1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commsup.c 26 * 27 * Abstract: Contain all routines that are required for FSA host/adapter 28 * communication. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/interrupt.h> 44 #include <linux/semaphore.h> 45 #include <scsi/scsi.h> 46 #include <scsi/scsi_host.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_cmnd.h> 49 50 #include "aacraid.h" 51 52 /** 53 * fib_map_alloc - allocate the fib objects 54 * @dev: Adapter to allocate for 55 * 56 * Allocate and map the shared PCI space for the FIB blocks used to 57 * talk to the Adaptec firmware. 58 */ 59 60 static int fib_map_alloc(struct aac_dev *dev) 61 { 62 dprintk((KERN_INFO 63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 68 &dev->hw_fib_pa))==NULL) 69 return -ENOMEM; 70 return 0; 71 } 72 73 /** 74 * aac_fib_map_free - free the fib objects 75 * @dev: Adapter to free 76 * 77 * Free the PCI mappings and the memory allocated for FIB blocks 78 * on this adapter. 79 */ 80 81 void aac_fib_map_free(struct aac_dev *dev) 82 { 83 pci_free_consistent(dev->pdev, 84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 85 dev->hw_fib_va, dev->hw_fib_pa); 86 dev->hw_fib_va = NULL; 87 dev->hw_fib_pa = 0; 88 } 89 90 /** 91 * aac_fib_setup - setup the fibs 92 * @dev: Adapter to set up 93 * 94 * Allocate the PCI space for the fibs, map it and then intialise the 95 * fib area, the unmapped fib data and also the free list 96 */ 97 98 int aac_fib_setup(struct aac_dev * dev) 99 { 100 struct fib *fibptr; 101 struct hw_fib *hw_fib; 102 dma_addr_t hw_fib_pa; 103 int i; 104 105 while (((i = fib_map_alloc(dev)) == -ENOMEM) 106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 109 } 110 if (i<0) 111 return -ENOMEM; 112 113 hw_fib = dev->hw_fib_va; 114 hw_fib_pa = dev->hw_fib_pa; 115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 116 /* 117 * Initialise the fibs 118 */ 119 for (i = 0, fibptr = &dev->fibs[i]; 120 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 121 i++, fibptr++) 122 { 123 fibptr->dev = dev; 124 fibptr->hw_fib_va = hw_fib; 125 fibptr->data = (void *) fibptr->hw_fib_va->data; 126 fibptr->next = fibptr+1; /* Forward chain the fibs */ 127 init_MUTEX_LOCKED(&fibptr->event_wait); 128 spin_lock_init(&fibptr->event_lock); 129 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 130 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); 131 fibptr->hw_fib_pa = hw_fib_pa; 132 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size); 133 hw_fib_pa = hw_fib_pa + dev->max_fib_size; 134 } 135 /* 136 * Add the fib chain to the free list 137 */ 138 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 139 /* 140 * Enable this to debug out of queue space 141 */ 142 dev->free_fib = &dev->fibs[0]; 143 return 0; 144 } 145 146 /** 147 * aac_fib_alloc - allocate a fib 148 * @dev: Adapter to allocate the fib for 149 * 150 * Allocate a fib from the adapter fib pool. If the pool is empty we 151 * return NULL. 152 */ 153 154 struct fib *aac_fib_alloc(struct aac_dev *dev) 155 { 156 struct fib * fibptr; 157 unsigned long flags; 158 spin_lock_irqsave(&dev->fib_lock, flags); 159 fibptr = dev->free_fib; 160 if(!fibptr){ 161 spin_unlock_irqrestore(&dev->fib_lock, flags); 162 return fibptr; 163 } 164 dev->free_fib = fibptr->next; 165 spin_unlock_irqrestore(&dev->fib_lock, flags); 166 /* 167 * Set the proper node type code and node byte size 168 */ 169 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 170 fibptr->size = sizeof(struct fib); 171 /* 172 * Null out fields that depend on being zero at the start of 173 * each I/O 174 */ 175 fibptr->hw_fib_va->header.XferState = 0; 176 fibptr->flags = 0; 177 fibptr->callback = NULL; 178 fibptr->callback_data = NULL; 179 180 return fibptr; 181 } 182 183 /** 184 * aac_fib_free - free a fib 185 * @fibptr: fib to free up 186 * 187 * Frees up a fib and places it on the appropriate queue 188 */ 189 190 void aac_fib_free(struct fib *fibptr) 191 { 192 unsigned long flags; 193 194 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 195 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 196 aac_config.fib_timeouts++; 197 if (fibptr->hw_fib_va->header.XferState != 0) { 198 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 199 (void*)fibptr, 200 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 201 } 202 fibptr->next = fibptr->dev->free_fib; 203 fibptr->dev->free_fib = fibptr; 204 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 205 } 206 207 /** 208 * aac_fib_init - initialise a fib 209 * @fibptr: The fib to initialize 210 * 211 * Set up the generic fib fields ready for use 212 */ 213 214 void aac_fib_init(struct fib *fibptr) 215 { 216 struct hw_fib *hw_fib = fibptr->hw_fib_va; 217 218 hw_fib->header.StructType = FIB_MAGIC; 219 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 220 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 221 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ 222 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 223 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 224 } 225 226 /** 227 * fib_deallocate - deallocate a fib 228 * @fibptr: fib to deallocate 229 * 230 * Will deallocate and return to the free pool the FIB pointed to by the 231 * caller. 232 */ 233 234 static void fib_dealloc(struct fib * fibptr) 235 { 236 struct hw_fib *hw_fib = fibptr->hw_fib_va; 237 BUG_ON(hw_fib->header.StructType != FIB_MAGIC); 238 hw_fib->header.XferState = 0; 239 } 240 241 /* 242 * Commuication primitives define and support the queuing method we use to 243 * support host to adapter commuication. All queue accesses happen through 244 * these routines and are the only routines which have a knowledge of the 245 * how these queues are implemented. 246 */ 247 248 /** 249 * aac_get_entry - get a queue entry 250 * @dev: Adapter 251 * @qid: Queue Number 252 * @entry: Entry return 253 * @index: Index return 254 * @nonotify: notification control 255 * 256 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 257 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 258 * returned. 259 */ 260 261 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 262 { 263 struct aac_queue * q; 264 unsigned long idx; 265 266 /* 267 * All of the queues wrap when they reach the end, so we check 268 * to see if they have reached the end and if they have we just 269 * set the index back to zero. This is a wrap. You could or off 270 * the high bits in all updates but this is a bit faster I think. 271 */ 272 273 q = &dev->queues->queue[qid]; 274 275 idx = *index = le32_to_cpu(*(q->headers.producer)); 276 /* Interrupt Moderation, only interrupt for first two entries */ 277 if (idx != le32_to_cpu(*(q->headers.consumer))) { 278 if (--idx == 0) { 279 if (qid == AdapNormCmdQueue) 280 idx = ADAP_NORM_CMD_ENTRIES; 281 else 282 idx = ADAP_NORM_RESP_ENTRIES; 283 } 284 if (idx != le32_to_cpu(*(q->headers.consumer))) 285 *nonotify = 1; 286 } 287 288 if (qid == AdapNormCmdQueue) { 289 if (*index >= ADAP_NORM_CMD_ENTRIES) 290 *index = 0; /* Wrap to front of the Producer Queue. */ 291 } else { 292 if (*index >= ADAP_NORM_RESP_ENTRIES) 293 *index = 0; /* Wrap to front of the Producer Queue. */ 294 } 295 296 /* Queue is full */ 297 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 298 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 299 qid, q->numpending); 300 return 0; 301 } else { 302 *entry = q->base + *index; 303 return 1; 304 } 305 } 306 307 /** 308 * aac_queue_get - get the next free QE 309 * @dev: Adapter 310 * @index: Returned index 311 * @priority: Priority of fib 312 * @fib: Fib to associate with the queue entry 313 * @wait: Wait if queue full 314 * @fibptr: Driver fib object to go with fib 315 * @nonotify: Don't notify the adapter 316 * 317 * Gets the next free QE off the requested priorty adapter command 318 * queue and associates the Fib with the QE. The QE represented by 319 * index is ready to insert on the queue when this routine returns 320 * success. 321 */ 322 323 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 324 { 325 struct aac_entry * entry = NULL; 326 int map = 0; 327 328 if (qid == AdapNormCmdQueue) { 329 /* if no entries wait for some if caller wants to */ 330 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 331 printk(KERN_ERR "GetEntries failed\n"); 332 } 333 /* 334 * Setup queue entry with a command, status and fib mapped 335 */ 336 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 337 map = 1; 338 } else { 339 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 340 /* if no entries wait for some if caller wants to */ 341 } 342 /* 343 * Setup queue entry with command, status and fib mapped 344 */ 345 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 346 entry->addr = hw_fib->header.SenderFibAddress; 347 /* Restore adapters pointer to the FIB */ 348 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 349 map = 0; 350 } 351 /* 352 * If MapFib is true than we need to map the Fib and put pointers 353 * in the queue entry. 354 */ 355 if (map) 356 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 357 return 0; 358 } 359 360 /* 361 * Define the highest level of host to adapter communication routines. 362 * These routines will support host to adapter FS commuication. These 363 * routines have no knowledge of the commuication method used. This level 364 * sends and receives FIBs. This level has no knowledge of how these FIBs 365 * get passed back and forth. 366 */ 367 368 /** 369 * aac_fib_send - send a fib to the adapter 370 * @command: Command to send 371 * @fibptr: The fib 372 * @size: Size of fib data area 373 * @priority: Priority of Fib 374 * @wait: Async/sync select 375 * @reply: True if a reply is wanted 376 * @callback: Called with reply 377 * @callback_data: Passed to callback 378 * 379 * Sends the requested FIB to the adapter and optionally will wait for a 380 * response FIB. If the caller does not wish to wait for a response than 381 * an event to wait on must be supplied. This event will be set when a 382 * response FIB is received from the adapter. 383 */ 384 385 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 386 int priority, int wait, int reply, fib_callback callback, 387 void *callback_data) 388 { 389 struct aac_dev * dev = fibptr->dev; 390 struct hw_fib * hw_fib = fibptr->hw_fib_va; 391 unsigned long flags = 0; 392 unsigned long qflags; 393 394 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 395 return -EBUSY; 396 /* 397 * There are 5 cases with the wait and reponse requested flags. 398 * The only invalid cases are if the caller requests to wait and 399 * does not request a response and if the caller does not want a 400 * response and the Fib is not allocated from pool. If a response 401 * is not requesed the Fib will just be deallocaed by the DPC 402 * routine when the response comes back from the adapter. No 403 * further processing will be done besides deleting the Fib. We 404 * will have a debug mode where the adapter can notify the host 405 * it had a problem and the host can log that fact. 406 */ 407 fibptr->flags = 0; 408 if (wait && !reply) { 409 return -EINVAL; 410 } else if (!wait && reply) { 411 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 412 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 413 } else if (!wait && !reply) { 414 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 415 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 416 } else if (wait && reply) { 417 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 418 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 419 } 420 /* 421 * Map the fib into 32bits by using the fib number 422 */ 423 424 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 425 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 426 /* 427 * Set FIB state to indicate where it came from and if we want a 428 * response from the adapter. Also load the command from the 429 * caller. 430 * 431 * Map the hw fib pointer as a 32bit value 432 */ 433 hw_fib->header.Command = cpu_to_le16(command); 434 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 435 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/ 436 /* 437 * Set the size of the Fib we want to send to the adapter 438 */ 439 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 440 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 441 return -EMSGSIZE; 442 } 443 /* 444 * Get a queue entry connect the FIB to it and send an notify 445 * the adapter a command is ready. 446 */ 447 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 448 449 /* 450 * Fill in the Callback and CallbackContext if we are not 451 * going to wait. 452 */ 453 if (!wait) { 454 fibptr->callback = callback; 455 fibptr->callback_data = callback_data; 456 fibptr->flags = FIB_CONTEXT_FLAG; 457 } 458 459 fibptr->done = 0; 460 461 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 462 463 dprintk((KERN_DEBUG "Fib contents:.\n")); 464 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 465 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 466 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 467 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 468 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 469 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 470 471 if (!dev->queues) 472 return -EBUSY; 473 474 if(wait) 475 spin_lock_irqsave(&fibptr->event_lock, flags); 476 aac_adapter_deliver(fibptr); 477 478 /* 479 * If the caller wanted us to wait for response wait now. 480 */ 481 482 if (wait) { 483 spin_unlock_irqrestore(&fibptr->event_lock, flags); 484 /* Only set for first known interruptable command */ 485 if (wait < 0) { 486 /* 487 * *VERY* Dangerous to time out a command, the 488 * assumption is made that we have no hope of 489 * functioning because an interrupt routing or other 490 * hardware failure has occurred. 491 */ 492 unsigned long count = 36000000L; /* 3 minutes */ 493 while (down_trylock(&fibptr->event_wait)) { 494 int blink; 495 if (--count == 0) { 496 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 497 spin_lock_irqsave(q->lock, qflags); 498 q->numpending--; 499 spin_unlock_irqrestore(q->lock, qflags); 500 if (wait == -1) { 501 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 502 "Usually a result of a PCI interrupt routing problem;\n" 503 "update mother board BIOS or consider utilizing one of\n" 504 "the SAFE mode kernel options (acpi, apic etc)\n"); 505 } 506 return -ETIMEDOUT; 507 } 508 if ((blink = aac_adapter_check_health(dev)) > 0) { 509 if (wait == -1) { 510 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 511 "Usually a result of a serious unrecoverable hardware problem\n", 512 blink); 513 } 514 return -EFAULT; 515 } 516 udelay(5); 517 } 518 } else if (down_interruptible(&fibptr->event_wait) == 0) { 519 fibptr->done = 2; 520 up(&fibptr->event_wait); 521 } 522 spin_lock_irqsave(&fibptr->event_lock, flags); 523 if ((fibptr->done == 0) || (fibptr->done == 2)) { 524 fibptr->done = 2; /* Tell interrupt we aborted */ 525 spin_unlock_irqrestore(&fibptr->event_lock, flags); 526 return -EINTR; 527 } 528 spin_unlock_irqrestore(&fibptr->event_lock, flags); 529 BUG_ON(fibptr->done == 0); 530 531 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 532 return -ETIMEDOUT; 533 return 0; 534 } 535 /* 536 * If the user does not want a response than return success otherwise 537 * return pending 538 */ 539 if (reply) 540 return -EINPROGRESS; 541 else 542 return 0; 543 } 544 545 /** 546 * aac_consumer_get - get the top of the queue 547 * @dev: Adapter 548 * @q: Queue 549 * @entry: Return entry 550 * 551 * Will return a pointer to the entry on the top of the queue requested that 552 * we are a consumer of, and return the address of the queue entry. It does 553 * not change the state of the queue. 554 */ 555 556 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 557 { 558 u32 index; 559 int status; 560 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 561 status = 0; 562 } else { 563 /* 564 * The consumer index must be wrapped if we have reached 565 * the end of the queue, else we just use the entry 566 * pointed to by the header index 567 */ 568 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 569 index = 0; 570 else 571 index = le32_to_cpu(*q->headers.consumer); 572 *entry = q->base + index; 573 status = 1; 574 } 575 return(status); 576 } 577 578 /** 579 * aac_consumer_free - free consumer entry 580 * @dev: Adapter 581 * @q: Queue 582 * @qid: Queue ident 583 * 584 * Frees up the current top of the queue we are a consumer of. If the 585 * queue was full notify the producer that the queue is no longer full. 586 */ 587 588 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 589 { 590 int wasfull = 0; 591 u32 notify; 592 593 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 594 wasfull = 1; 595 596 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 597 *q->headers.consumer = cpu_to_le32(1); 598 else 599 le32_add_cpu(q->headers.consumer, 1); 600 601 if (wasfull) { 602 switch (qid) { 603 604 case HostNormCmdQueue: 605 notify = HostNormCmdNotFull; 606 break; 607 case HostNormRespQueue: 608 notify = HostNormRespNotFull; 609 break; 610 default: 611 BUG(); 612 return; 613 } 614 aac_adapter_notify(dev, notify); 615 } 616 } 617 618 /** 619 * aac_fib_adapter_complete - complete adapter issued fib 620 * @fibptr: fib to complete 621 * @size: size of fib 622 * 623 * Will do all necessary work to complete a FIB that was sent from 624 * the adapter. 625 */ 626 627 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 628 { 629 struct hw_fib * hw_fib = fibptr->hw_fib_va; 630 struct aac_dev * dev = fibptr->dev; 631 struct aac_queue * q; 632 unsigned long nointr = 0; 633 unsigned long qflags; 634 635 if (hw_fib->header.XferState == 0) { 636 if (dev->comm_interface == AAC_COMM_MESSAGE) 637 kfree (hw_fib); 638 return 0; 639 } 640 /* 641 * If we plan to do anything check the structure type first. 642 */ 643 if (hw_fib->header.StructType != FIB_MAGIC) { 644 if (dev->comm_interface == AAC_COMM_MESSAGE) 645 kfree (hw_fib); 646 return -EINVAL; 647 } 648 /* 649 * This block handles the case where the adapter had sent us a 650 * command and we have finished processing the command. We 651 * call completeFib when we are done processing the command 652 * and want to send a response back to the adapter. This will 653 * send the completed cdb to the adapter. 654 */ 655 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 656 if (dev->comm_interface == AAC_COMM_MESSAGE) { 657 kfree (hw_fib); 658 } else { 659 u32 index; 660 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 661 if (size) { 662 size += sizeof(struct aac_fibhdr); 663 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 664 return -EMSGSIZE; 665 hw_fib->header.Size = cpu_to_le16(size); 666 } 667 q = &dev->queues->queue[AdapNormRespQueue]; 668 spin_lock_irqsave(q->lock, qflags); 669 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 670 *(q->headers.producer) = cpu_to_le32(index + 1); 671 spin_unlock_irqrestore(q->lock, qflags); 672 if (!(nointr & (int)aac_config.irq_mod)) 673 aac_adapter_notify(dev, AdapNormRespQueue); 674 } 675 } else { 676 printk(KERN_WARNING "aac_fib_adapter_complete: " 677 "Unknown xferstate detected.\n"); 678 BUG(); 679 } 680 return 0; 681 } 682 683 /** 684 * aac_fib_complete - fib completion handler 685 * @fib: FIB to complete 686 * 687 * Will do all necessary work to complete a FIB. 688 */ 689 690 int aac_fib_complete(struct fib *fibptr) 691 { 692 struct hw_fib * hw_fib = fibptr->hw_fib_va; 693 694 /* 695 * Check for a fib which has already been completed 696 */ 697 698 if (hw_fib->header.XferState == 0) 699 return 0; 700 /* 701 * If we plan to do anything check the structure type first. 702 */ 703 704 if (hw_fib->header.StructType != FIB_MAGIC) 705 return -EINVAL; 706 /* 707 * This block completes a cdb which orginated on the host and we 708 * just need to deallocate the cdb or reinit it. At this point the 709 * command is complete that we had sent to the adapter and this 710 * cdb could be reused. 711 */ 712 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 713 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 714 { 715 fib_dealloc(fibptr); 716 } 717 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 718 { 719 /* 720 * This handles the case when the host has aborted the I/O 721 * to the adapter because the adapter is not responding 722 */ 723 fib_dealloc(fibptr); 724 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 725 fib_dealloc(fibptr); 726 } else { 727 BUG(); 728 } 729 return 0; 730 } 731 732 /** 733 * aac_printf - handle printf from firmware 734 * @dev: Adapter 735 * @val: Message info 736 * 737 * Print a message passed to us by the controller firmware on the 738 * Adaptec board 739 */ 740 741 void aac_printf(struct aac_dev *dev, u32 val) 742 { 743 char *cp = dev->printfbuf; 744 if (dev->printf_enabled) 745 { 746 int length = val & 0xffff; 747 int level = (val >> 16) & 0xffff; 748 749 /* 750 * The size of the printfbuf is set in port.c 751 * There is no variable or define for it 752 */ 753 if (length > 255) 754 length = 255; 755 if (cp[length] != 0) 756 cp[length] = 0; 757 if (level == LOG_AAC_HIGH_ERROR) 758 printk(KERN_WARNING "%s:%s", dev->name, cp); 759 else 760 printk(KERN_INFO "%s:%s", dev->name, cp); 761 } 762 memset(cp, 0, 256); 763 } 764 765 766 /** 767 * aac_handle_aif - Handle a message from the firmware 768 * @dev: Which adapter this fib is from 769 * @fibptr: Pointer to fibptr from adapter 770 * 771 * This routine handles a driver notify fib from the adapter and 772 * dispatches it to the appropriate routine for handling. 773 */ 774 775 #define AIF_SNIFF_TIMEOUT (30*HZ) 776 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 777 { 778 struct hw_fib * hw_fib = fibptr->hw_fib_va; 779 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 780 u32 channel, id, lun, container; 781 struct scsi_device *device; 782 enum { 783 NOTHING, 784 DELETE, 785 ADD, 786 CHANGE 787 } device_config_needed = NOTHING; 788 789 /* Sniff for container changes */ 790 791 if (!dev || !dev->fsa_dev) 792 return; 793 container = channel = id = lun = (u32)-1; 794 795 /* 796 * We have set this up to try and minimize the number of 797 * re-configures that take place. As a result of this when 798 * certain AIF's come in we will set a flag waiting for another 799 * type of AIF before setting the re-config flag. 800 */ 801 switch (le32_to_cpu(aifcmd->command)) { 802 case AifCmdDriverNotify: 803 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 804 /* 805 * Morph or Expand complete 806 */ 807 case AifDenMorphComplete: 808 case AifDenVolumeExtendComplete: 809 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 810 if (container >= dev->maximum_num_containers) 811 break; 812 813 /* 814 * Find the scsi_device associated with the SCSI 815 * address. Make sure we have the right array, and if 816 * so set the flag to initiate a new re-config once we 817 * see an AifEnConfigChange AIF come through. 818 */ 819 820 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 821 device = scsi_device_lookup(dev->scsi_host_ptr, 822 CONTAINER_TO_CHANNEL(container), 823 CONTAINER_TO_ID(container), 824 CONTAINER_TO_LUN(container)); 825 if (device) { 826 dev->fsa_dev[container].config_needed = CHANGE; 827 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 828 dev->fsa_dev[container].config_waiting_stamp = jiffies; 829 scsi_device_put(device); 830 } 831 } 832 } 833 834 /* 835 * If we are waiting on something and this happens to be 836 * that thing then set the re-configure flag. 837 */ 838 if (container != (u32)-1) { 839 if (container >= dev->maximum_num_containers) 840 break; 841 if ((dev->fsa_dev[container].config_waiting_on == 842 le32_to_cpu(*(__le32 *)aifcmd->data)) && 843 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 844 dev->fsa_dev[container].config_waiting_on = 0; 845 } else for (container = 0; 846 container < dev->maximum_num_containers; ++container) { 847 if ((dev->fsa_dev[container].config_waiting_on == 848 le32_to_cpu(*(__le32 *)aifcmd->data)) && 849 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 850 dev->fsa_dev[container].config_waiting_on = 0; 851 } 852 break; 853 854 case AifCmdEventNotify: 855 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 856 case AifEnBatteryEvent: 857 dev->cache_protected = 858 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 859 break; 860 /* 861 * Add an Array. 862 */ 863 case AifEnAddContainer: 864 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 865 if (container >= dev->maximum_num_containers) 866 break; 867 dev->fsa_dev[container].config_needed = ADD; 868 dev->fsa_dev[container].config_waiting_on = 869 AifEnConfigChange; 870 dev->fsa_dev[container].config_waiting_stamp = jiffies; 871 break; 872 873 /* 874 * Delete an Array. 875 */ 876 case AifEnDeleteContainer: 877 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 878 if (container >= dev->maximum_num_containers) 879 break; 880 dev->fsa_dev[container].config_needed = DELETE; 881 dev->fsa_dev[container].config_waiting_on = 882 AifEnConfigChange; 883 dev->fsa_dev[container].config_waiting_stamp = jiffies; 884 break; 885 886 /* 887 * Container change detected. If we currently are not 888 * waiting on something else, setup to wait on a Config Change. 889 */ 890 case AifEnContainerChange: 891 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 892 if (container >= dev->maximum_num_containers) 893 break; 894 if (dev->fsa_dev[container].config_waiting_on && 895 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 896 break; 897 dev->fsa_dev[container].config_needed = CHANGE; 898 dev->fsa_dev[container].config_waiting_on = 899 AifEnConfigChange; 900 dev->fsa_dev[container].config_waiting_stamp = jiffies; 901 break; 902 903 case AifEnConfigChange: 904 break; 905 906 case AifEnAddJBOD: 907 case AifEnDeleteJBOD: 908 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 909 if ((container >> 28)) 910 break; 911 channel = (container >> 24) & 0xF; 912 if (channel >= dev->maximum_num_channels) 913 break; 914 id = container & 0xFFFF; 915 if (id >= dev->maximum_num_physicals) 916 break; 917 lun = (container >> 16) & 0xFF; 918 channel = aac_phys_to_logical(channel); 919 device_config_needed = 920 (((__le32 *)aifcmd->data)[0] == 921 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 922 break; 923 924 case AifEnEnclosureManagement: 925 /* 926 * If in JBOD mode, automatic exposure of new 927 * physical target to be suppressed until configured. 928 */ 929 if (dev->jbod) 930 break; 931 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 932 case EM_DRIVE_INSERTION: 933 case EM_DRIVE_REMOVAL: 934 container = le32_to_cpu( 935 ((__le32 *)aifcmd->data)[2]); 936 if ((container >> 28)) 937 break; 938 channel = (container >> 24) & 0xF; 939 if (channel >= dev->maximum_num_channels) 940 break; 941 id = container & 0xFFFF; 942 lun = (container >> 16) & 0xFF; 943 if (id >= dev->maximum_num_physicals) { 944 /* legacy dev_t ? */ 945 if ((0x2000 <= id) || lun || channel || 946 ((channel = (id >> 7) & 0x3F) >= 947 dev->maximum_num_channels)) 948 break; 949 lun = (id >> 4) & 7; 950 id &= 0xF; 951 } 952 channel = aac_phys_to_logical(channel); 953 device_config_needed = 954 (((__le32 *)aifcmd->data)[3] 955 == cpu_to_le32(EM_DRIVE_INSERTION)) ? 956 ADD : DELETE; 957 break; 958 } 959 break; 960 } 961 962 /* 963 * If we are waiting on something and this happens to be 964 * that thing then set the re-configure flag. 965 */ 966 if (container != (u32)-1) { 967 if (container >= dev->maximum_num_containers) 968 break; 969 if ((dev->fsa_dev[container].config_waiting_on == 970 le32_to_cpu(*(__le32 *)aifcmd->data)) && 971 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 972 dev->fsa_dev[container].config_waiting_on = 0; 973 } else for (container = 0; 974 container < dev->maximum_num_containers; ++container) { 975 if ((dev->fsa_dev[container].config_waiting_on == 976 le32_to_cpu(*(__le32 *)aifcmd->data)) && 977 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 978 dev->fsa_dev[container].config_waiting_on = 0; 979 } 980 break; 981 982 case AifCmdJobProgress: 983 /* 984 * These are job progress AIF's. When a Clear is being 985 * done on a container it is initially created then hidden from 986 * the OS. When the clear completes we don't get a config 987 * change so we monitor the job status complete on a clear then 988 * wait for a container change. 989 */ 990 991 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 992 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 993 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 994 for (container = 0; 995 container < dev->maximum_num_containers; 996 ++container) { 997 /* 998 * Stomp on all config sequencing for all 999 * containers? 1000 */ 1001 dev->fsa_dev[container].config_waiting_on = 1002 AifEnContainerChange; 1003 dev->fsa_dev[container].config_needed = ADD; 1004 dev->fsa_dev[container].config_waiting_stamp = 1005 jiffies; 1006 } 1007 } 1008 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1009 ((__le32 *)aifcmd->data)[6] == 0 && 1010 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1011 for (container = 0; 1012 container < dev->maximum_num_containers; 1013 ++container) { 1014 /* 1015 * Stomp on all config sequencing for all 1016 * containers? 1017 */ 1018 dev->fsa_dev[container].config_waiting_on = 1019 AifEnContainerChange; 1020 dev->fsa_dev[container].config_needed = DELETE; 1021 dev->fsa_dev[container].config_waiting_stamp = 1022 jiffies; 1023 } 1024 } 1025 break; 1026 } 1027 1028 if (device_config_needed == NOTHING) 1029 for (container = 0; container < dev->maximum_num_containers; 1030 ++container) { 1031 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1032 (dev->fsa_dev[container].config_needed != NOTHING) && 1033 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1034 device_config_needed = 1035 dev->fsa_dev[container].config_needed; 1036 dev->fsa_dev[container].config_needed = NOTHING; 1037 channel = CONTAINER_TO_CHANNEL(container); 1038 id = CONTAINER_TO_ID(container); 1039 lun = CONTAINER_TO_LUN(container); 1040 break; 1041 } 1042 } 1043 if (device_config_needed == NOTHING) 1044 return; 1045 1046 /* 1047 * If we decided that a re-configuration needs to be done, 1048 * schedule it here on the way out the door, please close the door 1049 * behind you. 1050 */ 1051 1052 /* 1053 * Find the scsi_device associated with the SCSI address, 1054 * and mark it as changed, invalidating the cache. This deals 1055 * with changes to existing device IDs. 1056 */ 1057 1058 if (!dev || !dev->scsi_host_ptr) 1059 return; 1060 /* 1061 * force reload of disk info via aac_probe_container 1062 */ 1063 if ((channel == CONTAINER_CHANNEL) && 1064 (device_config_needed != NOTHING)) { 1065 if (dev->fsa_dev[container].valid == 1) 1066 dev->fsa_dev[container].valid = 2; 1067 aac_probe_container(dev, container); 1068 } 1069 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1070 if (device) { 1071 switch (device_config_needed) { 1072 case DELETE: 1073 if (scsi_device_online(device)) { 1074 scsi_device_set_state(device, SDEV_OFFLINE); 1075 sdev_printk(KERN_INFO, device, 1076 "Device offlined - %s\n", 1077 (channel == CONTAINER_CHANNEL) ? 1078 "array deleted" : 1079 "enclosure services event"); 1080 } 1081 break; 1082 case ADD: 1083 if (!scsi_device_online(device)) { 1084 sdev_printk(KERN_INFO, device, 1085 "Device online - %s\n", 1086 (channel == CONTAINER_CHANNEL) ? 1087 "array created" : 1088 "enclosure services event"); 1089 scsi_device_set_state(device, SDEV_RUNNING); 1090 } 1091 /* FALLTHRU */ 1092 case CHANGE: 1093 if ((channel == CONTAINER_CHANNEL) 1094 && (!dev->fsa_dev[container].valid)) { 1095 if (!scsi_device_online(device)) 1096 break; 1097 scsi_device_set_state(device, SDEV_OFFLINE); 1098 sdev_printk(KERN_INFO, device, 1099 "Device offlined - %s\n", 1100 "array failed"); 1101 break; 1102 } 1103 scsi_rescan_device(&device->sdev_gendev); 1104 1105 default: 1106 break; 1107 } 1108 scsi_device_put(device); 1109 device_config_needed = NOTHING; 1110 } 1111 if (device_config_needed == ADD) 1112 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1113 } 1114 1115 static int _aac_reset_adapter(struct aac_dev *aac, int forced) 1116 { 1117 int index, quirks; 1118 int retval; 1119 struct Scsi_Host *host; 1120 struct scsi_device *dev; 1121 struct scsi_cmnd *command; 1122 struct scsi_cmnd *command_list; 1123 int jafo = 0; 1124 1125 /* 1126 * Assumptions: 1127 * - host is locked, unless called by the aacraid thread. 1128 * (a matter of convenience, due to legacy issues surrounding 1129 * eh_host_adapter_reset). 1130 * - in_reset is asserted, so no new i/o is getting to the 1131 * card. 1132 * - The card is dead, or will be very shortly ;-/ so no new 1133 * commands are completing in the interrupt service. 1134 */ 1135 host = aac->scsi_host_ptr; 1136 scsi_block_requests(host); 1137 aac_adapter_disable_int(aac); 1138 if (aac->thread->pid != current->pid) { 1139 spin_unlock_irq(host->host_lock); 1140 kthread_stop(aac->thread); 1141 jafo = 1; 1142 } 1143 1144 /* 1145 * If a positive health, means in a known DEAD PANIC 1146 * state and the adapter could be reset to `try again'. 1147 */ 1148 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); 1149 1150 if (retval) 1151 goto out; 1152 1153 /* 1154 * Loop through the fibs, close the synchronous FIBS 1155 */ 1156 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1157 struct fib *fib = &aac->fibs[index]; 1158 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1159 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { 1160 unsigned long flagv; 1161 spin_lock_irqsave(&fib->event_lock, flagv); 1162 up(&fib->event_wait); 1163 spin_unlock_irqrestore(&fib->event_lock, flagv); 1164 schedule(); 1165 retval = 0; 1166 } 1167 } 1168 /* Give some extra time for ioctls to complete. */ 1169 if (retval == 0) 1170 ssleep(2); 1171 index = aac->cardtype; 1172 1173 /* 1174 * Re-initialize the adapter, first free resources, then carefully 1175 * apply the initialization sequence to come back again. Only risk 1176 * is a change in Firmware dropping cache, it is assumed the caller 1177 * will ensure that i/o is queisced and the card is flushed in that 1178 * case. 1179 */ 1180 aac_fib_map_free(aac); 1181 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1182 aac->comm_addr = NULL; 1183 aac->comm_phys = 0; 1184 kfree(aac->queues); 1185 aac->queues = NULL; 1186 free_irq(aac->pdev->irq, aac); 1187 kfree(aac->fsa_dev); 1188 aac->fsa_dev = NULL; 1189 quirks = aac_get_driver_ident(index)->quirks; 1190 if (quirks & AAC_QUIRK_31BIT) { 1191 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) || 1192 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK)))) 1193 goto out; 1194 } else { 1195 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) || 1196 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK)))) 1197 goto out; 1198 } 1199 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1200 goto out; 1201 if (quirks & AAC_QUIRK_31BIT) 1202 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) 1203 goto out; 1204 if (jafo) { 1205 aac->thread = kthread_run(aac_command_thread, aac, aac->name); 1206 if (IS_ERR(aac->thread)) { 1207 retval = PTR_ERR(aac->thread); 1208 goto out; 1209 } 1210 } 1211 (void)aac_get_adapter_info(aac); 1212 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1213 host->sg_tablesize = 34; 1214 host->max_sectors = (host->sg_tablesize * 8) + 112; 1215 } 1216 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1217 host->sg_tablesize = 17; 1218 host->max_sectors = (host->sg_tablesize * 8) + 112; 1219 } 1220 aac_get_config_status(aac, 1); 1221 aac_get_containers(aac); 1222 /* 1223 * This is where the assumption that the Adapter is quiesced 1224 * is important. 1225 */ 1226 command_list = NULL; 1227 __shost_for_each_device(dev, host) { 1228 unsigned long flags; 1229 spin_lock_irqsave(&dev->list_lock, flags); 1230 list_for_each_entry(command, &dev->cmd_list, list) 1231 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1232 command->SCp.buffer = (struct scatterlist *)command_list; 1233 command_list = command; 1234 } 1235 spin_unlock_irqrestore(&dev->list_lock, flags); 1236 } 1237 while ((command = command_list)) { 1238 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1239 command->SCp.buffer = NULL; 1240 command->result = DID_OK << 16 1241 | COMMAND_COMPLETE << 8 1242 | SAM_STAT_TASK_SET_FULL; 1243 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1244 command->scsi_done(command); 1245 } 1246 retval = 0; 1247 1248 out: 1249 aac->in_reset = 0; 1250 scsi_unblock_requests(host); 1251 if (jafo) { 1252 spin_lock_irq(host->host_lock); 1253 } 1254 return retval; 1255 } 1256 1257 int aac_reset_adapter(struct aac_dev * aac, int forced) 1258 { 1259 unsigned long flagv = 0; 1260 int retval; 1261 struct Scsi_Host * host; 1262 1263 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1264 return -EBUSY; 1265 1266 if (aac->in_reset) { 1267 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1268 return -EBUSY; 1269 } 1270 aac->in_reset = 1; 1271 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1272 1273 /* 1274 * Wait for all commands to complete to this specific 1275 * target (block maximum 60 seconds). Although not necessary, 1276 * it does make us a good storage citizen. 1277 */ 1278 host = aac->scsi_host_ptr; 1279 scsi_block_requests(host); 1280 if (forced < 2) for (retval = 60; retval; --retval) { 1281 struct scsi_device * dev; 1282 struct scsi_cmnd * command; 1283 int active = 0; 1284 1285 __shost_for_each_device(dev, host) { 1286 spin_lock_irqsave(&dev->list_lock, flagv); 1287 list_for_each_entry(command, &dev->cmd_list, list) { 1288 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1289 active++; 1290 break; 1291 } 1292 } 1293 spin_unlock_irqrestore(&dev->list_lock, flagv); 1294 if (active) 1295 break; 1296 1297 } 1298 /* 1299 * We can exit If all the commands are complete 1300 */ 1301 if (active == 0) 1302 break; 1303 ssleep(1); 1304 } 1305 1306 /* Quiesce build, flush cache, write through mode */ 1307 if (forced < 2) 1308 aac_send_shutdown(aac); 1309 spin_lock_irqsave(host->host_lock, flagv); 1310 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1))); 1311 spin_unlock_irqrestore(host->host_lock, flagv); 1312 1313 if ((forced < 2) && (retval == -ENODEV)) { 1314 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1315 struct fib * fibctx = aac_fib_alloc(aac); 1316 if (fibctx) { 1317 struct aac_pause *cmd; 1318 int status; 1319 1320 aac_fib_init(fibctx); 1321 1322 cmd = (struct aac_pause *) fib_data(fibctx); 1323 1324 cmd->command = cpu_to_le32(VM_ContainerConfig); 1325 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1326 cmd->timeout = cpu_to_le32(1); 1327 cmd->min = cpu_to_le32(1); 1328 cmd->noRescan = cpu_to_le32(1); 1329 cmd->count = cpu_to_le32(0); 1330 1331 status = aac_fib_send(ContainerCommand, 1332 fibctx, 1333 sizeof(struct aac_pause), 1334 FsaNormal, 1335 -2 /* Timeout silently */, 1, 1336 NULL, NULL); 1337 1338 if (status >= 0) 1339 aac_fib_complete(fibctx); 1340 aac_fib_free(fibctx); 1341 } 1342 } 1343 1344 return retval; 1345 } 1346 1347 int aac_check_health(struct aac_dev * aac) 1348 { 1349 int BlinkLED; 1350 unsigned long time_now, flagv = 0; 1351 struct list_head * entry; 1352 struct Scsi_Host * host; 1353 1354 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1355 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1356 return 0; 1357 1358 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1359 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1360 return 0; /* OK */ 1361 } 1362 1363 aac->in_reset = 1; 1364 1365 /* Fake up an AIF: 1366 * aac_aifcmd.command = AifCmdEventNotify = 1 1367 * aac_aifcmd.seqnum = 0xFFFFFFFF 1368 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1369 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1370 * aac.aifcmd.data[2] = AifHighPriority = 3 1371 * aac.aifcmd.data[3] = BlinkLED 1372 */ 1373 1374 time_now = jiffies/HZ; 1375 entry = aac->fib_list.next; 1376 1377 /* 1378 * For each Context that is on the 1379 * fibctxList, make a copy of the 1380 * fib, and then set the event to wake up the 1381 * thread that is waiting for it. 1382 */ 1383 while (entry != &aac->fib_list) { 1384 /* 1385 * Extract the fibctx 1386 */ 1387 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1388 struct hw_fib * hw_fib; 1389 struct fib * fib; 1390 /* 1391 * Check if the queue is getting 1392 * backlogged 1393 */ 1394 if (fibctx->count > 20) { 1395 /* 1396 * It's *not* jiffies folks, 1397 * but jiffies / HZ, so do not 1398 * panic ... 1399 */ 1400 u32 time_last = fibctx->jiffies; 1401 /* 1402 * Has it been > 2 minutes 1403 * since the last read off 1404 * the queue? 1405 */ 1406 if ((time_now - time_last) > aif_timeout) { 1407 entry = entry->next; 1408 aac_close_fib_context(aac, fibctx); 1409 continue; 1410 } 1411 } 1412 /* 1413 * Warning: no sleep allowed while 1414 * holding spinlock 1415 */ 1416 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1417 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1418 if (fib && hw_fib) { 1419 struct aac_aifcmd * aif; 1420 1421 fib->hw_fib_va = hw_fib; 1422 fib->dev = aac; 1423 aac_fib_init(fib); 1424 fib->type = FSAFS_NTC_FIB_CONTEXT; 1425 fib->size = sizeof (struct fib); 1426 fib->data = hw_fib->data; 1427 aif = (struct aac_aifcmd *)hw_fib->data; 1428 aif->command = cpu_to_le32(AifCmdEventNotify); 1429 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1430 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1431 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1432 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1433 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1434 1435 /* 1436 * Put the FIB onto the 1437 * fibctx's fibs 1438 */ 1439 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1440 fibctx->count++; 1441 /* 1442 * Set the event to wake up the 1443 * thread that will waiting. 1444 */ 1445 up(&fibctx->wait_sem); 1446 } else { 1447 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1448 kfree(fib); 1449 kfree(hw_fib); 1450 } 1451 entry = entry->next; 1452 } 1453 1454 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1455 1456 if (BlinkLED < 0) { 1457 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1458 goto out; 1459 } 1460 1461 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1462 1463 if (!aac_check_reset || ((aac_check_reset == 1) && 1464 (aac->supplement_adapter_info.SupportedOptions2 & 1465 AAC_OPTION_IGNORE_RESET))) 1466 goto out; 1467 host = aac->scsi_host_ptr; 1468 if (aac->thread->pid != current->pid) 1469 spin_lock_irqsave(host->host_lock, flagv); 1470 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1); 1471 if (aac->thread->pid != current->pid) 1472 spin_unlock_irqrestore(host->host_lock, flagv); 1473 return BlinkLED; 1474 1475 out: 1476 aac->in_reset = 0; 1477 return BlinkLED; 1478 } 1479 1480 1481 /** 1482 * aac_command_thread - command processing thread 1483 * @dev: Adapter to monitor 1484 * 1485 * Waits on the commandready event in it's queue. When the event gets set 1486 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1487 * until the queue is empty. When the queue is empty it will wait for 1488 * more FIBs. 1489 */ 1490 1491 int aac_command_thread(void *data) 1492 { 1493 struct aac_dev *dev = data; 1494 struct hw_fib *hw_fib, *hw_newfib; 1495 struct fib *fib, *newfib; 1496 struct aac_fib_context *fibctx; 1497 unsigned long flags; 1498 DECLARE_WAITQUEUE(wait, current); 1499 unsigned long next_jiffies = jiffies + HZ; 1500 unsigned long next_check_jiffies = next_jiffies; 1501 long difference = HZ; 1502 1503 /* 1504 * We can only have one thread per adapter for AIF's. 1505 */ 1506 if (dev->aif_thread) 1507 return -EINVAL; 1508 1509 /* 1510 * Let the DPC know it has a place to send the AIF's to. 1511 */ 1512 dev->aif_thread = 1; 1513 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1514 set_current_state(TASK_INTERRUPTIBLE); 1515 dprintk ((KERN_INFO "aac_command_thread start\n")); 1516 while (1) { 1517 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1518 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1519 struct list_head *entry; 1520 struct aac_aifcmd * aifcmd; 1521 1522 set_current_state(TASK_RUNNING); 1523 1524 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1525 list_del(entry); 1526 1527 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1528 fib = list_entry(entry, struct fib, fiblink); 1529 /* 1530 * We will process the FIB here or pass it to a 1531 * worker thread that is TBD. We Really can't 1532 * do anything at this point since we don't have 1533 * anything defined for this thread to do. 1534 */ 1535 hw_fib = fib->hw_fib_va; 1536 memset(fib, 0, sizeof(struct fib)); 1537 fib->type = FSAFS_NTC_FIB_CONTEXT; 1538 fib->size = sizeof(struct fib); 1539 fib->hw_fib_va = hw_fib; 1540 fib->data = hw_fib->data; 1541 fib->dev = dev; 1542 /* 1543 * We only handle AifRequest fibs from the adapter. 1544 */ 1545 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1546 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1547 /* Handle Driver Notify Events */ 1548 aac_handle_aif(dev, fib); 1549 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1550 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1551 } else { 1552 /* The u32 here is important and intended. We are using 1553 32bit wrapping time to fit the adapter field */ 1554 1555 u32 time_now, time_last; 1556 unsigned long flagv; 1557 unsigned num; 1558 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1559 struct fib ** fib_pool, ** fib_p; 1560 1561 /* Sniff events */ 1562 if ((aifcmd->command == 1563 cpu_to_le32(AifCmdEventNotify)) || 1564 (aifcmd->command == 1565 cpu_to_le32(AifCmdJobProgress))) { 1566 aac_handle_aif(dev, fib); 1567 } 1568 1569 time_now = jiffies/HZ; 1570 1571 /* 1572 * Warning: no sleep allowed while 1573 * holding spinlock. We take the estimate 1574 * and pre-allocate a set of fibs outside the 1575 * lock. 1576 */ 1577 num = le32_to_cpu(dev->init->AdapterFibsSize) 1578 / sizeof(struct hw_fib); /* some extra */ 1579 spin_lock_irqsave(&dev->fib_lock, flagv); 1580 entry = dev->fib_list.next; 1581 while (entry != &dev->fib_list) { 1582 entry = entry->next; 1583 ++num; 1584 } 1585 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1586 hw_fib_pool = NULL; 1587 fib_pool = NULL; 1588 if (num 1589 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1590 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1591 hw_fib_p = hw_fib_pool; 1592 fib_p = fib_pool; 1593 while (hw_fib_p < &hw_fib_pool[num]) { 1594 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1595 --hw_fib_p; 1596 break; 1597 } 1598 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1599 kfree(*(--hw_fib_p)); 1600 break; 1601 } 1602 } 1603 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1604 kfree(fib_pool); 1605 fib_pool = NULL; 1606 kfree(hw_fib_pool); 1607 hw_fib_pool = NULL; 1608 } 1609 } else { 1610 kfree(hw_fib_pool); 1611 hw_fib_pool = NULL; 1612 } 1613 spin_lock_irqsave(&dev->fib_lock, flagv); 1614 entry = dev->fib_list.next; 1615 /* 1616 * For each Context that is on the 1617 * fibctxList, make a copy of the 1618 * fib, and then set the event to wake up the 1619 * thread that is waiting for it. 1620 */ 1621 hw_fib_p = hw_fib_pool; 1622 fib_p = fib_pool; 1623 while (entry != &dev->fib_list) { 1624 /* 1625 * Extract the fibctx 1626 */ 1627 fibctx = list_entry(entry, struct aac_fib_context, next); 1628 /* 1629 * Check if the queue is getting 1630 * backlogged 1631 */ 1632 if (fibctx->count > 20) 1633 { 1634 /* 1635 * It's *not* jiffies folks, 1636 * but jiffies / HZ so do not 1637 * panic ... 1638 */ 1639 time_last = fibctx->jiffies; 1640 /* 1641 * Has it been > 2 minutes 1642 * since the last read off 1643 * the queue? 1644 */ 1645 if ((time_now - time_last) > aif_timeout) { 1646 entry = entry->next; 1647 aac_close_fib_context(dev, fibctx); 1648 continue; 1649 } 1650 } 1651 /* 1652 * Warning: no sleep allowed while 1653 * holding spinlock 1654 */ 1655 if (hw_fib_p < &hw_fib_pool[num]) { 1656 hw_newfib = *hw_fib_p; 1657 *(hw_fib_p++) = NULL; 1658 newfib = *fib_p; 1659 *(fib_p++) = NULL; 1660 /* 1661 * Make the copy of the FIB 1662 */ 1663 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1664 memcpy(newfib, fib, sizeof(struct fib)); 1665 newfib->hw_fib_va = hw_newfib; 1666 /* 1667 * Put the FIB onto the 1668 * fibctx's fibs 1669 */ 1670 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1671 fibctx->count++; 1672 /* 1673 * Set the event to wake up the 1674 * thread that is waiting. 1675 */ 1676 up(&fibctx->wait_sem); 1677 } else { 1678 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1679 } 1680 entry = entry->next; 1681 } 1682 /* 1683 * Set the status of this FIB 1684 */ 1685 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1686 aac_fib_adapter_complete(fib, sizeof(u32)); 1687 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1688 /* Free up the remaining resources */ 1689 hw_fib_p = hw_fib_pool; 1690 fib_p = fib_pool; 1691 while (hw_fib_p < &hw_fib_pool[num]) { 1692 kfree(*hw_fib_p); 1693 kfree(*fib_p); 1694 ++fib_p; 1695 ++hw_fib_p; 1696 } 1697 kfree(hw_fib_pool); 1698 kfree(fib_pool); 1699 } 1700 kfree(fib); 1701 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1702 } 1703 /* 1704 * There are no more AIF's 1705 */ 1706 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1707 1708 /* 1709 * Background activity 1710 */ 1711 if ((time_before(next_check_jiffies,next_jiffies)) 1712 && ((difference = next_check_jiffies - jiffies) <= 0)) { 1713 next_check_jiffies = next_jiffies; 1714 if (aac_check_health(dev) == 0) { 1715 difference = ((long)(unsigned)check_interval) 1716 * HZ; 1717 next_check_jiffies = jiffies + difference; 1718 } else if (!dev->queues) 1719 break; 1720 } 1721 if (!time_before(next_check_jiffies,next_jiffies) 1722 && ((difference = next_jiffies - jiffies) <= 0)) { 1723 struct timeval now; 1724 int ret; 1725 1726 /* Don't even try to talk to adapter if its sick */ 1727 ret = aac_check_health(dev); 1728 if (!ret && !dev->queues) 1729 break; 1730 next_check_jiffies = jiffies 1731 + ((long)(unsigned)check_interval) 1732 * HZ; 1733 do_gettimeofday(&now); 1734 1735 /* Synchronize our watches */ 1736 if (((1000000 - (1000000 / HZ)) > now.tv_usec) 1737 && (now.tv_usec > (1000000 / HZ))) 1738 difference = (((1000000 - now.tv_usec) * HZ) 1739 + 500000) / 1000000; 1740 else if (ret == 0) { 1741 struct fib *fibptr; 1742 1743 if ((fibptr = aac_fib_alloc(dev))) { 1744 __le32 *info; 1745 1746 aac_fib_init(fibptr); 1747 1748 info = (__le32 *) fib_data(fibptr); 1749 if (now.tv_usec > 500000) 1750 ++now.tv_sec; 1751 1752 *info = cpu_to_le32(now.tv_sec); 1753 1754 (void)aac_fib_send(SendHostTime, 1755 fibptr, 1756 sizeof(*info), 1757 FsaNormal, 1758 1, 1, 1759 NULL, 1760 NULL); 1761 aac_fib_complete(fibptr); 1762 aac_fib_free(fibptr); 1763 } 1764 difference = (long)(unsigned)update_interval*HZ; 1765 } else { 1766 /* retry shortly */ 1767 difference = 10 * HZ; 1768 } 1769 next_jiffies = jiffies + difference; 1770 if (time_before(next_check_jiffies,next_jiffies)) 1771 difference = next_check_jiffies - jiffies; 1772 } 1773 if (difference <= 0) 1774 difference = 1; 1775 set_current_state(TASK_INTERRUPTIBLE); 1776 schedule_timeout(difference); 1777 1778 if (kthread_should_stop()) 1779 break; 1780 } 1781 if (dev->queues) 1782 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1783 dev->aif_thread = 0; 1784 return 0; 1785 } 1786