xref: /linux/drivers/scsi/aacraid/dpcsup.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  dpcsup.c
27  *
28  * Abstract: All DPC processing routines for the cyclone board occur here.
29  *
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/completion.h>
39 #include <linux/blkdev.h>
40 #include <linux/semaphore.h>
41 
42 #include "aacraid.h"
43 
44 /**
45  *	aac_response_normal	-	Handle command replies
46  *	@q: Queue to read from
47  *
48  *	This DPC routine will be run when the adapter interrupts us to let us
49  *	know there is a response on our normal priority queue. We will pull off
50  *	all QE there are and wake up all the waiters before exiting. We will
51  *	take a spinlock out on the queue before operating on it.
52  */
53 
54 unsigned int aac_response_normal(struct aac_queue * q)
55 {
56 	struct aac_dev * dev = q->dev;
57 	struct aac_entry *entry;
58 	struct hw_fib * hwfib;
59 	struct fib * fib;
60 	int consumed = 0;
61 	unsigned long flags, mflags;
62 
63 	spin_lock_irqsave(q->lock, flags);
64 	/*
65 	 *	Keep pulling response QEs off the response queue and waking
66 	 *	up the waiters until there are no more QEs. We then return
67 	 *	back to the system. If no response was requesed we just
68 	 *	deallocate the Fib here and continue.
69 	 */
70 	while(aac_consumer_get(dev, q, &entry))
71 	{
72 		int fast;
73 		u32 index = le32_to_cpu(entry->addr);
74 		fast = index & 0x01;
75 		fib = &dev->fibs[index >> 2];
76 		hwfib = fib->hw_fib_va;
77 
78 		aac_consumer_free(dev, q, HostNormRespQueue);
79 		/*
80 		 *	Remove this fib from the Outstanding I/O queue.
81 		 *	But only if it has not already been timed out.
82 		 *
83 		 *	If the fib has been timed out already, then just
84 		 *	continue. The caller has already been notified that
85 		 *	the fib timed out.
86 		 */
87 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
88 
89 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
90 			spin_unlock_irqrestore(q->lock, flags);
91 			aac_fib_complete(fib);
92 			aac_fib_free(fib);
93 			spin_lock_irqsave(q->lock, flags);
94 			continue;
95 		}
96 		spin_unlock_irqrestore(q->lock, flags);
97 
98 		if (fast) {
99 			/*
100 			 *	Doctor the fib
101 			 */
102 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104 			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
105 		}
106 
107 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
108 
109 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
110 		{
111 			__le32 *pstatus = (__le32 *)hwfib->data;
112 			if (*pstatus & cpu_to_le32(0xffff0000))
113 				*pstatus = cpu_to_le32(ST_OK);
114 		}
115 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
116 		{
117 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
118 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
119 			else
120 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
121 			/*
122 			 *	NOTE:  we cannot touch the fib after this
123 			 *	    call, because it may have been deallocated.
124 			 */
125 			fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
126 			fib->callback(fib->callback_data, fib);
127 		} else {
128 			unsigned long flagv;
129 			spin_lock_irqsave(&fib->event_lock, flagv);
130 			if (!fib->done) {
131 				fib->done = 1;
132 				up(&fib->event_wait);
133 			}
134 			spin_unlock_irqrestore(&fib->event_lock, flagv);
135 
136 			spin_lock_irqsave(&dev->manage_lock, mflags);
137 			dev->management_fib_count--;
138 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
139 
140 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
141 			if (fib->done == 2) {
142 				spin_lock_irqsave(&fib->event_lock, flagv);
143 				fib->done = 0;
144 				spin_unlock_irqrestore(&fib->event_lock, flagv);
145 				aac_fib_complete(fib);
146 				aac_fib_free(fib);
147 			}
148 		}
149 		consumed++;
150 		spin_lock_irqsave(q->lock, flags);
151 	}
152 
153 	if (consumed > aac_config.peak_fibs)
154 		aac_config.peak_fibs = consumed;
155 	if (consumed == 0)
156 		aac_config.zero_fibs++;
157 
158 	spin_unlock_irqrestore(q->lock, flags);
159 	return 0;
160 }
161 
162 
163 /**
164  *	aac_command_normal	-	handle commands
165  *	@q: queue to process
166  *
167  *	This DPC routine will be queued when the adapter interrupts us to
168  *	let us know there is a command on our normal priority queue. We will
169  *	pull off all QE there are and wake up all the waiters before exiting.
170  *	We will take a spinlock out on the queue before operating on it.
171  */
172 
173 unsigned int aac_command_normal(struct aac_queue *q)
174 {
175 	struct aac_dev * dev = q->dev;
176 	struct aac_entry *entry;
177 	unsigned long flags;
178 
179 	spin_lock_irqsave(q->lock, flags);
180 
181 	/*
182 	 *	Keep pulling response QEs off the response queue and waking
183 	 *	up the waiters until there are no more QEs. We then return
184 	 *	back to the system.
185 	 */
186 	while(aac_consumer_get(dev, q, &entry))
187 	{
188 		struct fib fibctx;
189 		struct hw_fib * hw_fib;
190 		u32 index;
191 		struct fib *fib = &fibctx;
192 
193 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
194 		hw_fib = &dev->aif_base_va[index];
195 
196 		/*
197 		 *	Allocate a FIB at all costs. For non queued stuff
198 		 *	we can just use the stack so we are happy. We need
199 		 *	a fib object in order to manage the linked lists
200 		 */
201 		if (dev->aif_thread)
202 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
203 				fib = &fibctx;
204 
205 		memset(fib, 0, sizeof(struct fib));
206 		INIT_LIST_HEAD(&fib->fiblink);
207 		fib->type = FSAFS_NTC_FIB_CONTEXT;
208 		fib->size = sizeof(struct fib);
209 		fib->hw_fib_va = hw_fib;
210 		fib->data = hw_fib->data;
211 		fib->dev = dev;
212 
213 
214 		if (dev->aif_thread && fib != &fibctx) {
215 		        list_add_tail(&fib->fiblink, &q->cmdq);
216 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
217 		        wake_up_interruptible(&q->cmdready);
218 		} else {
219 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
220 			spin_unlock_irqrestore(q->lock, flags);
221 			/*
222 			 *	Set the status of this FIB
223 			 */
224 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
225 			aac_fib_adapter_complete(fib, sizeof(u32));
226 			spin_lock_irqsave(q->lock, flags);
227 		}
228 	}
229 	spin_unlock_irqrestore(q->lock, flags);
230 	return 0;
231 }
232 
233 /*
234  *
235  * aac_aif_callback
236  * @context: the context set in the fib - here it is scsi cmd
237  * @fibptr: pointer to the fib
238  *
239  * Handles the AIFs - new method (SRC)
240  *
241  */
242 
243 static void aac_aif_callback(void *context, struct fib * fibptr)
244 {
245 	struct fib *fibctx;
246 	struct aac_dev *dev;
247 	struct aac_aifcmd *cmd;
248 	int status;
249 
250 	fibctx = (struct fib *)context;
251 	BUG_ON(fibptr == NULL);
252 	dev = fibptr->dev;
253 
254 	if (fibptr->hw_fib_va->header.XferState &
255 	    cpu_to_le32(NoMoreAifDataAvailable)) {
256 		aac_fib_complete(fibptr);
257 		aac_fib_free(fibptr);
258 		return;
259 	}
260 
261 	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
262 
263 	aac_fib_init(fibctx);
264 	cmd = (struct aac_aifcmd *) fib_data(fibctx);
265 	cmd->command = cpu_to_le32(AifReqEvent);
266 
267 	status = aac_fib_send(AifRequest,
268 		fibctx,
269 		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
270 		FsaNormal,
271 		0, 1,
272 		(fib_callback)aac_aif_callback, fibctx);
273 }
274 
275 
276 /**
277  *	aac_intr_normal	-	Handle command replies
278  *	@dev: Device
279  *	@index: completion reference
280  *
281  *	This DPC routine will be run when the adapter interrupts us to let us
282  *	know there is a response on our normal priority queue. We will pull off
283  *	all QE there are and wake up all the waiters before exiting.
284  */
285 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index,
286 			int isAif, int isFastResponse, struct hw_fib *aif_fib)
287 {
288 	unsigned long mflags;
289 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
290 	if (isAif == 1) {	/* AIF - common */
291 		struct hw_fib * hw_fib;
292 		struct fib * fib;
293 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
294 		unsigned long flags;
295 
296 		/*
297 		 *	Allocate a FIB. For non queued stuff we can just use
298 		 * the stack so we are happy. We need a fib object in order to
299 		 * manage the linked lists.
300 		 */
301 		if ((!dev->aif_thread)
302 		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
303 			return 1;
304 		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
305 			kfree (fib);
306 			return 1;
307 		}
308 		if (aif_fib != NULL) {
309 			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
310 		} else {
311 			memcpy(hw_fib,
312 				(struct hw_fib *)(((uintptr_t)(dev->regs.sa)) +
313 				index), sizeof(struct hw_fib));
314 		}
315 		INIT_LIST_HEAD(&fib->fiblink);
316 		fib->type = FSAFS_NTC_FIB_CONTEXT;
317 		fib->size = sizeof(struct fib);
318 		fib->hw_fib_va = hw_fib;
319 		fib->data = hw_fib->data;
320 		fib->dev = dev;
321 
322 		spin_lock_irqsave(q->lock, flags);
323 		list_add_tail(&fib->fiblink, &q->cmdq);
324 	        wake_up_interruptible(&q->cmdready);
325 		spin_unlock_irqrestore(q->lock, flags);
326 		return 1;
327 	} else if (isAif == 2) {	/* AIF - new (SRC) */
328 		struct fib *fibctx;
329 		struct aac_aifcmd *cmd;
330 
331 		fibctx = aac_fib_alloc(dev);
332 		if (!fibctx)
333 			return 1;
334 		aac_fib_init(fibctx);
335 
336 		cmd = (struct aac_aifcmd *) fib_data(fibctx);
337 		cmd->command = cpu_to_le32(AifReqEvent);
338 
339 		return aac_fib_send(AifRequest,
340 			fibctx,
341 			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
342 			FsaNormal,
343 			0, 1,
344 			(fib_callback)aac_aif_callback, fibctx);
345 	} else {
346 		struct fib *fib = &dev->fibs[index];
347 		struct hw_fib * hwfib = fib->hw_fib_va;
348 
349 		/*
350 		 *	Remove this fib from the Outstanding I/O queue.
351 		 *	But only if it has not already been timed out.
352 		 *
353 		 *	If the fib has been timed out already, then just
354 		 *	continue. The caller has already been notified that
355 		 *	the fib timed out.
356 		 */
357 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
358 
359 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
360 			aac_fib_complete(fib);
361 			aac_fib_free(fib);
362 			return 0;
363 		}
364 
365 		if (isFastResponse) {
366 			/*
367 			 *	Doctor the fib
368 			 */
369 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
370 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
371 			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
372 		}
373 
374 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
375 
376 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
377 		{
378 			__le32 *pstatus = (__le32 *)hwfib->data;
379 			if (*pstatus & cpu_to_le32(0xffff0000))
380 				*pstatus = cpu_to_le32(ST_OK);
381 		}
382 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
383 		{
384 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
385 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
386 			else
387 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
388 			/*
389 			 *	NOTE:  we cannot touch the fib after this
390 			 *	    call, because it may have been deallocated.
391 			 */
392 			if (likely(fib->callback && fib->callback_data)) {
393 				fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
394 				fib->callback(fib->callback_data, fib);
395 			} else {
396 				aac_fib_complete(fib);
397 				aac_fib_free(fib);
398 			}
399 		} else {
400 			unsigned long flagv;
401 	  		dprintk((KERN_INFO "event_wait up\n"));
402 			spin_lock_irqsave(&fib->event_lock, flagv);
403 			if (!fib->done) {
404 				fib->done = 1;
405 				up(&fib->event_wait);
406 			}
407 			spin_unlock_irqrestore(&fib->event_lock, flagv);
408 
409 			spin_lock_irqsave(&dev->manage_lock, mflags);
410 			dev->management_fib_count--;
411 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
412 
413 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
414 			if (fib->done == 2) {
415 				spin_lock_irqsave(&fib->event_lock, flagv);
416 				fib->done = 0;
417 				spin_unlock_irqrestore(&fib->event_lock, flagv);
418 				aac_fib_complete(fib);
419 				aac_fib_free(fib);
420 			}
421 
422 		}
423 		return 0;
424 	}
425 }
426