xref: /linux/drivers/scsi/aacraid/commsup.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <scsi/scsi_host.h>
44 #include <scsi/scsi_device.h>
45 #include <asm/semaphore.h>
46 
47 #include "aacraid.h"
48 
49 /**
50  *	fib_map_alloc		-	allocate the fib objects
51  *	@dev: Adapter to allocate for
52  *
53  *	Allocate and map the shared PCI space for the FIB blocks used to
54  *	talk to the Adaptec firmware.
55  */
56 
57 static int fib_map_alloc(struct aac_dev *dev)
58 {
59 	dprintk((KERN_INFO
60 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
61 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
62 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
63 	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
64 	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
65 	  &dev->hw_fib_pa))==NULL)
66 		return -ENOMEM;
67 	return 0;
68 }
69 
70 /**
71  *	aac_fib_map_free		-	free the fib objects
72  *	@dev: Adapter to free
73  *
74  *	Free the PCI mappings and the memory allocated for FIB blocks
75  *	on this adapter.
76  */
77 
78 void aac_fib_map_free(struct aac_dev *dev)
79 {
80 	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
81 }
82 
83 /**
84  *	aac_fib_setup	-	setup the fibs
85  *	@dev: Adapter to set up
86  *
87  *	Allocate the PCI space for the fibs, map it and then intialise the
88  *	fib area, the unmapped fib data and also the free list
89  */
90 
91 int aac_fib_setup(struct aac_dev * dev)
92 {
93 	struct fib *fibptr;
94 	struct hw_fib *hw_fib_va;
95 	dma_addr_t hw_fib_pa;
96 	int i;
97 
98 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
99 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
100 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
101 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
102 	}
103 	if (i<0)
104 		return -ENOMEM;
105 
106 	hw_fib_va = dev->hw_fib_va;
107 	hw_fib_pa = dev->hw_fib_pa;
108 	memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
109 	/*
110 	 *	Initialise the fibs
111 	 */
112 	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
113 	{
114 		fibptr->dev = dev;
115 		fibptr->hw_fib = hw_fib_va;
116 		fibptr->data = (void *) fibptr->hw_fib->data;
117 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
118 		init_MUTEX_LOCKED(&fibptr->event_wait);
119 		spin_lock_init(&fibptr->event_lock);
120 		hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
121 		hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
122 		fibptr->hw_fib_pa = hw_fib_pa;
123 		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
124 		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
125 	}
126 	/*
127 	 *	Add the fib chain to the free list
128 	 */
129 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
130 	/*
131 	 *	Enable this to debug out of queue space
132 	 */
133 	dev->free_fib = &dev->fibs[0];
134 	return 0;
135 }
136 
137 /**
138  *	aac_fib_alloc	-	allocate a fib
139  *	@dev: Adapter to allocate the fib for
140  *
141  *	Allocate a fib from the adapter fib pool. If the pool is empty we
142  *	return NULL.
143  */
144 
145 struct fib *aac_fib_alloc(struct aac_dev *dev)
146 {
147 	struct fib * fibptr;
148 	unsigned long flags;
149 	spin_lock_irqsave(&dev->fib_lock, flags);
150 	fibptr = dev->free_fib;
151 	if(!fibptr){
152 		spin_unlock_irqrestore(&dev->fib_lock, flags);
153 		return fibptr;
154 	}
155 	dev->free_fib = fibptr->next;
156 	spin_unlock_irqrestore(&dev->fib_lock, flags);
157 	/*
158 	 *	Set the proper node type code and node byte size
159 	 */
160 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
161 	fibptr->size = sizeof(struct fib);
162 	/*
163 	 *	Null out fields that depend on being zero at the start of
164 	 *	each I/O
165 	 */
166 	fibptr->hw_fib->header.XferState = 0;
167 	fibptr->callback = NULL;
168 	fibptr->callback_data = NULL;
169 
170 	return fibptr;
171 }
172 
173 /**
174  *	aac_fib_free	-	free a fib
175  *	@fibptr: fib to free up
176  *
177  *	Frees up a fib and places it on the appropriate queue
178  *	(either free or timed out)
179  */
180 
181 void aac_fib_free(struct fib *fibptr)
182 {
183 	unsigned long flags;
184 
185 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
186 	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
187 		aac_config.fib_timeouts++;
188 		fibptr->next = fibptr->dev->timeout_fib;
189 		fibptr->dev->timeout_fib = fibptr;
190 	} else {
191 		if (fibptr->hw_fib->header.XferState != 0) {
192 			printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
193 				 (void*)fibptr,
194 				 le32_to_cpu(fibptr->hw_fib->header.XferState));
195 		}
196 		fibptr->next = fibptr->dev->free_fib;
197 		fibptr->dev->free_fib = fibptr;
198 	}
199 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
200 }
201 
202 /**
203  *	aac_fib_init	-	initialise a fib
204  *	@fibptr: The fib to initialize
205  *
206  *	Set up the generic fib fields ready for use
207  */
208 
209 void aac_fib_init(struct fib *fibptr)
210 {
211 	struct hw_fib *hw_fib = fibptr->hw_fib;
212 
213 	hw_fib->header.StructType = FIB_MAGIC;
214 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
215 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
216 	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
217 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
218 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
219 }
220 
221 /**
222  *	fib_deallocate		-	deallocate a fib
223  *	@fibptr: fib to deallocate
224  *
225  *	Will deallocate and return to the free pool the FIB pointed to by the
226  *	caller.
227  */
228 
229 static void fib_dealloc(struct fib * fibptr)
230 {
231 	struct hw_fib *hw_fib = fibptr->hw_fib;
232 	if(hw_fib->header.StructType != FIB_MAGIC)
233 		BUG();
234 	hw_fib->header.XferState = 0;
235 }
236 
237 /*
238  *	Commuication primitives define and support the queuing method we use to
239  *	support host to adapter commuication. All queue accesses happen through
240  *	these routines and are the only routines which have a knowledge of the
241  *	 how these queues are implemented.
242  */
243 
244 /**
245  *	aac_get_entry		-	get a queue entry
246  *	@dev: Adapter
247  *	@qid: Queue Number
248  *	@entry: Entry return
249  *	@index: Index return
250  *	@nonotify: notification control
251  *
252  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
253  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
254  *	returned.
255  */
256 
257 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
258 {
259 	struct aac_queue * q;
260 	unsigned long idx;
261 
262 	/*
263 	 *	All of the queues wrap when they reach the end, so we check
264 	 *	to see if they have reached the end and if they have we just
265 	 *	set the index back to zero. This is a wrap. You could or off
266 	 *	the high bits in all updates but this is a bit faster I think.
267 	 */
268 
269 	q = &dev->queues->queue[qid];
270 
271 	idx = *index = le32_to_cpu(*(q->headers.producer));
272 	/* Interrupt Moderation, only interrupt for first two entries */
273 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
274 		if (--idx == 0) {
275 			if (qid == AdapNormCmdQueue)
276 				idx = ADAP_NORM_CMD_ENTRIES;
277 			else
278 				idx = ADAP_NORM_RESP_ENTRIES;
279 		}
280 		if (idx != le32_to_cpu(*(q->headers.consumer)))
281 			*nonotify = 1;
282 	}
283 
284 	if (qid == AdapNormCmdQueue) {
285 	        if (*index >= ADAP_NORM_CMD_ENTRIES)
286 			*index = 0; /* Wrap to front of the Producer Queue. */
287 	} else {
288 		if (*index >= ADAP_NORM_RESP_ENTRIES)
289 			*index = 0; /* Wrap to front of the Producer Queue. */
290 	}
291 
292         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
293 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
294 				qid, q->numpending);
295 		return 0;
296 	} else {
297 	        *entry = q->base + *index;
298 		return 1;
299 	}
300 }
301 
302 /**
303  *	aac_queue_get		-	get the next free QE
304  *	@dev: Adapter
305  *	@index: Returned index
306  *	@priority: Priority of fib
307  *	@fib: Fib to associate with the queue entry
308  *	@wait: Wait if queue full
309  *	@fibptr: Driver fib object to go with fib
310  *	@nonotify: Don't notify the adapter
311  *
312  *	Gets the next free QE off the requested priorty adapter command
313  *	queue and associates the Fib with the QE. The QE represented by
314  *	index is ready to insert on the queue when this routine returns
315  *	success.
316  */
317 
318 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
319 {
320 	struct aac_entry * entry = NULL;
321 	int map = 0;
322 
323 	if (qid == AdapNormCmdQueue) {
324 		/*  if no entries wait for some if caller wants to */
325         	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
326         	{
327 			printk(KERN_ERR "GetEntries failed\n");
328 		}
329 	        /*
330 	         *	Setup queue entry with a command, status and fib mapped
331 	         */
332 	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
333 	        map = 1;
334 	} else {
335 	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
336 	        {
337 			/* if no entries wait for some if caller wants to */
338 		}
339         	/*
340         	 *	Setup queue entry with command, status and fib mapped
341         	 */
342         	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
343         	entry->addr = hw_fib->header.SenderFibAddress;
344      			/* Restore adapters pointer to the FIB */
345 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
346         	map = 0;
347 	}
348 	/*
349 	 *	If MapFib is true than we need to map the Fib and put pointers
350 	 *	in the queue entry.
351 	 */
352 	if (map)
353 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
354 	return 0;
355 }
356 
357 /*
358  *	Define the highest level of host to adapter communication routines.
359  *	These routines will support host to adapter FS commuication. These
360  *	routines have no knowledge of the commuication method used. This level
361  *	sends and receives FIBs. This level has no knowledge of how these FIBs
362  *	get passed back and forth.
363  */
364 
365 /**
366  *	aac_fib_send	-	send a fib to the adapter
367  *	@command: Command to send
368  *	@fibptr: The fib
369  *	@size: Size of fib data area
370  *	@priority: Priority of Fib
371  *	@wait: Async/sync select
372  *	@reply: True if a reply is wanted
373  *	@callback: Called with reply
374  *	@callback_data: Passed to callback
375  *
376  *	Sends the requested FIB to the adapter and optionally will wait for a
377  *	response FIB. If the caller does not wish to wait for a response than
378  *	an event to wait on must be supplied. This event will be set when a
379  *	response FIB is received from the adapter.
380  */
381 
382 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
383 		int priority, int wait, int reply, fib_callback callback,
384 		void *callback_data)
385 {
386 	struct aac_dev * dev = fibptr->dev;
387 	struct hw_fib * hw_fib = fibptr->hw_fib;
388 	struct aac_queue * q;
389 	unsigned long flags = 0;
390 	unsigned long qflags;
391 
392 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
393 		return -EBUSY;
394 	/*
395 	 *	There are 5 cases with the wait and reponse requested flags.
396 	 *	The only invalid cases are if the caller requests to wait and
397 	 *	does not request a response and if the caller does not want a
398 	 *	response and the Fib is not allocated from pool. If a response
399 	 *	is not requesed the Fib will just be deallocaed by the DPC
400 	 *	routine when the response comes back from the adapter. No
401 	 *	further processing will be done besides deleting the Fib. We
402 	 *	will have a debug mode where the adapter can notify the host
403 	 *	it had a problem and the host can log that fact.
404 	 */
405 	if (wait && !reply) {
406 		return -EINVAL;
407 	} else if (!wait && reply) {
408 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
409 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
410 	} else if (!wait && !reply) {
411 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
412 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
413 	} else if (wait && reply) {
414 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
415 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
416 	}
417 	/*
418 	 *	Map the fib into 32bits by using the fib number
419 	 */
420 
421 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
422 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
423 	/*
424 	 *	Set FIB state to indicate where it came from and if we want a
425 	 *	response from the adapter. Also load the command from the
426 	 *	caller.
427 	 *
428 	 *	Map the hw fib pointer as a 32bit value
429 	 */
430 	hw_fib->header.Command = cpu_to_le16(command);
431 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
432 	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
433 	/*
434 	 *	Set the size of the Fib we want to send to the adapter
435 	 */
436 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
437 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
438 		return -EMSGSIZE;
439 	}
440 	/*
441 	 *	Get a queue entry connect the FIB to it and send an notify
442 	 *	the adapter a command is ready.
443 	 */
444 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
445 
446 	/*
447 	 *	Fill in the Callback and CallbackContext if we are not
448 	 *	going to wait.
449 	 */
450 	if (!wait) {
451 		fibptr->callback = callback;
452 		fibptr->callback_data = callback_data;
453 	}
454 
455 	fibptr->done = 0;
456 	fibptr->flags = 0;
457 
458 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
459 
460 	dprintk((KERN_DEBUG "Fib contents:.\n"));
461 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
462 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
463 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
464 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
465 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
466 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
467 
468 	q = &dev->queues->queue[AdapNormCmdQueue];
469 
470 	if(wait)
471 		spin_lock_irqsave(&fibptr->event_lock, flags);
472 	spin_lock_irqsave(q->lock, qflags);
473 	if (dev->new_comm_interface) {
474 		unsigned long count = 10000000L; /* 50 seconds */
475 		list_add_tail(&fibptr->queue, &q->pendingq);
476 		q->numpending++;
477 		spin_unlock_irqrestore(q->lock, qflags);
478 		while (aac_adapter_send(fibptr) != 0) {
479 			if (--count == 0) {
480 				if (wait)
481 					spin_unlock_irqrestore(&fibptr->event_lock, flags);
482 				spin_lock_irqsave(q->lock, qflags);
483 				q->numpending--;
484 				list_del(&fibptr->queue);
485 				spin_unlock_irqrestore(q->lock, qflags);
486 				return -ETIMEDOUT;
487 			}
488 			udelay(5);
489 		}
490 	} else {
491 		u32 index;
492 		unsigned long nointr = 0;
493 		aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
494 
495 		list_add_tail(&fibptr->queue, &q->pendingq);
496 		q->numpending++;
497 		*(q->headers.producer) = cpu_to_le32(index + 1);
498 		spin_unlock_irqrestore(q->lock, qflags);
499 		dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
500 		if (!(nointr & aac_config.irq_mod))
501 			aac_adapter_notify(dev, AdapNormCmdQueue);
502 	}
503 
504 	/*
505 	 *	If the caller wanted us to wait for response wait now.
506 	 */
507 
508 	if (wait) {
509 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
510 		/* Only set for first known interruptable command */
511 		if (wait < 0) {
512 			/*
513 			 * *VERY* Dangerous to time out a command, the
514 			 * assumption is made that we have no hope of
515 			 * functioning because an interrupt routing or other
516 			 * hardware failure has occurred.
517 			 */
518 			unsigned long count = 36000000L; /* 3 minutes */
519 			while (down_trylock(&fibptr->event_wait)) {
520 				if (--count == 0) {
521 					spin_lock_irqsave(q->lock, qflags);
522 					q->numpending--;
523 					list_del(&fibptr->queue);
524 					spin_unlock_irqrestore(q->lock, qflags);
525 					if (wait == -1) {
526 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
527 						  "Usually a result of a PCI interrupt routing problem;\n"
528 						  "update mother board BIOS or consider utilizing one of\n"
529 						  "the SAFE mode kernel options (acpi, apic etc)\n");
530 					}
531 					return -ETIMEDOUT;
532 				}
533 				udelay(5);
534 			}
535 		} else
536 			down(&fibptr->event_wait);
537 		if(fibptr->done == 0)
538 			BUG();
539 
540 		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
541 			return -ETIMEDOUT;
542 		} else {
543 			return 0;
544 		}
545 	}
546 	/*
547 	 *	If the user does not want a response than return success otherwise
548 	 *	return pending
549 	 */
550 	if (reply)
551 		return -EINPROGRESS;
552 	else
553 		return 0;
554 }
555 
556 /**
557  *	aac_consumer_get	-	get the top of the queue
558  *	@dev: Adapter
559  *	@q: Queue
560  *	@entry: Return entry
561  *
562  *	Will return a pointer to the entry on the top of the queue requested that
563  * 	we are a consumer of, and return the address of the queue entry. It does
564  *	not change the state of the queue.
565  */
566 
567 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
568 {
569 	u32 index;
570 	int status;
571 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
572 		status = 0;
573 	} else {
574 		/*
575 		 *	The consumer index must be wrapped if we have reached
576 		 *	the end of the queue, else we just use the entry
577 		 *	pointed to by the header index
578 		 */
579 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
580 			index = 0;
581 		else
582 		        index = le32_to_cpu(*q->headers.consumer);
583 		*entry = q->base + index;
584 		status = 1;
585 	}
586 	return(status);
587 }
588 
589 /**
590  *	aac_consumer_free	-	free consumer entry
591  *	@dev: Adapter
592  *	@q: Queue
593  *	@qid: Queue ident
594  *
595  *	Frees up the current top of the queue we are a consumer of. If the
596  *	queue was full notify the producer that the queue is no longer full.
597  */
598 
599 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
600 {
601 	int wasfull = 0;
602 	u32 notify;
603 
604 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
605 		wasfull = 1;
606 
607 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
608 		*q->headers.consumer = cpu_to_le32(1);
609 	else
610 		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
611 
612 	if (wasfull) {
613 		switch (qid) {
614 
615 		case HostNormCmdQueue:
616 			notify = HostNormCmdNotFull;
617 			break;
618 		case HostNormRespQueue:
619 			notify = HostNormRespNotFull;
620 			break;
621 		default:
622 			BUG();
623 			return;
624 		}
625 		aac_adapter_notify(dev, notify);
626 	}
627 }
628 
629 /**
630  *	aac_fib_adapter_complete	-	complete adapter issued fib
631  *	@fibptr: fib to complete
632  *	@size: size of fib
633  *
634  *	Will do all necessary work to complete a FIB that was sent from
635  *	the adapter.
636  */
637 
638 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
639 {
640 	struct hw_fib * hw_fib = fibptr->hw_fib;
641 	struct aac_dev * dev = fibptr->dev;
642 	struct aac_queue * q;
643 	unsigned long nointr = 0;
644 	unsigned long qflags;
645 
646 	if (hw_fib->header.XferState == 0) {
647 		if (dev->new_comm_interface)
648 			kfree (hw_fib);
649         	return 0;
650 	}
651 	/*
652 	 *	If we plan to do anything check the structure type first.
653 	 */
654 	if ( hw_fib->header.StructType != FIB_MAGIC ) {
655 		if (dev->new_comm_interface)
656 			kfree (hw_fib);
657         	return -EINVAL;
658 	}
659 	/*
660 	 *	This block handles the case where the adapter had sent us a
661 	 *	command and we have finished processing the command. We
662 	 *	call completeFib when we are done processing the command
663 	 *	and want to send a response back to the adapter. This will
664 	 *	send the completed cdb to the adapter.
665 	 */
666 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
667 		if (dev->new_comm_interface) {
668 			kfree (hw_fib);
669 		} else {
670 	       		u32 index;
671 		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
672 			if (size) {
673 				size += sizeof(struct aac_fibhdr);
674 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
675 					return -EMSGSIZE;
676 				hw_fib->header.Size = cpu_to_le16(size);
677 			}
678 			q = &dev->queues->queue[AdapNormRespQueue];
679 			spin_lock_irqsave(q->lock, qflags);
680 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
681 			*(q->headers.producer) = cpu_to_le32(index + 1);
682 			spin_unlock_irqrestore(q->lock, qflags);
683 			if (!(nointr & (int)aac_config.irq_mod))
684 				aac_adapter_notify(dev, AdapNormRespQueue);
685 		}
686 	}
687 	else
688 	{
689         	printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
690         	BUG();
691 	}
692 	return 0;
693 }
694 
695 /**
696  *	aac_fib_complete	-	fib completion handler
697  *	@fib: FIB to complete
698  *
699  *	Will do all necessary work to complete a FIB.
700  */
701 
702 int aac_fib_complete(struct fib *fibptr)
703 {
704 	struct hw_fib * hw_fib = fibptr->hw_fib;
705 
706 	/*
707 	 *	Check for a fib which has already been completed
708 	 */
709 
710 	if (hw_fib->header.XferState == 0)
711         	return 0;
712 	/*
713 	 *	If we plan to do anything check the structure type first.
714 	 */
715 
716 	if (hw_fib->header.StructType != FIB_MAGIC)
717 	        return -EINVAL;
718 	/*
719 	 *	This block completes a cdb which orginated on the host and we
720 	 *	just need to deallocate the cdb or reinit it. At this point the
721 	 *	command is complete that we had sent to the adapter and this
722 	 *	cdb could be reused.
723 	 */
724 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
725 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
726 	{
727 		fib_dealloc(fibptr);
728 	}
729 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
730 	{
731 		/*
732 		 *	This handles the case when the host has aborted the I/O
733 		 *	to the adapter because the adapter is not responding
734 		 */
735 		fib_dealloc(fibptr);
736 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
737 		fib_dealloc(fibptr);
738 	} else {
739 		BUG();
740 	}
741 	return 0;
742 }
743 
744 /**
745  *	aac_printf	-	handle printf from firmware
746  *	@dev: Adapter
747  *	@val: Message info
748  *
749  *	Print a message passed to us by the controller firmware on the
750  *	Adaptec board
751  */
752 
753 void aac_printf(struct aac_dev *dev, u32 val)
754 {
755 	char *cp = dev->printfbuf;
756 	if (dev->printf_enabled)
757 	{
758 		int length = val & 0xffff;
759 		int level = (val >> 16) & 0xffff;
760 
761 		/*
762 		 *	The size of the printfbuf is set in port.c
763 		 *	There is no variable or define for it
764 		 */
765 		if (length > 255)
766 			length = 255;
767 		if (cp[length] != 0)
768 			cp[length] = 0;
769 		if (level == LOG_AAC_HIGH_ERROR)
770 			printk(KERN_WARNING "%s:%s", dev->name, cp);
771 		else
772 			printk(KERN_INFO "%s:%s", dev->name, cp);
773 	}
774 	memset(cp, 0,  256);
775 }
776 
777 
778 /**
779  *	aac_handle_aif		-	Handle a message from the firmware
780  *	@dev: Which adapter this fib is from
781  *	@fibptr: Pointer to fibptr from adapter
782  *
783  *	This routine handles a driver notify fib from the adapter and
784  *	dispatches it to the appropriate routine for handling.
785  */
786 
787 #define AIF_SNIFF_TIMEOUT	(30*HZ)
788 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
789 {
790 	struct hw_fib * hw_fib = fibptr->hw_fib;
791 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
792 	int busy;
793 	u32 container;
794 	struct scsi_device *device;
795 	enum {
796 		NOTHING,
797 		DELETE,
798 		ADD,
799 		CHANGE
800 	} device_config_needed;
801 
802 	/* Sniff for container changes */
803 
804 	if (!dev)
805 		return;
806 	container = (u32)-1;
807 
808 	/*
809 	 *	We have set this up to try and minimize the number of
810 	 * re-configures that take place. As a result of this when
811 	 * certain AIF's come in we will set a flag waiting for another
812 	 * type of AIF before setting the re-config flag.
813 	 */
814 	switch (le32_to_cpu(aifcmd->command)) {
815 	case AifCmdDriverNotify:
816 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
817 		/*
818 		 *	Morph or Expand complete
819 		 */
820 		case AifDenMorphComplete:
821 		case AifDenVolumeExtendComplete:
822 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
823 			if (container >= dev->maximum_num_containers)
824 				break;
825 
826 			/*
827 			 *	Find the scsi_device associated with the SCSI
828 			 * address. Make sure we have the right array, and if
829 			 * so set the flag to initiate a new re-config once we
830 			 * see an AifEnConfigChange AIF come through.
831 			 */
832 
833 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
834 				device = scsi_device_lookup(dev->scsi_host_ptr,
835 					CONTAINER_TO_CHANNEL(container),
836 					CONTAINER_TO_ID(container),
837 					CONTAINER_TO_LUN(container));
838 				if (device) {
839 					dev->fsa_dev[container].config_needed = CHANGE;
840 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
841 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
842 					scsi_device_put(device);
843 				}
844 			}
845 		}
846 
847 		/*
848 		 *	If we are waiting on something and this happens to be
849 		 * that thing then set the re-configure flag.
850 		 */
851 		if (container != (u32)-1) {
852 			if (container >= dev->maximum_num_containers)
853 				break;
854 			if ((dev->fsa_dev[container].config_waiting_on ==
855 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
856 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
857 				dev->fsa_dev[container].config_waiting_on = 0;
858 		} else for (container = 0;
859 		    container < dev->maximum_num_containers; ++container) {
860 			if ((dev->fsa_dev[container].config_waiting_on ==
861 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
862 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
863 				dev->fsa_dev[container].config_waiting_on = 0;
864 		}
865 		break;
866 
867 	case AifCmdEventNotify:
868 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
869 		/*
870 		 *	Add an Array.
871 		 */
872 		case AifEnAddContainer:
873 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
874 			if (container >= dev->maximum_num_containers)
875 				break;
876 			dev->fsa_dev[container].config_needed = ADD;
877 			dev->fsa_dev[container].config_waiting_on =
878 				AifEnConfigChange;
879 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
880 			break;
881 
882 		/*
883 		 *	Delete an Array.
884 		 */
885 		case AifEnDeleteContainer:
886 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
887 			if (container >= dev->maximum_num_containers)
888 				break;
889 			dev->fsa_dev[container].config_needed = DELETE;
890 			dev->fsa_dev[container].config_waiting_on =
891 				AifEnConfigChange;
892 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
893 			break;
894 
895 		/*
896 		 *	Container change detected. If we currently are not
897 		 * waiting on something else, setup to wait on a Config Change.
898 		 */
899 		case AifEnContainerChange:
900 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
901 			if (container >= dev->maximum_num_containers)
902 				break;
903 			if (dev->fsa_dev[container].config_waiting_on &&
904 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
905 				break;
906 			dev->fsa_dev[container].config_needed = CHANGE;
907 			dev->fsa_dev[container].config_waiting_on =
908 				AifEnConfigChange;
909 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
910 			break;
911 
912 		case AifEnConfigChange:
913 			break;
914 
915 		}
916 
917 		/*
918 		 *	If we are waiting on something and this happens to be
919 		 * that thing then set the re-configure flag.
920 		 */
921 		if (container != (u32)-1) {
922 			if (container >= dev->maximum_num_containers)
923 				break;
924 			if ((dev->fsa_dev[container].config_waiting_on ==
925 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
926 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
927 				dev->fsa_dev[container].config_waiting_on = 0;
928 		} else for (container = 0;
929 		    container < dev->maximum_num_containers; ++container) {
930 			if ((dev->fsa_dev[container].config_waiting_on ==
931 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
932 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
933 				dev->fsa_dev[container].config_waiting_on = 0;
934 		}
935 		break;
936 
937 	case AifCmdJobProgress:
938 		/*
939 		 *	These are job progress AIF's. When a Clear is being
940 		 * done on a container it is initially created then hidden from
941 		 * the OS. When the clear completes we don't get a config
942 		 * change so we monitor the job status complete on a clear then
943 		 * wait for a container change.
944 		 */
945 
946 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
947 		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
948 		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
949 			for (container = 0;
950 			    container < dev->maximum_num_containers;
951 			    ++container) {
952 				/*
953 				 * Stomp on all config sequencing for all
954 				 * containers?
955 				 */
956 				dev->fsa_dev[container].config_waiting_on =
957 					AifEnContainerChange;
958 				dev->fsa_dev[container].config_needed = ADD;
959 				dev->fsa_dev[container].config_waiting_stamp =
960 					jiffies;
961 			}
962 		}
963 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
964 		 && (((u32 *)aifcmd->data)[6] == 0)
965 		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
966 			for (container = 0;
967 			    container < dev->maximum_num_containers;
968 			    ++container) {
969 				/*
970 				 * Stomp on all config sequencing for all
971 				 * containers?
972 				 */
973 				dev->fsa_dev[container].config_waiting_on =
974 					AifEnContainerChange;
975 				dev->fsa_dev[container].config_needed = DELETE;
976 				dev->fsa_dev[container].config_waiting_stamp =
977 					jiffies;
978 			}
979 		}
980 		break;
981 	}
982 
983 	device_config_needed = NOTHING;
984 	for (container = 0; container < dev->maximum_num_containers;
985 	    ++container) {
986 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
987 			(dev->fsa_dev[container].config_needed != NOTHING) &&
988 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
989 			device_config_needed =
990 				dev->fsa_dev[container].config_needed;
991 			dev->fsa_dev[container].config_needed = NOTHING;
992 			break;
993 		}
994 	}
995 	if (device_config_needed == NOTHING)
996 		return;
997 
998 	/*
999 	 *	If we decided that a re-configuration needs to be done,
1000 	 * schedule it here on the way out the door, please close the door
1001 	 * behind you.
1002 	 */
1003 
1004 	busy = 0;
1005 
1006 
1007 	/*
1008 	 *	Find the scsi_device associated with the SCSI address,
1009 	 * and mark it as changed, invalidating the cache. This deals
1010 	 * with changes to existing device IDs.
1011 	 */
1012 
1013 	if (!dev || !dev->scsi_host_ptr)
1014 		return;
1015 	/*
1016 	 * force reload of disk info via aac_probe_container
1017 	 */
1018 	if ((device_config_needed == CHANGE)
1019 	 && (dev->fsa_dev[container].valid == 1))
1020 		dev->fsa_dev[container].valid = 2;
1021 	if ((device_config_needed == CHANGE) ||
1022 			(device_config_needed == ADD))
1023 		aac_probe_container(dev, container);
1024 	device = scsi_device_lookup(dev->scsi_host_ptr,
1025 		CONTAINER_TO_CHANNEL(container),
1026 		CONTAINER_TO_ID(container),
1027 		CONTAINER_TO_LUN(container));
1028 	if (device) {
1029 		switch (device_config_needed) {
1030 		case DELETE:
1031 			scsi_remove_device(device);
1032 			break;
1033 		case CHANGE:
1034 			if (!dev->fsa_dev[container].valid) {
1035 				scsi_remove_device(device);
1036 				break;
1037 			}
1038 			scsi_rescan_device(&device->sdev_gendev);
1039 
1040 		default:
1041 			break;
1042 		}
1043 		scsi_device_put(device);
1044 	}
1045 	if (device_config_needed == ADD) {
1046 		scsi_add_device(dev->scsi_host_ptr,
1047 		  CONTAINER_TO_CHANNEL(container),
1048 		  CONTAINER_TO_ID(container),
1049 		  CONTAINER_TO_LUN(container));
1050 	}
1051 
1052 }
1053 
1054 /**
1055  *	aac_command_thread	-	command processing thread
1056  *	@dev: Adapter to monitor
1057  *
1058  *	Waits on the commandready event in it's queue. When the event gets set
1059  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1060  *	until the queue is empty. When the queue is empty it will wait for
1061  *	more FIBs.
1062  */
1063 
1064 int aac_command_thread(void *data)
1065 {
1066 	struct aac_dev *dev = data;
1067 	struct hw_fib *hw_fib, *hw_newfib;
1068 	struct fib *fib, *newfib;
1069 	struct aac_fib_context *fibctx;
1070 	unsigned long flags;
1071 	DECLARE_WAITQUEUE(wait, current);
1072 
1073 	/*
1074 	 *	We can only have one thread per adapter for AIF's.
1075 	 */
1076 	if (dev->aif_thread)
1077 		return -EINVAL;
1078 
1079 	/*
1080 	 *	Let the DPC know it has a place to send the AIF's to.
1081 	 */
1082 	dev->aif_thread = 1;
1083 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1084 	set_current_state(TASK_INTERRUPTIBLE);
1085 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1086 	while(1)
1087 	{
1088 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1089 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1090 			struct list_head *entry;
1091 			struct aac_aifcmd * aifcmd;
1092 
1093 			set_current_state(TASK_RUNNING);
1094 
1095 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1096 			list_del(entry);
1097 
1098 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1099 			fib = list_entry(entry, struct fib, fiblink);
1100 			/*
1101 			 *	We will process the FIB here or pass it to a
1102 			 *	worker thread that is TBD. We Really can't
1103 			 *	do anything at this point since we don't have
1104 			 *	anything defined for this thread to do.
1105 			 */
1106 			hw_fib = fib->hw_fib;
1107 			memset(fib, 0, sizeof(struct fib));
1108 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1109 			fib->size = sizeof( struct fib );
1110 			fib->hw_fib = hw_fib;
1111 			fib->data = hw_fib->data;
1112 			fib->dev = dev;
1113 			/*
1114 			 *	We only handle AifRequest fibs from the adapter.
1115 			 */
1116 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1117 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1118 				/* Handle Driver Notify Events */
1119 				aac_handle_aif(dev, fib);
1120 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1121 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1122 			} else {
1123 				struct list_head *entry;
1124 				/* The u32 here is important and intended. We are using
1125 				   32bit wrapping time to fit the adapter field */
1126 
1127 				u32 time_now, time_last;
1128 				unsigned long flagv;
1129 				unsigned num;
1130 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1131 				struct fib ** fib_pool, ** fib_p;
1132 
1133 				/* Sniff events */
1134 				if ((aifcmd->command ==
1135 				     cpu_to_le32(AifCmdEventNotify)) ||
1136 				    (aifcmd->command ==
1137 				     cpu_to_le32(AifCmdJobProgress))) {
1138 					aac_handle_aif(dev, fib);
1139 				}
1140 
1141 				time_now = jiffies/HZ;
1142 
1143 				/*
1144 				 * Warning: no sleep allowed while
1145 				 * holding spinlock. We take the estimate
1146 				 * and pre-allocate a set of fibs outside the
1147 				 * lock.
1148 				 */
1149 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1150 				    / sizeof(struct hw_fib); /* some extra */
1151 				spin_lock_irqsave(&dev->fib_lock, flagv);
1152 				entry = dev->fib_list.next;
1153 				while (entry != &dev->fib_list) {
1154 					entry = entry->next;
1155 					++num;
1156 				}
1157 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1158 				hw_fib_pool = NULL;
1159 				fib_pool = NULL;
1160 				if (num
1161 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1162 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1163 					hw_fib_p = hw_fib_pool;
1164 					fib_p = fib_pool;
1165 					while (hw_fib_p < &hw_fib_pool[num]) {
1166 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1167 							--hw_fib_p;
1168 							break;
1169 						}
1170 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1171 							kfree(*(--hw_fib_p));
1172 							break;
1173 						}
1174 					}
1175 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1176 						kfree(fib_pool);
1177 						fib_pool = NULL;
1178 						kfree(hw_fib_pool);
1179 						hw_fib_pool = NULL;
1180 					}
1181 				} else {
1182 					kfree(hw_fib_pool);
1183 					hw_fib_pool = NULL;
1184 				}
1185 				spin_lock_irqsave(&dev->fib_lock, flagv);
1186 				entry = dev->fib_list.next;
1187 				/*
1188 				 * For each Context that is on the
1189 				 * fibctxList, make a copy of the
1190 				 * fib, and then set the event to wake up the
1191 				 * thread that is waiting for it.
1192 				 */
1193 				hw_fib_p = hw_fib_pool;
1194 				fib_p = fib_pool;
1195 				while (entry != &dev->fib_list) {
1196 					/*
1197 					 * Extract the fibctx
1198 					 */
1199 					fibctx = list_entry(entry, struct aac_fib_context, next);
1200 					/*
1201 					 * Check if the queue is getting
1202 					 * backlogged
1203 					 */
1204 					if (fibctx->count > 20)
1205 					{
1206 						/*
1207 						 * It's *not* jiffies folks,
1208 						 * but jiffies / HZ so do not
1209 						 * panic ...
1210 						 */
1211 						time_last = fibctx->jiffies;
1212 						/*
1213 						 * Has it been > 2 minutes
1214 						 * since the last read off
1215 						 * the queue?
1216 						 */
1217 						if ((time_now - time_last) > 120) {
1218 							entry = entry->next;
1219 							aac_close_fib_context(dev, fibctx);
1220 							continue;
1221 						}
1222 					}
1223 					/*
1224 					 * Warning: no sleep allowed while
1225 					 * holding spinlock
1226 					 */
1227 					if (hw_fib_p < &hw_fib_pool[num]) {
1228 						hw_newfib = *hw_fib_p;
1229 						*(hw_fib_p++) = NULL;
1230 						newfib = *fib_p;
1231 						*(fib_p++) = NULL;
1232 						/*
1233 						 * Make the copy of the FIB
1234 						 */
1235 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1236 						memcpy(newfib, fib, sizeof(struct fib));
1237 						newfib->hw_fib = hw_newfib;
1238 						/*
1239 						 * Put the FIB onto the
1240 						 * fibctx's fibs
1241 						 */
1242 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1243 						fibctx->count++;
1244 						/*
1245 						 * Set the event to wake up the
1246 						 * thread that is waiting.
1247 						 */
1248 						up(&fibctx->wait_sem);
1249 					} else {
1250 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1251 					}
1252 					entry = entry->next;
1253 				}
1254 				/*
1255 				 *	Set the status of this FIB
1256 				 */
1257 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1258 				aac_fib_adapter_complete(fib, sizeof(u32));
1259 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1260 				/* Free up the remaining resources */
1261 				hw_fib_p = hw_fib_pool;
1262 				fib_p = fib_pool;
1263 				while (hw_fib_p < &hw_fib_pool[num]) {
1264 					kfree(*hw_fib_p);
1265 					kfree(*fib_p);
1266 					++fib_p;
1267 					++hw_fib_p;
1268 				}
1269 				kfree(hw_fib_pool);
1270 				kfree(fib_pool);
1271 			}
1272 			kfree(fib);
1273 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1274 		}
1275 		/*
1276 		 *	There are no more AIF's
1277 		 */
1278 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1279 		schedule();
1280 
1281 		if (kthread_should_stop())
1282 			break;
1283 		set_current_state(TASK_INTERRUPTIBLE);
1284 	}
1285 	if (dev->queues)
1286 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1287 	dev->aif_thread = 0;
1288 	return 0;
1289 }
1290