1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commsup.c 26 * 27 * Abstract: Contain all routines that are required for FSA host/adapter 28 * communication. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/interrupt.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_host.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_cmnd.h> 48 #include <asm/semaphore.h> 49 50 #include "aacraid.h" 51 52 /** 53 * fib_map_alloc - allocate the fib objects 54 * @dev: Adapter to allocate for 55 * 56 * Allocate and map the shared PCI space for the FIB blocks used to 57 * talk to the Adaptec firmware. 58 */ 59 60 static int fib_map_alloc(struct aac_dev *dev) 61 { 62 dprintk((KERN_INFO 63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 68 &dev->hw_fib_pa))==NULL) 69 return -ENOMEM; 70 return 0; 71 } 72 73 /** 74 * aac_fib_map_free - free the fib objects 75 * @dev: Adapter to free 76 * 77 * Free the PCI mappings and the memory allocated for FIB blocks 78 * on this adapter. 79 */ 80 81 void aac_fib_map_free(struct aac_dev *dev) 82 { 83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa); 84 } 85 86 /** 87 * aac_fib_setup - setup the fibs 88 * @dev: Adapter to set up 89 * 90 * Allocate the PCI space for the fibs, map it and then intialise the 91 * fib area, the unmapped fib data and also the free list 92 */ 93 94 int aac_fib_setup(struct aac_dev * dev) 95 { 96 struct fib *fibptr; 97 struct hw_fib *hw_fib_va; 98 dma_addr_t hw_fib_pa; 99 int i; 100 101 while (((i = fib_map_alloc(dev)) == -ENOMEM) 102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 105 } 106 if (i<0) 107 return -ENOMEM; 108 109 hw_fib_va = dev->hw_fib_va; 110 hw_fib_pa = dev->hw_fib_pa; 111 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 112 /* 113 * Initialise the fibs 114 */ 115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 116 { 117 fibptr->dev = dev; 118 fibptr->hw_fib = hw_fib_va; 119 fibptr->data = (void *) fibptr->hw_fib->data; 120 fibptr->next = fibptr+1; /* Forward chain the fibs */ 121 init_MUTEX_LOCKED(&fibptr->event_wait); 122 spin_lock_init(&fibptr->event_lock); 123 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff); 124 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size); 125 fibptr->hw_fib_pa = hw_fib_pa; 126 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size); 127 hw_fib_pa = hw_fib_pa + dev->max_fib_size; 128 } 129 /* 130 * Add the fib chain to the free list 131 */ 132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 133 /* 134 * Enable this to debug out of queue space 135 */ 136 dev->free_fib = &dev->fibs[0]; 137 return 0; 138 } 139 140 /** 141 * aac_fib_alloc - allocate a fib 142 * @dev: Adapter to allocate the fib for 143 * 144 * Allocate a fib from the adapter fib pool. If the pool is empty we 145 * return NULL. 146 */ 147 148 struct fib *aac_fib_alloc(struct aac_dev *dev) 149 { 150 struct fib * fibptr; 151 unsigned long flags; 152 spin_lock_irqsave(&dev->fib_lock, flags); 153 fibptr = dev->free_fib; 154 if(!fibptr){ 155 spin_unlock_irqrestore(&dev->fib_lock, flags); 156 return fibptr; 157 } 158 dev->free_fib = fibptr->next; 159 spin_unlock_irqrestore(&dev->fib_lock, flags); 160 /* 161 * Set the proper node type code and node byte size 162 */ 163 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 164 fibptr->size = sizeof(struct fib); 165 /* 166 * Null out fields that depend on being zero at the start of 167 * each I/O 168 */ 169 fibptr->hw_fib->header.XferState = 0; 170 fibptr->callback = NULL; 171 fibptr->callback_data = NULL; 172 173 return fibptr; 174 } 175 176 /** 177 * aac_fib_free - free a fib 178 * @fibptr: fib to free up 179 * 180 * Frees up a fib and places it on the appropriate queue 181 * (either free or timed out) 182 */ 183 184 void aac_fib_free(struct fib *fibptr) 185 { 186 unsigned long flags; 187 188 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 189 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) { 190 aac_config.fib_timeouts++; 191 fibptr->next = fibptr->dev->timeout_fib; 192 fibptr->dev->timeout_fib = fibptr; 193 } else { 194 if (fibptr->hw_fib->header.XferState != 0) { 195 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 196 (void*)fibptr, 197 le32_to_cpu(fibptr->hw_fib->header.XferState)); 198 } 199 fibptr->next = fibptr->dev->free_fib; 200 fibptr->dev->free_fib = fibptr; 201 } 202 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 203 } 204 205 /** 206 * aac_fib_init - initialise a fib 207 * @fibptr: The fib to initialize 208 * 209 * Set up the generic fib fields ready for use 210 */ 211 212 void aac_fib_init(struct fib *fibptr) 213 { 214 struct hw_fib *hw_fib = fibptr->hw_fib; 215 216 hw_fib->header.StructType = FIB_MAGIC; 217 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 218 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 219 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ 220 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 221 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 222 } 223 224 /** 225 * fib_deallocate - deallocate a fib 226 * @fibptr: fib to deallocate 227 * 228 * Will deallocate and return to the free pool the FIB pointed to by the 229 * caller. 230 */ 231 232 static void fib_dealloc(struct fib * fibptr) 233 { 234 struct hw_fib *hw_fib = fibptr->hw_fib; 235 BUG_ON(hw_fib->header.StructType != FIB_MAGIC); 236 hw_fib->header.XferState = 0; 237 } 238 239 /* 240 * Commuication primitives define and support the queuing method we use to 241 * support host to adapter commuication. All queue accesses happen through 242 * these routines and are the only routines which have a knowledge of the 243 * how these queues are implemented. 244 */ 245 246 /** 247 * aac_get_entry - get a queue entry 248 * @dev: Adapter 249 * @qid: Queue Number 250 * @entry: Entry return 251 * @index: Index return 252 * @nonotify: notification control 253 * 254 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 255 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 256 * returned. 257 */ 258 259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 260 { 261 struct aac_queue * q; 262 unsigned long idx; 263 264 /* 265 * All of the queues wrap when they reach the end, so we check 266 * to see if they have reached the end and if they have we just 267 * set the index back to zero. This is a wrap. You could or off 268 * the high bits in all updates but this is a bit faster I think. 269 */ 270 271 q = &dev->queues->queue[qid]; 272 273 idx = *index = le32_to_cpu(*(q->headers.producer)); 274 /* Interrupt Moderation, only interrupt for first two entries */ 275 if (idx != le32_to_cpu(*(q->headers.consumer))) { 276 if (--idx == 0) { 277 if (qid == AdapNormCmdQueue) 278 idx = ADAP_NORM_CMD_ENTRIES; 279 else 280 idx = ADAP_NORM_RESP_ENTRIES; 281 } 282 if (idx != le32_to_cpu(*(q->headers.consumer))) 283 *nonotify = 1; 284 } 285 286 if (qid == AdapNormCmdQueue) { 287 if (*index >= ADAP_NORM_CMD_ENTRIES) 288 *index = 0; /* Wrap to front of the Producer Queue. */ 289 } else { 290 if (*index >= ADAP_NORM_RESP_ENTRIES) 291 *index = 0; /* Wrap to front of the Producer Queue. */ 292 } 293 294 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ 295 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 296 qid, q->numpending); 297 return 0; 298 } else { 299 *entry = q->base + *index; 300 return 1; 301 } 302 } 303 304 /** 305 * aac_queue_get - get the next free QE 306 * @dev: Adapter 307 * @index: Returned index 308 * @priority: Priority of fib 309 * @fib: Fib to associate with the queue entry 310 * @wait: Wait if queue full 311 * @fibptr: Driver fib object to go with fib 312 * @nonotify: Don't notify the adapter 313 * 314 * Gets the next free QE off the requested priorty adapter command 315 * queue and associates the Fib with the QE. The QE represented by 316 * index is ready to insert on the queue when this routine returns 317 * success. 318 */ 319 320 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 321 { 322 struct aac_entry * entry = NULL; 323 int map = 0; 324 325 if (qid == AdapNormCmdQueue) { 326 /* if no entries wait for some if caller wants to */ 327 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 328 { 329 printk(KERN_ERR "GetEntries failed\n"); 330 } 331 /* 332 * Setup queue entry with a command, status and fib mapped 333 */ 334 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 335 map = 1; 336 } else { 337 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 338 { 339 /* if no entries wait for some if caller wants to */ 340 } 341 /* 342 * Setup queue entry with command, status and fib mapped 343 */ 344 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 345 entry->addr = hw_fib->header.SenderFibAddress; 346 /* Restore adapters pointer to the FIB */ 347 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 348 map = 0; 349 } 350 /* 351 * If MapFib is true than we need to map the Fib and put pointers 352 * in the queue entry. 353 */ 354 if (map) 355 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 356 return 0; 357 } 358 359 /* 360 * Define the highest level of host to adapter communication routines. 361 * These routines will support host to adapter FS commuication. These 362 * routines have no knowledge of the commuication method used. This level 363 * sends and receives FIBs. This level has no knowledge of how these FIBs 364 * get passed back and forth. 365 */ 366 367 /** 368 * aac_fib_send - send a fib to the adapter 369 * @command: Command to send 370 * @fibptr: The fib 371 * @size: Size of fib data area 372 * @priority: Priority of Fib 373 * @wait: Async/sync select 374 * @reply: True if a reply is wanted 375 * @callback: Called with reply 376 * @callback_data: Passed to callback 377 * 378 * Sends the requested FIB to the adapter and optionally will wait for a 379 * response FIB. If the caller does not wish to wait for a response than 380 * an event to wait on must be supplied. This event will be set when a 381 * response FIB is received from the adapter. 382 */ 383 384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 385 int priority, int wait, int reply, fib_callback callback, 386 void *callback_data) 387 { 388 struct aac_dev * dev = fibptr->dev; 389 struct hw_fib * hw_fib = fibptr->hw_fib; 390 struct aac_queue * q; 391 unsigned long flags = 0; 392 unsigned long qflags; 393 394 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 395 return -EBUSY; 396 /* 397 * There are 5 cases with the wait and reponse requested flags. 398 * The only invalid cases are if the caller requests to wait and 399 * does not request a response and if the caller does not want a 400 * response and the Fib is not allocated from pool. If a response 401 * is not requesed the Fib will just be deallocaed by the DPC 402 * routine when the response comes back from the adapter. No 403 * further processing will be done besides deleting the Fib. We 404 * will have a debug mode where the adapter can notify the host 405 * it had a problem and the host can log that fact. 406 */ 407 if (wait && !reply) { 408 return -EINVAL; 409 } else if (!wait && reply) { 410 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 411 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 412 } else if (!wait && !reply) { 413 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 414 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 415 } else if (wait && reply) { 416 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 417 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 418 } 419 /* 420 * Map the fib into 32bits by using the fib number 421 */ 422 423 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 424 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 425 /* 426 * Set FIB state to indicate where it came from and if we want a 427 * response from the adapter. Also load the command from the 428 * caller. 429 * 430 * Map the hw fib pointer as a 32bit value 431 */ 432 hw_fib->header.Command = cpu_to_le16(command); 433 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 434 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/ 435 /* 436 * Set the size of the Fib we want to send to the adapter 437 */ 438 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 439 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 440 return -EMSGSIZE; 441 } 442 /* 443 * Get a queue entry connect the FIB to it and send an notify 444 * the adapter a command is ready. 445 */ 446 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 447 448 /* 449 * Fill in the Callback and CallbackContext if we are not 450 * going to wait. 451 */ 452 if (!wait) { 453 fibptr->callback = callback; 454 fibptr->callback_data = callback_data; 455 } 456 457 fibptr->done = 0; 458 fibptr->flags = 0; 459 460 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 461 462 dprintk((KERN_DEBUG "Fib contents:.\n")); 463 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 464 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 465 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 466 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib)); 467 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 468 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 469 470 if (!dev->queues) 471 return -EBUSY; 472 q = &dev->queues->queue[AdapNormCmdQueue]; 473 474 if(wait) 475 spin_lock_irqsave(&fibptr->event_lock, flags); 476 spin_lock_irqsave(q->lock, qflags); 477 if (dev->new_comm_interface) { 478 unsigned long count = 10000000L; /* 50 seconds */ 479 q->numpending++; 480 spin_unlock_irqrestore(q->lock, qflags); 481 while (aac_adapter_send(fibptr) != 0) { 482 if (--count == 0) { 483 if (wait) 484 spin_unlock_irqrestore(&fibptr->event_lock, flags); 485 spin_lock_irqsave(q->lock, qflags); 486 q->numpending--; 487 spin_unlock_irqrestore(q->lock, qflags); 488 return -ETIMEDOUT; 489 } 490 udelay(5); 491 } 492 } else { 493 u32 index; 494 unsigned long nointr = 0; 495 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr); 496 497 q->numpending++; 498 *(q->headers.producer) = cpu_to_le32(index + 1); 499 spin_unlock_irqrestore(q->lock, qflags); 500 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index)); 501 if (!(nointr & aac_config.irq_mod)) 502 aac_adapter_notify(dev, AdapNormCmdQueue); 503 } 504 505 /* 506 * If the caller wanted us to wait for response wait now. 507 */ 508 509 if (wait) { 510 spin_unlock_irqrestore(&fibptr->event_lock, flags); 511 /* Only set for first known interruptable command */ 512 if (wait < 0) { 513 /* 514 * *VERY* Dangerous to time out a command, the 515 * assumption is made that we have no hope of 516 * functioning because an interrupt routing or other 517 * hardware failure has occurred. 518 */ 519 unsigned long count = 36000000L; /* 3 minutes */ 520 while (down_trylock(&fibptr->event_wait)) { 521 int blink; 522 if (--count == 0) { 523 spin_lock_irqsave(q->lock, qflags); 524 q->numpending--; 525 spin_unlock_irqrestore(q->lock, qflags); 526 if (wait == -1) { 527 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 528 "Usually a result of a PCI interrupt routing problem;\n" 529 "update mother board BIOS or consider utilizing one of\n" 530 "the SAFE mode kernel options (acpi, apic etc)\n"); 531 } 532 return -ETIMEDOUT; 533 } 534 if ((blink = aac_adapter_check_health(dev)) > 0) { 535 if (wait == -1) { 536 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 537 "Usually a result of a serious unrecoverable hardware problem\n", 538 blink); 539 } 540 return -EFAULT; 541 } 542 udelay(5); 543 } 544 } else if (down_interruptible(&fibptr->event_wait)) { 545 spin_lock_irqsave(&fibptr->event_lock, flags); 546 if (fibptr->done == 0) { 547 fibptr->done = 2; /* Tell interrupt we aborted */ 548 spin_unlock_irqrestore(&fibptr->event_lock, flags); 549 return -EINTR; 550 } 551 spin_unlock_irqrestore(&fibptr->event_lock, flags); 552 } 553 BUG_ON(fibptr->done == 0); 554 555 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){ 556 return -ETIMEDOUT; 557 } else { 558 return 0; 559 } 560 } 561 /* 562 * If the user does not want a response than return success otherwise 563 * return pending 564 */ 565 if (reply) 566 return -EINPROGRESS; 567 else 568 return 0; 569 } 570 571 /** 572 * aac_consumer_get - get the top of the queue 573 * @dev: Adapter 574 * @q: Queue 575 * @entry: Return entry 576 * 577 * Will return a pointer to the entry on the top of the queue requested that 578 * we are a consumer of, and return the address of the queue entry. It does 579 * not change the state of the queue. 580 */ 581 582 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 583 { 584 u32 index; 585 int status; 586 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 587 status = 0; 588 } else { 589 /* 590 * The consumer index must be wrapped if we have reached 591 * the end of the queue, else we just use the entry 592 * pointed to by the header index 593 */ 594 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 595 index = 0; 596 else 597 index = le32_to_cpu(*q->headers.consumer); 598 *entry = q->base + index; 599 status = 1; 600 } 601 return(status); 602 } 603 604 /** 605 * aac_consumer_free - free consumer entry 606 * @dev: Adapter 607 * @q: Queue 608 * @qid: Queue ident 609 * 610 * Frees up the current top of the queue we are a consumer of. If the 611 * queue was full notify the producer that the queue is no longer full. 612 */ 613 614 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 615 { 616 int wasfull = 0; 617 u32 notify; 618 619 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 620 wasfull = 1; 621 622 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 623 *q->headers.consumer = cpu_to_le32(1); 624 else 625 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); 626 627 if (wasfull) { 628 switch (qid) { 629 630 case HostNormCmdQueue: 631 notify = HostNormCmdNotFull; 632 break; 633 case HostNormRespQueue: 634 notify = HostNormRespNotFull; 635 break; 636 default: 637 BUG(); 638 return; 639 } 640 aac_adapter_notify(dev, notify); 641 } 642 } 643 644 /** 645 * aac_fib_adapter_complete - complete adapter issued fib 646 * @fibptr: fib to complete 647 * @size: size of fib 648 * 649 * Will do all necessary work to complete a FIB that was sent from 650 * the adapter. 651 */ 652 653 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 654 { 655 struct hw_fib * hw_fib = fibptr->hw_fib; 656 struct aac_dev * dev = fibptr->dev; 657 struct aac_queue * q; 658 unsigned long nointr = 0; 659 unsigned long qflags; 660 661 if (hw_fib->header.XferState == 0) { 662 if (dev->new_comm_interface) 663 kfree (hw_fib); 664 return 0; 665 } 666 /* 667 * If we plan to do anything check the structure type first. 668 */ 669 if ( hw_fib->header.StructType != FIB_MAGIC ) { 670 if (dev->new_comm_interface) 671 kfree (hw_fib); 672 return -EINVAL; 673 } 674 /* 675 * This block handles the case where the adapter had sent us a 676 * command and we have finished processing the command. We 677 * call completeFib when we are done processing the command 678 * and want to send a response back to the adapter. This will 679 * send the completed cdb to the adapter. 680 */ 681 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 682 if (dev->new_comm_interface) { 683 kfree (hw_fib); 684 } else { 685 u32 index; 686 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 687 if (size) { 688 size += sizeof(struct aac_fibhdr); 689 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 690 return -EMSGSIZE; 691 hw_fib->header.Size = cpu_to_le16(size); 692 } 693 q = &dev->queues->queue[AdapNormRespQueue]; 694 spin_lock_irqsave(q->lock, qflags); 695 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 696 *(q->headers.producer) = cpu_to_le32(index + 1); 697 spin_unlock_irqrestore(q->lock, qflags); 698 if (!(nointr & (int)aac_config.irq_mod)) 699 aac_adapter_notify(dev, AdapNormRespQueue); 700 } 701 } 702 else 703 { 704 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n"); 705 BUG(); 706 } 707 return 0; 708 } 709 710 /** 711 * aac_fib_complete - fib completion handler 712 * @fib: FIB to complete 713 * 714 * Will do all necessary work to complete a FIB. 715 */ 716 717 int aac_fib_complete(struct fib *fibptr) 718 { 719 struct hw_fib * hw_fib = fibptr->hw_fib; 720 721 /* 722 * Check for a fib which has already been completed 723 */ 724 725 if (hw_fib->header.XferState == 0) 726 return 0; 727 /* 728 * If we plan to do anything check the structure type first. 729 */ 730 731 if (hw_fib->header.StructType != FIB_MAGIC) 732 return -EINVAL; 733 /* 734 * This block completes a cdb which orginated on the host and we 735 * just need to deallocate the cdb or reinit it. At this point the 736 * command is complete that we had sent to the adapter and this 737 * cdb could be reused. 738 */ 739 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 740 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 741 { 742 fib_dealloc(fibptr); 743 } 744 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 745 { 746 /* 747 * This handles the case when the host has aborted the I/O 748 * to the adapter because the adapter is not responding 749 */ 750 fib_dealloc(fibptr); 751 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 752 fib_dealloc(fibptr); 753 } else { 754 BUG(); 755 } 756 return 0; 757 } 758 759 /** 760 * aac_printf - handle printf from firmware 761 * @dev: Adapter 762 * @val: Message info 763 * 764 * Print a message passed to us by the controller firmware on the 765 * Adaptec board 766 */ 767 768 void aac_printf(struct aac_dev *dev, u32 val) 769 { 770 char *cp = dev->printfbuf; 771 if (dev->printf_enabled) 772 { 773 int length = val & 0xffff; 774 int level = (val >> 16) & 0xffff; 775 776 /* 777 * The size of the printfbuf is set in port.c 778 * There is no variable or define for it 779 */ 780 if (length > 255) 781 length = 255; 782 if (cp[length] != 0) 783 cp[length] = 0; 784 if (level == LOG_AAC_HIGH_ERROR) 785 printk(KERN_WARNING "%s:%s", dev->name, cp); 786 else 787 printk(KERN_INFO "%s:%s", dev->name, cp); 788 } 789 memset(cp, 0, 256); 790 } 791 792 793 /** 794 * aac_handle_aif - Handle a message from the firmware 795 * @dev: Which adapter this fib is from 796 * @fibptr: Pointer to fibptr from adapter 797 * 798 * This routine handles a driver notify fib from the adapter and 799 * dispatches it to the appropriate routine for handling. 800 */ 801 802 #define AIF_SNIFF_TIMEOUT (30*HZ) 803 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 804 { 805 struct hw_fib * hw_fib = fibptr->hw_fib; 806 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 807 int busy; 808 u32 container; 809 struct scsi_device *device; 810 enum { 811 NOTHING, 812 DELETE, 813 ADD, 814 CHANGE 815 } device_config_needed; 816 817 /* Sniff for container changes */ 818 819 if (!dev || !dev->fsa_dev) 820 return; 821 container = (u32)-1; 822 823 /* 824 * We have set this up to try and minimize the number of 825 * re-configures that take place. As a result of this when 826 * certain AIF's come in we will set a flag waiting for another 827 * type of AIF before setting the re-config flag. 828 */ 829 switch (le32_to_cpu(aifcmd->command)) { 830 case AifCmdDriverNotify: 831 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 832 /* 833 * Morph or Expand complete 834 */ 835 case AifDenMorphComplete: 836 case AifDenVolumeExtendComplete: 837 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 838 if (container >= dev->maximum_num_containers) 839 break; 840 841 /* 842 * Find the scsi_device associated with the SCSI 843 * address. Make sure we have the right array, and if 844 * so set the flag to initiate a new re-config once we 845 * see an AifEnConfigChange AIF come through. 846 */ 847 848 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 849 device = scsi_device_lookup(dev->scsi_host_ptr, 850 CONTAINER_TO_CHANNEL(container), 851 CONTAINER_TO_ID(container), 852 CONTAINER_TO_LUN(container)); 853 if (device) { 854 dev->fsa_dev[container].config_needed = CHANGE; 855 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 856 dev->fsa_dev[container].config_waiting_stamp = jiffies; 857 scsi_device_put(device); 858 } 859 } 860 } 861 862 /* 863 * If we are waiting on something and this happens to be 864 * that thing then set the re-configure flag. 865 */ 866 if (container != (u32)-1) { 867 if (container >= dev->maximum_num_containers) 868 break; 869 if ((dev->fsa_dev[container].config_waiting_on == 870 le32_to_cpu(*(u32 *)aifcmd->data)) && 871 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 872 dev->fsa_dev[container].config_waiting_on = 0; 873 } else for (container = 0; 874 container < dev->maximum_num_containers; ++container) { 875 if ((dev->fsa_dev[container].config_waiting_on == 876 le32_to_cpu(*(u32 *)aifcmd->data)) && 877 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 878 dev->fsa_dev[container].config_waiting_on = 0; 879 } 880 break; 881 882 case AifCmdEventNotify: 883 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 884 /* 885 * Add an Array. 886 */ 887 case AifEnAddContainer: 888 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 889 if (container >= dev->maximum_num_containers) 890 break; 891 dev->fsa_dev[container].config_needed = ADD; 892 dev->fsa_dev[container].config_waiting_on = 893 AifEnConfigChange; 894 dev->fsa_dev[container].config_waiting_stamp = jiffies; 895 break; 896 897 /* 898 * Delete an Array. 899 */ 900 case AifEnDeleteContainer: 901 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 902 if (container >= dev->maximum_num_containers) 903 break; 904 dev->fsa_dev[container].config_needed = DELETE; 905 dev->fsa_dev[container].config_waiting_on = 906 AifEnConfigChange; 907 dev->fsa_dev[container].config_waiting_stamp = jiffies; 908 break; 909 910 /* 911 * Container change detected. If we currently are not 912 * waiting on something else, setup to wait on a Config Change. 913 */ 914 case AifEnContainerChange: 915 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 916 if (container >= dev->maximum_num_containers) 917 break; 918 if (dev->fsa_dev[container].config_waiting_on && 919 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 920 break; 921 dev->fsa_dev[container].config_needed = CHANGE; 922 dev->fsa_dev[container].config_waiting_on = 923 AifEnConfigChange; 924 dev->fsa_dev[container].config_waiting_stamp = jiffies; 925 break; 926 927 case AifEnConfigChange: 928 break; 929 930 } 931 932 /* 933 * If we are waiting on something and this happens to be 934 * that thing then set the re-configure flag. 935 */ 936 if (container != (u32)-1) { 937 if (container >= dev->maximum_num_containers) 938 break; 939 if ((dev->fsa_dev[container].config_waiting_on == 940 le32_to_cpu(*(u32 *)aifcmd->data)) && 941 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 942 dev->fsa_dev[container].config_waiting_on = 0; 943 } else for (container = 0; 944 container < dev->maximum_num_containers; ++container) { 945 if ((dev->fsa_dev[container].config_waiting_on == 946 le32_to_cpu(*(u32 *)aifcmd->data)) && 947 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 948 dev->fsa_dev[container].config_waiting_on = 0; 949 } 950 break; 951 952 case AifCmdJobProgress: 953 /* 954 * These are job progress AIF's. When a Clear is being 955 * done on a container it is initially created then hidden from 956 * the OS. When the clear completes we don't get a config 957 * change so we monitor the job status complete on a clear then 958 * wait for a container change. 959 */ 960 961 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 962 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) 963 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { 964 for (container = 0; 965 container < dev->maximum_num_containers; 966 ++container) { 967 /* 968 * Stomp on all config sequencing for all 969 * containers? 970 */ 971 dev->fsa_dev[container].config_waiting_on = 972 AifEnContainerChange; 973 dev->fsa_dev[container].config_needed = ADD; 974 dev->fsa_dev[container].config_waiting_stamp = 975 jiffies; 976 } 977 } 978 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 979 && (((u32 *)aifcmd->data)[6] == 0) 980 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { 981 for (container = 0; 982 container < dev->maximum_num_containers; 983 ++container) { 984 /* 985 * Stomp on all config sequencing for all 986 * containers? 987 */ 988 dev->fsa_dev[container].config_waiting_on = 989 AifEnContainerChange; 990 dev->fsa_dev[container].config_needed = DELETE; 991 dev->fsa_dev[container].config_waiting_stamp = 992 jiffies; 993 } 994 } 995 break; 996 } 997 998 device_config_needed = NOTHING; 999 for (container = 0; container < dev->maximum_num_containers; 1000 ++container) { 1001 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1002 (dev->fsa_dev[container].config_needed != NOTHING) && 1003 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1004 device_config_needed = 1005 dev->fsa_dev[container].config_needed; 1006 dev->fsa_dev[container].config_needed = NOTHING; 1007 break; 1008 } 1009 } 1010 if (device_config_needed == NOTHING) 1011 return; 1012 1013 /* 1014 * If we decided that a re-configuration needs to be done, 1015 * schedule it here on the way out the door, please close the door 1016 * behind you. 1017 */ 1018 1019 busy = 0; 1020 1021 1022 /* 1023 * Find the scsi_device associated with the SCSI address, 1024 * and mark it as changed, invalidating the cache. This deals 1025 * with changes to existing device IDs. 1026 */ 1027 1028 if (!dev || !dev->scsi_host_ptr) 1029 return; 1030 /* 1031 * force reload of disk info via aac_probe_container 1032 */ 1033 if ((device_config_needed == CHANGE) 1034 && (dev->fsa_dev[container].valid == 1)) 1035 dev->fsa_dev[container].valid = 2; 1036 if ((device_config_needed == CHANGE) || 1037 (device_config_needed == ADD)) 1038 aac_probe_container(dev, container); 1039 device = scsi_device_lookup(dev->scsi_host_ptr, 1040 CONTAINER_TO_CHANNEL(container), 1041 CONTAINER_TO_ID(container), 1042 CONTAINER_TO_LUN(container)); 1043 if (device) { 1044 switch (device_config_needed) { 1045 case DELETE: 1046 case CHANGE: 1047 scsi_rescan_device(&device->sdev_gendev); 1048 1049 default: 1050 break; 1051 } 1052 scsi_device_put(device); 1053 } 1054 if (device_config_needed == ADD) { 1055 scsi_add_device(dev->scsi_host_ptr, 1056 CONTAINER_TO_CHANNEL(container), 1057 CONTAINER_TO_ID(container), 1058 CONTAINER_TO_LUN(container)); 1059 } 1060 1061 } 1062 1063 static int _aac_reset_adapter(struct aac_dev *aac) 1064 { 1065 int index, quirks; 1066 u32 ret; 1067 int retval; 1068 struct Scsi_Host *host; 1069 struct scsi_device *dev; 1070 struct scsi_cmnd *command; 1071 struct scsi_cmnd *command_list; 1072 1073 /* 1074 * Assumptions: 1075 * - host is locked. 1076 * - in_reset is asserted, so no new i/o is getting to the 1077 * card. 1078 * - The card is dead. 1079 */ 1080 host = aac->scsi_host_ptr; 1081 scsi_block_requests(host); 1082 aac_adapter_disable_int(aac); 1083 spin_unlock_irq(host->host_lock); 1084 kthread_stop(aac->thread); 1085 1086 /* 1087 * If a positive health, means in a known DEAD PANIC 1088 * state and the adapter could be reset to `try again'. 1089 */ 1090 retval = aac_adapter_check_health(aac); 1091 if (retval == 0) 1092 retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS, 1093 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL); 1094 if (retval) 1095 retval = aac_adapter_sync_cmd(aac, IOP_RESET, 1096 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL); 1097 1098 if (retval) 1099 goto out; 1100 if (ret != 0x00000001) { 1101 retval = -ENODEV; 1102 goto out; 1103 } 1104 1105 /* 1106 * Loop through the fibs, close the synchronous FIBS 1107 */ 1108 for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1109 struct fib *fib = &aac->fibs[index]; 1110 if (!(fib->hw_fib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1111 (fib->hw_fib->header.XferState & cpu_to_le32(ResponseExpected))) { 1112 unsigned long flagv; 1113 spin_lock_irqsave(&fib->event_lock, flagv); 1114 up(&fib->event_wait); 1115 spin_unlock_irqrestore(&fib->event_lock, flagv); 1116 schedule(); 1117 } 1118 } 1119 index = aac->cardtype; 1120 1121 /* 1122 * Re-initialize the adapter, first free resources, then carefully 1123 * apply the initialization sequence to come back again. Only risk 1124 * is a change in Firmware dropping cache, it is assumed the caller 1125 * will ensure that i/o is queisced and the card is flushed in that 1126 * case. 1127 */ 1128 aac_fib_map_free(aac); 1129 aac->hw_fib_va = NULL; 1130 aac->hw_fib_pa = 0; 1131 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1132 aac->comm_addr = NULL; 1133 aac->comm_phys = 0; 1134 kfree(aac->queues); 1135 aac->queues = NULL; 1136 free_irq(aac->pdev->irq, aac); 1137 kfree(aac->fsa_dev); 1138 aac->fsa_dev = NULL; 1139 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) { 1140 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) || 1141 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK)))) 1142 goto out; 1143 } else { 1144 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) || 1145 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL)))) 1146 goto out; 1147 } 1148 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1149 goto out; 1150 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) 1151 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) 1152 goto out; 1153 aac->thread = kthread_run(aac_command_thread, aac, aac->name); 1154 if (IS_ERR(aac->thread)) { 1155 retval = PTR_ERR(aac->thread); 1156 goto out; 1157 } 1158 (void)aac_get_adapter_info(aac); 1159 quirks = aac_get_driver_ident(index)->quirks; 1160 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1161 host->sg_tablesize = 34; 1162 host->max_sectors = (host->sg_tablesize * 8) + 112; 1163 } 1164 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1165 host->sg_tablesize = 17; 1166 host->max_sectors = (host->sg_tablesize * 8) + 112; 1167 } 1168 aac_get_config_status(aac, 1); 1169 aac_get_containers(aac); 1170 /* 1171 * This is where the assumption that the Adapter is quiesced 1172 * is important. 1173 */ 1174 command_list = NULL; 1175 __shost_for_each_device(dev, host) { 1176 unsigned long flags; 1177 spin_lock_irqsave(&dev->list_lock, flags); 1178 list_for_each_entry(command, &dev->cmd_list, list) 1179 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1180 command->SCp.buffer = (struct scatterlist *)command_list; 1181 command_list = command; 1182 } 1183 spin_unlock_irqrestore(&dev->list_lock, flags); 1184 } 1185 while ((command = command_list)) { 1186 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1187 command->SCp.buffer = NULL; 1188 command->result = DID_OK << 16 1189 | COMMAND_COMPLETE << 8 1190 | SAM_STAT_TASK_SET_FULL; 1191 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1192 command->scsi_done(command); 1193 } 1194 retval = 0; 1195 1196 out: 1197 aac->in_reset = 0; 1198 scsi_unblock_requests(host); 1199 spin_lock_irq(host->host_lock); 1200 return retval; 1201 } 1202 1203 int aac_check_health(struct aac_dev * aac) 1204 { 1205 int BlinkLED; 1206 unsigned long time_now, flagv = 0; 1207 struct list_head * entry; 1208 struct Scsi_Host * host; 1209 1210 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1211 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1212 return 0; 1213 1214 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1215 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1216 return 0; /* OK */ 1217 } 1218 1219 aac->in_reset = 1; 1220 1221 /* Fake up an AIF: 1222 * aac_aifcmd.command = AifCmdEventNotify = 1 1223 * aac_aifcmd.seqnum = 0xFFFFFFFF 1224 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1225 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1226 * aac.aifcmd.data[2] = AifHighPriority = 3 1227 * aac.aifcmd.data[3] = BlinkLED 1228 */ 1229 1230 time_now = jiffies/HZ; 1231 entry = aac->fib_list.next; 1232 1233 /* 1234 * For each Context that is on the 1235 * fibctxList, make a copy of the 1236 * fib, and then set the event to wake up the 1237 * thread that is waiting for it. 1238 */ 1239 while (entry != &aac->fib_list) { 1240 /* 1241 * Extract the fibctx 1242 */ 1243 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1244 struct hw_fib * hw_fib; 1245 struct fib * fib; 1246 /* 1247 * Check if the queue is getting 1248 * backlogged 1249 */ 1250 if (fibctx->count > 20) { 1251 /* 1252 * It's *not* jiffies folks, 1253 * but jiffies / HZ, so do not 1254 * panic ... 1255 */ 1256 u32 time_last = fibctx->jiffies; 1257 /* 1258 * Has it been > 2 minutes 1259 * since the last read off 1260 * the queue? 1261 */ 1262 if ((time_now - time_last) > aif_timeout) { 1263 entry = entry->next; 1264 aac_close_fib_context(aac, fibctx); 1265 continue; 1266 } 1267 } 1268 /* 1269 * Warning: no sleep allowed while 1270 * holding spinlock 1271 */ 1272 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1273 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC); 1274 if (fib && hw_fib) { 1275 struct aac_aifcmd * aif; 1276 1277 memset(hw_fib, 0, sizeof(struct hw_fib)); 1278 memset(fib, 0, sizeof(struct fib)); 1279 fib->hw_fib = hw_fib; 1280 fib->dev = aac; 1281 aac_fib_init(fib); 1282 fib->type = FSAFS_NTC_FIB_CONTEXT; 1283 fib->size = sizeof (struct fib); 1284 fib->data = hw_fib->data; 1285 aif = (struct aac_aifcmd *)hw_fib->data; 1286 aif->command = cpu_to_le32(AifCmdEventNotify); 1287 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1288 aif->data[0] = cpu_to_le32(AifEnExpEvent); 1289 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic); 1290 aif->data[2] = cpu_to_le32(AifHighPriority); 1291 aif->data[3] = cpu_to_le32(BlinkLED); 1292 1293 /* 1294 * Put the FIB onto the 1295 * fibctx's fibs 1296 */ 1297 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1298 fibctx->count++; 1299 /* 1300 * Set the event to wake up the 1301 * thread that will waiting. 1302 */ 1303 up(&fibctx->wait_sem); 1304 } else { 1305 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1306 kfree(fib); 1307 kfree(hw_fib); 1308 } 1309 entry = entry->next; 1310 } 1311 1312 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1313 1314 if (BlinkLED < 0) { 1315 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1316 goto out; 1317 } 1318 1319 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1320 1321 host = aac->scsi_host_ptr; 1322 spin_lock_irqsave(host->host_lock, flagv); 1323 BlinkLED = _aac_reset_adapter(aac); 1324 spin_unlock_irqrestore(host->host_lock, flagv); 1325 return BlinkLED; 1326 1327 out: 1328 aac->in_reset = 0; 1329 return BlinkLED; 1330 } 1331 1332 1333 /** 1334 * aac_command_thread - command processing thread 1335 * @dev: Adapter to monitor 1336 * 1337 * Waits on the commandready event in it's queue. When the event gets set 1338 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1339 * until the queue is empty. When the queue is empty it will wait for 1340 * more FIBs. 1341 */ 1342 1343 int aac_command_thread(void *data) 1344 { 1345 struct aac_dev *dev = data; 1346 struct hw_fib *hw_fib, *hw_newfib; 1347 struct fib *fib, *newfib; 1348 struct aac_fib_context *fibctx; 1349 unsigned long flags; 1350 DECLARE_WAITQUEUE(wait, current); 1351 1352 /* 1353 * We can only have one thread per adapter for AIF's. 1354 */ 1355 if (dev->aif_thread) 1356 return -EINVAL; 1357 1358 /* 1359 * Let the DPC know it has a place to send the AIF's to. 1360 */ 1361 dev->aif_thread = 1; 1362 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1363 set_current_state(TASK_INTERRUPTIBLE); 1364 dprintk ((KERN_INFO "aac_command_thread start\n")); 1365 while(1) 1366 { 1367 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1368 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1369 struct list_head *entry; 1370 struct aac_aifcmd * aifcmd; 1371 1372 set_current_state(TASK_RUNNING); 1373 1374 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1375 list_del(entry); 1376 1377 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1378 fib = list_entry(entry, struct fib, fiblink); 1379 /* 1380 * We will process the FIB here or pass it to a 1381 * worker thread that is TBD. We Really can't 1382 * do anything at this point since we don't have 1383 * anything defined for this thread to do. 1384 */ 1385 hw_fib = fib->hw_fib; 1386 memset(fib, 0, sizeof(struct fib)); 1387 fib->type = FSAFS_NTC_FIB_CONTEXT; 1388 fib->size = sizeof( struct fib ); 1389 fib->hw_fib = hw_fib; 1390 fib->data = hw_fib->data; 1391 fib->dev = dev; 1392 /* 1393 * We only handle AifRequest fibs from the adapter. 1394 */ 1395 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1396 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1397 /* Handle Driver Notify Events */ 1398 aac_handle_aif(dev, fib); 1399 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1400 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1401 } else { 1402 struct list_head *entry; 1403 /* The u32 here is important and intended. We are using 1404 32bit wrapping time to fit the adapter field */ 1405 1406 u32 time_now, time_last; 1407 unsigned long flagv; 1408 unsigned num; 1409 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1410 struct fib ** fib_pool, ** fib_p; 1411 1412 /* Sniff events */ 1413 if ((aifcmd->command == 1414 cpu_to_le32(AifCmdEventNotify)) || 1415 (aifcmd->command == 1416 cpu_to_le32(AifCmdJobProgress))) { 1417 aac_handle_aif(dev, fib); 1418 } 1419 1420 time_now = jiffies/HZ; 1421 1422 /* 1423 * Warning: no sleep allowed while 1424 * holding spinlock. We take the estimate 1425 * and pre-allocate a set of fibs outside the 1426 * lock. 1427 */ 1428 num = le32_to_cpu(dev->init->AdapterFibsSize) 1429 / sizeof(struct hw_fib); /* some extra */ 1430 spin_lock_irqsave(&dev->fib_lock, flagv); 1431 entry = dev->fib_list.next; 1432 while (entry != &dev->fib_list) { 1433 entry = entry->next; 1434 ++num; 1435 } 1436 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1437 hw_fib_pool = NULL; 1438 fib_pool = NULL; 1439 if (num 1440 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1441 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1442 hw_fib_p = hw_fib_pool; 1443 fib_p = fib_pool; 1444 while (hw_fib_p < &hw_fib_pool[num]) { 1445 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1446 --hw_fib_p; 1447 break; 1448 } 1449 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1450 kfree(*(--hw_fib_p)); 1451 break; 1452 } 1453 } 1454 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1455 kfree(fib_pool); 1456 fib_pool = NULL; 1457 kfree(hw_fib_pool); 1458 hw_fib_pool = NULL; 1459 } 1460 } else { 1461 kfree(hw_fib_pool); 1462 hw_fib_pool = NULL; 1463 } 1464 spin_lock_irqsave(&dev->fib_lock, flagv); 1465 entry = dev->fib_list.next; 1466 /* 1467 * For each Context that is on the 1468 * fibctxList, make a copy of the 1469 * fib, and then set the event to wake up the 1470 * thread that is waiting for it. 1471 */ 1472 hw_fib_p = hw_fib_pool; 1473 fib_p = fib_pool; 1474 while (entry != &dev->fib_list) { 1475 /* 1476 * Extract the fibctx 1477 */ 1478 fibctx = list_entry(entry, struct aac_fib_context, next); 1479 /* 1480 * Check if the queue is getting 1481 * backlogged 1482 */ 1483 if (fibctx->count > 20) 1484 { 1485 /* 1486 * It's *not* jiffies folks, 1487 * but jiffies / HZ so do not 1488 * panic ... 1489 */ 1490 time_last = fibctx->jiffies; 1491 /* 1492 * Has it been > 2 minutes 1493 * since the last read off 1494 * the queue? 1495 */ 1496 if ((time_now - time_last) > aif_timeout) { 1497 entry = entry->next; 1498 aac_close_fib_context(dev, fibctx); 1499 continue; 1500 } 1501 } 1502 /* 1503 * Warning: no sleep allowed while 1504 * holding spinlock 1505 */ 1506 if (hw_fib_p < &hw_fib_pool[num]) { 1507 hw_newfib = *hw_fib_p; 1508 *(hw_fib_p++) = NULL; 1509 newfib = *fib_p; 1510 *(fib_p++) = NULL; 1511 /* 1512 * Make the copy of the FIB 1513 */ 1514 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1515 memcpy(newfib, fib, sizeof(struct fib)); 1516 newfib->hw_fib = hw_newfib; 1517 /* 1518 * Put the FIB onto the 1519 * fibctx's fibs 1520 */ 1521 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1522 fibctx->count++; 1523 /* 1524 * Set the event to wake up the 1525 * thread that is waiting. 1526 */ 1527 up(&fibctx->wait_sem); 1528 } else { 1529 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1530 } 1531 entry = entry->next; 1532 } 1533 /* 1534 * Set the status of this FIB 1535 */ 1536 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1537 aac_fib_adapter_complete(fib, sizeof(u32)); 1538 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1539 /* Free up the remaining resources */ 1540 hw_fib_p = hw_fib_pool; 1541 fib_p = fib_pool; 1542 while (hw_fib_p < &hw_fib_pool[num]) { 1543 kfree(*hw_fib_p); 1544 kfree(*fib_p); 1545 ++fib_p; 1546 ++hw_fib_p; 1547 } 1548 kfree(hw_fib_pool); 1549 kfree(fib_pool); 1550 } 1551 kfree(fib); 1552 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1553 } 1554 /* 1555 * There are no more AIF's 1556 */ 1557 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1558 schedule(); 1559 1560 if (kthread_should_stop()) 1561 break; 1562 set_current_state(TASK_INTERRUPTIBLE); 1563 } 1564 if (dev->queues) 1565 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1566 dev->aif_thread = 0; 1567 return 0; 1568 } 1569