1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * commsup.c 28 * 29 * Abstract: Contain all routines that are required for FSA host/adapter 30 * communication. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/crash_dump.h> 37 #include <linux/types.h> 38 #include <linux/sched.h> 39 #include <linux/pci.h> 40 #include <linux/spinlock.h> 41 #include <linux/slab.h> 42 #include <linux/completion.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/kthread.h> 46 #include <linux/interrupt.h> 47 #include <linux/bcd.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_host.h> 50 #include <scsi/scsi_device.h> 51 #include <scsi/scsi_cmnd.h> 52 53 #include "aacraid.h" 54 55 /** 56 * fib_map_alloc - allocate the fib objects 57 * @dev: Adapter to allocate for 58 * 59 * Allocate and map the shared PCI space for the FIB blocks used to 60 * talk to the Adaptec firmware. 61 */ 62 63 static int fib_map_alloc(struct aac_dev *dev) 64 { 65 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 66 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 67 else 68 dev->max_cmd_size = dev->max_fib_size; 69 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 70 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 71 } else { 72 dev->max_cmd_size = dev->max_fib_size; 73 } 74 75 dprintk((KERN_INFO 76 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 77 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 78 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 79 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 80 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 81 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 82 &dev->hw_fib_pa, GFP_KERNEL); 83 if (dev->hw_fib_va == NULL) 84 return -ENOMEM; 85 return 0; 86 } 87 88 /** 89 * aac_fib_map_free - free the fib objects 90 * @dev: Adapter to free 91 * 92 * Free the PCI mappings and the memory allocated for FIB blocks 93 * on this adapter. 94 */ 95 96 void aac_fib_map_free(struct aac_dev *dev) 97 { 98 size_t alloc_size; 99 size_t fib_size; 100 int num_fibs; 101 102 if(!dev->hw_fib_va || !dev->max_cmd_size) 103 return; 104 105 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 106 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 107 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 108 109 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 110 dev->hw_fib_pa); 111 112 dev->hw_fib_va = NULL; 113 dev->hw_fib_pa = 0; 114 } 115 116 void aac_fib_vector_assign(struct aac_dev *dev) 117 { 118 u32 i = 0; 119 u32 vector = 1; 120 struct fib *fibptr = NULL; 121 122 for (i = 0, fibptr = &dev->fibs[i]; 123 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 124 i++, fibptr++) { 125 if ((dev->max_msix == 1) || 126 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 127 - dev->vector_cap))) { 128 fibptr->vector_no = 0; 129 } else { 130 fibptr->vector_no = vector; 131 vector++; 132 if (vector == dev->max_msix) 133 vector = 1; 134 } 135 } 136 } 137 138 /** 139 * aac_fib_setup - setup the fibs 140 * @dev: Adapter to set up 141 * 142 * Allocate the PCI space for the fibs, map it and then initialise the 143 * fib area, the unmapped fib data and also the free list 144 */ 145 146 int aac_fib_setup(struct aac_dev * dev) 147 { 148 struct fib *fibptr; 149 struct hw_fib *hw_fib; 150 dma_addr_t hw_fib_pa; 151 int i; 152 u32 max_cmds; 153 154 while (((i = fib_map_alloc(dev)) == -ENOMEM) 155 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 156 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 157 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 158 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 159 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 160 } 161 if (i<0) 162 return -ENOMEM; 163 164 memset(dev->hw_fib_va, 0, 165 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 166 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 167 168 /* 32 byte alignment for PMC */ 169 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 170 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 171 (hw_fib_pa - dev->hw_fib_pa)); 172 173 /* add Xport header */ 174 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 175 sizeof(struct aac_fib_xporthdr)); 176 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 177 178 /* 179 * Initialise the fibs 180 */ 181 for (i = 0, fibptr = &dev->fibs[i]; 182 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 183 i++, fibptr++) 184 { 185 fibptr->flags = 0; 186 fibptr->size = sizeof(struct fib); 187 fibptr->dev = dev; 188 fibptr->hw_fib_va = hw_fib; 189 fibptr->data = (void *) fibptr->hw_fib_va->data; 190 fibptr->next = fibptr+1; /* Forward chain the fibs */ 191 init_completion(&fibptr->event_wait); 192 spin_lock_init(&fibptr->event_lock); 193 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 194 hw_fib->header.SenderSize = 195 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 196 fibptr->hw_fib_pa = hw_fib_pa; 197 fibptr->hw_sgl_pa = hw_fib_pa + 198 offsetof(struct aac_hba_cmd_req, sge[2]); 199 /* 200 * one element is for the ptr to the separate sg list, 201 * second element for 32 byte alignment 202 */ 203 fibptr->hw_error_pa = hw_fib_pa + 204 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 205 206 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 207 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 208 hw_fib_pa = hw_fib_pa + 209 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 210 } 211 212 /* 213 *Assign vector numbers to fibs 214 */ 215 aac_fib_vector_assign(dev); 216 217 /* 218 * Add the fib chain to the free list 219 */ 220 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 221 /* 222 * Set 8 fibs aside for management tools 223 */ 224 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 225 return 0; 226 } 227 228 /** 229 * aac_fib_alloc_tag-allocate a fib using tags 230 * @dev: Adapter to allocate the fib for 231 * 232 * Allocate a fib from the adapter fib pool using tags 233 * from the blk layer. 234 */ 235 236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 237 { 238 struct fib *fibptr; 239 240 fibptr = &dev->fibs[scmd->request->tag]; 241 /* 242 * Null out fields that depend on being zero at the start of 243 * each I/O 244 */ 245 fibptr->hw_fib_va->header.XferState = 0; 246 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 247 fibptr->callback_data = NULL; 248 fibptr->callback = NULL; 249 250 return fibptr; 251 } 252 253 /** 254 * aac_fib_alloc - allocate a fib 255 * @dev: Adapter to allocate the fib for 256 * 257 * Allocate a fib from the adapter fib pool. If the pool is empty we 258 * return NULL. 259 */ 260 261 struct fib *aac_fib_alloc(struct aac_dev *dev) 262 { 263 struct fib * fibptr; 264 unsigned long flags; 265 spin_lock_irqsave(&dev->fib_lock, flags); 266 fibptr = dev->free_fib; 267 if(!fibptr){ 268 spin_unlock_irqrestore(&dev->fib_lock, flags); 269 return fibptr; 270 } 271 dev->free_fib = fibptr->next; 272 spin_unlock_irqrestore(&dev->fib_lock, flags); 273 /* 274 * Set the proper node type code and node byte size 275 */ 276 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 277 fibptr->size = sizeof(struct fib); 278 /* 279 * Null out fields that depend on being zero at the start of 280 * each I/O 281 */ 282 fibptr->hw_fib_va->header.XferState = 0; 283 fibptr->flags = 0; 284 fibptr->callback = NULL; 285 fibptr->callback_data = NULL; 286 287 return fibptr; 288 } 289 290 /** 291 * aac_fib_free - free a fib 292 * @fibptr: fib to free up 293 * 294 * Frees up a fib and places it on the appropriate queue 295 */ 296 297 void aac_fib_free(struct fib *fibptr) 298 { 299 unsigned long flags; 300 301 if (fibptr->done == 2) 302 return; 303 304 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 305 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 306 aac_config.fib_timeouts++; 307 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 308 fibptr->hw_fib_va->header.XferState != 0) { 309 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 310 (void*)fibptr, 311 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 312 } 313 fibptr->next = fibptr->dev->free_fib; 314 fibptr->dev->free_fib = fibptr; 315 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 316 } 317 318 /** 319 * aac_fib_init - initialise a fib 320 * @fibptr: The fib to initialize 321 * 322 * Set up the generic fib fields ready for use 323 */ 324 325 void aac_fib_init(struct fib *fibptr) 326 { 327 struct hw_fib *hw_fib = fibptr->hw_fib_va; 328 329 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 330 hw_fib->header.StructType = FIB_MAGIC; 331 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 332 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 333 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 334 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 335 } 336 337 /** 338 * fib_deallocate - deallocate a fib 339 * @fibptr: fib to deallocate 340 * 341 * Will deallocate and return to the free pool the FIB pointed to by the 342 * caller. 343 */ 344 345 static void fib_dealloc(struct fib * fibptr) 346 { 347 struct hw_fib *hw_fib = fibptr->hw_fib_va; 348 hw_fib->header.XferState = 0; 349 } 350 351 /* 352 * Commuication primitives define and support the queuing method we use to 353 * support host to adapter commuication. All queue accesses happen through 354 * these routines and are the only routines which have a knowledge of the 355 * how these queues are implemented. 356 */ 357 358 /** 359 * aac_get_entry - get a queue entry 360 * @dev: Adapter 361 * @qid: Queue Number 362 * @entry: Entry return 363 * @index: Index return 364 * @nonotify: notification control 365 * 366 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 367 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 368 * returned. 369 */ 370 371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 372 { 373 struct aac_queue * q; 374 unsigned long idx; 375 376 /* 377 * All of the queues wrap when they reach the end, so we check 378 * to see if they have reached the end and if they have we just 379 * set the index back to zero. This is a wrap. You could or off 380 * the high bits in all updates but this is a bit faster I think. 381 */ 382 383 q = &dev->queues->queue[qid]; 384 385 idx = *index = le32_to_cpu(*(q->headers.producer)); 386 /* Interrupt Moderation, only interrupt for first two entries */ 387 if (idx != le32_to_cpu(*(q->headers.consumer))) { 388 if (--idx == 0) { 389 if (qid == AdapNormCmdQueue) 390 idx = ADAP_NORM_CMD_ENTRIES; 391 else 392 idx = ADAP_NORM_RESP_ENTRIES; 393 } 394 if (idx != le32_to_cpu(*(q->headers.consumer))) 395 *nonotify = 1; 396 } 397 398 if (qid == AdapNormCmdQueue) { 399 if (*index >= ADAP_NORM_CMD_ENTRIES) 400 *index = 0; /* Wrap to front of the Producer Queue. */ 401 } else { 402 if (*index >= ADAP_NORM_RESP_ENTRIES) 403 *index = 0; /* Wrap to front of the Producer Queue. */ 404 } 405 406 /* Queue is full */ 407 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 408 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 409 qid, atomic_read(&q->numpending)); 410 return 0; 411 } else { 412 *entry = q->base + *index; 413 return 1; 414 } 415 } 416 417 /** 418 * aac_queue_get - get the next free QE 419 * @dev: Adapter 420 * @index: Returned index 421 * @priority: Priority of fib 422 * @fib: Fib to associate with the queue entry 423 * @wait: Wait if queue full 424 * @fibptr: Driver fib object to go with fib 425 * @nonotify: Don't notify the adapter 426 * 427 * Gets the next free QE off the requested priorty adapter command 428 * queue and associates the Fib with the QE. The QE represented by 429 * index is ready to insert on the queue when this routine returns 430 * success. 431 */ 432 433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 434 { 435 struct aac_entry * entry = NULL; 436 int map = 0; 437 438 if (qid == AdapNormCmdQueue) { 439 /* if no entries wait for some if caller wants to */ 440 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 441 printk(KERN_ERR "GetEntries failed\n"); 442 } 443 /* 444 * Setup queue entry with a command, status and fib mapped 445 */ 446 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 447 map = 1; 448 } else { 449 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 450 /* if no entries wait for some if caller wants to */ 451 } 452 /* 453 * Setup queue entry with command, status and fib mapped 454 */ 455 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 456 entry->addr = hw_fib->header.SenderFibAddress; 457 /* Restore adapters pointer to the FIB */ 458 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 459 map = 0; 460 } 461 /* 462 * If MapFib is true than we need to map the Fib and put pointers 463 * in the queue entry. 464 */ 465 if (map) 466 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 467 return 0; 468 } 469 470 /* 471 * Define the highest level of host to adapter communication routines. 472 * These routines will support host to adapter FS commuication. These 473 * routines have no knowledge of the commuication method used. This level 474 * sends and receives FIBs. This level has no knowledge of how these FIBs 475 * get passed back and forth. 476 */ 477 478 /** 479 * aac_fib_send - send a fib to the adapter 480 * @command: Command to send 481 * @fibptr: The fib 482 * @size: Size of fib data area 483 * @priority: Priority of Fib 484 * @wait: Async/sync select 485 * @reply: True if a reply is wanted 486 * @callback: Called with reply 487 * @callback_data: Passed to callback 488 * 489 * Sends the requested FIB to the adapter and optionally will wait for a 490 * response FIB. If the caller does not wish to wait for a response than 491 * an event to wait on must be supplied. This event will be set when a 492 * response FIB is received from the adapter. 493 */ 494 495 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 496 int priority, int wait, int reply, fib_callback callback, 497 void *callback_data) 498 { 499 struct aac_dev * dev = fibptr->dev; 500 struct hw_fib * hw_fib = fibptr->hw_fib_va; 501 unsigned long flags = 0; 502 unsigned long mflags = 0; 503 unsigned long sflags = 0; 504 505 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 506 return -EBUSY; 507 508 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 509 return -EINVAL; 510 511 /* 512 * There are 5 cases with the wait and response requested flags. 513 * The only invalid cases are if the caller requests to wait and 514 * does not request a response and if the caller does not want a 515 * response and the Fib is not allocated from pool. If a response 516 * is not requested the Fib will just be deallocaed by the DPC 517 * routine when the response comes back from the adapter. No 518 * further processing will be done besides deleting the Fib. We 519 * will have a debug mode where the adapter can notify the host 520 * it had a problem and the host can log that fact. 521 */ 522 fibptr->flags = 0; 523 if (wait && !reply) { 524 return -EINVAL; 525 } else if (!wait && reply) { 526 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 527 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 528 } else if (!wait && !reply) { 529 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 530 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 531 } else if (wait && reply) { 532 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 533 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 534 } 535 /* 536 * Map the fib into 32bits by using the fib number 537 */ 538 539 hw_fib->header.SenderFibAddress = 540 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 541 542 /* use the same shifted value for handle to be compatible 543 * with the new native hba command handle 544 */ 545 hw_fib->header.Handle = 546 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 547 548 /* 549 * Set FIB state to indicate where it came from and if we want a 550 * response from the adapter. Also load the command from the 551 * caller. 552 * 553 * Map the hw fib pointer as a 32bit value 554 */ 555 hw_fib->header.Command = cpu_to_le16(command); 556 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 557 /* 558 * Set the size of the Fib we want to send to the adapter 559 */ 560 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 561 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 562 return -EMSGSIZE; 563 } 564 /* 565 * Get a queue entry connect the FIB to it and send an notify 566 * the adapter a command is ready. 567 */ 568 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 569 570 /* 571 * Fill in the Callback and CallbackContext if we are not 572 * going to wait. 573 */ 574 if (!wait) { 575 fibptr->callback = callback; 576 fibptr->callback_data = callback_data; 577 fibptr->flags = FIB_CONTEXT_FLAG; 578 } 579 580 fibptr->done = 0; 581 582 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 583 584 dprintk((KERN_DEBUG "Fib contents:.\n")); 585 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 586 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 587 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 588 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 589 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 590 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 591 592 if (!dev->queues) 593 return -EBUSY; 594 595 if (wait) { 596 597 spin_lock_irqsave(&dev->manage_lock, mflags); 598 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 599 printk(KERN_INFO "No management Fibs Available:%d\n", 600 dev->management_fib_count); 601 spin_unlock_irqrestore(&dev->manage_lock, mflags); 602 return -EBUSY; 603 } 604 dev->management_fib_count++; 605 spin_unlock_irqrestore(&dev->manage_lock, mflags); 606 spin_lock_irqsave(&fibptr->event_lock, flags); 607 } 608 609 if (dev->sync_mode) { 610 if (wait) 611 spin_unlock_irqrestore(&fibptr->event_lock, flags); 612 spin_lock_irqsave(&dev->sync_lock, sflags); 613 if (dev->sync_fib) { 614 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 615 spin_unlock_irqrestore(&dev->sync_lock, sflags); 616 } else { 617 dev->sync_fib = fibptr; 618 spin_unlock_irqrestore(&dev->sync_lock, sflags); 619 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 620 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 621 NULL, NULL, NULL, NULL, NULL); 622 } 623 if (wait) { 624 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 625 if (wait_for_completion_interruptible(&fibptr->event_wait)) { 626 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 627 return -EFAULT; 628 } 629 return 0; 630 } 631 return -EINPROGRESS; 632 } 633 634 if (aac_adapter_deliver(fibptr) != 0) { 635 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 636 if (wait) { 637 spin_unlock_irqrestore(&fibptr->event_lock, flags); 638 spin_lock_irqsave(&dev->manage_lock, mflags); 639 dev->management_fib_count--; 640 spin_unlock_irqrestore(&dev->manage_lock, mflags); 641 } 642 return -EBUSY; 643 } 644 645 646 /* 647 * If the caller wanted us to wait for response wait now. 648 */ 649 650 if (wait) { 651 spin_unlock_irqrestore(&fibptr->event_lock, flags); 652 /* Only set for first known interruptable command */ 653 if (wait < 0) { 654 /* 655 * *VERY* Dangerous to time out a command, the 656 * assumption is made that we have no hope of 657 * functioning because an interrupt routing or other 658 * hardware failure has occurred. 659 */ 660 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 661 while (!try_wait_for_completion(&fibptr->event_wait)) { 662 int blink; 663 if (time_is_before_eq_jiffies(timeout)) { 664 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 665 atomic_dec(&q->numpending); 666 if (wait == -1) { 667 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 668 "Usually a result of a PCI interrupt routing problem;\n" 669 "update mother board BIOS or consider utilizing one of\n" 670 "the SAFE mode kernel options (acpi, apic etc)\n"); 671 } 672 return -ETIMEDOUT; 673 } 674 675 if (unlikely(pci_channel_offline(dev->pdev))) 676 return -EFAULT; 677 678 if ((blink = aac_adapter_check_health(dev)) > 0) { 679 if (wait == -1) { 680 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 681 "Usually a result of a serious unrecoverable hardware problem\n", 682 blink); 683 } 684 return -EFAULT; 685 } 686 /* 687 * Allow other processes / CPUS to use core 688 */ 689 schedule(); 690 } 691 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) { 692 /* Do nothing ... satisfy 693 * wait_for_completion_interruptible must_check */ 694 } 695 696 spin_lock_irqsave(&fibptr->event_lock, flags); 697 if (fibptr->done == 0) { 698 fibptr->done = 2; /* Tell interrupt we aborted */ 699 spin_unlock_irqrestore(&fibptr->event_lock, flags); 700 return -ERESTARTSYS; 701 } 702 spin_unlock_irqrestore(&fibptr->event_lock, flags); 703 BUG_ON(fibptr->done == 0); 704 705 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 706 return -ETIMEDOUT; 707 return 0; 708 } 709 /* 710 * If the user does not want a response than return success otherwise 711 * return pending 712 */ 713 if (reply) 714 return -EINPROGRESS; 715 else 716 return 0; 717 } 718 719 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 720 void *callback_data) 721 { 722 struct aac_dev *dev = fibptr->dev; 723 int wait; 724 unsigned long flags = 0; 725 unsigned long mflags = 0; 726 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *) 727 fibptr->hw_fib_va; 728 729 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 730 if (callback) { 731 wait = 0; 732 fibptr->callback = callback; 733 fibptr->callback_data = callback_data; 734 } else 735 wait = 1; 736 737 738 hbacmd->iu_type = command; 739 740 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 741 /* bit1 of request_id must be 0 */ 742 hbacmd->request_id = 743 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 744 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 745 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ) 746 return -EINVAL; 747 748 749 if (wait) { 750 spin_lock_irqsave(&dev->manage_lock, mflags); 751 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 752 spin_unlock_irqrestore(&dev->manage_lock, mflags); 753 return -EBUSY; 754 } 755 dev->management_fib_count++; 756 spin_unlock_irqrestore(&dev->manage_lock, mflags); 757 spin_lock_irqsave(&fibptr->event_lock, flags); 758 } 759 760 if (aac_adapter_deliver(fibptr) != 0) { 761 if (wait) { 762 spin_unlock_irqrestore(&fibptr->event_lock, flags); 763 spin_lock_irqsave(&dev->manage_lock, mflags); 764 dev->management_fib_count--; 765 spin_unlock_irqrestore(&dev->manage_lock, mflags); 766 } 767 return -EBUSY; 768 } 769 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 770 771 if (wait) { 772 773 spin_unlock_irqrestore(&fibptr->event_lock, flags); 774 775 if (unlikely(pci_channel_offline(dev->pdev))) 776 return -EFAULT; 777 778 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 779 if (wait_for_completion_interruptible(&fibptr->event_wait)) 780 fibptr->done = 2; 781 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 782 783 spin_lock_irqsave(&fibptr->event_lock, flags); 784 if ((fibptr->done == 0) || (fibptr->done == 2)) { 785 fibptr->done = 2; /* Tell interrupt we aborted */ 786 spin_unlock_irqrestore(&fibptr->event_lock, flags); 787 return -ERESTARTSYS; 788 } 789 spin_unlock_irqrestore(&fibptr->event_lock, flags); 790 WARN_ON(fibptr->done == 0); 791 792 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 793 return -ETIMEDOUT; 794 795 return 0; 796 } 797 798 return -EINPROGRESS; 799 } 800 801 /** 802 * aac_consumer_get - get the top of the queue 803 * @dev: Adapter 804 * @q: Queue 805 * @entry: Return entry 806 * 807 * Will return a pointer to the entry on the top of the queue requested that 808 * we are a consumer of, and return the address of the queue entry. It does 809 * not change the state of the queue. 810 */ 811 812 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 813 { 814 u32 index; 815 int status; 816 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 817 status = 0; 818 } else { 819 /* 820 * The consumer index must be wrapped if we have reached 821 * the end of the queue, else we just use the entry 822 * pointed to by the header index 823 */ 824 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 825 index = 0; 826 else 827 index = le32_to_cpu(*q->headers.consumer); 828 *entry = q->base + index; 829 status = 1; 830 } 831 return(status); 832 } 833 834 /** 835 * aac_consumer_free - free consumer entry 836 * @dev: Adapter 837 * @q: Queue 838 * @qid: Queue ident 839 * 840 * Frees up the current top of the queue we are a consumer of. If the 841 * queue was full notify the producer that the queue is no longer full. 842 */ 843 844 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 845 { 846 int wasfull = 0; 847 u32 notify; 848 849 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 850 wasfull = 1; 851 852 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 853 *q->headers.consumer = cpu_to_le32(1); 854 else 855 le32_add_cpu(q->headers.consumer, 1); 856 857 if (wasfull) { 858 switch (qid) { 859 860 case HostNormCmdQueue: 861 notify = HostNormCmdNotFull; 862 break; 863 case HostNormRespQueue: 864 notify = HostNormRespNotFull; 865 break; 866 default: 867 BUG(); 868 return; 869 } 870 aac_adapter_notify(dev, notify); 871 } 872 } 873 874 /** 875 * aac_fib_adapter_complete - complete adapter issued fib 876 * @fibptr: fib to complete 877 * @size: size of fib 878 * 879 * Will do all necessary work to complete a FIB that was sent from 880 * the adapter. 881 */ 882 883 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 884 { 885 struct hw_fib * hw_fib = fibptr->hw_fib_va; 886 struct aac_dev * dev = fibptr->dev; 887 struct aac_queue * q; 888 unsigned long nointr = 0; 889 unsigned long qflags; 890 891 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 892 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 893 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 894 kfree(hw_fib); 895 return 0; 896 } 897 898 if (hw_fib->header.XferState == 0) { 899 if (dev->comm_interface == AAC_COMM_MESSAGE) 900 kfree(hw_fib); 901 return 0; 902 } 903 /* 904 * If we plan to do anything check the structure type first. 905 */ 906 if (hw_fib->header.StructType != FIB_MAGIC && 907 hw_fib->header.StructType != FIB_MAGIC2 && 908 hw_fib->header.StructType != FIB_MAGIC2_64) { 909 if (dev->comm_interface == AAC_COMM_MESSAGE) 910 kfree(hw_fib); 911 return -EINVAL; 912 } 913 /* 914 * This block handles the case where the adapter had sent us a 915 * command and we have finished processing the command. We 916 * call completeFib when we are done processing the command 917 * and want to send a response back to the adapter. This will 918 * send the completed cdb to the adapter. 919 */ 920 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 921 if (dev->comm_interface == AAC_COMM_MESSAGE) { 922 kfree (hw_fib); 923 } else { 924 u32 index; 925 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 926 if (size) { 927 size += sizeof(struct aac_fibhdr); 928 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 929 return -EMSGSIZE; 930 hw_fib->header.Size = cpu_to_le16(size); 931 } 932 q = &dev->queues->queue[AdapNormRespQueue]; 933 spin_lock_irqsave(q->lock, qflags); 934 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 935 *(q->headers.producer) = cpu_to_le32(index + 1); 936 spin_unlock_irqrestore(q->lock, qflags); 937 if (!(nointr & (int)aac_config.irq_mod)) 938 aac_adapter_notify(dev, AdapNormRespQueue); 939 } 940 } else { 941 printk(KERN_WARNING "aac_fib_adapter_complete: " 942 "Unknown xferstate detected.\n"); 943 BUG(); 944 } 945 return 0; 946 } 947 948 /** 949 * aac_fib_complete - fib completion handler 950 * @fib: FIB to complete 951 * 952 * Will do all necessary work to complete a FIB. 953 */ 954 955 int aac_fib_complete(struct fib *fibptr) 956 { 957 struct hw_fib * hw_fib = fibptr->hw_fib_va; 958 959 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 960 fib_dealloc(fibptr); 961 return 0; 962 } 963 964 /* 965 * Check for a fib which has already been completed or with a 966 * status wait timeout 967 */ 968 969 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 970 return 0; 971 /* 972 * If we plan to do anything check the structure type first. 973 */ 974 975 if (hw_fib->header.StructType != FIB_MAGIC && 976 hw_fib->header.StructType != FIB_MAGIC2 && 977 hw_fib->header.StructType != FIB_MAGIC2_64) 978 return -EINVAL; 979 /* 980 * This block completes a cdb which orginated on the host and we 981 * just need to deallocate the cdb or reinit it. At this point the 982 * command is complete that we had sent to the adapter and this 983 * cdb could be reused. 984 */ 985 986 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 987 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 988 { 989 fib_dealloc(fibptr); 990 } 991 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 992 { 993 /* 994 * This handles the case when the host has aborted the I/O 995 * to the adapter because the adapter is not responding 996 */ 997 fib_dealloc(fibptr); 998 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 999 fib_dealloc(fibptr); 1000 } else { 1001 BUG(); 1002 } 1003 return 0; 1004 } 1005 1006 /** 1007 * aac_printf - handle printf from firmware 1008 * @dev: Adapter 1009 * @val: Message info 1010 * 1011 * Print a message passed to us by the controller firmware on the 1012 * Adaptec board 1013 */ 1014 1015 void aac_printf(struct aac_dev *dev, u32 val) 1016 { 1017 char *cp = dev->printfbuf; 1018 if (dev->printf_enabled) 1019 { 1020 int length = val & 0xffff; 1021 int level = (val >> 16) & 0xffff; 1022 1023 /* 1024 * The size of the printfbuf is set in port.c 1025 * There is no variable or define for it 1026 */ 1027 if (length > 255) 1028 length = 255; 1029 if (cp[length] != 0) 1030 cp[length] = 0; 1031 if (level == LOG_AAC_HIGH_ERROR) 1032 printk(KERN_WARNING "%s:%s", dev->name, cp); 1033 else 1034 printk(KERN_INFO "%s:%s", dev->name, cp); 1035 } 1036 memset(cp, 0, 256); 1037 } 1038 1039 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1040 { 1041 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1042 } 1043 1044 1045 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1046 { 1047 switch (aac_aif_data(aifcmd, 1)) { 1048 case AifBuCacheDataLoss: 1049 if (aac_aif_data(aifcmd, 2)) 1050 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1051 aac_aif_data(aifcmd, 2)); 1052 else 1053 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1054 break; 1055 case AifBuCacheDataRecover: 1056 if (aac_aif_data(aifcmd, 2)) 1057 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1058 aac_aif_data(aifcmd, 2)); 1059 else 1060 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1061 break; 1062 } 1063 } 1064 1065 /** 1066 * aac_handle_aif - Handle a message from the firmware 1067 * @dev: Which adapter this fib is from 1068 * @fibptr: Pointer to fibptr from adapter 1069 * 1070 * This routine handles a driver notify fib from the adapter and 1071 * dispatches it to the appropriate routine for handling. 1072 */ 1073 1074 #define AIF_SNIFF_TIMEOUT (500*HZ) 1075 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1076 { 1077 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1078 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1079 u32 channel, id, lun, container; 1080 struct scsi_device *device; 1081 enum { 1082 NOTHING, 1083 DELETE, 1084 ADD, 1085 CHANGE 1086 } device_config_needed = NOTHING; 1087 1088 /* Sniff for container changes */ 1089 1090 if (!dev || !dev->fsa_dev) 1091 return; 1092 container = channel = id = lun = (u32)-1; 1093 1094 /* 1095 * We have set this up to try and minimize the number of 1096 * re-configures that take place. As a result of this when 1097 * certain AIF's come in we will set a flag waiting for another 1098 * type of AIF before setting the re-config flag. 1099 */ 1100 switch (le32_to_cpu(aifcmd->command)) { 1101 case AifCmdDriverNotify: 1102 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1103 case AifRawDeviceRemove: 1104 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1105 if ((container >> 28)) { 1106 container = (u32)-1; 1107 break; 1108 } 1109 channel = (container >> 24) & 0xF; 1110 if (channel >= dev->maximum_num_channels) { 1111 container = (u32)-1; 1112 break; 1113 } 1114 id = container & 0xFFFF; 1115 if (id >= dev->maximum_num_physicals) { 1116 container = (u32)-1; 1117 break; 1118 } 1119 lun = (container >> 16) & 0xFF; 1120 container = (u32)-1; 1121 channel = aac_phys_to_logical(channel); 1122 device_config_needed = DELETE; 1123 break; 1124 1125 /* 1126 * Morph or Expand complete 1127 */ 1128 case AifDenMorphComplete: 1129 case AifDenVolumeExtendComplete: 1130 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1131 if (container >= dev->maximum_num_containers) 1132 break; 1133 1134 /* 1135 * Find the scsi_device associated with the SCSI 1136 * address. Make sure we have the right array, and if 1137 * so set the flag to initiate a new re-config once we 1138 * see an AifEnConfigChange AIF come through. 1139 */ 1140 1141 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1142 device = scsi_device_lookup(dev->scsi_host_ptr, 1143 CONTAINER_TO_CHANNEL(container), 1144 CONTAINER_TO_ID(container), 1145 CONTAINER_TO_LUN(container)); 1146 if (device) { 1147 dev->fsa_dev[container].config_needed = CHANGE; 1148 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1149 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1150 scsi_device_put(device); 1151 } 1152 } 1153 } 1154 1155 /* 1156 * If we are waiting on something and this happens to be 1157 * that thing then set the re-configure flag. 1158 */ 1159 if (container != (u32)-1) { 1160 if (container >= dev->maximum_num_containers) 1161 break; 1162 if ((dev->fsa_dev[container].config_waiting_on == 1163 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1164 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1165 dev->fsa_dev[container].config_waiting_on = 0; 1166 } else for (container = 0; 1167 container < dev->maximum_num_containers; ++container) { 1168 if ((dev->fsa_dev[container].config_waiting_on == 1169 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1170 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1171 dev->fsa_dev[container].config_waiting_on = 0; 1172 } 1173 break; 1174 1175 case AifCmdEventNotify: 1176 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1177 case AifEnBatteryEvent: 1178 dev->cache_protected = 1179 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1180 break; 1181 /* 1182 * Add an Array. 1183 */ 1184 case AifEnAddContainer: 1185 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1186 if (container >= dev->maximum_num_containers) 1187 break; 1188 dev->fsa_dev[container].config_needed = ADD; 1189 dev->fsa_dev[container].config_waiting_on = 1190 AifEnConfigChange; 1191 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1192 break; 1193 1194 /* 1195 * Delete an Array. 1196 */ 1197 case AifEnDeleteContainer: 1198 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1199 if (container >= dev->maximum_num_containers) 1200 break; 1201 dev->fsa_dev[container].config_needed = DELETE; 1202 dev->fsa_dev[container].config_waiting_on = 1203 AifEnConfigChange; 1204 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1205 break; 1206 1207 /* 1208 * Container change detected. If we currently are not 1209 * waiting on something else, setup to wait on a Config Change. 1210 */ 1211 case AifEnContainerChange: 1212 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1213 if (container >= dev->maximum_num_containers) 1214 break; 1215 if (dev->fsa_dev[container].config_waiting_on && 1216 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1217 break; 1218 dev->fsa_dev[container].config_needed = CHANGE; 1219 dev->fsa_dev[container].config_waiting_on = 1220 AifEnConfigChange; 1221 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1222 break; 1223 1224 case AifEnConfigChange: 1225 break; 1226 1227 case AifEnAddJBOD: 1228 case AifEnDeleteJBOD: 1229 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1230 if ((container >> 28)) { 1231 container = (u32)-1; 1232 break; 1233 } 1234 channel = (container >> 24) & 0xF; 1235 if (channel >= dev->maximum_num_channels) { 1236 container = (u32)-1; 1237 break; 1238 } 1239 id = container & 0xFFFF; 1240 if (id >= dev->maximum_num_physicals) { 1241 container = (u32)-1; 1242 break; 1243 } 1244 lun = (container >> 16) & 0xFF; 1245 container = (u32)-1; 1246 channel = aac_phys_to_logical(channel); 1247 device_config_needed = 1248 (((__le32 *)aifcmd->data)[0] == 1249 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1250 if (device_config_needed == ADD) { 1251 device = scsi_device_lookup(dev->scsi_host_ptr, 1252 channel, 1253 id, 1254 lun); 1255 if (device) { 1256 scsi_remove_device(device); 1257 scsi_device_put(device); 1258 } 1259 } 1260 break; 1261 1262 case AifEnEnclosureManagement: 1263 /* 1264 * If in JBOD mode, automatic exposure of new 1265 * physical target to be suppressed until configured. 1266 */ 1267 if (dev->jbod) 1268 break; 1269 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1270 case EM_DRIVE_INSERTION: 1271 case EM_DRIVE_REMOVAL: 1272 case EM_SES_DRIVE_INSERTION: 1273 case EM_SES_DRIVE_REMOVAL: 1274 container = le32_to_cpu( 1275 ((__le32 *)aifcmd->data)[2]); 1276 if ((container >> 28)) { 1277 container = (u32)-1; 1278 break; 1279 } 1280 channel = (container >> 24) & 0xF; 1281 if (channel >= dev->maximum_num_channels) { 1282 container = (u32)-1; 1283 break; 1284 } 1285 id = container & 0xFFFF; 1286 lun = (container >> 16) & 0xFF; 1287 container = (u32)-1; 1288 if (id >= dev->maximum_num_physicals) { 1289 /* legacy dev_t ? */ 1290 if ((0x2000 <= id) || lun || channel || 1291 ((channel = (id >> 7) & 0x3F) >= 1292 dev->maximum_num_channels)) 1293 break; 1294 lun = (id >> 4) & 7; 1295 id &= 0xF; 1296 } 1297 channel = aac_phys_to_logical(channel); 1298 device_config_needed = 1299 ((((__le32 *)aifcmd->data)[3] 1300 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1301 (((__le32 *)aifcmd->data)[3] 1302 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1303 ADD : DELETE; 1304 break; 1305 } 1306 case AifBuManagerEvent: 1307 aac_handle_aif_bu(dev, aifcmd); 1308 break; 1309 } 1310 1311 /* 1312 * If we are waiting on something and this happens to be 1313 * that thing then set the re-configure flag. 1314 */ 1315 if (container != (u32)-1) { 1316 if (container >= dev->maximum_num_containers) 1317 break; 1318 if ((dev->fsa_dev[container].config_waiting_on == 1319 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1320 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1321 dev->fsa_dev[container].config_waiting_on = 0; 1322 } else for (container = 0; 1323 container < dev->maximum_num_containers; ++container) { 1324 if ((dev->fsa_dev[container].config_waiting_on == 1325 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1326 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1327 dev->fsa_dev[container].config_waiting_on = 0; 1328 } 1329 break; 1330 1331 case AifCmdJobProgress: 1332 /* 1333 * These are job progress AIF's. When a Clear is being 1334 * done on a container it is initially created then hidden from 1335 * the OS. When the clear completes we don't get a config 1336 * change so we monitor the job status complete on a clear then 1337 * wait for a container change. 1338 */ 1339 1340 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1341 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1342 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1343 for (container = 0; 1344 container < dev->maximum_num_containers; 1345 ++container) { 1346 /* 1347 * Stomp on all config sequencing for all 1348 * containers? 1349 */ 1350 dev->fsa_dev[container].config_waiting_on = 1351 AifEnContainerChange; 1352 dev->fsa_dev[container].config_needed = ADD; 1353 dev->fsa_dev[container].config_waiting_stamp = 1354 jiffies; 1355 } 1356 } 1357 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1358 ((__le32 *)aifcmd->data)[6] == 0 && 1359 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1360 for (container = 0; 1361 container < dev->maximum_num_containers; 1362 ++container) { 1363 /* 1364 * Stomp on all config sequencing for all 1365 * containers? 1366 */ 1367 dev->fsa_dev[container].config_waiting_on = 1368 AifEnContainerChange; 1369 dev->fsa_dev[container].config_needed = DELETE; 1370 dev->fsa_dev[container].config_waiting_stamp = 1371 jiffies; 1372 } 1373 } 1374 break; 1375 } 1376 1377 container = 0; 1378 retry_next: 1379 if (device_config_needed == NOTHING) { 1380 for (; container < dev->maximum_num_containers; ++container) { 1381 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1382 (dev->fsa_dev[container].config_needed != NOTHING) && 1383 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1384 device_config_needed = 1385 dev->fsa_dev[container].config_needed; 1386 dev->fsa_dev[container].config_needed = NOTHING; 1387 channel = CONTAINER_TO_CHANNEL(container); 1388 id = CONTAINER_TO_ID(container); 1389 lun = CONTAINER_TO_LUN(container); 1390 break; 1391 } 1392 } 1393 } 1394 if (device_config_needed == NOTHING) 1395 return; 1396 1397 /* 1398 * If we decided that a re-configuration needs to be done, 1399 * schedule it here on the way out the door, please close the door 1400 * behind you. 1401 */ 1402 1403 /* 1404 * Find the scsi_device associated with the SCSI address, 1405 * and mark it as changed, invalidating the cache. This deals 1406 * with changes to existing device IDs. 1407 */ 1408 1409 if (!dev || !dev->scsi_host_ptr) 1410 return; 1411 /* 1412 * force reload of disk info via aac_probe_container 1413 */ 1414 if ((channel == CONTAINER_CHANNEL) && 1415 (device_config_needed != NOTHING)) { 1416 if (dev->fsa_dev[container].valid == 1) 1417 dev->fsa_dev[container].valid = 2; 1418 aac_probe_container(dev, container); 1419 } 1420 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1421 if (device) { 1422 switch (device_config_needed) { 1423 case DELETE: 1424 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1425 scsi_remove_device(device); 1426 #else 1427 if (scsi_device_online(device)) { 1428 scsi_device_set_state(device, SDEV_OFFLINE); 1429 sdev_printk(KERN_INFO, device, 1430 "Device offlined - %s\n", 1431 (channel == CONTAINER_CHANNEL) ? 1432 "array deleted" : 1433 "enclosure services event"); 1434 } 1435 #endif 1436 break; 1437 case ADD: 1438 if (!scsi_device_online(device)) { 1439 sdev_printk(KERN_INFO, device, 1440 "Device online - %s\n", 1441 (channel == CONTAINER_CHANNEL) ? 1442 "array created" : 1443 "enclosure services event"); 1444 scsi_device_set_state(device, SDEV_RUNNING); 1445 } 1446 /* FALLTHRU */ 1447 case CHANGE: 1448 if ((channel == CONTAINER_CHANNEL) 1449 && (!dev->fsa_dev[container].valid)) { 1450 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1451 scsi_remove_device(device); 1452 #else 1453 if (!scsi_device_online(device)) 1454 break; 1455 scsi_device_set_state(device, SDEV_OFFLINE); 1456 sdev_printk(KERN_INFO, device, 1457 "Device offlined - %s\n", 1458 "array failed"); 1459 #endif 1460 break; 1461 } 1462 scsi_rescan_device(&device->sdev_gendev); 1463 1464 default: 1465 break; 1466 } 1467 scsi_device_put(device); 1468 device_config_needed = NOTHING; 1469 } 1470 if (device_config_needed == ADD) 1471 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1472 if (channel == CONTAINER_CHANNEL) { 1473 container++; 1474 device_config_needed = NOTHING; 1475 goto retry_next; 1476 } 1477 } 1478 1479 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1480 { 1481 int index, quirks; 1482 int retval; 1483 struct Scsi_Host *host; 1484 struct scsi_device *dev; 1485 struct scsi_cmnd *command; 1486 struct scsi_cmnd *command_list; 1487 int jafo = 0; 1488 int bled; 1489 u64 dmamask; 1490 int num_of_fibs = 0; 1491 1492 /* 1493 * Assumptions: 1494 * - host is locked, unless called by the aacraid thread. 1495 * (a matter of convenience, due to legacy issues surrounding 1496 * eh_host_adapter_reset). 1497 * - in_reset is asserted, so no new i/o is getting to the 1498 * card. 1499 * - The card is dead, or will be very shortly ;-/ so no new 1500 * commands are completing in the interrupt service. 1501 */ 1502 host = aac->scsi_host_ptr; 1503 scsi_block_requests(host); 1504 aac_adapter_disable_int(aac); 1505 if (aac->thread && aac->thread->pid != current->pid) { 1506 spin_unlock_irq(host->host_lock); 1507 kthread_stop(aac->thread); 1508 aac->thread = NULL; 1509 jafo = 1; 1510 } 1511 1512 /* 1513 * If a positive health, means in a known DEAD PANIC 1514 * state and the adapter could be reset to `try again'. 1515 */ 1516 bled = forced ? 0 : aac_adapter_check_health(aac); 1517 retval = aac_adapter_restart(aac, bled, reset_type); 1518 1519 if (retval) 1520 goto out; 1521 1522 /* 1523 * Loop through the fibs, close the synchronous FIBS 1524 */ 1525 retval = 1; 1526 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1527 for (index = 0; index < num_of_fibs; index++) { 1528 1529 struct fib *fib = &aac->fibs[index]; 1530 __le32 XferState = fib->hw_fib_va->header.XferState; 1531 bool is_response_expected = false; 1532 1533 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1534 (XferState & cpu_to_le32(ResponseExpected))) 1535 is_response_expected = true; 1536 1537 if (is_response_expected 1538 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1539 unsigned long flagv; 1540 spin_lock_irqsave(&fib->event_lock, flagv); 1541 complete(&fib->event_wait); 1542 spin_unlock_irqrestore(&fib->event_lock, flagv); 1543 schedule(); 1544 retval = 0; 1545 } 1546 } 1547 /* Give some extra time for ioctls to complete. */ 1548 if (retval == 0) 1549 ssleep(2); 1550 index = aac->cardtype; 1551 1552 /* 1553 * Re-initialize the adapter, first free resources, then carefully 1554 * apply the initialization sequence to come back again. Only risk 1555 * is a change in Firmware dropping cache, it is assumed the caller 1556 * will ensure that i/o is queisced and the card is flushed in that 1557 * case. 1558 */ 1559 aac_free_irq(aac); 1560 aac_fib_map_free(aac); 1561 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1562 aac->comm_phys); 1563 aac->comm_addr = NULL; 1564 aac->comm_phys = 0; 1565 kfree(aac->queues); 1566 aac->queues = NULL; 1567 kfree(aac->fsa_dev); 1568 aac->fsa_dev = NULL; 1569 1570 dmamask = DMA_BIT_MASK(32); 1571 quirks = aac_get_driver_ident(index)->quirks; 1572 if (quirks & AAC_QUIRK_31BIT) 1573 retval = pci_set_dma_mask(aac->pdev, dmamask); 1574 else if (!(quirks & AAC_QUIRK_SRC)) 1575 retval = pci_set_dma_mask(aac->pdev, dmamask); 1576 else 1577 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1578 1579 if (quirks & AAC_QUIRK_31BIT && !retval) { 1580 dmamask = DMA_BIT_MASK(31); 1581 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1582 } 1583 1584 if (retval) 1585 goto out; 1586 1587 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1588 goto out; 1589 1590 if (jafo) { 1591 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1592 aac->name); 1593 if (IS_ERR(aac->thread)) { 1594 retval = PTR_ERR(aac->thread); 1595 aac->thread = NULL; 1596 goto out; 1597 } 1598 } 1599 (void)aac_get_adapter_info(aac); 1600 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1601 host->sg_tablesize = 34; 1602 host->max_sectors = (host->sg_tablesize * 8) + 112; 1603 } 1604 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1605 host->sg_tablesize = 17; 1606 host->max_sectors = (host->sg_tablesize * 8) + 112; 1607 } 1608 aac_get_config_status(aac, 1); 1609 aac_get_containers(aac); 1610 /* 1611 * This is where the assumption that the Adapter is quiesced 1612 * is important. 1613 */ 1614 command_list = NULL; 1615 __shost_for_each_device(dev, host) { 1616 unsigned long flags; 1617 spin_lock_irqsave(&dev->list_lock, flags); 1618 list_for_each_entry(command, &dev->cmd_list, list) 1619 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1620 command->SCp.buffer = (struct scatterlist *)command_list; 1621 command_list = command; 1622 } 1623 spin_unlock_irqrestore(&dev->list_lock, flags); 1624 } 1625 while ((command = command_list)) { 1626 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1627 command->SCp.buffer = NULL; 1628 command->result = DID_OK << 16 1629 | COMMAND_COMPLETE << 8 1630 | SAM_STAT_TASK_SET_FULL; 1631 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1632 command->scsi_done(command); 1633 } 1634 /* 1635 * Any Device that was already marked offline needs to be marked 1636 * running 1637 */ 1638 __shost_for_each_device(dev, host) { 1639 if (!scsi_device_online(dev)) 1640 scsi_device_set_state(dev, SDEV_RUNNING); 1641 } 1642 retval = 0; 1643 1644 out: 1645 aac->in_reset = 0; 1646 scsi_unblock_requests(host); 1647 1648 /* 1649 * Issue bus rescan to catch any configuration that might have 1650 * occurred 1651 */ 1652 if (!retval && !is_kdump_kernel()) { 1653 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); 1654 aac_schedule_safw_scan_worker(aac); 1655 } 1656 1657 if (jafo) { 1658 spin_lock_irq(host->host_lock); 1659 } 1660 return retval; 1661 } 1662 1663 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1664 { 1665 unsigned long flagv = 0; 1666 int retval; 1667 struct Scsi_Host * host; 1668 int bled; 1669 1670 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1671 return -EBUSY; 1672 1673 if (aac->in_reset) { 1674 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1675 return -EBUSY; 1676 } 1677 aac->in_reset = 1; 1678 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1679 1680 /* 1681 * Wait for all commands to complete to this specific 1682 * target (block maximum 60 seconds). Although not necessary, 1683 * it does make us a good storage citizen. 1684 */ 1685 host = aac->scsi_host_ptr; 1686 scsi_block_requests(host); 1687 1688 /* Quiesce build, flush cache, write through mode */ 1689 if (forced < 2) 1690 aac_send_shutdown(aac); 1691 spin_lock_irqsave(host->host_lock, flagv); 1692 bled = forced ? forced : 1693 (aac_check_reset != 0 && aac_check_reset != 1); 1694 retval = _aac_reset_adapter(aac, bled, reset_type); 1695 spin_unlock_irqrestore(host->host_lock, flagv); 1696 1697 if ((forced < 2) && (retval == -ENODEV)) { 1698 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1699 struct fib * fibctx = aac_fib_alloc(aac); 1700 if (fibctx) { 1701 struct aac_pause *cmd; 1702 int status; 1703 1704 aac_fib_init(fibctx); 1705 1706 cmd = (struct aac_pause *) fib_data(fibctx); 1707 1708 cmd->command = cpu_to_le32(VM_ContainerConfig); 1709 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1710 cmd->timeout = cpu_to_le32(1); 1711 cmd->min = cpu_to_le32(1); 1712 cmd->noRescan = cpu_to_le32(1); 1713 cmd->count = cpu_to_le32(0); 1714 1715 status = aac_fib_send(ContainerCommand, 1716 fibctx, 1717 sizeof(struct aac_pause), 1718 FsaNormal, 1719 -2 /* Timeout silently */, 1, 1720 NULL, NULL); 1721 1722 if (status >= 0) 1723 aac_fib_complete(fibctx); 1724 /* FIB should be freed only after getting 1725 * the response from the F/W */ 1726 if (status != -ERESTARTSYS) 1727 aac_fib_free(fibctx); 1728 } 1729 } 1730 1731 return retval; 1732 } 1733 1734 int aac_check_health(struct aac_dev * aac) 1735 { 1736 int BlinkLED; 1737 unsigned long time_now, flagv = 0; 1738 struct list_head * entry; 1739 1740 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1741 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1742 return 0; 1743 1744 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1745 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1746 return 0; /* OK */ 1747 } 1748 1749 aac->in_reset = 1; 1750 1751 /* Fake up an AIF: 1752 * aac_aifcmd.command = AifCmdEventNotify = 1 1753 * aac_aifcmd.seqnum = 0xFFFFFFFF 1754 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1755 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1756 * aac.aifcmd.data[2] = AifHighPriority = 3 1757 * aac.aifcmd.data[3] = BlinkLED 1758 */ 1759 1760 time_now = jiffies/HZ; 1761 entry = aac->fib_list.next; 1762 1763 /* 1764 * For each Context that is on the 1765 * fibctxList, make a copy of the 1766 * fib, and then set the event to wake up the 1767 * thread that is waiting for it. 1768 */ 1769 while (entry != &aac->fib_list) { 1770 /* 1771 * Extract the fibctx 1772 */ 1773 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1774 struct hw_fib * hw_fib; 1775 struct fib * fib; 1776 /* 1777 * Check if the queue is getting 1778 * backlogged 1779 */ 1780 if (fibctx->count > 20) { 1781 /* 1782 * It's *not* jiffies folks, 1783 * but jiffies / HZ, so do not 1784 * panic ... 1785 */ 1786 u32 time_last = fibctx->jiffies; 1787 /* 1788 * Has it been > 2 minutes 1789 * since the last read off 1790 * the queue? 1791 */ 1792 if ((time_now - time_last) > aif_timeout) { 1793 entry = entry->next; 1794 aac_close_fib_context(aac, fibctx); 1795 continue; 1796 } 1797 } 1798 /* 1799 * Warning: no sleep allowed while 1800 * holding spinlock 1801 */ 1802 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1803 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1804 if (fib && hw_fib) { 1805 struct aac_aifcmd * aif; 1806 1807 fib->hw_fib_va = hw_fib; 1808 fib->dev = aac; 1809 aac_fib_init(fib); 1810 fib->type = FSAFS_NTC_FIB_CONTEXT; 1811 fib->size = sizeof (struct fib); 1812 fib->data = hw_fib->data; 1813 aif = (struct aac_aifcmd *)hw_fib->data; 1814 aif->command = cpu_to_le32(AifCmdEventNotify); 1815 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1816 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1817 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1818 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1819 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1820 1821 /* 1822 * Put the FIB onto the 1823 * fibctx's fibs 1824 */ 1825 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1826 fibctx->count++; 1827 /* 1828 * Set the event to wake up the 1829 * thread that will waiting. 1830 */ 1831 complete(&fibctx->completion); 1832 } else { 1833 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1834 kfree(fib); 1835 kfree(hw_fib); 1836 } 1837 entry = entry->next; 1838 } 1839 1840 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1841 1842 if (BlinkLED < 0) { 1843 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1844 aac->name, BlinkLED); 1845 goto out; 1846 } 1847 1848 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1849 1850 out: 1851 aac->in_reset = 0; 1852 return BlinkLED; 1853 } 1854 1855 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) 1856 { 1857 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; 1858 } 1859 1860 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, 1861 int bus, 1862 int target) 1863 { 1864 if (bus != CONTAINER_CHANNEL) 1865 bus = aac_phys_to_logical(bus); 1866 1867 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); 1868 } 1869 1870 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) 1871 { 1872 if (bus != CONTAINER_CHANNEL) 1873 bus = aac_phys_to_logical(bus); 1874 1875 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); 1876 } 1877 1878 static void aac_put_safw_scsi_device(struct scsi_device *sdev) 1879 { 1880 if (sdev) 1881 scsi_device_put(sdev); 1882 } 1883 1884 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) 1885 { 1886 struct scsi_device *sdev; 1887 1888 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1889 scsi_remove_device(sdev); 1890 aac_put_safw_scsi_device(sdev); 1891 } 1892 1893 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, 1894 int bus, int target) 1895 { 1896 return dev->hba_map[bus][target].scan_counter == dev->scan_counter; 1897 } 1898 1899 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) 1900 { 1901 if (is_safw_raid_volume(dev, bus, target)) 1902 return dev->fsa_dev[target].valid; 1903 else 1904 return aac_is_safw_scan_count_equal(dev, bus, target); 1905 } 1906 1907 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) 1908 { 1909 int is_exposed = 0; 1910 struct scsi_device *sdev; 1911 1912 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1913 if (sdev) 1914 is_exposed = 1; 1915 aac_put_safw_scsi_device(sdev); 1916 1917 return is_exposed; 1918 } 1919 1920 static int aac_update_safw_host_devices(struct aac_dev *dev) 1921 { 1922 int i; 1923 int bus; 1924 int target; 1925 int is_exposed = 0; 1926 int rcode = 0; 1927 1928 rcode = aac_setup_safw_adapter(dev); 1929 if (unlikely(rcode < 0)) { 1930 goto out; 1931 } 1932 1933 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { 1934 1935 bus = get_bus_number(i); 1936 target = get_target_number(i); 1937 1938 is_exposed = aac_is_safw_device_exposed(dev, bus, target); 1939 1940 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) 1941 aac_add_safw_device(dev, bus, target); 1942 else if (!aac_is_safw_target_valid(dev, bus, target) && 1943 is_exposed) 1944 aac_remove_safw_device(dev, bus, target); 1945 } 1946 out: 1947 return rcode; 1948 } 1949 1950 static int aac_scan_safw_host(struct aac_dev *dev) 1951 { 1952 int rcode = 0; 1953 1954 rcode = aac_update_safw_host_devices(dev); 1955 if (rcode) 1956 aac_schedule_safw_scan_worker(dev); 1957 1958 return rcode; 1959 } 1960 1961 int aac_scan_host(struct aac_dev *dev) 1962 { 1963 int rcode = 0; 1964 1965 mutex_lock(&dev->scan_mutex); 1966 if (dev->sa_firmware) 1967 rcode = aac_scan_safw_host(dev); 1968 else 1969 scsi_scan_host(dev->scsi_host_ptr); 1970 mutex_unlock(&dev->scan_mutex); 1971 1972 return rcode; 1973 } 1974 1975 /** 1976 * aac_handle_sa_aif Handle a message from the firmware 1977 * @dev: Which adapter this fib is from 1978 * @fibptr: Pointer to fibptr from adapter 1979 * 1980 * This routine handles a driver notify fib from the adapter and 1981 * dispatches it to the appropriate routine for handling. 1982 */ 1983 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1984 { 1985 int i; 1986 u32 events = 0; 1987 1988 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1989 events = SA_AIF_HOTPLUG; 1990 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1991 events = SA_AIF_HARDWARE; 1992 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1993 events = SA_AIF_PDEV_CHANGE; 1994 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1995 events = SA_AIF_LDEV_CHANGE; 1996 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1997 events = SA_AIF_BPSTAT_CHANGE; 1998 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1999 events = SA_AIF_BPCFG_CHANGE; 2000 2001 switch (events) { 2002 case SA_AIF_HOTPLUG: 2003 case SA_AIF_HARDWARE: 2004 case SA_AIF_PDEV_CHANGE: 2005 case SA_AIF_LDEV_CHANGE: 2006 case SA_AIF_BPCFG_CHANGE: 2007 2008 aac_scan_host(dev); 2009 2010 break; 2011 2012 case SA_AIF_BPSTAT_CHANGE: 2013 /* currently do nothing */ 2014 break; 2015 } 2016 2017 for (i = 1; i <= 10; ++i) { 2018 events = src_readl(dev, MUnit.IDR); 2019 if (events & (1<<23)) { 2020 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 2021 i, 10); 2022 ssleep(1); 2023 } 2024 } 2025 } 2026 2027 static int get_fib_count(struct aac_dev *dev) 2028 { 2029 unsigned int num = 0; 2030 struct list_head *entry; 2031 unsigned long flagv; 2032 2033 /* 2034 * Warning: no sleep allowed while 2035 * holding spinlock. We take the estimate 2036 * and pre-allocate a set of fibs outside the 2037 * lock. 2038 */ 2039 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2040 / sizeof(struct hw_fib); /* some extra */ 2041 spin_lock_irqsave(&dev->fib_lock, flagv); 2042 entry = dev->fib_list.next; 2043 while (entry != &dev->fib_list) { 2044 entry = entry->next; 2045 ++num; 2046 } 2047 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2048 2049 return num; 2050 } 2051 2052 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2053 struct fib **fib_pool, 2054 unsigned int num) 2055 { 2056 struct hw_fib **hw_fib_p; 2057 struct fib **fib_p; 2058 2059 hw_fib_p = hw_fib_pool; 2060 fib_p = fib_pool; 2061 while (hw_fib_p < &hw_fib_pool[num]) { 2062 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2063 if (!(*(hw_fib_p++))) { 2064 --hw_fib_p; 2065 break; 2066 } 2067 2068 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2069 if (!(*(fib_p++))) { 2070 kfree(*(--hw_fib_p)); 2071 break; 2072 } 2073 } 2074 2075 /* 2076 * Get the actual number of allocated fibs 2077 */ 2078 num = hw_fib_p - hw_fib_pool; 2079 return num; 2080 } 2081 2082 static void wakeup_fibctx_threads(struct aac_dev *dev, 2083 struct hw_fib **hw_fib_pool, 2084 struct fib **fib_pool, 2085 struct fib *fib, 2086 struct hw_fib *hw_fib, 2087 unsigned int num) 2088 { 2089 unsigned long flagv; 2090 struct list_head *entry; 2091 struct hw_fib **hw_fib_p; 2092 struct fib **fib_p; 2093 u32 time_now, time_last; 2094 struct hw_fib *hw_newfib; 2095 struct fib *newfib; 2096 struct aac_fib_context *fibctx; 2097 2098 time_now = jiffies/HZ; 2099 spin_lock_irqsave(&dev->fib_lock, flagv); 2100 entry = dev->fib_list.next; 2101 /* 2102 * For each Context that is on the 2103 * fibctxList, make a copy of the 2104 * fib, and then set the event to wake up the 2105 * thread that is waiting for it. 2106 */ 2107 2108 hw_fib_p = hw_fib_pool; 2109 fib_p = fib_pool; 2110 while (entry != &dev->fib_list) { 2111 /* 2112 * Extract the fibctx 2113 */ 2114 fibctx = list_entry(entry, struct aac_fib_context, 2115 next); 2116 /* 2117 * Check if the queue is getting 2118 * backlogged 2119 */ 2120 if (fibctx->count > 20) { 2121 /* 2122 * It's *not* jiffies folks, 2123 * but jiffies / HZ so do not 2124 * panic ... 2125 */ 2126 time_last = fibctx->jiffies; 2127 /* 2128 * Has it been > 2 minutes 2129 * since the last read off 2130 * the queue? 2131 */ 2132 if ((time_now - time_last) > aif_timeout) { 2133 entry = entry->next; 2134 aac_close_fib_context(dev, fibctx); 2135 continue; 2136 } 2137 } 2138 /* 2139 * Warning: no sleep allowed while 2140 * holding spinlock 2141 */ 2142 if (hw_fib_p >= &hw_fib_pool[num]) { 2143 pr_warn("aifd: didn't allocate NewFib\n"); 2144 entry = entry->next; 2145 continue; 2146 } 2147 2148 hw_newfib = *hw_fib_p; 2149 *(hw_fib_p++) = NULL; 2150 newfib = *fib_p; 2151 *(fib_p++) = NULL; 2152 /* 2153 * Make the copy of the FIB 2154 */ 2155 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2156 memcpy(newfib, fib, sizeof(struct fib)); 2157 newfib->hw_fib_va = hw_newfib; 2158 /* 2159 * Put the FIB onto the 2160 * fibctx's fibs 2161 */ 2162 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2163 fibctx->count++; 2164 /* 2165 * Set the event to wake up the 2166 * thread that is waiting. 2167 */ 2168 complete(&fibctx->completion); 2169 2170 entry = entry->next; 2171 } 2172 /* 2173 * Set the status of this FIB 2174 */ 2175 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2176 aac_fib_adapter_complete(fib, sizeof(u32)); 2177 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2178 2179 } 2180 2181 static void aac_process_events(struct aac_dev *dev) 2182 { 2183 struct hw_fib *hw_fib; 2184 struct fib *fib; 2185 unsigned long flags; 2186 spinlock_t *t_lock; 2187 2188 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2189 spin_lock_irqsave(t_lock, flags); 2190 2191 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2192 struct list_head *entry; 2193 struct aac_aifcmd *aifcmd; 2194 unsigned int num; 2195 struct hw_fib **hw_fib_pool, **hw_fib_p; 2196 struct fib **fib_pool, **fib_p; 2197 2198 set_current_state(TASK_RUNNING); 2199 2200 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2201 list_del(entry); 2202 2203 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2204 spin_unlock_irqrestore(t_lock, flags); 2205 2206 fib = list_entry(entry, struct fib, fiblink); 2207 hw_fib = fib->hw_fib_va; 2208 if (dev->sa_firmware) { 2209 /* Thor AIF */ 2210 aac_handle_sa_aif(dev, fib); 2211 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2212 goto free_fib; 2213 } 2214 /* 2215 * We will process the FIB here or pass it to a 2216 * worker thread that is TBD. We Really can't 2217 * do anything at this point since we don't have 2218 * anything defined for this thread to do. 2219 */ 2220 memset(fib, 0, sizeof(struct fib)); 2221 fib->type = FSAFS_NTC_FIB_CONTEXT; 2222 fib->size = sizeof(struct fib); 2223 fib->hw_fib_va = hw_fib; 2224 fib->data = hw_fib->data; 2225 fib->dev = dev; 2226 /* 2227 * We only handle AifRequest fibs from the adapter. 2228 */ 2229 2230 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2231 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2232 /* Handle Driver Notify Events */ 2233 aac_handle_aif(dev, fib); 2234 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2235 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2236 goto free_fib; 2237 } 2238 /* 2239 * The u32 here is important and intended. We are using 2240 * 32bit wrapping time to fit the adapter field 2241 */ 2242 2243 /* Sniff events */ 2244 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2245 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2246 aac_handle_aif(dev, fib); 2247 } 2248 2249 /* 2250 * get number of fibs to process 2251 */ 2252 num = get_fib_count(dev); 2253 if (!num) 2254 goto free_fib; 2255 2256 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2257 GFP_KERNEL); 2258 if (!hw_fib_pool) 2259 goto free_fib; 2260 2261 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2262 if (!fib_pool) 2263 goto free_hw_fib_pool; 2264 2265 /* 2266 * Fill up fib pointer pools with actual fibs 2267 * and hw_fibs 2268 */ 2269 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2270 if (!num) 2271 goto free_mem; 2272 2273 /* 2274 * wakeup the thread that is waiting for 2275 * the response from fw (ioctl) 2276 */ 2277 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2278 fib, hw_fib, num); 2279 2280 free_mem: 2281 /* Free up the remaining resources */ 2282 hw_fib_p = hw_fib_pool; 2283 fib_p = fib_pool; 2284 while (hw_fib_p < &hw_fib_pool[num]) { 2285 kfree(*hw_fib_p); 2286 kfree(*fib_p); 2287 ++fib_p; 2288 ++hw_fib_p; 2289 } 2290 kfree(fib_pool); 2291 free_hw_fib_pool: 2292 kfree(hw_fib_pool); 2293 free_fib: 2294 kfree(fib); 2295 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2296 spin_lock_irqsave(t_lock, flags); 2297 } 2298 /* 2299 * There are no more AIF's 2300 */ 2301 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2302 spin_unlock_irqrestore(t_lock, flags); 2303 } 2304 2305 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2306 u32 datasize) 2307 { 2308 struct aac_srb *srbcmd; 2309 struct sgmap64 *sg64; 2310 dma_addr_t addr; 2311 char *dma_buf; 2312 struct fib *fibptr; 2313 int ret = -ENOMEM; 2314 u32 vbus, vid; 2315 2316 fibptr = aac_fib_alloc(dev); 2317 if (!fibptr) 2318 goto out; 2319 2320 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2321 GFP_KERNEL); 2322 if (!dma_buf) 2323 goto fib_free_out; 2324 2325 aac_fib_init(fibptr); 2326 2327 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2328 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2329 2330 srbcmd = (struct aac_srb *)fib_data(fibptr); 2331 2332 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2333 srbcmd->channel = cpu_to_le32(vbus); 2334 srbcmd->id = cpu_to_le32(vid); 2335 srbcmd->lun = 0; 2336 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2337 srbcmd->timeout = cpu_to_le32(10); 2338 srbcmd->retry_limit = 0; 2339 srbcmd->cdb_size = cpu_to_le32(12); 2340 srbcmd->count = cpu_to_le32(datasize); 2341 2342 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2343 srbcmd->cdb[0] = BMIC_OUT; 2344 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2345 memcpy(dma_buf, (char *)wellness_str, datasize); 2346 2347 sg64 = (struct sgmap64 *)&srbcmd->sg; 2348 sg64->count = cpu_to_le32(1); 2349 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2350 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2351 sg64->sg[0].count = cpu_to_le32(datasize); 2352 2353 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2354 FsaNormal, 1, 1, NULL, NULL); 2355 2356 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2357 2358 /* 2359 * Do not set XferState to zero unless 2360 * receives a response from F/W 2361 */ 2362 if (ret >= 0) 2363 aac_fib_complete(fibptr); 2364 2365 /* 2366 * FIB should be freed only after 2367 * getting the response from the F/W 2368 */ 2369 if (ret != -ERESTARTSYS) 2370 goto fib_free_out; 2371 2372 out: 2373 return ret; 2374 fib_free_out: 2375 aac_fib_free(fibptr); 2376 goto out; 2377 } 2378 2379 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2380 { 2381 struct tm cur_tm; 2382 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2383 u32 datasize = sizeof(wellness_str); 2384 time64_t local_time; 2385 int ret = -ENODEV; 2386 2387 if (!dev->sa_firmware) 2388 goto out; 2389 2390 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2391 time64_to_tm(local_time, 0, &cur_tm); 2392 cur_tm.tm_mon += 1; 2393 cur_tm.tm_year += 1900; 2394 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2395 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2396 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2397 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2398 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2399 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2400 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2401 2402 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2403 2404 out: 2405 return ret; 2406 } 2407 2408 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2409 { 2410 int ret = -ENOMEM; 2411 struct fib *fibptr; 2412 __le32 *info; 2413 2414 fibptr = aac_fib_alloc(dev); 2415 if (!fibptr) 2416 goto out; 2417 2418 aac_fib_init(fibptr); 2419 info = (__le32 *)fib_data(fibptr); 2420 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2421 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2422 1, 1, NULL, NULL); 2423 2424 /* 2425 * Do not set XferState to zero unless 2426 * receives a response from F/W 2427 */ 2428 if (ret >= 0) 2429 aac_fib_complete(fibptr); 2430 2431 /* 2432 * FIB should be freed only after 2433 * getting the response from the F/W 2434 */ 2435 if (ret != -ERESTARTSYS) 2436 aac_fib_free(fibptr); 2437 2438 out: 2439 return ret; 2440 } 2441 2442 /** 2443 * aac_command_thread - command processing thread 2444 * @dev: Adapter to monitor 2445 * 2446 * Waits on the commandready event in it's queue. When the event gets set 2447 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2448 * until the queue is empty. When the queue is empty it will wait for 2449 * more FIBs. 2450 */ 2451 2452 int aac_command_thread(void *data) 2453 { 2454 struct aac_dev *dev = data; 2455 DECLARE_WAITQUEUE(wait, current); 2456 unsigned long next_jiffies = jiffies + HZ; 2457 unsigned long next_check_jiffies = next_jiffies; 2458 long difference = HZ; 2459 2460 /* 2461 * We can only have one thread per adapter for AIF's. 2462 */ 2463 if (dev->aif_thread) 2464 return -EINVAL; 2465 2466 /* 2467 * Let the DPC know it has a place to send the AIF's to. 2468 */ 2469 dev->aif_thread = 1; 2470 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2471 set_current_state(TASK_INTERRUPTIBLE); 2472 dprintk ((KERN_INFO "aac_command_thread start\n")); 2473 while (1) { 2474 2475 aac_process_events(dev); 2476 2477 /* 2478 * Background activity 2479 */ 2480 if ((time_before(next_check_jiffies,next_jiffies)) 2481 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2482 next_check_jiffies = next_jiffies; 2483 if (aac_adapter_check_health(dev) == 0) { 2484 difference = ((long)(unsigned)check_interval) 2485 * HZ; 2486 next_check_jiffies = jiffies + difference; 2487 } else if (!dev->queues) 2488 break; 2489 } 2490 if (!time_before(next_check_jiffies,next_jiffies) 2491 && ((difference = next_jiffies - jiffies) <= 0)) { 2492 struct timespec64 now; 2493 int ret; 2494 2495 /* Don't even try to talk to adapter if its sick */ 2496 ret = aac_adapter_check_health(dev); 2497 if (ret || !dev->queues) 2498 break; 2499 next_check_jiffies = jiffies 2500 + ((long)(unsigned)check_interval) 2501 * HZ; 2502 ktime_get_real_ts64(&now); 2503 2504 /* Synchronize our watches */ 2505 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2506 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2507 difference = HZ + HZ / 2 - 2508 now.tv_nsec / (NSEC_PER_SEC / HZ); 2509 else { 2510 if (now.tv_nsec > NSEC_PER_SEC / 2) 2511 ++now.tv_sec; 2512 2513 if (dev->sa_firmware) 2514 ret = 2515 aac_send_safw_hostttime(dev, &now); 2516 else 2517 ret = aac_send_hosttime(dev, &now); 2518 2519 difference = (long)(unsigned)update_interval*HZ; 2520 } 2521 next_jiffies = jiffies + difference; 2522 if (time_before(next_check_jiffies,next_jiffies)) 2523 difference = next_check_jiffies - jiffies; 2524 } 2525 if (difference <= 0) 2526 difference = 1; 2527 set_current_state(TASK_INTERRUPTIBLE); 2528 2529 if (kthread_should_stop()) 2530 break; 2531 2532 /* 2533 * we probably want usleep_range() here instead of the 2534 * jiffies computation 2535 */ 2536 schedule_timeout(difference); 2537 2538 if (kthread_should_stop()) 2539 break; 2540 } 2541 if (dev->queues) 2542 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2543 dev->aif_thread = 0; 2544 return 0; 2545 } 2546 2547 int aac_acquire_irq(struct aac_dev *dev) 2548 { 2549 int i; 2550 int j; 2551 int ret = 0; 2552 2553 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2554 for (i = 0; i < dev->max_msix; i++) { 2555 dev->aac_msix[i].vector_no = i; 2556 dev->aac_msix[i].dev = dev; 2557 if (request_irq(pci_irq_vector(dev->pdev, i), 2558 dev->a_ops.adapter_intr, 2559 0, "aacraid", &(dev->aac_msix[i]))) { 2560 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2561 dev->name, dev->id, i); 2562 for (j = 0 ; j < i ; j++) 2563 free_irq(pci_irq_vector(dev->pdev, j), 2564 &(dev->aac_msix[j])); 2565 pci_disable_msix(dev->pdev); 2566 ret = -1; 2567 } 2568 } 2569 } else { 2570 dev->aac_msix[0].vector_no = 0; 2571 dev->aac_msix[0].dev = dev; 2572 2573 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2574 IRQF_SHARED, "aacraid", 2575 &(dev->aac_msix[0])) < 0) { 2576 if (dev->msi) 2577 pci_disable_msi(dev->pdev); 2578 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2579 dev->name, dev->id); 2580 ret = -1; 2581 } 2582 } 2583 return ret; 2584 } 2585 2586 void aac_free_irq(struct aac_dev *dev) 2587 { 2588 int i; 2589 2590 if (aac_is_src(dev)) { 2591 if (dev->max_msix > 1) { 2592 for (i = 0; i < dev->max_msix; i++) 2593 free_irq(pci_irq_vector(dev->pdev, i), 2594 &(dev->aac_msix[i])); 2595 } else { 2596 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2597 } 2598 } else { 2599 free_irq(dev->pdev->irq, dev); 2600 } 2601 if (dev->msi) 2602 pci_disable_msi(dev->pdev); 2603 else if (dev->max_msix > 1) 2604 pci_disable_msix(dev->pdev); 2605 } 2606