1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * dpcsup.c 28 * 29 * Abstract: All DPC processing routines for the cyclone board occur here. 30 * 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/semaphore.h> 42 43 #include "aacraid.h" 44 45 /** 46 * aac_response_normal - Handle command replies 47 * @q: Queue to read from 48 * 49 * This DPC routine will be run when the adapter interrupts us to let us 50 * know there is a response on our normal priority queue. We will pull off 51 * all QE there are and wake up all the waiters before exiting. We will 52 * take a spinlock out on the queue before operating on it. 53 */ 54 55 unsigned int aac_response_normal(struct aac_queue * q) 56 { 57 struct aac_dev * dev = q->dev; 58 struct aac_entry *entry; 59 struct hw_fib * hwfib; 60 struct fib * fib; 61 int consumed = 0; 62 unsigned long flags, mflags; 63 64 spin_lock_irqsave(q->lock, flags); 65 /* 66 * Keep pulling response QEs off the response queue and waking 67 * up the waiters until there are no more QEs. We then return 68 * back to the system. If no response was requested we just 69 * deallocate the Fib here and continue. 70 */ 71 while(aac_consumer_get(dev, q, &entry)) 72 { 73 int fast; 74 u32 index = le32_to_cpu(entry->addr); 75 fast = index & 0x01; 76 fib = &dev->fibs[index >> 2]; 77 hwfib = fib->hw_fib_va; 78 79 aac_consumer_free(dev, q, HostNormRespQueue); 80 /* 81 * Remove this fib from the Outstanding I/O queue. 82 * But only if it has not already been timed out. 83 * 84 * If the fib has been timed out already, then just 85 * continue. The caller has already been notified that 86 * the fib timed out. 87 */ 88 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending); 89 90 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 91 spin_unlock_irqrestore(q->lock, flags); 92 aac_fib_complete(fib); 93 aac_fib_free(fib); 94 spin_lock_irqsave(q->lock, flags); 95 continue; 96 } 97 spin_unlock_irqrestore(q->lock, flags); 98 99 if (fast) { 100 /* 101 * Doctor the fib 102 */ 103 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 104 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); 105 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 106 } 107 108 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 109 110 if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) 111 { 112 __le32 *pstatus = (__le32 *)hwfib->data; 113 if (*pstatus & cpu_to_le32(0xffff0000)) 114 *pstatus = cpu_to_le32(ST_OK); 115 } 116 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 117 { 118 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) 119 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); 120 else 121 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); 122 /* 123 * NOTE: we cannot touch the fib after this 124 * call, because it may have been deallocated. 125 */ 126 fib->callback(fib->callback_data, fib); 127 } else { 128 unsigned long flagv; 129 spin_lock_irqsave(&fib->event_lock, flagv); 130 if (!fib->done) { 131 fib->done = 1; 132 up(&fib->event_wait); 133 } 134 spin_unlock_irqrestore(&fib->event_lock, flagv); 135 136 spin_lock_irqsave(&dev->manage_lock, mflags); 137 dev->management_fib_count--; 138 spin_unlock_irqrestore(&dev->manage_lock, mflags); 139 140 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 141 if (fib->done == 2) { 142 spin_lock_irqsave(&fib->event_lock, flagv); 143 fib->done = 0; 144 spin_unlock_irqrestore(&fib->event_lock, flagv); 145 aac_fib_complete(fib); 146 aac_fib_free(fib); 147 } 148 } 149 consumed++; 150 spin_lock_irqsave(q->lock, flags); 151 } 152 153 if (consumed > aac_config.peak_fibs) 154 aac_config.peak_fibs = consumed; 155 if (consumed == 0) 156 aac_config.zero_fibs++; 157 158 spin_unlock_irqrestore(q->lock, flags); 159 return 0; 160 } 161 162 163 /** 164 * aac_command_normal - handle commands 165 * @q: queue to process 166 * 167 * This DPC routine will be queued when the adapter interrupts us to 168 * let us know there is a command on our normal priority queue. We will 169 * pull off all QE there are and wake up all the waiters before exiting. 170 * We will take a spinlock out on the queue before operating on it. 171 */ 172 173 unsigned int aac_command_normal(struct aac_queue *q) 174 { 175 struct aac_dev * dev = q->dev; 176 struct aac_entry *entry; 177 unsigned long flags; 178 179 spin_lock_irqsave(q->lock, flags); 180 181 /* 182 * Keep pulling response QEs off the response queue and waking 183 * up the waiters until there are no more QEs. We then return 184 * back to the system. 185 */ 186 while(aac_consumer_get(dev, q, &entry)) 187 { 188 struct fib fibctx; 189 struct hw_fib * hw_fib; 190 u32 index; 191 struct fib *fib = &fibctx; 192 193 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib); 194 hw_fib = &dev->aif_base_va[index]; 195 196 /* 197 * Allocate a FIB at all costs. For non queued stuff 198 * we can just use the stack so we are happy. We need 199 * a fib object in order to manage the linked lists 200 */ 201 if (dev->aif_thread) 202 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL) 203 fib = &fibctx; 204 205 memset(fib, 0, sizeof(struct fib)); 206 INIT_LIST_HEAD(&fib->fiblink); 207 fib->type = FSAFS_NTC_FIB_CONTEXT; 208 fib->size = sizeof(struct fib); 209 fib->hw_fib_va = hw_fib; 210 fib->data = hw_fib->data; 211 fib->dev = dev; 212 213 214 if (dev->aif_thread && fib != &fibctx) { 215 list_add_tail(&fib->fiblink, &q->cmdq); 216 aac_consumer_free(dev, q, HostNormCmdQueue); 217 wake_up_interruptible(&q->cmdready); 218 } else { 219 aac_consumer_free(dev, q, HostNormCmdQueue); 220 spin_unlock_irqrestore(q->lock, flags); 221 /* 222 * Set the status of this FIB 223 */ 224 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 225 aac_fib_adapter_complete(fib, sizeof(u32)); 226 spin_lock_irqsave(q->lock, flags); 227 } 228 } 229 spin_unlock_irqrestore(q->lock, flags); 230 return 0; 231 } 232 233 /* 234 * 235 * aac_aif_callback 236 * @context: the context set in the fib - here it is scsi cmd 237 * @fibptr: pointer to the fib 238 * 239 * Handles the AIFs - new method (SRC) 240 * 241 */ 242 243 static void aac_aif_callback(void *context, struct fib * fibptr) 244 { 245 struct fib *fibctx; 246 struct aac_dev *dev; 247 struct aac_aifcmd *cmd; 248 int status; 249 250 fibctx = (struct fib *)context; 251 BUG_ON(fibptr == NULL); 252 dev = fibptr->dev; 253 254 if ((fibptr->hw_fib_va->header.XferState & 255 cpu_to_le32(NoMoreAifDataAvailable)) || 256 dev->sa_firmware) { 257 aac_fib_complete(fibptr); 258 aac_fib_free(fibptr); 259 return; 260 } 261 262 aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va); 263 264 aac_fib_init(fibctx); 265 cmd = (struct aac_aifcmd *) fib_data(fibctx); 266 cmd->command = cpu_to_le32(AifReqEvent); 267 268 status = aac_fib_send(AifRequest, 269 fibctx, 270 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), 271 FsaNormal, 272 0, 1, 273 (fib_callback)aac_aif_callback, fibctx); 274 } 275 276 277 /** 278 * aac_intr_normal - Handle command replies 279 * @dev: Device 280 * @index: completion reference 281 * 282 * This DPC routine will be run when the adapter interrupts us to let us 283 * know there is a response on our normal priority queue. We will pull off 284 * all QE there are and wake up all the waiters before exiting. 285 */ 286 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif, 287 int isFastResponse, struct hw_fib *aif_fib) 288 { 289 unsigned long mflags; 290 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index)); 291 if (isAif == 1) { /* AIF - common */ 292 struct hw_fib * hw_fib; 293 struct fib * fib; 294 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue]; 295 unsigned long flags; 296 297 /* 298 * Allocate a FIB. For non queued stuff we can just use 299 * the stack so we are happy. We need a fib object in order to 300 * manage the linked lists. 301 */ 302 if ((!dev->aif_thread) 303 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC)))) 304 return 1; 305 if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) { 306 kfree (fib); 307 return 1; 308 } 309 if (dev->sa_firmware) { 310 fib->hbacmd_size = index; /* store event type */ 311 } else if (aif_fib != NULL) { 312 memcpy(hw_fib, aif_fib, sizeof(struct hw_fib)); 313 } else { 314 memcpy(hw_fib, (struct hw_fib *) 315 (((uintptr_t)(dev->regs.sa)) + index), 316 sizeof(struct hw_fib)); 317 } 318 INIT_LIST_HEAD(&fib->fiblink); 319 fib->type = FSAFS_NTC_FIB_CONTEXT; 320 fib->size = sizeof(struct fib); 321 fib->hw_fib_va = hw_fib; 322 fib->data = hw_fib->data; 323 fib->dev = dev; 324 325 spin_lock_irqsave(q->lock, flags); 326 list_add_tail(&fib->fiblink, &q->cmdq); 327 wake_up_interruptible(&q->cmdready); 328 spin_unlock_irqrestore(q->lock, flags); 329 return 1; 330 } else if (isAif == 2) { /* AIF - new (SRC) */ 331 struct fib *fibctx; 332 struct aac_aifcmd *cmd; 333 334 fibctx = aac_fib_alloc(dev); 335 if (!fibctx) 336 return 1; 337 aac_fib_init(fibctx); 338 339 cmd = (struct aac_aifcmd *) fib_data(fibctx); 340 cmd->command = cpu_to_le32(AifReqEvent); 341 342 return aac_fib_send(AifRequest, 343 fibctx, 344 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), 345 FsaNormal, 346 0, 1, 347 (fib_callback)aac_aif_callback, fibctx); 348 } else { 349 struct fib *fib = &dev->fibs[index]; 350 int start_callback = 0; 351 352 /* 353 * Remove this fib from the Outstanding I/O queue. 354 * But only if it has not already been timed out. 355 * 356 * If the fib has been timed out already, then just 357 * continue. The caller has already been notified that 358 * the fib timed out. 359 */ 360 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending); 361 362 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 363 aac_fib_complete(fib); 364 aac_fib_free(fib); 365 return 0; 366 } 367 368 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 369 370 if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 371 372 if (isFastResponse) 373 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 374 375 if (fib->callback) { 376 start_callback = 1; 377 } else { 378 unsigned long flagv; 379 int complete = 0; 380 381 dprintk((KERN_INFO "event_wait up\n")); 382 spin_lock_irqsave(&fib->event_lock, flagv); 383 if (fib->done == 2) { 384 fib->done = 1; 385 complete = 1; 386 } else { 387 fib->done = 1; 388 up(&fib->event_wait); 389 } 390 spin_unlock_irqrestore(&fib->event_lock, flagv); 391 392 spin_lock_irqsave(&dev->manage_lock, mflags); 393 dev->management_fib_count--; 394 spin_unlock_irqrestore(&dev->manage_lock, 395 mflags); 396 397 FIB_COUNTER_INCREMENT(aac_config.NativeRecved); 398 if (complete) 399 aac_fib_complete(fib); 400 } 401 } else { 402 struct hw_fib *hwfib = fib->hw_fib_va; 403 404 if (isFastResponse) { 405 /* Doctor the fib */ 406 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 407 hwfib->header.XferState |= 408 cpu_to_le32(AdapterProcessed); 409 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 410 } 411 412 if (hwfib->header.Command == 413 cpu_to_le16(NuFileSystem)) { 414 __le32 *pstatus = (__le32 *)hwfib->data; 415 416 if (*pstatus & cpu_to_le32(0xffff0000)) 417 *pstatus = cpu_to_le32(ST_OK); 418 } 419 if (hwfib->header.XferState & 420 cpu_to_le32(NoResponseExpected | Async)) { 421 if (hwfib->header.XferState & cpu_to_le32( 422 NoResponseExpected)) 423 FIB_COUNTER_INCREMENT( 424 aac_config.NoResponseRecved); 425 else 426 FIB_COUNTER_INCREMENT( 427 aac_config.AsyncRecved); 428 start_callback = 1; 429 } else { 430 unsigned long flagv; 431 int complete = 0; 432 433 dprintk((KERN_INFO "event_wait up\n")); 434 spin_lock_irqsave(&fib->event_lock, flagv); 435 if (fib->done == 2) { 436 fib->done = 1; 437 complete = 1; 438 } else { 439 fib->done = 1; 440 up(&fib->event_wait); 441 } 442 spin_unlock_irqrestore(&fib->event_lock, flagv); 443 444 spin_lock_irqsave(&dev->manage_lock, mflags); 445 dev->management_fib_count--; 446 spin_unlock_irqrestore(&dev->manage_lock, 447 mflags); 448 449 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 450 if (complete) 451 aac_fib_complete(fib); 452 } 453 } 454 455 456 if (start_callback) { 457 /* 458 * NOTE: we cannot touch the fib after this 459 * call, because it may have been deallocated. 460 */ 461 if (likely(fib->callback && fib->callback_data)) { 462 fib->callback(fib->callback_data, fib); 463 } else { 464 aac_fib_complete(fib); 465 aac_fib_free(fib); 466 } 467 468 } 469 return 0; 470 } 471 } 472