; 641 642 __shost_for_each_device(sdev, shost) { 643 spin_lock_irqsave(&sdev->list_lock, flags); 644 list_for_each_entry(scmnd, &sdev->cmd_list, list) { 645 switch (scmnd->SCp.phase) { 646 case AAC_OWNER_FIRMWARE: 647 fwcnt++; 648 break; 649 case AAC_OWNER_ERROR_HANDLER: 650 ehcnt++; 651 break; 652 case AAC_OWNER_LOWLEVEL: 653 llcnt++; 654 break; 655 case AAC_OWNER_MIDLEVEL: 656 mlcnt++; 657 break; 658 default: 659 krlcnt++; 660 break; 661 } 662 } 663 spin_unlock_irqrestore(&sdev->list_lock, flags); 664 } 665 666 ctrl_dev = &aac->pdev->dev; 667 668 dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt); 669 dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt); 670 dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt); 671 dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt); 672 dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt); 673 674 return mlcnt + llcnt + ehcnt + fwcnt; 675 } 676 677 static int aac_eh_abort(struct scsi_cmnd* cmd) 678 { 679 struct scsi_device * dev = cmd->device; 680 struct Scsi_Host * host = dev->host; 681 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 682 int count, found; 683 u32 bus, cid; 684 int ret = FAILED; 685 686 bus = aac_logical_to_phys(scmd_channel(cmd)); 687 cid = scmd_id(cmd); 688 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 689 struct fib *fib; 690 struct aac_hba_tm_req *tmf; 691 int status; 692 u64 address; 693 __le32 managed_request_id; 694 695 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", 696 AAC_DRIVERNAME, 697 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); 698 699 found = 0; 700 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 701 fib = &aac->fibs[count]; 702 if (*(u8 *)fib->hw_fib_va != 0 && 703 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 704 (fib->callback_data == cmd)) { 705 found = 1; 706 managed_request_id = ((struct aac_hba_cmd_req *) 707 fib->hw_fib_va)->request_id; 708 break; 709 } 710 } 711 if (!found) 712 return ret; 713 714 /* start a HBA_TMF_ABORT_TASK TMF request */ 715 fib = aac_fib_alloc(aac); 716 if (!fib) 717 return ret; 718 719 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 720 memset(tmf, 0, sizeof(*tmf)); 721 tmf->tmf = HBA_TMF_ABORT_TASK; 722 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 723 tmf->lun[1] = cmd->device->lun; 724 725 address = (u64)fib->hw_error_pa; 726 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 727 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 728 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 729 730 fib->hbacmd_size = sizeof(*tmf); 731 cmd->SCp.sent_command = 0; 732 733 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, 734 (fib_callback) aac_hba_callback, 735 (void *) cmd); 736 737 /* Wait up to 15 secs for completion */ 738 for (count = 0; count < 15; ++count) { 739 if (cmd->SCp.sent_command) { 740 ret = SUCCESS; 741 break; 742 } 743 msleep(1000); 744 } 745 746 if (ret != SUCCESS) 747 pr_err("%s: Host adapter abort request timed out\n", 748 AAC_DRIVERNAME); 749 } else { 750 pr_err( 751 "%s: Host adapter abort request.\n" 752 "%s: Outstanding commands on (%d,%d,%d,%d):\n", 753 AAC_DRIVERNAME, AAC_DRIVERNAME, 754 host->host_no, sdev_channel(dev), sdev_id(dev), 755 (int)dev->lun); 756 switch (cmd->cmnd[0]) { 757 case SERVICE_ACTION_IN_16: 758 if (!(aac->raw_io_interface) || 759 !(aac->raw_io_64) || 760 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 761 break; 762 case INQUIRY: 763 case READ_CAPACITY: 764 /* 765 * Mark associated FIB to not complete, 766 * eh handler does this 767 */ 768 for (count = 0; 769 count < (host->can_queue + AAC_NUM_MGT_FIB); 770 ++count) { 771 struct fib *fib = &aac->fibs[count]; 772 773 if (fib->hw_fib_va->header.XferState && 774 (fib->flags & FIB_CONTEXT_FLAG) && 775 (fib->callback_data == cmd)) { 776 fib->flags |= 777 FIB_CONTEXT_FLAG_TIMED_OUT; 778 cmd->SCp.phase = 779 AAC_OWNER_ERROR_HANDLER; 780 ret = SUCCESS; 781 } 782 } 783 break; 784 case TEST_UNIT_READY: 785 /* 786 * Mark associated FIB to not complete, 787 * eh handler does this 788 */ 789 for (count = 0; 790 count < (host->can_queue + AAC_NUM_MGT_FIB); 791 ++count) { 792 struct scsi_cmnd *command; 793 struct fib *fib = &aac->fibs[count]; 794 795 command = fib->callback_data; 796 797 if ((fib->hw_fib_va->header.XferState & 798 cpu_to_le32 799 (Async | NoResponseExpected)) && 800 (fib->flags & FIB_CONTEXT_FLAG) && 801 ((command)) && 802 (command->device == cmd->device)) { 803 fib->flags |= 804 FIB_CONTEXT_FLAG_TIMED_OUT; 805 command->SCp.phase = 806 AAC_OWNER_ERROR_HANDLER; 807 if (command == cmd) 808 ret = SUCCESS; 809 } 810 } 811 break; 812 } 813 } 814 return ret; 815 } 816 817 /* 818 * aac_eh_reset - Reset command handling 819 * @scsi_cmd: SCSI command block causing the reset 820 * 821 */ 822 static int aac_eh_reset(struct scsi_cmnd* cmd) 823 { 824 struct scsi_device * dev = cmd->device; 825 struct Scsi_Host * host = dev->host; 826 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 827 int count; 828 u32 bus, cid; 829 int ret = FAILED; 830 int status = 0; 831 __le32 supported_options2 = 0; 832 bool is_mu_reset; 833 bool is_ignore_reset; 834 bool is_doorbell_reset; 835 836 837 bus = aac_logical_to_phys(scmd_channel(cmd)); 838 cid = scmd_id(cmd); 839 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 840 aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 841 struct fib *fib; 842 int status; 843 u64 address; 844 u8 command; 845 846 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 847 AAC_DRIVERNAME); 848 849 fib = aac_fib_alloc(aac); 850 if (!fib) 851 return ret; 852 853 854 if (aac->hba_map[bus][cid].reset_state == 0) { 855 struct aac_hba_tm_req *tmf; 856 857 /* start a HBA_TMF_LUN_RESET TMF request */ 858 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 859 memset(tmf, 0, sizeof(*tmf)); 860 tmf->tmf = HBA_TMF_LUN_RESET; 861 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 862 tmf->lun[1] = cmd->device->lun; 863 864 address = (u64)fib->hw_error_pa; 865 tmf->error_ptr_hi = cpu_to_le32 866 ((u32)(address >> 32)); 867 tmf->error_ptr_lo = cpu_to_le32 868 ((u32)(address & 0xffffffff)); 869 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 870 fib->hbacmd_size = sizeof(*tmf); 871 872 command = HBA_IU_TYPE_SCSI_TM_REQ; 873 aac->hba_map[bus][cid].reset_state++; 874 } else if (aac->hba_map[bus][cid].reset_state >= 1) { 875 struct aac_hba_reset_req *rst; 876 877 /* already tried, start a hard reset now */ 878 rst = (struct aac_hba_reset_req *)fib->hw_fib_va; 879 memset(rst, 0, sizeof(*rst)); 880 /* reset_type is already zero... */ 881 rst->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 882 883 address = (u64)fib->hw_error_pa; 884 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 885 rst->error_ptr_lo = cpu_to_le32 886 ((u32)(address & 0xffffffff)); 887 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 888 fib->hbacmd_size = sizeof(*rst); 889 890 command = HBA_IU_TYPE_SATA_REQ; 891 aac->hba_map[bus][cid].reset_state = 0; 892 } 893 cmd->SCp.sent_command = 0; 894 895 status = aac_hba_send(command, fib, 896 (fib_callback) aac_hba_callback, 897 (void *) cmd); 898 899 /* Wait up to 15 seconds for completion */ 900 for (count = 0; count < 15; ++count) { 901 if (cmd->SCp.sent_command) { 902 ret = SUCCESS; 903 break; 904 } 905 msleep(1000); 906 } 907 908 if (ret == SUCCESS) 909 goto out; 910 911 } else { 912 913 /* Mark the assoc. FIB to not complete, eh handler does this */ 914 for (count = 0; 915 count < (host->can_queue + AAC_NUM_MGT_FIB); 916 ++count) { 917 struct fib *fib = &aac->fibs[count]; 918 919 if (fib->hw_fib_va->header.XferState && 920 (fib->flags & FIB_CONTEXT_FLAG) && 921 (fib->callback_data == cmd)) { 922 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 923 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 924 } 925 } 926 } 927 928 pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); 929 930 /* 931 * Check the health of the controller 932 */ 933 status = aac_adapter_check_health(aac); 934 if (status) 935 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status); 936 937 count = get_num_of_incomplete_fibs(aac); 938 if (count == 0) 939 return SUCCESS; 940 941 /* 942 * Check if reset is supported by the firmware 943 */ 944 supported_options2 = aac->supplement_adapter_info.supported_options2; 945 is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET; 946 is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET; 947 is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET; 948 /* 949 * This adapter needs a blind reset, only do so for 950 * Adapters that support a register, instead of a commanded, 951 * reset. 952 */ 953 if ((is_mu_reset || is_doorbell_reset) 954 && aac_check_reset 955 && (aac_check_reset != -1 || !is_ignore_reset)) { 956 /* Bypass wait for command quiesce */ 957 aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET); 958 } 959 ret = SUCCESS; 960 961 out: 962 return ret; 963 } 964 965 /** 966 * aac_cfg_open - open a configuration file 967 * @inode: inode being opened 968 * @file: file handle attached 969 * 970 * Called when the configuration device is opened. Does the needed 971 * set up on the handle and then returns 972 * 973 * Bugs: This needs extending to check a given adapter is present 974 * so we can support hot plugging, and to ref count adapters. 975 */ 976 977 static int aac_cfg_open(struct inode *inode, struct file *file) 978 { 979 struct aac_dev *aac; 980 unsigned minor_number = iminor(inode); 981 int err = -ENODEV; 982 983 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 984 list_for_each_entry(aac, &aac_devices, entry) { 985 if (aac->id == minor_number) { 986 file->private_data = aac; 987 err = 0; 988 break; 989 } 990 } 991 mutex_unlock(&aac_mutex); 992 993 return err; 994 } 995 996 /** 997 * aac_cfg_ioctl - AAC configuration request 998 * @inode: inode of device 999 * @file: file handle 1000 * @cmd: ioctl command code 1001 * @arg: argument 1002 * 1003 * Handles a configuration ioctl. Currently this involves wrapping it 1004 * up and feeding it into the nasty windowsalike glue layer. 1005 * 1006 * Bugs: Needs locking against parallel ioctls lower down 1007 * Bugs: Needs to handle hot plugging 1008 */ 1009 1010 static long aac_cfg_ioctl(struct file *file, 1011 unsigned int cmd, unsigned long arg) 1012 { 1013 struct aac_dev *aac = (struct aac_dev *)file->private_data; 1014 1015 if (!capable(CAP_SYS_RAWIO)) 1016 return -EPERM; 1017 1018 return aac_do_ioctl(aac, cmd, (void __user *)arg); 1019 } 1020 1021 #ifdef CONFIG_COMPAT 1022 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) 1023 { 1024 long ret; 1025 switch (cmd) { 1026 case FSACTL_MINIPORT_REV_CHECK: 1027 case FSACTL_SENDFIB: 1028 case FSACTL_OPEN_GET_ADAPTER_FIB: 1029 case FSACTL_CLOSE_GET_ADAPTER_FIB: 1030 case FSACTL_SEND_RAW_SRB: 1031 case FSACTL_GET_PCI_INFO: 1032 case FSACTL_QUERY_DISK: 1033 case FSACTL_DELETE_DISK: 1034 case FSACTL_FORCE_DELETE_DISK: 1035 case FSACTL_GET_CONTAINERS: 1036 case FSACTL_SEND_LARGE_FIB: 1037 ret = aac_do_ioctl(dev, cmd, (void __user *)arg); 1038 break; 1039 1040 case FSACTL_GET_NEXT_ADAPTER_FIB: { 1041 struct fib_ioctl __user *f; 1042 1043 f = compat_alloc_user_space(sizeof(*f)); 1044 ret = 0; 1045 if (clear_user(f, sizeof(*f))) 1046 ret = -EFAULT; 1047 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) 1048 ret = -EFAULT; 1049 if (!ret) 1050 ret = aac_do_ioctl(dev, cmd, f); 1051 break; 1052 } 1053 1054 default: 1055 ret = -ENOIOCTLCMD; 1056 break; 1057 } 1058 return ret; 1059 } 1060 1061 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) 1062 { 1063 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 1064 if (!capable(CAP_SYS_RAWIO)) 1065 return -EPERM; 1066 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); 1067 } 1068 1069 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1070 { 1071 if (!capable(CAP_SYS_RAWIO)) 1072 return -EPERM; 1073 return aac_compat_do_ioctl(file->private_data, cmd, arg); 1074 } 1075 #endif 1076 1077 static ssize_t aac_show_model(struct device *device, 1078 struct device_attribute *attr, char *buf) 1079 { 1080 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1081 int len; 1082 1083 if (dev->supplement_adapter_info.adapter_type_text[0]) { 1084 char *cp = dev->supplement_adapter_info.adapter_type_text; 1085 while (*cp && *cp != ' ') 1086 ++cp; 1087 while (*cp == ' ') 1088 ++cp; 1089 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 1090 } else 1091 len = snprintf(buf, PAGE_SIZE, "%s\n", 1092 aac_drivers[dev->cardtype].model); 1093 return len; 1094 } 1095 1096 static ssize_t aac_show_vendor(struct device *device, 1097 struct device_attribute *attr, char *buf) 1098 { 1099 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1100 struct aac_supplement_adapter_info *sup_adap_info; 1101 int len; 1102 1103 sup_adap_info = &dev->supplement_adapter_info; 1104 if (sup_adap_info->adapter_type_text[0]) { 1105 char *cp = sup_adap_info->adapter_type_text; 1106 while (*cp && *cp != ' ') 1107 ++cp; 1108 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 1109 (int)(cp - (char *)sup_adap_info->adapter_type_text), 1110 sup_adap_info->adapter_type_text); 1111 } else 1112 len = snprintf(buf, PAGE_SIZE, "%s\n", 1113 aac_drivers[dev->cardtype].vname); 1114 return len; 1115 } 1116 1117 static ssize_t aac_show_flags(struct device *cdev, 1118 struct device_attribute *attr, char *buf) 1119 { 1120 int len = 0; 1121 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 1122 1123 if (nblank(dprintk(x))) 1124 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 1125 #ifdef AAC_DETAILED_STATUS_INFO 1126 len += snprintf(buf + len, PAGE_SIZE - len, 1127 "AAC_DETAILED_STATUS_INFO\n"); 1128 #endif 1129 if (dev->raw_io_interface && dev->raw_io_64) 1130 len += snprintf(buf + len, PAGE_SIZE - len, 1131 "SAI_READ_CAPACITY_16\n"); 1132 if (dev->jbod) 1133 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); 1134 if (dev->supplement_adapter_info.supported_options2 & 1135 AAC_OPTION_POWER_MANAGEMENT) 1136 len += snprintf(buf + len, PAGE_SIZE - len, 1137 "SUPPORTED_POWER_MANAGEMENT\n"); 1138 if (dev->msi) 1139 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 1140 return len; 1141 } 1142 1143 static ssize_t aac_show_kernel_version(struct device *device, 1144 struct device_attribute *attr, 1145 char *buf) 1146 { 1147 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1148 int len, tmp; 1149 1150 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1151 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1152 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1153 le32_to_cpu(dev->adapter_info.kernelbuild)); 1154 return len; 1155 } 1156 1157 static ssize_t aac_show_monitor_version(struct device *device, 1158 struct device_attribute *attr, 1159 char *buf) 1160 { 1161 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1162 int len, tmp; 1163 1164 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1165 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1166 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1167 le32_to_cpu(dev->adapter_info.monitorbuild)); 1168 return len; 1169 } 1170 1171 static ssize_t aac_show_bios_version(struct device *device, 1172 struct device_attribute *attr, 1173 char *buf) 1174 { 1175 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1176 int len, tmp; 1177 1178 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1179 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1180 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1181 le32_to_cpu(dev->adapter_info.biosbuild)); 1182 return len; 1183 } 1184 1185 static ssize_t aac_show_driver_version(struct device *device, 1186 struct device_attribute *attr, 1187 char *buf) 1188 { 1189 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); 1190 } 1191 1192 static ssize_t aac_show_serial_number(struct device *device, 1193 struct device_attribute *attr, char *buf) 1194 { 1195 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1196 int len = 0; 1197 1198 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 1199 len = snprintf(buf, 16, "%06X\n", 1200 le32_to_cpu(dev->adapter_info.serial[0])); 1201 if (len && 1202 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ 1203 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], 1204 buf, len-1)) 1205 len = snprintf(buf, 16, "%.*s\n", 1206 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), 1207 dev->supplement_adapter_info.mfg_pcba_serial_no); 1208 1209 return min(len, 16); 1210 } 1211 1212 static ssize_t aac_show_max_channel(struct device *device, 1213 struct device_attribute *attr, char *buf) 1214 { 1215 return snprintf(buf, PAGE_SIZE, "%d\n", 1216 class_to_shost(device)->max_channel); 1217 } 1218 1219 static ssize_t aac_show_max_id(struct device *device, 1220 struct device_attribute *attr, char *buf) 1221 { 1222 return snprintf(buf, PAGE_SIZE, "%d\n", 1223 class_to_shost(device)->max_id); 1224 } 1225 1226 static ssize_t aac_store_reset_adapter(struct device *device, 1227 struct device_attribute *attr, 1228 const char *buf, size_t count) 1229 { 1230 int retval = -EACCES; 1231 int bled = 0; 1232 struct aac_dev *aac; 1233 1234 1235 if (!capable(CAP_SYS_ADMIN)) 1236 return retval; 1237 1238 aac = (struct aac_dev *)class_to_shost(device)->hostdata; 1239 bled = buf[0] == '!' ? 1:0; 1240 retval = aac_reset_adapter(aac, bled, IOP_HWSOFT_RESET); 1241 if (retval >= 0) 1242 retval = count; 1243 return retval; 1244 } 1245 1246 static ssize_t aac_show_reset_adapter(struct device *device, 1247 struct device_attribute *attr, 1248 char *buf) 1249 { 1250 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1251 int len, tmp; 1252 1253 tmp = aac_adapter_check_health(dev); 1254 if ((tmp == 0) && dev->in_reset) 1255 tmp = -EBUSY; 1256 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 1257 return len; 1258 } 1259 1260 static struct device_attribute aac_model = { 1261 .attr = { 1262 .name = "model", 1263 .mode = S_IRUGO, 1264 }, 1265 .show = aac_show_model, 1266 }; 1267 static struct device_attribute aac_vendor = { 1268 .attr = { 1269 .name = "vendor", 1270 .mode = S_IRUGO, 1271 }, 1272 .show = aac_show_vendor, 1273 }; 1274 static struct device_attribute aac_flags = { 1275 .attr = { 1276 .name = "flags", 1277 .mode = S_IRUGO, 1278 }, 1279 .show = aac_show_flags, 1280 }; 1281 static struct device_attribute aac_kernel_version = { 1282 .attr = { 1283 .name = "hba_kernel_version", 1284 .mode = S_IRUGO, 1285 }, 1286 .show = aac_show_kernel_version, 1287 }; 1288 static struct device_attribute aac_monitor_version = { 1289 .attr = { 1290 .name = "hba_monitor_version", 1291 .mode = S_IRUGO, 1292 }, 1293 .show = aac_show_monitor_version, 1294 }; 1295 static struct device_attribute aac_bios_version = { 1296 .attr = { 1297 .name = "hba_bios_version", 1298 .mode = S_IRUGO, 1299 }, 1300 .show = aac_show_bios_version, 1301 }; 1302 static struct device_attribute aac_lld_version = { 1303 .attr = { 1304 .name = "driver_version", 1305 .mode = 0444, 1306 }, 1307 .show = aac_show_driver_version, 1308 }; 1309 static struct device_attribute aac_serial_number = { 1310 .attr = { 1311 .name = "serial_number", 1312 .mode = S_IRUGO, 1313 }, 1314 .show = aac_show_serial_number, 1315 }; 1316 static struct device_attribute aac_max_channel = { 1317 .attr = { 1318 .name = "max_channel", 1319 .mode = S_IRUGO, 1320 }, 1321 .show = aac_show_max_channel, 1322 }; 1323 static struct device_attribute aac_max_id = { 1324 .attr = { 1325 .name = "max_id", 1326 .mode = S_IRUGO, 1327 }, 1328 .show = aac_show_max_id, 1329 }; 1330 static struct device_attribute aac_reset = { 1331 .attr = { 1332 .name = "reset_host", 1333 .mode = S_IWUSR|S_IRUGO, 1334 }, 1335 .store = aac_store_reset_adapter, 1336 .show = aac_show_reset_adapter, 1337 }; 1338 1339 static struct device_attribute *aac_attrs[] = { 1340 &aac_model, 1341 &aac_vendor, 1342 &aac_flags, 1343 &aac_kernel_version, 1344 &aac_monitor_version, 1345 &aac_bios_version, 1346 &aac_lld_version, 1347 &aac_serial_number, 1348 &aac_max_channel, 1349 &aac_max_id, 1350 &aac_reset, 1351 NULL 1352 }; 1353 1354 ssize_t aac_get_serial_number(struct device *device, char *buf) 1355 { 1356 return aac_show_serial_number(device, &aac_serial_number, buf); 1357 } 1358 1359 static const struct file_operations aac_cfg_fops = { 1360 .owner = THIS_MODULE, 1361 .unlocked_ioctl = aac_cfg_ioctl, 1362 #ifdef CONFIG_COMPAT 1363 .compat_ioctl = aac_compat_cfg_ioctl, 1364 #endif 1365 .open = aac_cfg_open, 1366 .llseek = noop_llseek, 1367 }; 1368 1369 static struct scsi_host_template aac_driver_template = { 1370 .module = THIS_MODULE, 1371 .name = "AAC", 1372 .proc_name = AAC_DRIVERNAME, 1373 .info = aac_info, 1374 .ioctl = aac_ioctl, 1375 #ifdef CONFIG_COMPAT 1376 .compat_ioctl = aac_compat_ioctl, 1377 #endif 1378 .queuecommand = aac_queuecommand, 1379 .bios_param = aac_biosparm, 1380 .shost_attrs = aac_attrs, 1381 .slave_configure = aac_slave_configure, 1382 .change_queue_depth = aac_change_queue_depth, 1383 .sdev_attrs = aac_dev_attrs, 1384 .eh_abort_handler = aac_eh_abort, 1385 .eh_host_reset_handler = aac_eh_reset, 1386 .can_queue = AAC_NUM_IO_FIB, 1387 .this_id = MAXIMUM_NUM_CONTAINERS, 1388 .sg_tablesize = 16, 1389 .max_sectors = 128, 1390 #if (AAC_NUM_IO_FIB > 256) 1391 .cmd_per_lun = 256, 1392 #else 1393 .cmd_per_lun = AAC_NUM_IO_FIB, 1394 #endif 1395 .use_clustering = ENABLE_CLUSTERING, 1396 .emulated = 1, 1397 .no_write_same = 1, 1398 }; 1399 1400 static void __aac_shutdown(struct aac_dev * aac) 1401 { 1402 int i; 1403 1404 aac->adapter_shutdown = 1; 1405 aac_send_shutdown(aac); 1406 1407 if (aac->aif_thread) { 1408 int i; 1409 /* Clear out events first */ 1410 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1411 struct fib *fib = &aac->fibs[i]; 1412 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1413 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1414 up(&fib->event_wait); 1415 } 1416 kthread_stop(aac->thread); 1417 } 1418 aac_adapter_disable_int(aac); 1419 if (aac_is_src(aac)) { 1420 if (aac->max_msix > 1) { 1421 for (i = 0; i < aac->max_msix; i++) { 1422 free_irq(pci_irq_vector(aac->pdev, i), 1423 &(aac->aac_msix[i])); 1424 } 1425 } else { 1426 free_irq(aac->pdev->irq, 1427 &(aac->aac_msix[0])); 1428 } 1429 } else { 1430 free_irq(aac->pdev->irq, aac); 1431 } 1432 if (aac->msi) 1433 pci_disable_msi(aac->pdev); 1434 else if (aac->max_msix > 1) 1435 pci_disable_msix(aac->pdev); 1436 } 1437 static void aac_init_char(void) 1438 { 1439 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); 1440 if (aac_cfg_major < 0) { 1441 pr_err("aacraid: unable to register \"aac\" device.\n"); 1442 } 1443 } 1444 1445 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1446 { 1447 unsigned index = id->driver_data; 1448 struct Scsi_Host *shost; 1449 struct aac_dev *aac; 1450 struct list_head *insert = &aac_devices; 1451 int error = -ENODEV; 1452 int unique_id = 0; 1453 u64 dmamask; 1454 int mask_bits = 0; 1455 extern int aac_sync_mode; 1456 1457 /* 1458 * Only series 7 needs freset. 1459 */ 1460 if (pdev->device == PMC_DEVICE_S7) 1461 pdev->needs_freset = 1; 1462 1463 list_for_each_entry(aac, &aac_devices, entry) { 1464 if (aac->id > unique_id) 1465 break; 1466 insert = &aac->entry; 1467 unique_id++; 1468 } 1469 1470 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1471 PCIE_LINK_STATE_CLKPM); 1472 1473 error = pci_enable_device(pdev); 1474 if (error) 1475 goto out; 1476 error = -ENODEV; 1477 1478 if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) { 1479 error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1480 if (error) { 1481 dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed"); 1482 goto out_disable_pdev; 1483 } 1484 } 1485 1486 /* 1487 * If the quirk31 bit is set, the adapter needs adapter 1488 * to driver communication memory to be allocated below 2gig 1489 */ 1490 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) { 1491 dmamask = DMA_BIT_MASK(31); 1492 mask_bits = 31; 1493 } else { 1494 dmamask = DMA_BIT_MASK(32); 1495 mask_bits = 32; 1496 } 1497 1498 error = pci_set_consistent_dma_mask(pdev, dmamask); 1499 if (error) { 1500 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n" 1501 , mask_bits); 1502 goto out_disable_pdev; 1503 } 1504 1505 pci_set_master(pdev); 1506 1507 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1508 if (!shost) 1509 goto out_disable_pdev; 1510 1511 shost->irq = pdev->irq; 1512 shost->unique_id = unique_id; 1513 shost->max_cmd_len = 16; 1514 shost->use_cmd_list = 1; 1515 1516 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) 1517 aac_init_char(); 1518 1519 aac = (struct aac_dev *)shost->hostdata; 1520 aac->base_start = pci_resource_start(pdev, 0); 1521 aac->scsi_host_ptr = shost; 1522 aac->pdev = pdev; 1523 aac->name = aac_driver_template.name; 1524 aac->id = shost->unique_id; 1525 aac->cardtype = index; 1526 INIT_LIST_HEAD(&aac->entry); 1527 1528 aac->fibs = kzalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL); 1529 if (!aac->fibs) 1530 goto out_free_host; 1531 spin_lock_init(&aac->fib_lock); 1532 1533 mutex_init(&aac->ioctl_mutex); 1534 /* 1535 * Map in the registers from the adapter. 1536 */ 1537 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1538 if ((*aac_drivers[index].init)(aac)) 1539 goto out_unmap; 1540 1541 if (aac->sync_mode) { 1542 if (aac_sync_mode) 1543 printk(KERN_INFO "%s%d: Sync. mode enforced " 1544 "by driver parameter. This will cause " 1545 "a significant performance decrease!\n", 1546 aac->name, 1547 aac->id); 1548 else 1549 printk(KERN_INFO "%s%d: Async. mode not supported " 1550 "by current driver, sync. mode enforced." 1551 "\nPlease update driver to get full performance.\n", 1552 aac->name, 1553 aac->id); 1554 } 1555 1556 /* 1557 * Start any kernel threads needed 1558 */ 1559 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1560 if (IS_ERR(aac->thread)) { 1561 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1562 error = PTR_ERR(aac->thread); 1563 aac->thread = NULL; 1564 goto out_deinit; 1565 } 1566 1567 aac->maximum_num_channels = aac_drivers[index].channels; 1568 error = aac_get_adapter_info(aac); 1569 if (error < 0) 1570 goto out_deinit; 1571 1572 /* 1573 * Lets override negotiations and drop the maximum SG limit to 34 1574 */ 1575 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1576 (shost->sg_tablesize > 34)) { 1577 shost->sg_tablesize = 34; 1578 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1579 } 1580 1581 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1582 (shost->sg_tablesize > 17)) { 1583 shost->sg_tablesize = 17; 1584 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1585 } 1586 1587 error = pci_set_dma_max_seg_size(pdev, 1588 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ? 1589 (shost->max_sectors << 9) : 65536); 1590 if (error) 1591 goto out_deinit; 1592 1593 /* 1594 * Firmware printf works only with older firmware. 1595 */ 1596 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1597 aac->printf_enabled = 1; 1598 else 1599 aac->printf_enabled = 0; 1600 1601 /* 1602 * max channel will be the physical channels plus 1 virtual channel 1603 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1604 * physical channels are address by their actual physical number+1 1605 */ 1606 if (aac->nondasd_support || expose_physicals || aac->jbod) 1607 shost->max_channel = aac->maximum_num_channels; 1608 else 1609 shost->max_channel = 0; 1610 1611 aac_get_config_status(aac, 0); 1612 aac_get_containers(aac); 1613 list_add(&aac->entry, insert); 1614 1615 shost->max_id = aac->maximum_num_containers; 1616 if (shost->max_id < aac->maximum_num_physicals) 1617 shost->max_id = aac->maximum_num_physicals; 1618 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1619 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1620 else 1621 shost->this_id = shost->max_id; 1622 1623 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) 1624 aac_intr_normal(aac, 0, 2, 0, NULL); 1625 1626 /* 1627 * dmb - we may need to move the setting of these parms somewhere else once 1628 * we get a fib that can report the actual numbers 1629 */ 1630 shost->max_lun = AAC_MAX_LUN; 1631 1632 pci_set_drvdata(pdev, shost); 1633 1634 error = scsi_add_host(shost, &pdev->dev); 1635 if (error) 1636 goto out_deinit; 1637 scsi_scan_host(shost); 1638 1639 pci_enable_pcie_error_reporting(pdev); 1640 pci_save_state(pdev); 1641 1642 return 0; 1643 1644 out_deinit: 1645 __aac_shutdown(aac); 1646 out_unmap: 1647 aac_fib_map_free(aac); 1648 if (aac->comm_addr) 1649 dma_free_coherent(&aac->pdev->dev, aac->comm_size, 1650 aac->comm_addr, aac->comm_phys); 1651 kfree(aac->queues); 1652 aac_adapter_ioremap(aac, 0); 1653 kfree(aac->fibs); 1654 kfree(aac->fsa_dev); 1655 out_free_host: 1656 scsi_host_put(shost); 1657 out_disable_pdev: 1658 pci_disable_device(pdev); 1659 out: 1660 return error; 1661 } 1662 1663 static void aac_release_resources(struct aac_dev *aac) 1664 { 1665 aac_adapter_disable_int(aac); 1666 aac_free_irq(aac); 1667 } 1668 1669 static int aac_acquire_resources(struct aac_dev *dev) 1670 { 1671 unsigned long status; 1672 /* 1673 * First clear out all interrupts. Then enable the one's that we 1674 * can handle. 1675 */ 1676 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1677 || status == 0xffffffff) 1678 msleep(20); 1679 1680 aac_adapter_disable_int(dev); 1681 aac_adapter_enable_int(dev); 1682 1683 1684 if (aac_is_src(dev)) 1685 aac_define_int_mode(dev); 1686 1687 if (dev->msi_enabled) 1688 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1689 1690 if (aac_acquire_irq(dev)) 1691 goto error_iounmap; 1692 1693 aac_adapter_enable_int(dev); 1694 1695 /*max msix may change after EEH 1696 * Re-assign vectors to fibs 1697 */ 1698 aac_fib_vector_assign(dev); 1699 1700 if (!dev->sync_mode) { 1701 /* After EEH recovery or suspend resume, max_msix count 1702 * may change, therefore updating in init as well. 1703 */ 1704 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); 1705 aac_adapter_start(dev); 1706 } 1707 return 0; 1708 1709 error_iounmap: 1710 return -1; 1711 1712 } 1713 1714 #if (defined(CONFIG_PM)) 1715 static int aac_suspend(struct pci_dev *pdev, pm_message_t state) 1716 { 1717 1718 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1719 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1720 1721 scsi_block_requests(shost); 1722 aac_send_shutdown(aac); 1723 1724 aac_release_resources(aac); 1725 1726 pci_set_drvdata(pdev, shost); 1727 pci_save_state(pdev); 1728 pci_disable_device(pdev); 1729 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1730 1731 return 0; 1732 } 1733 1734 static int aac_resume(struct pci_dev *pdev) 1735 { 1736 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1737 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1738 int r; 1739 1740 pci_set_power_state(pdev, PCI_D0); 1741 pci_enable_wake(pdev, PCI_D0, 0); 1742 pci_restore_state(pdev); 1743 r = pci_enable_device(pdev); 1744 1745 if (r) 1746 goto fail_device; 1747 1748 pci_set_master(pdev); 1749 if (aac_acquire_resources(aac)) 1750 goto fail_device; 1751 /* 1752 * reset this flag to unblock ioctl() as it was set at 1753 * aac_send_shutdown() to block ioctls from upperlayer 1754 */ 1755 aac->adapter_shutdown = 0; 1756 scsi_unblock_requests(shost); 1757 1758 return 0; 1759 1760 fail_device: 1761 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1762 scsi_host_put(shost); 1763 pci_disable_device(pdev); 1764 return -ENODEV; 1765 } 1766 #endif 1767 1768 static void aac_shutdown(struct pci_dev *dev) 1769 { 1770 struct Scsi_Host *shost = pci_get_drvdata(dev); 1771 scsi_block_requests(shost); 1772 __aac_shutdown((struct aac_dev *)shost->hostdata); 1773 } 1774 1775 static void aac_remove_one(struct pci_dev *pdev) 1776 { 1777 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1778 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1779 1780 scsi_remove_host(shost); 1781 1782 __aac_shutdown(aac); 1783 aac_fib_map_free(aac); 1784 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1785 aac->comm_phys); 1786 kfree(aac->queues); 1787 1788 aac_adapter_ioremap(aac, 0); 1789 1790 kfree(aac->fibs); 1791 kfree(aac->fsa_dev); 1792 1793 list_del(&aac->entry); 1794 scsi_host_put(shost); 1795 pci_disable_device(pdev); 1796 if (list_empty(&aac_devices)) { 1797 unregister_chrdev(aac_cfg_major, "aac"); 1798 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; 1799 } 1800 } 1801 1802 static void aac_flush_ios(struct aac_dev *aac) 1803 { 1804 int i; 1805 struct scsi_cmnd *cmd; 1806 1807 for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) { 1808 cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data; 1809 if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) { 1810 scsi_dma_unmap(cmd); 1811 1812 if (aac->handle_pci_error) 1813 cmd->result = DID_NO_CONNECT << 16; 1814 else 1815 cmd->result = DID_RESET << 16; 1816 1817 cmd->scsi_done(cmd); 1818 } 1819 } 1820 } 1821 1822 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, 1823 enum pci_channel_state error) 1824 { 1825 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1826 struct aac_dev *aac = shost_priv(shost); 1827 1828 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); 1829 1830 switch (error) { 1831 case pci_channel_io_normal: 1832 return PCI_ERS_RESULT_CAN_RECOVER; 1833 case pci_channel_io_frozen: 1834 aac->handle_pci_error = 1; 1835 1836 scsi_block_requests(aac->scsi_host_ptr); 1837 aac_flush_ios(aac); 1838 aac_release_resources(aac); 1839 1840 pci_disable_pcie_error_reporting(pdev); 1841 aac_adapter_ioremap(aac, 0); 1842 1843 return PCI_ERS_RESULT_NEED_RESET; 1844 case pci_channel_io_perm_failure: 1845 aac->handle_pci_error = 1; 1846 1847 aac_flush_ios(aac); 1848 return PCI_ERS_RESULT_DISCONNECT; 1849 } 1850 1851 return PCI_ERS_RESULT_NEED_RESET; 1852 } 1853 1854 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) 1855 { 1856 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); 1857 return PCI_ERS_RESULT_NEED_RESET; 1858 } 1859 1860 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) 1861 { 1862 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); 1863 pci_restore_state(pdev); 1864 if (pci_enable_device(pdev)) { 1865 dev_warn(&pdev->dev, 1866 "aacraid: failed to enable slave\n"); 1867 goto fail_device; 1868 } 1869 1870 pci_set_master(pdev); 1871 1872 if (pci_enable_device_mem(pdev)) { 1873 dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); 1874 goto fail_device; 1875 } 1876 1877 return PCI_ERS_RESULT_RECOVERED; 1878 1879 fail_device: 1880 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); 1881 return PCI_ERS_RESULT_DISCONNECT; 1882 } 1883 1884 1885 static void aac_pci_resume(struct pci_dev *pdev) 1886 { 1887 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1888 struct scsi_device *sdev = NULL; 1889 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); 1890 1891 pci_cleanup_aer_uncorrect_error_status(pdev); 1892 1893 if (aac_adapter_ioremap(aac, aac->base_size)) { 1894 1895 dev_err(&pdev->dev, "aacraid: ioremap failed\n"); 1896 /* remap failed, go back ... */ 1897 aac->comm_interface = AAC_COMM_PRODUCER; 1898 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { 1899 dev_warn(&pdev->dev, 1900 "aacraid: unable to map adapter.\n"); 1901 1902 return; 1903 } 1904 } 1905 1906 msleep(10000); 1907 1908 aac_acquire_resources(aac); 1909 1910 /* 1911 * reset this flag to unblock ioctl() as it was set 1912 * at aac_send_shutdown() to block ioctls from upperlayer 1913 */ 1914 aac->adapter_shutdown = 0; 1915 aac->handle_pci_error = 0; 1916 1917 shost_for_each_device(sdev, shost) 1918 if (sdev->sdev_state == SDEV_OFFLINE) 1919 sdev->sdev_state = SDEV_RUNNING; 1920 scsi_unblock_requests(aac->scsi_host_ptr); 1921 scsi_scan_host(aac->scsi_host_ptr); 1922 pci_save_state(pdev); 1923 1924 dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); 1925 } 1926 1927 static struct pci_error_handlers aac_pci_err_handler = { 1928 .error_detected = aac_pci_error_detected, 1929 .mmio_enabled = aac_pci_mmio_enabled, 1930 .slot_reset = aac_pci_slot_reset, 1931 .resume = aac_pci_resume, 1932 }; 1933 1934 static struct pci_driver aac_pci_driver = { 1935 .name = AAC_DRIVERNAME, 1936 .id_table = aac_pci_tbl, 1937 .probe = aac_probe_one, 1938 .remove = aac_remove_one, 1939 #if (defined(CONFIG_PM)) 1940 .suspend = aac_suspend, 1941 .resume = aac_resume, 1942 #endif 1943 .shutdown = aac_shutdown, 1944 .err_handler = &aac_pci_err_handler, 1945 }; 1946 1947 static int __init aac_init(void) 1948 { 1949 int error; 1950 1951 printk(KERN_INFO "Adaptec %s driver %s\n", 1952 AAC_DRIVERNAME, aac_driver_version); 1953 1954 error = pci_register_driver(&aac_pci_driver); 1955 if (error < 0) 1956 return error; 1957 1958 aac_init_char(); 1959 1960 1961 return 0; 1962 } 1963 1964 static void __exit aac_exit(void) 1965 { 1966 if (aac_cfg_major > -1) 1967 unregister_chrdev(aac_cfg_major, "aac"); 1968 pci_unregister_driver(&aac_pci_driver); 1969 } 1970 1971 module_init(aac_init); 1972 module_exit(aac_exit); 1973