xref: /linux/drivers/scsi/aacraid/commsup.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49 
50 #include "aacraid.h"
51 
52 /**
53  *	fib_map_alloc		-	allocate the fib objects
54  *	@dev: Adapter to allocate for
55  *
56  *	Allocate and map the shared PCI space for the FIB blocks used to
57  *	talk to the Adaptec firmware.
58  */
59 
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62 	dprintk((KERN_INFO
63 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 	  &dev->hw_fib_pa))==NULL)
69 		return -ENOMEM;
70 	return 0;
71 }
72 
73 /**
74  *	aac_fib_map_free		-	free the fib objects
75  *	@dev: Adapter to free
76  *
77  *	Free the PCI mappings and the memory allocated for FIB blocks
78  *	on this adapter.
79  */
80 
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83 	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85 
86 /**
87  *	aac_fib_setup	-	setup the fibs
88  *	@dev: Adapter to set up
89  *
90  *	Allocate the PCI space for the fibs, map it and then intialise the
91  *	fib area, the unmapped fib data and also the free list
92  */
93 
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96 	struct fib *fibptr;
97 	struct hw_fib *hw_fib_va;
98 	dma_addr_t hw_fib_pa;
99 	int i;
100 
101 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105 	}
106 	if (i<0)
107 		return -ENOMEM;
108 
109 	hw_fib_va = dev->hw_fib_va;
110 	hw_fib_pa = dev->hw_fib_pa;
111 	memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112 	/*
113 	 *	Initialise the fibs
114 	 */
115 	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
116 	{
117 		fibptr->dev = dev;
118 		fibptr->hw_fib = hw_fib_va;
119 		fibptr->data = (void *) fibptr->hw_fib->data;
120 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
121 		init_MUTEX_LOCKED(&fibptr->event_wait);
122 		spin_lock_init(&fibptr->event_lock);
123 		hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
124 		hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 		fibptr->hw_fib_pa = hw_fib_pa;
126 		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
127 		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128 	}
129 	/*
130 	 *	Add the fib chain to the free list
131 	 */
132 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133 	/*
134 	 *	Enable this to debug out of queue space
135 	 */
136 	dev->free_fib = &dev->fibs[0];
137 	return 0;
138 }
139 
140 /**
141  *	aac_fib_alloc	-	allocate a fib
142  *	@dev: Adapter to allocate the fib for
143  *
144  *	Allocate a fib from the adapter fib pool. If the pool is empty we
145  *	return NULL.
146  */
147 
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150 	struct fib * fibptr;
151 	unsigned long flags;
152 	spin_lock_irqsave(&dev->fib_lock, flags);
153 	fibptr = dev->free_fib;
154 	if(!fibptr){
155 		spin_unlock_irqrestore(&dev->fib_lock, flags);
156 		return fibptr;
157 	}
158 	dev->free_fib = fibptr->next;
159 	spin_unlock_irqrestore(&dev->fib_lock, flags);
160 	/*
161 	 *	Set the proper node type code and node byte size
162 	 */
163 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 	fibptr->size = sizeof(struct fib);
165 	/*
166 	 *	Null out fields that depend on being zero at the start of
167 	 *	each I/O
168 	 */
169 	fibptr->hw_fib->header.XferState = 0;
170 	fibptr->callback = NULL;
171 	fibptr->callback_data = NULL;
172 
173 	return fibptr;
174 }
175 
176 /**
177  *	aac_fib_free	-	free a fib
178  *	@fibptr: fib to free up
179  *
180  *	Frees up a fib and places it on the appropriate queue
181  *	(either free or timed out)
182  */
183 
184 void aac_fib_free(struct fib *fibptr)
185 {
186 	unsigned long flags;
187 
188 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
189 	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
190 		aac_config.fib_timeouts++;
191 		fibptr->next = fibptr->dev->timeout_fib;
192 		fibptr->dev->timeout_fib = fibptr;
193 	} else {
194 		if (fibptr->hw_fib->header.XferState != 0) {
195 			printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196 				 (void*)fibptr,
197 				 le32_to_cpu(fibptr->hw_fib->header.XferState));
198 		}
199 		fibptr->next = fibptr->dev->free_fib;
200 		fibptr->dev->free_fib = fibptr;
201 	}
202 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
203 }
204 
205 /**
206  *	aac_fib_init	-	initialise a fib
207  *	@fibptr: The fib to initialize
208  *
209  *	Set up the generic fib fields ready for use
210  */
211 
212 void aac_fib_init(struct fib *fibptr)
213 {
214 	struct hw_fib *hw_fib = fibptr->hw_fib;
215 
216 	hw_fib->header.StructType = FIB_MAGIC;
217 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219 	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
222 }
223 
224 /**
225  *	fib_deallocate		-	deallocate a fib
226  *	@fibptr: fib to deallocate
227  *
228  *	Will deallocate and return to the free pool the FIB pointed to by the
229  *	caller.
230  */
231 
232 static void fib_dealloc(struct fib * fibptr)
233 {
234 	struct hw_fib *hw_fib = fibptr->hw_fib;
235 	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236 	hw_fib->header.XferState = 0;
237 }
238 
239 /*
240  *	Commuication primitives define and support the queuing method we use to
241  *	support host to adapter commuication. All queue accesses happen through
242  *	these routines and are the only routines which have a knowledge of the
243  *	 how these queues are implemented.
244  */
245 
246 /**
247  *	aac_get_entry		-	get a queue entry
248  *	@dev: Adapter
249  *	@qid: Queue Number
250  *	@entry: Entry return
251  *	@index: Index return
252  *	@nonotify: notification control
253  *
254  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
255  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256  *	returned.
257  */
258 
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
260 {
261 	struct aac_queue * q;
262 	unsigned long idx;
263 
264 	/*
265 	 *	All of the queues wrap when they reach the end, so we check
266 	 *	to see if they have reached the end and if they have we just
267 	 *	set the index back to zero. This is a wrap. You could or off
268 	 *	the high bits in all updates but this is a bit faster I think.
269 	 */
270 
271 	q = &dev->queues->queue[qid];
272 
273 	idx = *index = le32_to_cpu(*(q->headers.producer));
274 	/* Interrupt Moderation, only interrupt for first two entries */
275 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
276 		if (--idx == 0) {
277 			if (qid == AdapNormCmdQueue)
278 				idx = ADAP_NORM_CMD_ENTRIES;
279 			else
280 				idx = ADAP_NORM_RESP_ENTRIES;
281 		}
282 		if (idx != le32_to_cpu(*(q->headers.consumer)))
283 			*nonotify = 1;
284 	}
285 
286 	if (qid == AdapNormCmdQueue) {
287 	        if (*index >= ADAP_NORM_CMD_ENTRIES)
288 			*index = 0; /* Wrap to front of the Producer Queue. */
289 	} else {
290 		if (*index >= ADAP_NORM_RESP_ENTRIES)
291 			*index = 0; /* Wrap to front of the Producer Queue. */
292 	}
293 
294         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296 				qid, q->numpending);
297 		return 0;
298 	} else {
299 	        *entry = q->base + *index;
300 		return 1;
301 	}
302 }
303 
304 /**
305  *	aac_queue_get		-	get the next free QE
306  *	@dev: Adapter
307  *	@index: Returned index
308  *	@priority: Priority of fib
309  *	@fib: Fib to associate with the queue entry
310  *	@wait: Wait if queue full
311  *	@fibptr: Driver fib object to go with fib
312  *	@nonotify: Don't notify the adapter
313  *
314  *	Gets the next free QE off the requested priorty adapter command
315  *	queue and associates the Fib with the QE. The QE represented by
316  *	index is ready to insert on the queue when this routine returns
317  *	success.
318  */
319 
320 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 {
322 	struct aac_entry * entry = NULL;
323 	int map = 0;
324 
325 	if (qid == AdapNormCmdQueue) {
326 		/*  if no entries wait for some if caller wants to */
327         	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
328         	{
329 			printk(KERN_ERR "GetEntries failed\n");
330 		}
331 	        /*
332 	         *	Setup queue entry with a command, status and fib mapped
333 	         */
334 	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335 	        map = 1;
336 	} else {
337 	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
338 	        {
339 			/* if no entries wait for some if caller wants to */
340 		}
341         	/*
342         	 *	Setup queue entry with command, status and fib mapped
343         	 */
344         	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345         	entry->addr = hw_fib->header.SenderFibAddress;
346      			/* Restore adapters pointer to the FIB */
347 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
348         	map = 0;
349 	}
350 	/*
351 	 *	If MapFib is true than we need to map the Fib and put pointers
352 	 *	in the queue entry.
353 	 */
354 	if (map)
355 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
356 	return 0;
357 }
358 
359 /*
360  *	Define the highest level of host to adapter communication routines.
361  *	These routines will support host to adapter FS commuication. These
362  *	routines have no knowledge of the commuication method used. This level
363  *	sends and receives FIBs. This level has no knowledge of how these FIBs
364  *	get passed back and forth.
365  */
366 
367 /**
368  *	aac_fib_send	-	send a fib to the adapter
369  *	@command: Command to send
370  *	@fibptr: The fib
371  *	@size: Size of fib data area
372  *	@priority: Priority of Fib
373  *	@wait: Async/sync select
374  *	@reply: True if a reply is wanted
375  *	@callback: Called with reply
376  *	@callback_data: Passed to callback
377  *
378  *	Sends the requested FIB to the adapter and optionally will wait for a
379  *	response FIB. If the caller does not wish to wait for a response than
380  *	an event to wait on must be supplied. This event will be set when a
381  *	response FIB is received from the adapter.
382  */
383 
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385 		int priority, int wait, int reply, fib_callback callback,
386 		void *callback_data)
387 {
388 	struct aac_dev * dev = fibptr->dev;
389 	struct hw_fib * hw_fib = fibptr->hw_fib;
390 	struct aac_queue * q;
391 	unsigned long flags = 0;
392 	unsigned long qflags;
393 
394 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
395 		return -EBUSY;
396 	/*
397 	 *	There are 5 cases with the wait and reponse requested flags.
398 	 *	The only invalid cases are if the caller requests to wait and
399 	 *	does not request a response and if the caller does not want a
400 	 *	response and the Fib is not allocated from pool. If a response
401 	 *	is not requesed the Fib will just be deallocaed by the DPC
402 	 *	routine when the response comes back from the adapter. No
403 	 *	further processing will be done besides deleting the Fib. We
404 	 *	will have a debug mode where the adapter can notify the host
405 	 *	it had a problem and the host can log that fact.
406 	 */
407 	if (wait && !reply) {
408 		return -EINVAL;
409 	} else if (!wait && reply) {
410 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
411 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
412 	} else if (!wait && !reply) {
413 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
414 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
415 	} else if (wait && reply) {
416 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
417 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
418 	}
419 	/*
420 	 *	Map the fib into 32bits by using the fib number
421 	 */
422 
423 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
424 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
425 	/*
426 	 *	Set FIB state to indicate where it came from and if we want a
427 	 *	response from the adapter. Also load the command from the
428 	 *	caller.
429 	 *
430 	 *	Map the hw fib pointer as a 32bit value
431 	 */
432 	hw_fib->header.Command = cpu_to_le16(command);
433 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
434 	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
435 	/*
436 	 *	Set the size of the Fib we want to send to the adapter
437 	 */
438 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
439 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
440 		return -EMSGSIZE;
441 	}
442 	/*
443 	 *	Get a queue entry connect the FIB to it and send an notify
444 	 *	the adapter a command is ready.
445 	 */
446 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
447 
448 	/*
449 	 *	Fill in the Callback and CallbackContext if we are not
450 	 *	going to wait.
451 	 */
452 	if (!wait) {
453 		fibptr->callback = callback;
454 		fibptr->callback_data = callback_data;
455 	}
456 
457 	fibptr->done = 0;
458 	fibptr->flags = 0;
459 
460 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
461 
462 	dprintk((KERN_DEBUG "Fib contents:.\n"));
463 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
464 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
465 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
466 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
467 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
468 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
469 
470 	if (!dev->queues)
471 		return -EBUSY;
472 	q = &dev->queues->queue[AdapNormCmdQueue];
473 
474 	if(wait)
475 		spin_lock_irqsave(&fibptr->event_lock, flags);
476 	spin_lock_irqsave(q->lock, qflags);
477 	if (dev->new_comm_interface) {
478 		unsigned long count = 10000000L; /* 50 seconds */
479 		q->numpending++;
480 		spin_unlock_irqrestore(q->lock, qflags);
481 		while (aac_adapter_send(fibptr) != 0) {
482 			if (--count == 0) {
483 				if (wait)
484 					spin_unlock_irqrestore(&fibptr->event_lock, flags);
485 				spin_lock_irqsave(q->lock, qflags);
486 				q->numpending--;
487 				spin_unlock_irqrestore(q->lock, qflags);
488 				return -ETIMEDOUT;
489 			}
490 			udelay(5);
491 		}
492 	} else {
493 		u32 index;
494 		unsigned long nointr = 0;
495 		aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
496 
497 		q->numpending++;
498 		*(q->headers.producer) = cpu_to_le32(index + 1);
499 		spin_unlock_irqrestore(q->lock, qflags);
500 		dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
501 		if (!(nointr & aac_config.irq_mod))
502 			aac_adapter_notify(dev, AdapNormCmdQueue);
503 	}
504 
505 	/*
506 	 *	If the caller wanted us to wait for response wait now.
507 	 */
508 
509 	if (wait) {
510 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
511 		/* Only set for first known interruptable command */
512 		if (wait < 0) {
513 			/*
514 			 * *VERY* Dangerous to time out a command, the
515 			 * assumption is made that we have no hope of
516 			 * functioning because an interrupt routing or other
517 			 * hardware failure has occurred.
518 			 */
519 			unsigned long count = 36000000L; /* 3 minutes */
520 			while (down_trylock(&fibptr->event_wait)) {
521 				int blink;
522 				if (--count == 0) {
523 					spin_lock_irqsave(q->lock, qflags);
524 					q->numpending--;
525 					spin_unlock_irqrestore(q->lock, qflags);
526 					if (wait == -1) {
527 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
528 						  "Usually a result of a PCI interrupt routing problem;\n"
529 						  "update mother board BIOS or consider utilizing one of\n"
530 						  "the SAFE mode kernel options (acpi, apic etc)\n");
531 					}
532 					return -ETIMEDOUT;
533 				}
534 				if ((blink = aac_adapter_check_health(dev)) > 0) {
535 					if (wait == -1) {
536 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
537 						  "Usually a result of a serious unrecoverable hardware problem\n",
538 						  blink);
539 					}
540 					return -EFAULT;
541 				}
542 				udelay(5);
543 			}
544 		} else if (down_interruptible(&fibptr->event_wait)) {
545 			spin_lock_irqsave(&fibptr->event_lock, flags);
546 			if (fibptr->done == 0) {
547 				fibptr->done = 2; /* Tell interrupt we aborted */
548 				spin_unlock_irqrestore(&fibptr->event_lock, flags);
549 				return -EINTR;
550 			}
551 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
552 		}
553 		BUG_ON(fibptr->done == 0);
554 
555 		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
556 			return -ETIMEDOUT;
557 		} else {
558 			return 0;
559 		}
560 	}
561 	/*
562 	 *	If the user does not want a response than return success otherwise
563 	 *	return pending
564 	 */
565 	if (reply)
566 		return -EINPROGRESS;
567 	else
568 		return 0;
569 }
570 
571 /**
572  *	aac_consumer_get	-	get the top of the queue
573  *	@dev: Adapter
574  *	@q: Queue
575  *	@entry: Return entry
576  *
577  *	Will return a pointer to the entry on the top of the queue requested that
578  * 	we are a consumer of, and return the address of the queue entry. It does
579  *	not change the state of the queue.
580  */
581 
582 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
583 {
584 	u32 index;
585 	int status;
586 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
587 		status = 0;
588 	} else {
589 		/*
590 		 *	The consumer index must be wrapped if we have reached
591 		 *	the end of the queue, else we just use the entry
592 		 *	pointed to by the header index
593 		 */
594 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
595 			index = 0;
596 		else
597 		        index = le32_to_cpu(*q->headers.consumer);
598 		*entry = q->base + index;
599 		status = 1;
600 	}
601 	return(status);
602 }
603 
604 /**
605  *	aac_consumer_free	-	free consumer entry
606  *	@dev: Adapter
607  *	@q: Queue
608  *	@qid: Queue ident
609  *
610  *	Frees up the current top of the queue we are a consumer of. If the
611  *	queue was full notify the producer that the queue is no longer full.
612  */
613 
614 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
615 {
616 	int wasfull = 0;
617 	u32 notify;
618 
619 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
620 		wasfull = 1;
621 
622 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
623 		*q->headers.consumer = cpu_to_le32(1);
624 	else
625 		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
626 
627 	if (wasfull) {
628 		switch (qid) {
629 
630 		case HostNormCmdQueue:
631 			notify = HostNormCmdNotFull;
632 			break;
633 		case HostNormRespQueue:
634 			notify = HostNormRespNotFull;
635 			break;
636 		default:
637 			BUG();
638 			return;
639 		}
640 		aac_adapter_notify(dev, notify);
641 	}
642 }
643 
644 /**
645  *	aac_fib_adapter_complete	-	complete adapter issued fib
646  *	@fibptr: fib to complete
647  *	@size: size of fib
648  *
649  *	Will do all necessary work to complete a FIB that was sent from
650  *	the adapter.
651  */
652 
653 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
654 {
655 	struct hw_fib * hw_fib = fibptr->hw_fib;
656 	struct aac_dev * dev = fibptr->dev;
657 	struct aac_queue * q;
658 	unsigned long nointr = 0;
659 	unsigned long qflags;
660 
661 	if (hw_fib->header.XferState == 0) {
662 		if (dev->new_comm_interface)
663 			kfree (hw_fib);
664         	return 0;
665 	}
666 	/*
667 	 *	If we plan to do anything check the structure type first.
668 	 */
669 	if ( hw_fib->header.StructType != FIB_MAGIC ) {
670 		if (dev->new_comm_interface)
671 			kfree (hw_fib);
672         	return -EINVAL;
673 	}
674 	/*
675 	 *	This block handles the case where the adapter had sent us a
676 	 *	command and we have finished processing the command. We
677 	 *	call completeFib when we are done processing the command
678 	 *	and want to send a response back to the adapter. This will
679 	 *	send the completed cdb to the adapter.
680 	 */
681 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
682 		if (dev->new_comm_interface) {
683 			kfree (hw_fib);
684 		} else {
685 	       		u32 index;
686 		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
687 			if (size) {
688 				size += sizeof(struct aac_fibhdr);
689 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
690 					return -EMSGSIZE;
691 				hw_fib->header.Size = cpu_to_le16(size);
692 			}
693 			q = &dev->queues->queue[AdapNormRespQueue];
694 			spin_lock_irqsave(q->lock, qflags);
695 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
696 			*(q->headers.producer) = cpu_to_le32(index + 1);
697 			spin_unlock_irqrestore(q->lock, qflags);
698 			if (!(nointr & (int)aac_config.irq_mod))
699 				aac_adapter_notify(dev, AdapNormRespQueue);
700 		}
701 	}
702 	else
703 	{
704         	printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
705         	BUG();
706 	}
707 	return 0;
708 }
709 
710 /**
711  *	aac_fib_complete	-	fib completion handler
712  *	@fib: FIB to complete
713  *
714  *	Will do all necessary work to complete a FIB.
715  */
716 
717 int aac_fib_complete(struct fib *fibptr)
718 {
719 	struct hw_fib * hw_fib = fibptr->hw_fib;
720 
721 	/*
722 	 *	Check for a fib which has already been completed
723 	 */
724 
725 	if (hw_fib->header.XferState == 0)
726         	return 0;
727 	/*
728 	 *	If we plan to do anything check the structure type first.
729 	 */
730 
731 	if (hw_fib->header.StructType != FIB_MAGIC)
732 	        return -EINVAL;
733 	/*
734 	 *	This block completes a cdb which orginated on the host and we
735 	 *	just need to deallocate the cdb or reinit it. At this point the
736 	 *	command is complete that we had sent to the adapter and this
737 	 *	cdb could be reused.
738 	 */
739 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
740 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
741 	{
742 		fib_dealloc(fibptr);
743 	}
744 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
745 	{
746 		/*
747 		 *	This handles the case when the host has aborted the I/O
748 		 *	to the adapter because the adapter is not responding
749 		 */
750 		fib_dealloc(fibptr);
751 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
752 		fib_dealloc(fibptr);
753 	} else {
754 		BUG();
755 	}
756 	return 0;
757 }
758 
759 /**
760  *	aac_printf	-	handle printf from firmware
761  *	@dev: Adapter
762  *	@val: Message info
763  *
764  *	Print a message passed to us by the controller firmware on the
765  *	Adaptec board
766  */
767 
768 void aac_printf(struct aac_dev *dev, u32 val)
769 {
770 	char *cp = dev->printfbuf;
771 	if (dev->printf_enabled)
772 	{
773 		int length = val & 0xffff;
774 		int level = (val >> 16) & 0xffff;
775 
776 		/*
777 		 *	The size of the printfbuf is set in port.c
778 		 *	There is no variable or define for it
779 		 */
780 		if (length > 255)
781 			length = 255;
782 		if (cp[length] != 0)
783 			cp[length] = 0;
784 		if (level == LOG_AAC_HIGH_ERROR)
785 			printk(KERN_WARNING "%s:%s", dev->name, cp);
786 		else
787 			printk(KERN_INFO "%s:%s", dev->name, cp);
788 	}
789 	memset(cp, 0,  256);
790 }
791 
792 
793 /**
794  *	aac_handle_aif		-	Handle a message from the firmware
795  *	@dev: Which adapter this fib is from
796  *	@fibptr: Pointer to fibptr from adapter
797  *
798  *	This routine handles a driver notify fib from the adapter and
799  *	dispatches it to the appropriate routine for handling.
800  */
801 
802 #define AIF_SNIFF_TIMEOUT	(30*HZ)
803 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
804 {
805 	struct hw_fib * hw_fib = fibptr->hw_fib;
806 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
807 	int busy;
808 	u32 container;
809 	struct scsi_device *device;
810 	enum {
811 		NOTHING,
812 		DELETE,
813 		ADD,
814 		CHANGE
815 	} device_config_needed;
816 
817 	/* Sniff for container changes */
818 
819 	if (!dev || !dev->fsa_dev)
820 		return;
821 	container = (u32)-1;
822 
823 	/*
824 	 *	We have set this up to try and minimize the number of
825 	 * re-configures that take place. As a result of this when
826 	 * certain AIF's come in we will set a flag waiting for another
827 	 * type of AIF before setting the re-config flag.
828 	 */
829 	switch (le32_to_cpu(aifcmd->command)) {
830 	case AifCmdDriverNotify:
831 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
832 		/*
833 		 *	Morph or Expand complete
834 		 */
835 		case AifDenMorphComplete:
836 		case AifDenVolumeExtendComplete:
837 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
838 			if (container >= dev->maximum_num_containers)
839 				break;
840 
841 			/*
842 			 *	Find the scsi_device associated with the SCSI
843 			 * address. Make sure we have the right array, and if
844 			 * so set the flag to initiate a new re-config once we
845 			 * see an AifEnConfigChange AIF come through.
846 			 */
847 
848 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
849 				device = scsi_device_lookup(dev->scsi_host_ptr,
850 					CONTAINER_TO_CHANNEL(container),
851 					CONTAINER_TO_ID(container),
852 					CONTAINER_TO_LUN(container));
853 				if (device) {
854 					dev->fsa_dev[container].config_needed = CHANGE;
855 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
856 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
857 					scsi_device_put(device);
858 				}
859 			}
860 		}
861 
862 		/*
863 		 *	If we are waiting on something and this happens to be
864 		 * that thing then set the re-configure flag.
865 		 */
866 		if (container != (u32)-1) {
867 			if (container >= dev->maximum_num_containers)
868 				break;
869 			if ((dev->fsa_dev[container].config_waiting_on ==
870 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
871 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
872 				dev->fsa_dev[container].config_waiting_on = 0;
873 		} else for (container = 0;
874 		    container < dev->maximum_num_containers; ++container) {
875 			if ((dev->fsa_dev[container].config_waiting_on ==
876 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
877 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
878 				dev->fsa_dev[container].config_waiting_on = 0;
879 		}
880 		break;
881 
882 	case AifCmdEventNotify:
883 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
884 		/*
885 		 *	Add an Array.
886 		 */
887 		case AifEnAddContainer:
888 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
889 			if (container >= dev->maximum_num_containers)
890 				break;
891 			dev->fsa_dev[container].config_needed = ADD;
892 			dev->fsa_dev[container].config_waiting_on =
893 				AifEnConfigChange;
894 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
895 			break;
896 
897 		/*
898 		 *	Delete an Array.
899 		 */
900 		case AifEnDeleteContainer:
901 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
902 			if (container >= dev->maximum_num_containers)
903 				break;
904 			dev->fsa_dev[container].config_needed = DELETE;
905 			dev->fsa_dev[container].config_waiting_on =
906 				AifEnConfigChange;
907 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
908 			break;
909 
910 		/*
911 		 *	Container change detected. If we currently are not
912 		 * waiting on something else, setup to wait on a Config Change.
913 		 */
914 		case AifEnContainerChange:
915 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
916 			if (container >= dev->maximum_num_containers)
917 				break;
918 			if (dev->fsa_dev[container].config_waiting_on &&
919 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
920 				break;
921 			dev->fsa_dev[container].config_needed = CHANGE;
922 			dev->fsa_dev[container].config_waiting_on =
923 				AifEnConfigChange;
924 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
925 			break;
926 
927 		case AifEnConfigChange:
928 			break;
929 
930 		}
931 
932 		/*
933 		 *	If we are waiting on something and this happens to be
934 		 * that thing then set the re-configure flag.
935 		 */
936 		if (container != (u32)-1) {
937 			if (container >= dev->maximum_num_containers)
938 				break;
939 			if ((dev->fsa_dev[container].config_waiting_on ==
940 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
941 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
942 				dev->fsa_dev[container].config_waiting_on = 0;
943 		} else for (container = 0;
944 		    container < dev->maximum_num_containers; ++container) {
945 			if ((dev->fsa_dev[container].config_waiting_on ==
946 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
947 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
948 				dev->fsa_dev[container].config_waiting_on = 0;
949 		}
950 		break;
951 
952 	case AifCmdJobProgress:
953 		/*
954 		 *	These are job progress AIF's. When a Clear is being
955 		 * done on a container it is initially created then hidden from
956 		 * the OS. When the clear completes we don't get a config
957 		 * change so we monitor the job status complete on a clear then
958 		 * wait for a container change.
959 		 */
960 
961 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
962 		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
963 		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
964 			for (container = 0;
965 			    container < dev->maximum_num_containers;
966 			    ++container) {
967 				/*
968 				 * Stomp on all config sequencing for all
969 				 * containers?
970 				 */
971 				dev->fsa_dev[container].config_waiting_on =
972 					AifEnContainerChange;
973 				dev->fsa_dev[container].config_needed = ADD;
974 				dev->fsa_dev[container].config_waiting_stamp =
975 					jiffies;
976 			}
977 		}
978 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
979 		 && (((u32 *)aifcmd->data)[6] == 0)
980 		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
981 			for (container = 0;
982 			    container < dev->maximum_num_containers;
983 			    ++container) {
984 				/*
985 				 * Stomp on all config sequencing for all
986 				 * containers?
987 				 */
988 				dev->fsa_dev[container].config_waiting_on =
989 					AifEnContainerChange;
990 				dev->fsa_dev[container].config_needed = DELETE;
991 				dev->fsa_dev[container].config_waiting_stamp =
992 					jiffies;
993 			}
994 		}
995 		break;
996 	}
997 
998 	device_config_needed = NOTHING;
999 	for (container = 0; container < dev->maximum_num_containers;
1000 	    ++container) {
1001 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1002 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1003 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1004 			device_config_needed =
1005 				dev->fsa_dev[container].config_needed;
1006 			dev->fsa_dev[container].config_needed = NOTHING;
1007 			break;
1008 		}
1009 	}
1010 	if (device_config_needed == NOTHING)
1011 		return;
1012 
1013 	/*
1014 	 *	If we decided that a re-configuration needs to be done,
1015 	 * schedule it here on the way out the door, please close the door
1016 	 * behind you.
1017 	 */
1018 
1019 	busy = 0;
1020 
1021 
1022 	/*
1023 	 *	Find the scsi_device associated with the SCSI address,
1024 	 * and mark it as changed, invalidating the cache. This deals
1025 	 * with changes to existing device IDs.
1026 	 */
1027 
1028 	if (!dev || !dev->scsi_host_ptr)
1029 		return;
1030 	/*
1031 	 * force reload of disk info via aac_probe_container
1032 	 */
1033 	if ((device_config_needed == CHANGE)
1034 	 && (dev->fsa_dev[container].valid == 1))
1035 		dev->fsa_dev[container].valid = 2;
1036 	if ((device_config_needed == CHANGE) ||
1037 			(device_config_needed == ADD))
1038 		aac_probe_container(dev, container);
1039 	device = scsi_device_lookup(dev->scsi_host_ptr,
1040 		CONTAINER_TO_CHANNEL(container),
1041 		CONTAINER_TO_ID(container),
1042 		CONTAINER_TO_LUN(container));
1043 	if (device) {
1044 		switch (device_config_needed) {
1045 		case DELETE:
1046 		case CHANGE:
1047 			scsi_rescan_device(&device->sdev_gendev);
1048 
1049 		default:
1050 			break;
1051 		}
1052 		scsi_device_put(device);
1053 	}
1054 	if (device_config_needed == ADD) {
1055 		scsi_add_device(dev->scsi_host_ptr,
1056 		  CONTAINER_TO_CHANNEL(container),
1057 		  CONTAINER_TO_ID(container),
1058 		  CONTAINER_TO_LUN(container));
1059 	}
1060 
1061 }
1062 
1063 static int _aac_reset_adapter(struct aac_dev *aac)
1064 {
1065 	int index, quirks;
1066 	u32 ret;
1067 	int retval;
1068 	struct Scsi_Host *host;
1069 	struct scsi_device *dev;
1070 	struct scsi_cmnd *command;
1071 	struct scsi_cmnd *command_list;
1072 
1073 	/*
1074 	 * Assumptions:
1075 	 *	- host is locked.
1076 	 *	- in_reset is asserted, so no new i/o is getting to the
1077 	 *	  card.
1078 	 *	- The card is dead.
1079 	 */
1080 	host = aac->scsi_host_ptr;
1081 	scsi_block_requests(host);
1082 	aac_adapter_disable_int(aac);
1083 	spin_unlock_irq(host->host_lock);
1084 	kthread_stop(aac->thread);
1085 
1086 	/*
1087 	 *	If a positive health, means in a known DEAD PANIC
1088 	 * state and the adapter could be reset to `try again'.
1089 	 */
1090 	retval = aac_adapter_check_health(aac);
1091 	if (retval == 0)
1092 		retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
1093 		  0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1094 	if (retval)
1095 		retval = aac_adapter_sync_cmd(aac, IOP_RESET,
1096 		  0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1097 
1098 	if (retval)
1099 		goto out;
1100 	if (ret != 0x00000001) {
1101 		retval = -ENODEV;
1102 		goto out;
1103 	}
1104 
1105 	/*
1106 	 *	Loop through the fibs, close the synchronous FIBS
1107 	 */
1108 	for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1109 		struct fib *fib = &aac->fibs[index];
1110 		if (!(fib->hw_fib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1111 		  (fib->hw_fib->header.XferState & cpu_to_le32(ResponseExpected))) {
1112 			unsigned long flagv;
1113 			spin_lock_irqsave(&fib->event_lock, flagv);
1114 			up(&fib->event_wait);
1115 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1116 			schedule();
1117 		}
1118 	}
1119 	index = aac->cardtype;
1120 
1121 	/*
1122 	 * Re-initialize the adapter, first free resources, then carefully
1123 	 * apply the initialization sequence to come back again. Only risk
1124 	 * is a change in Firmware dropping cache, it is assumed the caller
1125 	 * will ensure that i/o is queisced and the card is flushed in that
1126 	 * case.
1127 	 */
1128 	aac_fib_map_free(aac);
1129 	aac->hw_fib_va = NULL;
1130 	aac->hw_fib_pa = 0;
1131 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1132 	aac->comm_addr = NULL;
1133 	aac->comm_phys = 0;
1134 	kfree(aac->queues);
1135 	aac->queues = NULL;
1136 	free_irq(aac->pdev->irq, aac);
1137 	kfree(aac->fsa_dev);
1138 	aac->fsa_dev = NULL;
1139 	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1140 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1141 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1142 			goto out;
1143 	} else {
1144 		if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1145 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1146 			goto out;
1147 	}
1148 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1149 		goto out;
1150 	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1151 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1152 			goto out;
1153 	aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1154 	if (IS_ERR(aac->thread)) {
1155 		retval = PTR_ERR(aac->thread);
1156 		goto out;
1157 	}
1158 	(void)aac_get_adapter_info(aac);
1159 	quirks = aac_get_driver_ident(index)->quirks;
1160 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1161  		host->sg_tablesize = 34;
1162  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1163  	}
1164  	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1165  		host->sg_tablesize = 17;
1166  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1167  	}
1168 	aac_get_config_status(aac, 1);
1169 	aac_get_containers(aac);
1170 	/*
1171 	 * This is where the assumption that the Adapter is quiesced
1172 	 * is important.
1173 	 */
1174 	command_list = NULL;
1175 	__shost_for_each_device(dev, host) {
1176 		unsigned long flags;
1177 		spin_lock_irqsave(&dev->list_lock, flags);
1178 		list_for_each_entry(command, &dev->cmd_list, list)
1179 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1180 				command->SCp.buffer = (struct scatterlist *)command_list;
1181 				command_list = command;
1182 			}
1183 		spin_unlock_irqrestore(&dev->list_lock, flags);
1184 	}
1185 	while ((command = command_list)) {
1186 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1187 		command->SCp.buffer = NULL;
1188 		command->result = DID_OK << 16
1189 		  | COMMAND_COMPLETE << 8
1190 		  | SAM_STAT_TASK_SET_FULL;
1191 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1192 		command->scsi_done(command);
1193 	}
1194 	retval = 0;
1195 
1196 out:
1197 	aac->in_reset = 0;
1198 	scsi_unblock_requests(host);
1199 	spin_lock_irq(host->host_lock);
1200 	return retval;
1201 }
1202 
1203 int aac_check_health(struct aac_dev * aac)
1204 {
1205 	int BlinkLED;
1206 	unsigned long time_now, flagv = 0;
1207 	struct list_head * entry;
1208 	struct Scsi_Host * host;
1209 
1210 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1211 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1212 		return 0;
1213 
1214 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1215 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1216 		return 0; /* OK */
1217 	}
1218 
1219 	aac->in_reset = 1;
1220 
1221 	/* Fake up an AIF:
1222 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1223 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1224 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1225 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1226 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1227 	 *	aac.aifcmd.data[3] = BlinkLED
1228 	 */
1229 
1230 	time_now = jiffies/HZ;
1231 	entry = aac->fib_list.next;
1232 
1233 	/*
1234 	 * For each Context that is on the
1235 	 * fibctxList, make a copy of the
1236 	 * fib, and then set the event to wake up the
1237 	 * thread that is waiting for it.
1238 	 */
1239 	while (entry != &aac->fib_list) {
1240 		/*
1241 		 * Extract the fibctx
1242 		 */
1243 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1244 		struct hw_fib * hw_fib;
1245 		struct fib * fib;
1246 		/*
1247 		 * Check if the queue is getting
1248 		 * backlogged
1249 		 */
1250 		if (fibctx->count > 20) {
1251 			/*
1252 			 * It's *not* jiffies folks,
1253 			 * but jiffies / HZ, so do not
1254 			 * panic ...
1255 			 */
1256 			u32 time_last = fibctx->jiffies;
1257 			/*
1258 			 * Has it been > 2 minutes
1259 			 * since the last read off
1260 			 * the queue?
1261 			 */
1262 			if ((time_now - time_last) > aif_timeout) {
1263 				entry = entry->next;
1264 				aac_close_fib_context(aac, fibctx);
1265 				continue;
1266 			}
1267 		}
1268 		/*
1269 		 * Warning: no sleep allowed while
1270 		 * holding spinlock
1271 		 */
1272 		hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1273 		fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1274 		if (fib && hw_fib) {
1275 			struct aac_aifcmd * aif;
1276 
1277 			memset(hw_fib, 0, sizeof(struct hw_fib));
1278 			memset(fib, 0, sizeof(struct fib));
1279 			fib->hw_fib = hw_fib;
1280 			fib->dev = aac;
1281 			aac_fib_init(fib);
1282 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1283 			fib->size = sizeof (struct fib);
1284 			fib->data = hw_fib->data;
1285 			aif = (struct aac_aifcmd *)hw_fib->data;
1286 			aif->command = cpu_to_le32(AifCmdEventNotify);
1287 		 	aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1288 		 	aif->data[0] = cpu_to_le32(AifEnExpEvent);
1289 			aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1290 		 	aif->data[2] = cpu_to_le32(AifHighPriority);
1291 			aif->data[3] = cpu_to_le32(BlinkLED);
1292 
1293 			/*
1294 			 * Put the FIB onto the
1295 			 * fibctx's fibs
1296 			 */
1297 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1298 			fibctx->count++;
1299 			/*
1300 			 * Set the event to wake up the
1301 			 * thread that will waiting.
1302 			 */
1303 			up(&fibctx->wait_sem);
1304 		} else {
1305 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1306 			kfree(fib);
1307 			kfree(hw_fib);
1308 		}
1309 		entry = entry->next;
1310 	}
1311 
1312 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1313 
1314 	if (BlinkLED < 0) {
1315 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1316 		goto out;
1317 	}
1318 
1319 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1320 
1321 	host = aac->scsi_host_ptr;
1322 	spin_lock_irqsave(host->host_lock, flagv);
1323 	BlinkLED = _aac_reset_adapter(aac);
1324 	spin_unlock_irqrestore(host->host_lock, flagv);
1325 	return BlinkLED;
1326 
1327 out:
1328 	aac->in_reset = 0;
1329 	return BlinkLED;
1330 }
1331 
1332 
1333 /**
1334  *	aac_command_thread	-	command processing thread
1335  *	@dev: Adapter to monitor
1336  *
1337  *	Waits on the commandready event in it's queue. When the event gets set
1338  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1339  *	until the queue is empty. When the queue is empty it will wait for
1340  *	more FIBs.
1341  */
1342 
1343 int aac_command_thread(void *data)
1344 {
1345 	struct aac_dev *dev = data;
1346 	struct hw_fib *hw_fib, *hw_newfib;
1347 	struct fib *fib, *newfib;
1348 	struct aac_fib_context *fibctx;
1349 	unsigned long flags;
1350 	DECLARE_WAITQUEUE(wait, current);
1351 
1352 	/*
1353 	 *	We can only have one thread per adapter for AIF's.
1354 	 */
1355 	if (dev->aif_thread)
1356 		return -EINVAL;
1357 
1358 	/*
1359 	 *	Let the DPC know it has a place to send the AIF's to.
1360 	 */
1361 	dev->aif_thread = 1;
1362 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1363 	set_current_state(TASK_INTERRUPTIBLE);
1364 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1365 	while(1)
1366 	{
1367 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1368 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1369 			struct list_head *entry;
1370 			struct aac_aifcmd * aifcmd;
1371 
1372 			set_current_state(TASK_RUNNING);
1373 
1374 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1375 			list_del(entry);
1376 
1377 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1378 			fib = list_entry(entry, struct fib, fiblink);
1379 			/*
1380 			 *	We will process the FIB here or pass it to a
1381 			 *	worker thread that is TBD. We Really can't
1382 			 *	do anything at this point since we don't have
1383 			 *	anything defined for this thread to do.
1384 			 */
1385 			hw_fib = fib->hw_fib;
1386 			memset(fib, 0, sizeof(struct fib));
1387 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1388 			fib->size = sizeof( struct fib );
1389 			fib->hw_fib = hw_fib;
1390 			fib->data = hw_fib->data;
1391 			fib->dev = dev;
1392 			/*
1393 			 *	We only handle AifRequest fibs from the adapter.
1394 			 */
1395 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1396 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1397 				/* Handle Driver Notify Events */
1398 				aac_handle_aif(dev, fib);
1399 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1400 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1401 			} else {
1402 				struct list_head *entry;
1403 				/* The u32 here is important and intended. We are using
1404 				   32bit wrapping time to fit the adapter field */
1405 
1406 				u32 time_now, time_last;
1407 				unsigned long flagv;
1408 				unsigned num;
1409 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1410 				struct fib ** fib_pool, ** fib_p;
1411 
1412 				/* Sniff events */
1413 				if ((aifcmd->command ==
1414 				     cpu_to_le32(AifCmdEventNotify)) ||
1415 				    (aifcmd->command ==
1416 				     cpu_to_le32(AifCmdJobProgress))) {
1417 					aac_handle_aif(dev, fib);
1418 				}
1419 
1420 				time_now = jiffies/HZ;
1421 
1422 				/*
1423 				 * Warning: no sleep allowed while
1424 				 * holding spinlock. We take the estimate
1425 				 * and pre-allocate a set of fibs outside the
1426 				 * lock.
1427 				 */
1428 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1429 				    / sizeof(struct hw_fib); /* some extra */
1430 				spin_lock_irqsave(&dev->fib_lock, flagv);
1431 				entry = dev->fib_list.next;
1432 				while (entry != &dev->fib_list) {
1433 					entry = entry->next;
1434 					++num;
1435 				}
1436 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1437 				hw_fib_pool = NULL;
1438 				fib_pool = NULL;
1439 				if (num
1440 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1441 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1442 					hw_fib_p = hw_fib_pool;
1443 					fib_p = fib_pool;
1444 					while (hw_fib_p < &hw_fib_pool[num]) {
1445 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1446 							--hw_fib_p;
1447 							break;
1448 						}
1449 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1450 							kfree(*(--hw_fib_p));
1451 							break;
1452 						}
1453 					}
1454 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1455 						kfree(fib_pool);
1456 						fib_pool = NULL;
1457 						kfree(hw_fib_pool);
1458 						hw_fib_pool = NULL;
1459 					}
1460 				} else {
1461 					kfree(hw_fib_pool);
1462 					hw_fib_pool = NULL;
1463 				}
1464 				spin_lock_irqsave(&dev->fib_lock, flagv);
1465 				entry = dev->fib_list.next;
1466 				/*
1467 				 * For each Context that is on the
1468 				 * fibctxList, make a copy of the
1469 				 * fib, and then set the event to wake up the
1470 				 * thread that is waiting for it.
1471 				 */
1472 				hw_fib_p = hw_fib_pool;
1473 				fib_p = fib_pool;
1474 				while (entry != &dev->fib_list) {
1475 					/*
1476 					 * Extract the fibctx
1477 					 */
1478 					fibctx = list_entry(entry, struct aac_fib_context, next);
1479 					/*
1480 					 * Check if the queue is getting
1481 					 * backlogged
1482 					 */
1483 					if (fibctx->count > 20)
1484 					{
1485 						/*
1486 						 * It's *not* jiffies folks,
1487 						 * but jiffies / HZ so do not
1488 						 * panic ...
1489 						 */
1490 						time_last = fibctx->jiffies;
1491 						/*
1492 						 * Has it been > 2 minutes
1493 						 * since the last read off
1494 						 * the queue?
1495 						 */
1496 						if ((time_now - time_last) > aif_timeout) {
1497 							entry = entry->next;
1498 							aac_close_fib_context(dev, fibctx);
1499 							continue;
1500 						}
1501 					}
1502 					/*
1503 					 * Warning: no sleep allowed while
1504 					 * holding spinlock
1505 					 */
1506 					if (hw_fib_p < &hw_fib_pool[num]) {
1507 						hw_newfib = *hw_fib_p;
1508 						*(hw_fib_p++) = NULL;
1509 						newfib = *fib_p;
1510 						*(fib_p++) = NULL;
1511 						/*
1512 						 * Make the copy of the FIB
1513 						 */
1514 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1515 						memcpy(newfib, fib, sizeof(struct fib));
1516 						newfib->hw_fib = hw_newfib;
1517 						/*
1518 						 * Put the FIB onto the
1519 						 * fibctx's fibs
1520 						 */
1521 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1522 						fibctx->count++;
1523 						/*
1524 						 * Set the event to wake up the
1525 						 * thread that is waiting.
1526 						 */
1527 						up(&fibctx->wait_sem);
1528 					} else {
1529 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1530 					}
1531 					entry = entry->next;
1532 				}
1533 				/*
1534 				 *	Set the status of this FIB
1535 				 */
1536 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1537 				aac_fib_adapter_complete(fib, sizeof(u32));
1538 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1539 				/* Free up the remaining resources */
1540 				hw_fib_p = hw_fib_pool;
1541 				fib_p = fib_pool;
1542 				while (hw_fib_p < &hw_fib_pool[num]) {
1543 					kfree(*hw_fib_p);
1544 					kfree(*fib_p);
1545 					++fib_p;
1546 					++hw_fib_p;
1547 				}
1548 				kfree(hw_fib_pool);
1549 				kfree(fib_pool);
1550 			}
1551 			kfree(fib);
1552 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1553 		}
1554 		/*
1555 		 *	There are no more AIF's
1556 		 */
1557 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1558 		schedule();
1559 
1560 		if (kthread_should_stop())
1561 			break;
1562 		set_current_state(TASK_INTERRUPTIBLE);
1563 	}
1564 	if (dev->queues)
1565 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1566 	dev->aif_thread = 0;
1567 	return 0;
1568 }
1569