1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; see the file COPYING. If not, write to 23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Module Name: 26 * dpcsup.c 27 * 28 * Abstract: All DPC processing routines for the cyclone board occur here. 29 * 30 * 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/types.h> 36 #include <linux/spinlock.h> 37 #include <linux/slab.h> 38 #include <linux/completion.h> 39 #include <linux/blkdev.h> 40 #include <linux/semaphore.h> 41 42 #include "aacraid.h" 43 44 /** 45 * aac_response_normal - Handle command replies 46 * @q: Queue to read from 47 * 48 * This DPC routine will be run when the adapter interrupts us to let us 49 * know there is a response on our normal priority queue. We will pull off 50 * all QE there are and wake up all the waiters before exiting. We will 51 * take a spinlock out on the queue before operating on it. 52 */ 53 54 unsigned int aac_response_normal(struct aac_queue * q) 55 { 56 struct aac_dev * dev = q->dev; 57 struct aac_entry *entry; 58 struct hw_fib * hwfib; 59 struct fib * fib; 60 int consumed = 0; 61 unsigned long flags, mflags; 62 63 spin_lock_irqsave(q->lock, flags); 64 /* 65 * Keep pulling response QEs off the response queue and waking 66 * up the waiters until there are no more QEs. We then return 67 * back to the system. If no response was requesed we just 68 * deallocate the Fib here and continue. 69 */ 70 while(aac_consumer_get(dev, q, &entry)) 71 { 72 int fast; 73 u32 index = le32_to_cpu(entry->addr); 74 fast = index & 0x01; 75 fib = &dev->fibs[index >> 2]; 76 hwfib = fib->hw_fib_va; 77 78 aac_consumer_free(dev, q, HostNormRespQueue); 79 /* 80 * Remove this fib from the Outstanding I/O queue. 81 * But only if it has not already been timed out. 82 * 83 * If the fib has been timed out already, then just 84 * continue. The caller has already been notified that 85 * the fib timed out. 86 */ 87 dev->queues->queue[AdapNormCmdQueue].numpending--; 88 89 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 90 spin_unlock_irqrestore(q->lock, flags); 91 aac_fib_complete(fib); 92 aac_fib_free(fib); 93 spin_lock_irqsave(q->lock, flags); 94 continue; 95 } 96 spin_unlock_irqrestore(q->lock, flags); 97 98 if (fast) { 99 /* 100 * Doctor the fib 101 */ 102 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 103 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); 104 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 105 } 106 107 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 108 109 if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) 110 { 111 __le32 *pstatus = (__le32 *)hwfib->data; 112 if (*pstatus & cpu_to_le32(0xffff0000)) 113 *pstatus = cpu_to_le32(ST_OK); 114 } 115 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 116 { 117 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) 118 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); 119 else 120 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); 121 /* 122 * NOTE: we cannot touch the fib after this 123 * call, because it may have been deallocated. 124 */ 125 fib->flags &= FIB_CONTEXT_FLAG_FASTRESP; 126 fib->callback(fib->callback_data, fib); 127 } else { 128 unsigned long flagv; 129 spin_lock_irqsave(&fib->event_lock, flagv); 130 if (!fib->done) { 131 fib->done = 1; 132 up(&fib->event_wait); 133 } 134 spin_unlock_irqrestore(&fib->event_lock, flagv); 135 136 spin_lock_irqsave(&dev->manage_lock, mflags); 137 dev->management_fib_count--; 138 spin_unlock_irqrestore(&dev->manage_lock, mflags); 139 140 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 141 if (fib->done == 2) { 142 spin_lock_irqsave(&fib->event_lock, flagv); 143 fib->done = 0; 144 spin_unlock_irqrestore(&fib->event_lock, flagv); 145 aac_fib_complete(fib); 146 aac_fib_free(fib); 147 } 148 } 149 consumed++; 150 spin_lock_irqsave(q->lock, flags); 151 } 152 153 if (consumed > aac_config.peak_fibs) 154 aac_config.peak_fibs = consumed; 155 if (consumed == 0) 156 aac_config.zero_fibs++; 157 158 spin_unlock_irqrestore(q->lock, flags); 159 return 0; 160 } 161 162 163 /** 164 * aac_command_normal - handle commands 165 * @q: queue to process 166 * 167 * This DPC routine will be queued when the adapter interrupts us to 168 * let us know there is a command on our normal priority queue. We will 169 * pull off all QE there are and wake up all the waiters before exiting. 170 * We will take a spinlock out on the queue before operating on it. 171 */ 172 173 unsigned int aac_command_normal(struct aac_queue *q) 174 { 175 struct aac_dev * dev = q->dev; 176 struct aac_entry *entry; 177 unsigned long flags; 178 179 spin_lock_irqsave(q->lock, flags); 180 181 /* 182 * Keep pulling response QEs off the response queue and waking 183 * up the waiters until there are no more QEs. We then return 184 * back to the system. 185 */ 186 while(aac_consumer_get(dev, q, &entry)) 187 { 188 struct fib fibctx; 189 struct hw_fib * hw_fib; 190 u32 index; 191 struct fib *fib = &fibctx; 192 193 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib); 194 hw_fib = &dev->aif_base_va[index]; 195 196 /* 197 * Allocate a FIB at all costs. For non queued stuff 198 * we can just use the stack so we are happy. We need 199 * a fib object in order to manage the linked lists 200 */ 201 if (dev->aif_thread) 202 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL) 203 fib = &fibctx; 204 205 memset(fib, 0, sizeof(struct fib)); 206 INIT_LIST_HEAD(&fib->fiblink); 207 fib->type = FSAFS_NTC_FIB_CONTEXT; 208 fib->size = sizeof(struct fib); 209 fib->hw_fib_va = hw_fib; 210 fib->data = hw_fib->data; 211 fib->dev = dev; 212 213 214 if (dev->aif_thread && fib != &fibctx) { 215 list_add_tail(&fib->fiblink, &q->cmdq); 216 aac_consumer_free(dev, q, HostNormCmdQueue); 217 wake_up_interruptible(&q->cmdready); 218 } else { 219 aac_consumer_free(dev, q, HostNormCmdQueue); 220 spin_unlock_irqrestore(q->lock, flags); 221 /* 222 * Set the status of this FIB 223 */ 224 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 225 aac_fib_adapter_complete(fib, sizeof(u32)); 226 spin_lock_irqsave(q->lock, flags); 227 } 228 } 229 spin_unlock_irqrestore(q->lock, flags); 230 return 0; 231 } 232 233 /* 234 * 235 * aac_aif_callback 236 * @context: the context set in the fib - here it is scsi cmd 237 * @fibptr: pointer to the fib 238 * 239 * Handles the AIFs - new method (SRC) 240 * 241 */ 242 243 static void aac_aif_callback(void *context, struct fib * fibptr) 244 { 245 struct fib *fibctx; 246 struct aac_dev *dev; 247 struct aac_aifcmd *cmd; 248 int status; 249 250 fibctx = (struct fib *)context; 251 BUG_ON(fibptr == NULL); 252 dev = fibptr->dev; 253 254 if (fibptr->hw_fib_va->header.XferState & 255 cpu_to_le32(NoMoreAifDataAvailable)) { 256 aac_fib_complete(fibptr); 257 aac_fib_free(fibptr); 258 return; 259 } 260 261 aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va); 262 263 aac_fib_init(fibctx); 264 cmd = (struct aac_aifcmd *) fib_data(fibctx); 265 cmd->command = cpu_to_le32(AifReqEvent); 266 267 status = aac_fib_send(AifRequest, 268 fibctx, 269 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), 270 FsaNormal, 271 0, 1, 272 (fib_callback)aac_aif_callback, fibctx); 273 } 274 275 276 /** 277 * aac_intr_normal - Handle command replies 278 * @dev: Device 279 * @index: completion reference 280 * 281 * This DPC routine will be run when the adapter interrupts us to let us 282 * know there is a response on our normal priority queue. We will pull off 283 * all QE there are and wake up all the waiters before exiting. 284 */ 285 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, 286 int isAif, int isFastResponse, struct hw_fib *aif_fib) 287 { 288 unsigned long mflags; 289 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index)); 290 if (isAif == 1) { /* AIF - common */ 291 struct hw_fib * hw_fib; 292 struct fib * fib; 293 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue]; 294 unsigned long flags; 295 296 /* 297 * Allocate a FIB. For non queued stuff we can just use 298 * the stack so we are happy. We need a fib object in order to 299 * manage the linked lists. 300 */ 301 if ((!dev->aif_thread) 302 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC)))) 303 return 1; 304 if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) { 305 kfree (fib); 306 return 1; 307 } 308 if (aif_fib != NULL) { 309 memcpy(hw_fib, aif_fib, sizeof(struct hw_fib)); 310 } else { 311 memcpy(hw_fib, 312 (struct hw_fib *)(((uintptr_t)(dev->regs.sa)) + 313 index), sizeof(struct hw_fib)); 314 } 315 INIT_LIST_HEAD(&fib->fiblink); 316 fib->type = FSAFS_NTC_FIB_CONTEXT; 317 fib->size = sizeof(struct fib); 318 fib->hw_fib_va = hw_fib; 319 fib->data = hw_fib->data; 320 fib->dev = dev; 321 322 spin_lock_irqsave(q->lock, flags); 323 list_add_tail(&fib->fiblink, &q->cmdq); 324 wake_up_interruptible(&q->cmdready); 325 spin_unlock_irqrestore(q->lock, flags); 326 return 1; 327 } else if (isAif == 2) { /* AIF - new (SRC) */ 328 struct fib *fibctx; 329 struct aac_aifcmd *cmd; 330 331 fibctx = aac_fib_alloc(dev); 332 if (!fibctx) 333 return 1; 334 aac_fib_init(fibctx); 335 336 cmd = (struct aac_aifcmd *) fib_data(fibctx); 337 cmd->command = cpu_to_le32(AifReqEvent); 338 339 return aac_fib_send(AifRequest, 340 fibctx, 341 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), 342 FsaNormal, 343 0, 1, 344 (fib_callback)aac_aif_callback, fibctx); 345 } else { 346 struct fib *fib = &dev->fibs[index]; 347 struct hw_fib * hwfib = fib->hw_fib_va; 348 349 /* 350 * Remove this fib from the Outstanding I/O queue. 351 * But only if it has not already been timed out. 352 * 353 * If the fib has been timed out already, then just 354 * continue. The caller has already been notified that 355 * the fib timed out. 356 */ 357 dev->queues->queue[AdapNormCmdQueue].numpending--; 358 359 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 360 aac_fib_complete(fib); 361 aac_fib_free(fib); 362 return 0; 363 } 364 365 if (isFastResponse) { 366 /* 367 * Doctor the fib 368 */ 369 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 370 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); 371 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 372 } 373 374 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 375 376 if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) 377 { 378 __le32 *pstatus = (__le32 *)hwfib->data; 379 if (*pstatus & cpu_to_le32(0xffff0000)) 380 *pstatus = cpu_to_le32(ST_OK); 381 } 382 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 383 { 384 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) 385 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); 386 else 387 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); 388 /* 389 * NOTE: we cannot touch the fib after this 390 * call, because it may have been deallocated. 391 */ 392 fib->flags &= FIB_CONTEXT_FLAG_FASTRESP; 393 fib->callback(fib->callback_data, fib); 394 } else { 395 unsigned long flagv; 396 dprintk((KERN_INFO "event_wait up\n")); 397 spin_lock_irqsave(&fib->event_lock, flagv); 398 if (!fib->done) { 399 fib->done = 1; 400 up(&fib->event_wait); 401 } 402 spin_unlock_irqrestore(&fib->event_lock, flagv); 403 404 spin_lock_irqsave(&dev->manage_lock, mflags); 405 dev->management_fib_count--; 406 spin_unlock_irqrestore(&dev->manage_lock, mflags); 407 408 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 409 if (fib->done == 2) { 410 spin_lock_irqsave(&fib->event_lock, flagv); 411 fib->done = 0; 412 spin_unlock_irqrestore(&fib->event_lock, flagv); 413 aac_fib_complete(fib); 414 aac_fib_free(fib); 415 } 416 417 } 418 return 0; 419 } 420 } 421