xref: /linux/drivers/scsi/aacraid/commsup.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_device.h>
43 #include <asm/semaphore.h>
44 #include <asm/delay.h>
45 
46 #include "aacraid.h"
47 
48 /**
49  *	fib_map_alloc		-	allocate the fib objects
50  *	@dev: Adapter to allocate for
51  *
52  *	Allocate and map the shared PCI space for the FIB blocks used to
53  *	talk to the Adaptec firmware.
54  */
55 
56 static int fib_map_alloc(struct aac_dev *dev)
57 {
58 	dprintk((KERN_INFO
59 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62 	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63 	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64 	  &dev->hw_fib_pa))==NULL)
65 		return -ENOMEM;
66 	return 0;
67 }
68 
69 /**
70  *	fib_map_free		-	free the fib objects
71  *	@dev: Adapter to free
72  *
73  *	Free the PCI mappings and the memory allocated for FIB blocks
74  *	on this adapter.
75  */
76 
77 void fib_map_free(struct aac_dev *dev)
78 {
79 	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
80 }
81 
82 /**
83  *	fib_setup	-	setup the fibs
84  *	@dev: Adapter to set up
85  *
86  *	Allocate the PCI space for the fibs, map it and then intialise the
87  *	fib area, the unmapped fib data and also the free list
88  */
89 
90 int fib_setup(struct aac_dev * dev)
91 {
92 	struct fib *fibptr;
93 	struct hw_fib *hw_fib_va;
94 	dma_addr_t hw_fib_pa;
95 	int i;
96 
97 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
98 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
101 	}
102 	if (i<0)
103 		return -ENOMEM;
104 
105 	hw_fib_va = dev->hw_fib_va;
106 	hw_fib_pa = dev->hw_fib_pa;
107 	memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
108 	/*
109 	 *	Initialise the fibs
110 	 */
111 	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
112 	{
113 		fibptr->dev = dev;
114 		fibptr->hw_fib = hw_fib_va;
115 		fibptr->data = (void *) fibptr->hw_fib->data;
116 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
117 		init_MUTEX_LOCKED(&fibptr->event_wait);
118 		spin_lock_init(&fibptr->event_lock);
119 		hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120 		hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121 		fibptr->hw_fib_pa = hw_fib_pa;
122 		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123 		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
124 	}
125 	/*
126 	 *	Add the fib chain to the free list
127 	 */
128 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
129 	/*
130 	 *	Enable this to debug out of queue space
131 	 */
132 	dev->free_fib = &dev->fibs[0];
133 	return 0;
134 }
135 
136 /**
137  *	fib_alloc	-	allocate a fib
138  *	@dev: Adapter to allocate the fib for
139  *
140  *	Allocate a fib from the adapter fib pool. If the pool is empty we
141  *	return NULL.
142  */
143 
144 struct fib * fib_alloc(struct aac_dev *dev)
145 {
146 	struct fib * fibptr;
147 	unsigned long flags;
148 	spin_lock_irqsave(&dev->fib_lock, flags);
149 	fibptr = dev->free_fib;
150 	if(!fibptr){
151 		spin_unlock_irqrestore(&dev->fib_lock, flags);
152 		return fibptr;
153 	}
154 	dev->free_fib = fibptr->next;
155 	spin_unlock_irqrestore(&dev->fib_lock, flags);
156 	/*
157 	 *	Set the proper node type code and node byte size
158 	 */
159 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160 	fibptr->size = sizeof(struct fib);
161 	/*
162 	 *	Null out fields that depend on being zero at the start of
163 	 *	each I/O
164 	 */
165 	fibptr->hw_fib->header.XferState = 0;
166 	fibptr->callback = NULL;
167 	fibptr->callback_data = NULL;
168 
169 	return fibptr;
170 }
171 
172 /**
173  *	fib_free	-	free a fib
174  *	@fibptr: fib to free up
175  *
176  *	Frees up a fib and places it on the appropriate queue
177  *	(either free or timed out)
178  */
179 
180 void fib_free(struct fib * fibptr)
181 {
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185 	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186 		aac_config.fib_timeouts++;
187 		fibptr->next = fibptr->dev->timeout_fib;
188 		fibptr->dev->timeout_fib = fibptr;
189 	} else {
190 		if (fibptr->hw_fib->header.XferState != 0) {
191 			printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 				 (void*)fibptr,
193 				 le32_to_cpu(fibptr->hw_fib->header.XferState));
194 		}
195 		fibptr->next = fibptr->dev->free_fib;
196 		fibptr->dev->free_fib = fibptr;
197 	}
198 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
199 }
200 
201 /**
202  *	fib_init	-	initialise a fib
203  *	@fibptr: The fib to initialize
204  *
205  *	Set up the generic fib fields ready for use
206  */
207 
208 void fib_init(struct fib *fibptr)
209 {
210 	struct hw_fib *hw_fib = fibptr->hw_fib;
211 
212 	hw_fib->header.StructType = FIB_MAGIC;
213 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215 	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
216 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
218 }
219 
220 /**
221  *	fib_deallocate		-	deallocate a fib
222  *	@fibptr: fib to deallocate
223  *
224  *	Will deallocate and return to the free pool the FIB pointed to by the
225  *	caller.
226  */
227 
228 static void fib_dealloc(struct fib * fibptr)
229 {
230 	struct hw_fib *hw_fib = fibptr->hw_fib;
231 	if(hw_fib->header.StructType != FIB_MAGIC)
232 		BUG();
233 	hw_fib->header.XferState = 0;
234 }
235 
236 /*
237  *	Commuication primitives define and support the queuing method we use to
238  *	support host to adapter commuication. All queue accesses happen through
239  *	these routines and are the only routines which have a knowledge of the
240  *	 how these queues are implemented.
241  */
242 
243 /**
244  *	aac_get_entry		-	get a queue entry
245  *	@dev: Adapter
246  *	@qid: Queue Number
247  *	@entry: Entry return
248  *	@index: Index return
249  *	@nonotify: notification control
250  *
251  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
252  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253  *	returned.
254  */
255 
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258 	struct aac_queue * q;
259 	unsigned long idx;
260 
261 	/*
262 	 *	All of the queues wrap when they reach the end, so we check
263 	 *	to see if they have reached the end and if they have we just
264 	 *	set the index back to zero. This is a wrap. You could or off
265 	 *	the high bits in all updates but this is a bit faster I think.
266 	 */
267 
268 	q = &dev->queues->queue[qid];
269 
270 	idx = *index = le32_to_cpu(*(q->headers.producer));
271 	/* Interrupt Moderation, only interrupt for first two entries */
272 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
273 		if (--idx == 0) {
274 			if (qid == AdapNormCmdQueue)
275 				idx = ADAP_NORM_CMD_ENTRIES;
276 			else
277 				idx = ADAP_NORM_RESP_ENTRIES;
278 		}
279 		if (idx != le32_to_cpu(*(q->headers.consumer)))
280 			*nonotify = 1;
281 	}
282 
283 	if (qid == AdapNormCmdQueue) {
284 	        if (*index >= ADAP_NORM_CMD_ENTRIES)
285 			*index = 0; /* Wrap to front of the Producer Queue. */
286 	} else {
287 		if (*index >= ADAP_NORM_RESP_ENTRIES)
288 			*index = 0; /* Wrap to front of the Producer Queue. */
289 	}
290 
291         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293 				qid, q->numpending);
294 		return 0;
295 	} else {
296 	        *entry = q->base + *index;
297 		return 1;
298 	}
299 }
300 
301 /**
302  *	aac_queue_get		-	get the next free QE
303  *	@dev: Adapter
304  *	@index: Returned index
305  *	@priority: Priority of fib
306  *	@fib: Fib to associate with the queue entry
307  *	@wait: Wait if queue full
308  *	@fibptr: Driver fib object to go with fib
309  *	@nonotify: Don't notify the adapter
310  *
311  *	Gets the next free QE off the requested priorty adapter command
312  *	queue and associates the Fib with the QE. The QE represented by
313  *	index is ready to insert on the queue when this routine returns
314  *	success.
315  */
316 
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319 	struct aac_entry * entry = NULL;
320 	int map = 0;
321 
322 	if (qid == AdapNormCmdQueue) {
323 		/*  if no entries wait for some if caller wants to */
324         	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
325         	{
326 			printk(KERN_ERR "GetEntries failed\n");
327 		}
328 	        /*
329 	         *	Setup queue entry with a command, status and fib mapped
330 	         */
331 	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332 	        map = 1;
333 	} else {
334 	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
335 	        {
336 			/* if no entries wait for some if caller wants to */
337 		}
338         	/*
339         	 *	Setup queue entry with command, status and fib mapped
340         	 */
341         	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342         	entry->addr = hw_fib->header.SenderFibAddress;
343      			/* Restore adapters pointer to the FIB */
344 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
345         	map = 0;
346 	}
347 	/*
348 	 *	If MapFib is true than we need to map the Fib and put pointers
349 	 *	in the queue entry.
350 	 */
351 	if (map)
352 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353 	return 0;
354 }
355 
356 /*
357  *	Define the highest level of host to adapter communication routines.
358  *	These routines will support host to adapter FS commuication. These
359  *	routines have no knowledge of the commuication method used. This level
360  *	sends and receives FIBs. This level has no knowledge of how these FIBs
361  *	get passed back and forth.
362  */
363 
364 /**
365  *	fib_send	-	send a fib to the adapter
366  *	@command: Command to send
367  *	@fibptr: The fib
368  *	@size: Size of fib data area
369  *	@priority: Priority of Fib
370  *	@wait: Async/sync select
371  *	@reply: True if a reply is wanted
372  *	@callback: Called with reply
373  *	@callback_data: Passed to callback
374  *
375  *	Sends the requested FIB to the adapter and optionally will wait for a
376  *	response FIB. If the caller does not wish to wait for a response than
377  *	an event to wait on must be supplied. This event will be set when a
378  *	response FIB is received from the adapter.
379  */
380 
381 int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
382 {
383 	struct aac_dev * dev = fibptr->dev;
384 	struct hw_fib * hw_fib = fibptr->hw_fib;
385 	struct aac_queue * q;
386 	unsigned long flags = 0;
387 	unsigned long qflags;
388 
389 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
390 		return -EBUSY;
391 	/*
392 	 *	There are 5 cases with the wait and reponse requested flags.
393 	 *	The only invalid cases are if the caller requests to wait and
394 	 *	does not request a response and if the caller does not want a
395 	 *	response and the Fib is not allocated from pool. If a response
396 	 *	is not requesed the Fib will just be deallocaed by the DPC
397 	 *	routine when the response comes back from the adapter. No
398 	 *	further processing will be done besides deleting the Fib. We
399 	 *	will have a debug mode where the adapter can notify the host
400 	 *	it had a problem and the host can log that fact.
401 	 */
402 	if (wait && !reply) {
403 		return -EINVAL;
404 	} else if (!wait && reply) {
405 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
406 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
407 	} else if (!wait && !reply) {
408 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
409 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
410 	} else if (wait && reply) {
411 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
412 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
413 	}
414 	/*
415 	 *	Map the fib into 32bits by using the fib number
416 	 */
417 
418 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
419 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
420 	/*
421 	 *	Set FIB state to indicate where it came from and if we want a
422 	 *	response from the adapter. Also load the command from the
423 	 *	caller.
424 	 *
425 	 *	Map the hw fib pointer as a 32bit value
426 	 */
427 	hw_fib->header.Command = cpu_to_le16(command);
428 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
429 	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
430 	/*
431 	 *	Set the size of the Fib we want to send to the adapter
432 	 */
433 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
434 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
435 		return -EMSGSIZE;
436 	}
437 	/*
438 	 *	Get a queue entry connect the FIB to it and send an notify
439 	 *	the adapter a command is ready.
440 	 */
441 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
442 
443 	/*
444 	 *	Fill in the Callback and CallbackContext if we are not
445 	 *	going to wait.
446 	 */
447 	if (!wait) {
448 		fibptr->callback = callback;
449 		fibptr->callback_data = callback_data;
450 	}
451 
452 	fibptr->done = 0;
453 	fibptr->flags = 0;
454 
455 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
456 
457 	dprintk((KERN_DEBUG "Fib contents:.\n"));
458 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
459 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
460 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
461 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
462 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
463 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
464 
465 	q = &dev->queues->queue[AdapNormCmdQueue];
466 
467 	if(wait)
468 		spin_lock_irqsave(&fibptr->event_lock, flags);
469 	spin_lock_irqsave(q->lock, qflags);
470 	if (dev->new_comm_interface) {
471 		unsigned long count = 10000000L; /* 50 seconds */
472 		list_add_tail(&fibptr->queue, &q->pendingq);
473 		q->numpending++;
474 		spin_unlock_irqrestore(q->lock, qflags);
475 		while (aac_adapter_send(fibptr) != 0) {
476 			if (--count == 0) {
477 				if (wait)
478 					spin_unlock_irqrestore(&fibptr->event_lock, flags);
479 				spin_lock_irqsave(q->lock, qflags);
480 				q->numpending--;
481 				list_del(&fibptr->queue);
482 				spin_unlock_irqrestore(q->lock, qflags);
483 				return -ETIMEDOUT;
484 			}
485 			udelay(5);
486 		}
487 	} else {
488 		u32 index;
489 		unsigned long nointr = 0;
490 		aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
491 
492 		list_add_tail(&fibptr->queue, &q->pendingq);
493 		q->numpending++;
494 		*(q->headers.producer) = cpu_to_le32(index + 1);
495 		spin_unlock_irqrestore(q->lock, qflags);
496 		dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
497 		if (!(nointr & aac_config.irq_mod))
498 			aac_adapter_notify(dev, AdapNormCmdQueue);
499 	}
500 
501 	/*
502 	 *	If the caller wanted us to wait for response wait now.
503 	 */
504 
505 	if (wait) {
506 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
507 		/* Only set for first known interruptable command */
508 		if (wait < 0) {
509 			/*
510 			 * *VERY* Dangerous to time out a command, the
511 			 * assumption is made that we have no hope of
512 			 * functioning because an interrupt routing or other
513 			 * hardware failure has occurred.
514 			 */
515 			unsigned long count = 36000000L; /* 3 minutes */
516 			while (down_trylock(&fibptr->event_wait)) {
517 				if (--count == 0) {
518 					spin_lock_irqsave(q->lock, qflags);
519 					q->numpending--;
520 					list_del(&fibptr->queue);
521 					spin_unlock_irqrestore(q->lock, qflags);
522 					if (wait == -1) {
523 	        				printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
524 						  "Usually a result of a PCI interrupt routing problem;\n"
525 						  "update mother board BIOS or consider utilizing one of\n"
526 						  "the SAFE mode kernel options (acpi, apic etc)\n");
527 					}
528 					return -ETIMEDOUT;
529 				}
530 				udelay(5);
531 			}
532 		} else
533 			down(&fibptr->event_wait);
534 		if(fibptr->done == 0)
535 			BUG();
536 
537 		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
538 			return -ETIMEDOUT;
539 		} else {
540 			return 0;
541 		}
542 	}
543 	/*
544 	 *	If the user does not want a response than return success otherwise
545 	 *	return pending
546 	 */
547 	if (reply)
548 		return -EINPROGRESS;
549 	else
550 		return 0;
551 }
552 
553 /**
554  *	aac_consumer_get	-	get the top of the queue
555  *	@dev: Adapter
556  *	@q: Queue
557  *	@entry: Return entry
558  *
559  *	Will return a pointer to the entry on the top of the queue requested that
560  * 	we are a consumer of, and return the address of the queue entry. It does
561  *	not change the state of the queue.
562  */
563 
564 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
565 {
566 	u32 index;
567 	int status;
568 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
569 		status = 0;
570 	} else {
571 		/*
572 		 *	The consumer index must be wrapped if we have reached
573 		 *	the end of the queue, else we just use the entry
574 		 *	pointed to by the header index
575 		 */
576 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
577 			index = 0;
578 		else
579 		        index = le32_to_cpu(*q->headers.consumer);
580 		*entry = q->base + index;
581 		status = 1;
582 	}
583 	return(status);
584 }
585 
586 /**
587  *	aac_consumer_free	-	free consumer entry
588  *	@dev: Adapter
589  *	@q: Queue
590  *	@qid: Queue ident
591  *
592  *	Frees up the current top of the queue we are a consumer of. If the
593  *	queue was full notify the producer that the queue is no longer full.
594  */
595 
596 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
597 {
598 	int wasfull = 0;
599 	u32 notify;
600 
601 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
602 		wasfull = 1;
603 
604 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
605 		*q->headers.consumer = cpu_to_le32(1);
606 	else
607 		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
608 
609 	if (wasfull) {
610 		switch (qid) {
611 
612 		case HostNormCmdQueue:
613 			notify = HostNormCmdNotFull;
614 			break;
615 		case HostNormRespQueue:
616 			notify = HostNormRespNotFull;
617 			break;
618 		default:
619 			BUG();
620 			return;
621 		}
622 		aac_adapter_notify(dev, notify);
623 	}
624 }
625 
626 /**
627  *	fib_adapter_complete	-	complete adapter issued fib
628  *	@fibptr: fib to complete
629  *	@size: size of fib
630  *
631  *	Will do all necessary work to complete a FIB that was sent from
632  *	the adapter.
633  */
634 
635 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
636 {
637 	struct hw_fib * hw_fib = fibptr->hw_fib;
638 	struct aac_dev * dev = fibptr->dev;
639 	struct aac_queue * q;
640 	unsigned long nointr = 0;
641 	unsigned long qflags;
642 
643 	if (hw_fib->header.XferState == 0) {
644 		if (dev->new_comm_interface)
645 			kfree (hw_fib);
646         	return 0;
647 	}
648 	/*
649 	 *	If we plan to do anything check the structure type first.
650 	 */
651 	if ( hw_fib->header.StructType != FIB_MAGIC ) {
652 		if (dev->new_comm_interface)
653 			kfree (hw_fib);
654         	return -EINVAL;
655 	}
656 	/*
657 	 *	This block handles the case where the adapter had sent us a
658 	 *	command and we have finished processing the command. We
659 	 *	call completeFib when we are done processing the command
660 	 *	and want to send a response back to the adapter. This will
661 	 *	send the completed cdb to the adapter.
662 	 */
663 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
664 		if (dev->new_comm_interface) {
665 			kfree (hw_fib);
666 		} else {
667 	       		u32 index;
668 		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
669 			if (size) {
670 				size += sizeof(struct aac_fibhdr);
671 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
672 					return -EMSGSIZE;
673 				hw_fib->header.Size = cpu_to_le16(size);
674 			}
675 			q = &dev->queues->queue[AdapNormRespQueue];
676 			spin_lock_irqsave(q->lock, qflags);
677 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
678 			*(q->headers.producer) = cpu_to_le32(index + 1);
679 			spin_unlock_irqrestore(q->lock, qflags);
680 			if (!(nointr & (int)aac_config.irq_mod))
681 				aac_adapter_notify(dev, AdapNormRespQueue);
682 		}
683 	}
684 	else
685 	{
686         	printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
687         	BUG();
688 	}
689 	return 0;
690 }
691 
692 /**
693  *	fib_complete	-	fib completion handler
694  *	@fib: FIB to complete
695  *
696  *	Will do all necessary work to complete a FIB.
697  */
698 
699 int fib_complete(struct fib * fibptr)
700 {
701 	struct hw_fib * hw_fib = fibptr->hw_fib;
702 
703 	/*
704 	 *	Check for a fib which has already been completed
705 	 */
706 
707 	if (hw_fib->header.XferState == 0)
708         	return 0;
709 	/*
710 	 *	If we plan to do anything check the structure type first.
711 	 */
712 
713 	if (hw_fib->header.StructType != FIB_MAGIC)
714 	        return -EINVAL;
715 	/*
716 	 *	This block completes a cdb which orginated on the host and we
717 	 *	just need to deallocate the cdb or reinit it. At this point the
718 	 *	command is complete that we had sent to the adapter and this
719 	 *	cdb could be reused.
720 	 */
721 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
722 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
723 	{
724 		fib_dealloc(fibptr);
725 	}
726 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
727 	{
728 		/*
729 		 *	This handles the case when the host has aborted the I/O
730 		 *	to the adapter because the adapter is not responding
731 		 */
732 		fib_dealloc(fibptr);
733 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
734 		fib_dealloc(fibptr);
735 	} else {
736 		BUG();
737 	}
738 	return 0;
739 }
740 
741 /**
742  *	aac_printf	-	handle printf from firmware
743  *	@dev: Adapter
744  *	@val: Message info
745  *
746  *	Print a message passed to us by the controller firmware on the
747  *	Adaptec board
748  */
749 
750 void aac_printf(struct aac_dev *dev, u32 val)
751 {
752 	char *cp = dev->printfbuf;
753 	if (dev->printf_enabled)
754 	{
755 		int length = val & 0xffff;
756 		int level = (val >> 16) & 0xffff;
757 
758 		/*
759 		 *	The size of the printfbuf is set in port.c
760 		 *	There is no variable or define for it
761 		 */
762 		if (length > 255)
763 			length = 255;
764 		if (cp[length] != 0)
765 			cp[length] = 0;
766 		if (level == LOG_AAC_HIGH_ERROR)
767 			printk(KERN_WARNING "aacraid:%s", cp);
768 		else
769 			printk(KERN_INFO "aacraid:%s", cp);
770 	}
771 	memset(cp, 0,  256);
772 }
773 
774 
775 /**
776  *	aac_handle_aif		-	Handle a message from the firmware
777  *	@dev: Which adapter this fib is from
778  *	@fibptr: Pointer to fibptr from adapter
779  *
780  *	This routine handles a driver notify fib from the adapter and
781  *	dispatches it to the appropriate routine for handling.
782  */
783 
784 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
785 {
786 	struct hw_fib * hw_fib = fibptr->hw_fib;
787 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
788 	int busy;
789 	u32 container;
790 	struct scsi_device *device;
791 	enum {
792 		NOTHING,
793 		DELETE,
794 		ADD,
795 		CHANGE
796 	} device_config_needed;
797 
798 	/* Sniff for container changes */
799 
800 	if (!dev)
801 		return;
802 	container = (u32)-1;
803 
804 	/*
805 	 *	We have set this up to try and minimize the number of
806 	 * re-configures that take place. As a result of this when
807 	 * certain AIF's come in we will set a flag waiting for another
808 	 * type of AIF before setting the re-config flag.
809 	 */
810 	switch (le32_to_cpu(aifcmd->command)) {
811 	case AifCmdDriverNotify:
812 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
813 		/*
814 		 *	Morph or Expand complete
815 		 */
816 		case AifDenMorphComplete:
817 		case AifDenVolumeExtendComplete:
818 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
819 			if (container >= dev->maximum_num_containers)
820 				break;
821 
822 			/*
823 			 *	Find the scsi_device associated with the SCSI
824 			 * address. Make sure we have the right array, and if
825 			 * so set the flag to initiate a new re-config once we
826 			 * see an AifEnConfigChange AIF come through.
827 			 */
828 
829 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
830 				device = scsi_device_lookup(dev->scsi_host_ptr,
831 					CONTAINER_TO_CHANNEL(container),
832 					CONTAINER_TO_ID(container),
833 					CONTAINER_TO_LUN(container));
834 				if (device) {
835 					dev->fsa_dev[container].config_needed = CHANGE;
836 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
837 					scsi_device_put(device);
838 				}
839 			}
840 		}
841 
842 		/*
843 		 *	If we are waiting on something and this happens to be
844 		 * that thing then set the re-configure flag.
845 		 */
846 		if (container != (u32)-1) {
847 			if (container >= dev->maximum_num_containers)
848 				break;
849 			if (dev->fsa_dev[container].config_waiting_on ==
850 			    le32_to_cpu(*(u32 *)aifcmd->data))
851 				dev->fsa_dev[container].config_waiting_on = 0;
852 		} else for (container = 0;
853 		    container < dev->maximum_num_containers; ++container) {
854 			if (dev->fsa_dev[container].config_waiting_on ==
855 			    le32_to_cpu(*(u32 *)aifcmd->data))
856 				dev->fsa_dev[container].config_waiting_on = 0;
857 		}
858 		break;
859 
860 	case AifCmdEventNotify:
861 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
862 		/*
863 		 *	Add an Array.
864 		 */
865 		case AifEnAddContainer:
866 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
867 			if (container >= dev->maximum_num_containers)
868 				break;
869 			dev->fsa_dev[container].config_needed = ADD;
870 			dev->fsa_dev[container].config_waiting_on =
871 				AifEnConfigChange;
872 			break;
873 
874 		/*
875 		 *	Delete an Array.
876 		 */
877 		case AifEnDeleteContainer:
878 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
879 			if (container >= dev->maximum_num_containers)
880 				break;
881 			dev->fsa_dev[container].config_needed = DELETE;
882 			dev->fsa_dev[container].config_waiting_on =
883 				AifEnConfigChange;
884 			break;
885 
886 		/*
887 		 *	Container change detected. If we currently are not
888 		 * waiting on something else, setup to wait on a Config Change.
889 		 */
890 		case AifEnContainerChange:
891 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
892 			if (container >= dev->maximum_num_containers)
893 				break;
894 			if (dev->fsa_dev[container].config_waiting_on)
895 				break;
896 			dev->fsa_dev[container].config_needed = CHANGE;
897 			dev->fsa_dev[container].config_waiting_on =
898 				AifEnConfigChange;
899 			break;
900 
901 		case AifEnConfigChange:
902 			break;
903 
904 		}
905 
906 		/*
907 		 *	If we are waiting on something and this happens to be
908 		 * that thing then set the re-configure flag.
909 		 */
910 		if (container != (u32)-1) {
911 			if (container >= dev->maximum_num_containers)
912 				break;
913 			if (dev->fsa_dev[container].config_waiting_on ==
914 			    le32_to_cpu(*(u32 *)aifcmd->data))
915 				dev->fsa_dev[container].config_waiting_on = 0;
916 		} else for (container = 0;
917 		    container < dev->maximum_num_containers; ++container) {
918 			if (dev->fsa_dev[container].config_waiting_on ==
919 			    le32_to_cpu(*(u32 *)aifcmd->data))
920 				dev->fsa_dev[container].config_waiting_on = 0;
921 		}
922 		break;
923 
924 	case AifCmdJobProgress:
925 		/*
926 		 *	These are job progress AIF's. When a Clear is being
927 		 * done on a container it is initially created then hidden from
928 		 * the OS. When the clear completes we don't get a config
929 		 * change so we monitor the job status complete on a clear then
930 		 * wait for a container change.
931 		 */
932 
933 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
934 		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
935 		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
936 			for (container = 0;
937 			    container < dev->maximum_num_containers;
938 			    ++container) {
939 				/*
940 				 * Stomp on all config sequencing for all
941 				 * containers?
942 				 */
943 				dev->fsa_dev[container].config_waiting_on =
944 					AifEnContainerChange;
945 				dev->fsa_dev[container].config_needed = ADD;
946 			}
947 		}
948 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
949 		 && (((u32 *)aifcmd->data)[6] == 0)
950 		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
951 			for (container = 0;
952 			    container < dev->maximum_num_containers;
953 			    ++container) {
954 				/*
955 				 * Stomp on all config sequencing for all
956 				 * containers?
957 				 */
958 				dev->fsa_dev[container].config_waiting_on =
959 					AifEnContainerChange;
960 				dev->fsa_dev[container].config_needed = DELETE;
961 			}
962 		}
963 		break;
964 	}
965 
966 	device_config_needed = NOTHING;
967 	for (container = 0; container < dev->maximum_num_containers;
968 	    ++container) {
969 		if ((dev->fsa_dev[container].config_waiting_on == 0)
970 		 && (dev->fsa_dev[container].config_needed != NOTHING)) {
971 			device_config_needed =
972 				dev->fsa_dev[container].config_needed;
973 			dev->fsa_dev[container].config_needed = NOTHING;
974 			break;
975 		}
976 	}
977 	if (device_config_needed == NOTHING)
978 		return;
979 
980 	/*
981 	 *	If we decided that a re-configuration needs to be done,
982 	 * schedule it here on the way out the door, please close the door
983 	 * behind you.
984 	 */
985 
986 	busy = 0;
987 
988 
989 	/*
990 	 *	Find the scsi_device associated with the SCSI address,
991 	 * and mark it as changed, invalidating the cache. This deals
992 	 * with changes to existing device IDs.
993 	 */
994 
995 	if (!dev || !dev->scsi_host_ptr)
996 		return;
997 	/*
998 	 * force reload of disk info via probe_container
999 	 */
1000 	if ((device_config_needed == CHANGE)
1001 	 && (dev->fsa_dev[container].valid == 1))
1002 		dev->fsa_dev[container].valid = 2;
1003 	if ((device_config_needed == CHANGE) ||
1004 			(device_config_needed == ADD))
1005 		probe_container(dev, container);
1006 	device = scsi_device_lookup(dev->scsi_host_ptr,
1007 		CONTAINER_TO_CHANNEL(container),
1008 		CONTAINER_TO_ID(container),
1009 		CONTAINER_TO_LUN(container));
1010 	if (device) {
1011 		switch (device_config_needed) {
1012 		case DELETE:
1013 			scsi_remove_device(device);
1014 			break;
1015 		case CHANGE:
1016 			if (!dev->fsa_dev[container].valid) {
1017 				scsi_remove_device(device);
1018 				break;
1019 			}
1020 			scsi_rescan_device(&device->sdev_gendev);
1021 
1022 		default:
1023 			break;
1024 		}
1025 		scsi_device_put(device);
1026 	}
1027 	if (device_config_needed == ADD) {
1028 		scsi_add_device(dev->scsi_host_ptr,
1029 		  CONTAINER_TO_CHANNEL(container),
1030 		  CONTAINER_TO_ID(container),
1031 		  CONTAINER_TO_LUN(container));
1032 	}
1033 
1034 }
1035 
1036 /**
1037  *	aac_command_thread	-	command processing thread
1038  *	@dev: Adapter to monitor
1039  *
1040  *	Waits on the commandready event in it's queue. When the event gets set
1041  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1042  *	until the queue is empty. When the queue is empty it will wait for
1043  *	more FIBs.
1044  */
1045 
1046 int aac_command_thread(struct aac_dev * dev)
1047 {
1048 	struct hw_fib *hw_fib, *hw_newfib;
1049 	struct fib *fib, *newfib;
1050 	struct aac_fib_context *fibctx;
1051 	unsigned long flags;
1052 	DECLARE_WAITQUEUE(wait, current);
1053 
1054 	/*
1055 	 *	We can only have one thread per adapter for AIF's.
1056 	 */
1057 	if (dev->aif_thread)
1058 		return -EINVAL;
1059 	/*
1060 	 *	Set up the name that will appear in 'ps'
1061 	 *	stored in  task_struct.comm[16].
1062 	 */
1063 	daemonize("aacraid");
1064 	allow_signal(SIGKILL);
1065 	/*
1066 	 *	Let the DPC know it has a place to send the AIF's to.
1067 	 */
1068 	dev->aif_thread = 1;
1069 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1070 	set_current_state(TASK_INTERRUPTIBLE);
1071 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1072 	while(1)
1073 	{
1074 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1075 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1076 			struct list_head *entry;
1077 			struct aac_aifcmd * aifcmd;
1078 
1079 			set_current_state(TASK_RUNNING);
1080 
1081 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1082 			list_del(entry);
1083 
1084 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1085 			fib = list_entry(entry, struct fib, fiblink);
1086 			/*
1087 			 *	We will process the FIB here or pass it to a
1088 			 *	worker thread that is TBD. We Really can't
1089 			 *	do anything at this point since we don't have
1090 			 *	anything defined for this thread to do.
1091 			 */
1092 			hw_fib = fib->hw_fib;
1093 			memset(fib, 0, sizeof(struct fib));
1094 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1095 			fib->size = sizeof( struct fib );
1096 			fib->hw_fib = hw_fib;
1097 			fib->data = hw_fib->data;
1098 			fib->dev = dev;
1099 			/*
1100 			 *	We only handle AifRequest fibs from the adapter.
1101 			 */
1102 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1103 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1104 				/* Handle Driver Notify Events */
1105 				aac_handle_aif(dev, fib);
1106 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1107 				fib_adapter_complete(fib, (u16)sizeof(u32));
1108 			} else {
1109 				struct list_head *entry;
1110 				/* The u32 here is important and intended. We are using
1111 				   32bit wrapping time to fit the adapter field */
1112 
1113 				u32 time_now, time_last;
1114 				unsigned long flagv;
1115 				unsigned num;
1116 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1117 				struct fib ** fib_pool, ** fib_p;
1118 
1119 				/* Sniff events */
1120 				if ((aifcmd->command ==
1121 				     cpu_to_le32(AifCmdEventNotify)) ||
1122 				    (aifcmd->command ==
1123 				     cpu_to_le32(AifCmdJobProgress))) {
1124 					aac_handle_aif(dev, fib);
1125 				}
1126 
1127 				time_now = jiffies/HZ;
1128 
1129 				/*
1130 				 * Warning: no sleep allowed while
1131 				 * holding spinlock. We take the estimate
1132 				 * and pre-allocate a set of fibs outside the
1133 				 * lock.
1134 				 */
1135 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1136 				    / sizeof(struct hw_fib); /* some extra */
1137 				spin_lock_irqsave(&dev->fib_lock, flagv);
1138 				entry = dev->fib_list.next;
1139 				while (entry != &dev->fib_list) {
1140 					entry = entry->next;
1141 					++num;
1142 				}
1143 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1144 				hw_fib_pool = NULL;
1145 				fib_pool = NULL;
1146 				if (num
1147 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1148 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1149 					hw_fib_p = hw_fib_pool;
1150 					fib_p = fib_pool;
1151 					while (hw_fib_p < &hw_fib_pool[num]) {
1152 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1153 							--hw_fib_p;
1154 							break;
1155 						}
1156 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1157 							kfree(*(--hw_fib_p));
1158 							break;
1159 						}
1160 					}
1161 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1162 						kfree(fib_pool);
1163 						fib_pool = NULL;
1164 						kfree(hw_fib_pool);
1165 						hw_fib_pool = NULL;
1166 					}
1167 				} else {
1168 					kfree(hw_fib_pool);
1169 					hw_fib_pool = NULL;
1170 				}
1171 				spin_lock_irqsave(&dev->fib_lock, flagv);
1172 				entry = dev->fib_list.next;
1173 				/*
1174 				 * For each Context that is on the
1175 				 * fibctxList, make a copy of the
1176 				 * fib, and then set the event to wake up the
1177 				 * thread that is waiting for it.
1178 				 */
1179 				hw_fib_p = hw_fib_pool;
1180 				fib_p = fib_pool;
1181 				while (entry != &dev->fib_list) {
1182 					/*
1183 					 * Extract the fibctx
1184 					 */
1185 					fibctx = list_entry(entry, struct aac_fib_context, next);
1186 					/*
1187 					 * Check if the queue is getting
1188 					 * backlogged
1189 					 */
1190 					if (fibctx->count > 20)
1191 					{
1192 						/*
1193 						 * It's *not* jiffies folks,
1194 						 * but jiffies / HZ so do not
1195 						 * panic ...
1196 						 */
1197 						time_last = fibctx->jiffies;
1198 						/*
1199 						 * Has it been > 2 minutes
1200 						 * since the last read off
1201 						 * the queue?
1202 						 */
1203 						if ((time_now - time_last) > 120) {
1204 							entry = entry->next;
1205 							aac_close_fib_context(dev, fibctx);
1206 							continue;
1207 						}
1208 					}
1209 					/*
1210 					 * Warning: no sleep allowed while
1211 					 * holding spinlock
1212 					 */
1213 					if (hw_fib_p < &hw_fib_pool[num]) {
1214 						hw_newfib = *hw_fib_p;
1215 						*(hw_fib_p++) = NULL;
1216 						newfib = *fib_p;
1217 						*(fib_p++) = NULL;
1218 						/*
1219 						 * Make the copy of the FIB
1220 						 */
1221 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1222 						memcpy(newfib, fib, sizeof(struct fib));
1223 						newfib->hw_fib = hw_newfib;
1224 						/*
1225 						 * Put the FIB onto the
1226 						 * fibctx's fibs
1227 						 */
1228 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1229 						fibctx->count++;
1230 						/*
1231 						 * Set the event to wake up the
1232 						 * thread that is waiting.
1233 						 */
1234 						up(&fibctx->wait_sem);
1235 					} else {
1236 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1237 					}
1238 					entry = entry->next;
1239 				}
1240 				/*
1241 				 *	Set the status of this FIB
1242 				 */
1243 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1244 				fib_adapter_complete(fib, sizeof(u32));
1245 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1246 				/* Free up the remaining resources */
1247 				hw_fib_p = hw_fib_pool;
1248 				fib_p = fib_pool;
1249 				while (hw_fib_p < &hw_fib_pool[num]) {
1250 					kfree(*hw_fib_p);
1251 					kfree(*fib_p);
1252 					++fib_p;
1253 					++hw_fib_p;
1254 				}
1255 				kfree(hw_fib_pool);
1256 				kfree(fib_pool);
1257 			}
1258 			kfree(fib);
1259 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1260 		}
1261 		/*
1262 		 *	There are no more AIF's
1263 		 */
1264 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1265 		schedule();
1266 
1267 		if(signal_pending(current))
1268 			break;
1269 		set_current_state(TASK_INTERRUPTIBLE);
1270 	}
1271 	if (dev->queues)
1272 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1273 	dev->aif_thread = 0;
1274 	complete_and_exit(&dev->aif_completion, 0);
1275 	return 0;
1276 }
1277