1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commsup.c 26 * 27 * Abstract: Contain all routines that are required for FSA host/adapter 28 * communication. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <scsi/scsi_host.h> 42 #include <scsi/scsi_device.h> 43 #include <asm/semaphore.h> 44 #include <asm/delay.h> 45 46 #include "aacraid.h" 47 48 /** 49 * fib_map_alloc - allocate the fib objects 50 * @dev: Adapter to allocate for 51 * 52 * Allocate and map the shared PCI space for the FIB blocks used to 53 * talk to the Adaptec firmware. 54 */ 55 56 static int fib_map_alloc(struct aac_dev *dev) 57 { 58 dprintk((KERN_INFO 59 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 60 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 61 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 62 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size 63 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 64 &dev->hw_fib_pa))==NULL) 65 return -ENOMEM; 66 return 0; 67 } 68 69 /** 70 * fib_map_free - free the fib objects 71 * @dev: Adapter to free 72 * 73 * Free the PCI mappings and the memory allocated for FIB blocks 74 * on this adapter. 75 */ 76 77 void fib_map_free(struct aac_dev *dev) 78 { 79 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa); 80 } 81 82 /** 83 * fib_setup - setup the fibs 84 * @dev: Adapter to set up 85 * 86 * Allocate the PCI space for the fibs, map it and then intialise the 87 * fib area, the unmapped fib data and also the free list 88 */ 89 90 int fib_setup(struct aac_dev * dev) 91 { 92 struct fib *fibptr; 93 struct hw_fib *hw_fib_va; 94 dma_addr_t hw_fib_pa; 95 int i; 96 97 while (((i = fib_map_alloc(dev)) == -ENOMEM) 98 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 99 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 100 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 101 } 102 if (i<0) 103 return -ENOMEM; 104 105 hw_fib_va = dev->hw_fib_va; 106 hw_fib_pa = dev->hw_fib_pa; 107 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 108 /* 109 * Initialise the fibs 110 */ 111 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 112 { 113 fibptr->dev = dev; 114 fibptr->hw_fib = hw_fib_va; 115 fibptr->data = (void *) fibptr->hw_fib->data; 116 fibptr->next = fibptr+1; /* Forward chain the fibs */ 117 init_MUTEX_LOCKED(&fibptr->event_wait); 118 spin_lock_init(&fibptr->event_lock); 119 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff); 120 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size); 121 fibptr->hw_fib_pa = hw_fib_pa; 122 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size); 123 hw_fib_pa = hw_fib_pa + dev->max_fib_size; 124 } 125 /* 126 * Add the fib chain to the free list 127 */ 128 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 129 /* 130 * Enable this to debug out of queue space 131 */ 132 dev->free_fib = &dev->fibs[0]; 133 return 0; 134 } 135 136 /** 137 * fib_alloc - allocate a fib 138 * @dev: Adapter to allocate the fib for 139 * 140 * Allocate a fib from the adapter fib pool. If the pool is empty we 141 * return NULL. 142 */ 143 144 struct fib * fib_alloc(struct aac_dev *dev) 145 { 146 struct fib * fibptr; 147 unsigned long flags; 148 spin_lock_irqsave(&dev->fib_lock, flags); 149 fibptr = dev->free_fib; 150 if(!fibptr){ 151 spin_unlock_irqrestore(&dev->fib_lock, flags); 152 return fibptr; 153 } 154 dev->free_fib = fibptr->next; 155 spin_unlock_irqrestore(&dev->fib_lock, flags); 156 /* 157 * Set the proper node type code and node byte size 158 */ 159 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 160 fibptr->size = sizeof(struct fib); 161 /* 162 * Null out fields that depend on being zero at the start of 163 * each I/O 164 */ 165 fibptr->hw_fib->header.XferState = 0; 166 fibptr->callback = NULL; 167 fibptr->callback_data = NULL; 168 169 return fibptr; 170 } 171 172 /** 173 * fib_free - free a fib 174 * @fibptr: fib to free up 175 * 176 * Frees up a fib and places it on the appropriate queue 177 * (either free or timed out) 178 */ 179 180 void fib_free(struct fib * fibptr) 181 { 182 unsigned long flags; 183 184 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 185 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) { 186 aac_config.fib_timeouts++; 187 fibptr->next = fibptr->dev->timeout_fib; 188 fibptr->dev->timeout_fib = fibptr; 189 } else { 190 if (fibptr->hw_fib->header.XferState != 0) { 191 printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 192 (void*)fibptr, 193 le32_to_cpu(fibptr->hw_fib->header.XferState)); 194 } 195 fibptr->next = fibptr->dev->free_fib; 196 fibptr->dev->free_fib = fibptr; 197 } 198 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 199 } 200 201 /** 202 * fib_init - initialise a fib 203 * @fibptr: The fib to initialize 204 * 205 * Set up the generic fib fields ready for use 206 */ 207 208 void fib_init(struct fib *fibptr) 209 { 210 struct hw_fib *hw_fib = fibptr->hw_fib; 211 212 hw_fib->header.StructType = FIB_MAGIC; 213 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 214 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 215 hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 216 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 217 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 218 } 219 220 /** 221 * fib_deallocate - deallocate a fib 222 * @fibptr: fib to deallocate 223 * 224 * Will deallocate and return to the free pool the FIB pointed to by the 225 * caller. 226 */ 227 228 static void fib_dealloc(struct fib * fibptr) 229 { 230 struct hw_fib *hw_fib = fibptr->hw_fib; 231 if(hw_fib->header.StructType != FIB_MAGIC) 232 BUG(); 233 hw_fib->header.XferState = 0; 234 } 235 236 /* 237 * Commuication primitives define and support the queuing method we use to 238 * support host to adapter commuication. All queue accesses happen through 239 * these routines and are the only routines which have a knowledge of the 240 * how these queues are implemented. 241 */ 242 243 /** 244 * aac_get_entry - get a queue entry 245 * @dev: Adapter 246 * @qid: Queue Number 247 * @entry: Entry return 248 * @index: Index return 249 * @nonotify: notification control 250 * 251 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 252 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 253 * returned. 254 */ 255 256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 257 { 258 struct aac_queue * q; 259 unsigned long idx; 260 261 /* 262 * All of the queues wrap when they reach the end, so we check 263 * to see if they have reached the end and if they have we just 264 * set the index back to zero. This is a wrap. You could or off 265 * the high bits in all updates but this is a bit faster I think. 266 */ 267 268 q = &dev->queues->queue[qid]; 269 270 idx = *index = le32_to_cpu(*(q->headers.producer)); 271 /* Interrupt Moderation, only interrupt for first two entries */ 272 if (idx != le32_to_cpu(*(q->headers.consumer))) { 273 if (--idx == 0) { 274 if (qid == AdapNormCmdQueue) 275 idx = ADAP_NORM_CMD_ENTRIES; 276 else 277 idx = ADAP_NORM_RESP_ENTRIES; 278 } 279 if (idx != le32_to_cpu(*(q->headers.consumer))) 280 *nonotify = 1; 281 } 282 283 if (qid == AdapNormCmdQueue) { 284 if (*index >= ADAP_NORM_CMD_ENTRIES) 285 *index = 0; /* Wrap to front of the Producer Queue. */ 286 } else { 287 if (*index >= ADAP_NORM_RESP_ENTRIES) 288 *index = 0; /* Wrap to front of the Producer Queue. */ 289 } 290 291 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ 292 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 293 qid, q->numpending); 294 return 0; 295 } else { 296 *entry = q->base + *index; 297 return 1; 298 } 299 } 300 301 /** 302 * aac_queue_get - get the next free QE 303 * @dev: Adapter 304 * @index: Returned index 305 * @priority: Priority of fib 306 * @fib: Fib to associate with the queue entry 307 * @wait: Wait if queue full 308 * @fibptr: Driver fib object to go with fib 309 * @nonotify: Don't notify the adapter 310 * 311 * Gets the next free QE off the requested priorty adapter command 312 * queue and associates the Fib with the QE. The QE represented by 313 * index is ready to insert on the queue when this routine returns 314 * success. 315 */ 316 317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 318 { 319 struct aac_entry * entry = NULL; 320 int map = 0; 321 322 if (qid == AdapNormCmdQueue) { 323 /* if no entries wait for some if caller wants to */ 324 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 325 { 326 printk(KERN_ERR "GetEntries failed\n"); 327 } 328 /* 329 * Setup queue entry with a command, status and fib mapped 330 */ 331 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 332 map = 1; 333 } else { 334 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 335 { 336 /* if no entries wait for some if caller wants to */ 337 } 338 /* 339 * Setup queue entry with command, status and fib mapped 340 */ 341 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 342 entry->addr = hw_fib->header.SenderFibAddress; 343 /* Restore adapters pointer to the FIB */ 344 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 345 map = 0; 346 } 347 /* 348 * If MapFib is true than we need to map the Fib and put pointers 349 * in the queue entry. 350 */ 351 if (map) 352 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 353 return 0; 354 } 355 356 /* 357 * Define the highest level of host to adapter communication routines. 358 * These routines will support host to adapter FS commuication. These 359 * routines have no knowledge of the commuication method used. This level 360 * sends and receives FIBs. This level has no knowledge of how these FIBs 361 * get passed back and forth. 362 */ 363 364 /** 365 * fib_send - send a fib to the adapter 366 * @command: Command to send 367 * @fibptr: The fib 368 * @size: Size of fib data area 369 * @priority: Priority of Fib 370 * @wait: Async/sync select 371 * @reply: True if a reply is wanted 372 * @callback: Called with reply 373 * @callback_data: Passed to callback 374 * 375 * Sends the requested FIB to the adapter and optionally will wait for a 376 * response FIB. If the caller does not wish to wait for a response than 377 * an event to wait on must be supplied. This event will be set when a 378 * response FIB is received from the adapter. 379 */ 380 381 int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data) 382 { 383 u32 index; 384 struct aac_dev * dev = fibptr->dev; 385 unsigned long nointr = 0; 386 struct hw_fib * hw_fib = fibptr->hw_fib; 387 struct aac_queue * q; 388 unsigned long flags = 0; 389 unsigned long qflags; 390 391 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 392 return -EBUSY; 393 /* 394 * There are 5 cases with the wait and reponse requested flags. 395 * The only invalid cases are if the caller requests to wait and 396 * does not request a response and if the caller does not want a 397 * response and the Fib is not allocated from pool. If a response 398 * is not requesed the Fib will just be deallocaed by the DPC 399 * routine when the response comes back from the adapter. No 400 * further processing will be done besides deleting the Fib. We 401 * will have a debug mode where the adapter can notify the host 402 * it had a problem and the host can log that fact. 403 */ 404 if (wait && !reply) { 405 return -EINVAL; 406 } else if (!wait && reply) { 407 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 408 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 409 } else if (!wait && !reply) { 410 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 411 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 412 } else if (wait && reply) { 413 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 414 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 415 } 416 /* 417 * Map the fib into 32bits by using the fib number 418 */ 419 420 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1); 421 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 422 /* 423 * Set FIB state to indicate where it came from and if we want a 424 * response from the adapter. Also load the command from the 425 * caller. 426 * 427 * Map the hw fib pointer as a 32bit value 428 */ 429 hw_fib->header.Command = cpu_to_le16(command); 430 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 431 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/ 432 /* 433 * Set the size of the Fib we want to send to the adapter 434 */ 435 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 436 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 437 return -EMSGSIZE; 438 } 439 /* 440 * Get a queue entry connect the FIB to it and send an notify 441 * the adapter a command is ready. 442 */ 443 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 444 445 /* 446 * Fill in the Callback and CallbackContext if we are not 447 * going to wait. 448 */ 449 if (!wait) { 450 fibptr->callback = callback; 451 fibptr->callback_data = callback_data; 452 } 453 454 fibptr->done = 0; 455 fibptr->flags = 0; 456 457 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 458 459 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index)); 460 dprintk((KERN_DEBUG "Fib contents:.\n")); 461 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command)); 462 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState)); 463 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib)); 464 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 465 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 466 467 q = &dev->queues->queue[AdapNormCmdQueue]; 468 469 if(wait) 470 spin_lock_irqsave(&fibptr->event_lock, flags); 471 spin_lock_irqsave(q->lock, qflags); 472 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr); 473 474 list_add_tail(&fibptr->queue, &q->pendingq); 475 q->numpending++; 476 *(q->headers.producer) = cpu_to_le32(index + 1); 477 spin_unlock_irqrestore(q->lock, qflags); 478 if (!(nointr & aac_config.irq_mod)) 479 aac_adapter_notify(dev, AdapNormCmdQueue); 480 /* 481 * If the caller wanted us to wait for response wait now. 482 */ 483 484 if (wait) { 485 spin_unlock_irqrestore(&fibptr->event_lock, flags); 486 /* Only set for first known interruptable command */ 487 if (wait < 0) { 488 /* 489 * *VERY* Dangerous to time out a command, the 490 * assumption is made that we have no hope of 491 * functioning because an interrupt routing or other 492 * hardware failure has occurred. 493 */ 494 unsigned long count = 36000000L; /* 3 minutes */ 495 unsigned long qflags; 496 while (down_trylock(&fibptr->event_wait)) { 497 if (--count == 0) { 498 spin_lock_irqsave(q->lock, qflags); 499 q->numpending--; 500 list_del(&fibptr->queue); 501 spin_unlock_irqrestore(q->lock, qflags); 502 if (wait == -1) { 503 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n" 504 "Usually a result of a PCI interrupt routing problem;\n" 505 "update mother board BIOS or consider utilizing one of\n" 506 "the SAFE mode kernel options (acpi, apic etc)\n"); 507 } 508 return -ETIMEDOUT; 509 } 510 udelay(5); 511 } 512 } else 513 down(&fibptr->event_wait); 514 if(fibptr->done == 0) 515 BUG(); 516 517 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){ 518 return -ETIMEDOUT; 519 } else { 520 return 0; 521 } 522 } 523 /* 524 * If the user does not want a response than return success otherwise 525 * return pending 526 */ 527 if (reply) 528 return -EINPROGRESS; 529 else 530 return 0; 531 } 532 533 /** 534 * aac_consumer_get - get the top of the queue 535 * @dev: Adapter 536 * @q: Queue 537 * @entry: Return entry 538 * 539 * Will return a pointer to the entry on the top of the queue requested that 540 * we are a consumer of, and return the address of the queue entry. It does 541 * not change the state of the queue. 542 */ 543 544 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 545 { 546 u32 index; 547 int status; 548 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 549 status = 0; 550 } else { 551 /* 552 * The consumer index must be wrapped if we have reached 553 * the end of the queue, else we just use the entry 554 * pointed to by the header index 555 */ 556 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 557 index = 0; 558 else 559 index = le32_to_cpu(*q->headers.consumer); 560 *entry = q->base + index; 561 status = 1; 562 } 563 return(status); 564 } 565 566 /** 567 * aac_consumer_free - free consumer entry 568 * @dev: Adapter 569 * @q: Queue 570 * @qid: Queue ident 571 * 572 * Frees up the current top of the queue we are a consumer of. If the 573 * queue was full notify the producer that the queue is no longer full. 574 */ 575 576 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 577 { 578 int wasfull = 0; 579 u32 notify; 580 581 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 582 wasfull = 1; 583 584 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 585 *q->headers.consumer = cpu_to_le32(1); 586 else 587 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); 588 589 if (wasfull) { 590 switch (qid) { 591 592 case HostNormCmdQueue: 593 notify = HostNormCmdNotFull; 594 break; 595 case HostNormRespQueue: 596 notify = HostNormRespNotFull; 597 break; 598 default: 599 BUG(); 600 return; 601 } 602 aac_adapter_notify(dev, notify); 603 } 604 } 605 606 /** 607 * fib_adapter_complete - complete adapter issued fib 608 * @fibptr: fib to complete 609 * @size: size of fib 610 * 611 * Will do all necessary work to complete a FIB that was sent from 612 * the adapter. 613 */ 614 615 int fib_adapter_complete(struct fib * fibptr, unsigned short size) 616 { 617 struct hw_fib * hw_fib = fibptr->hw_fib; 618 struct aac_dev * dev = fibptr->dev; 619 struct aac_queue * q; 620 unsigned long nointr = 0; 621 unsigned long qflags; 622 623 if (hw_fib->header.XferState == 0) { 624 return 0; 625 } 626 /* 627 * If we plan to do anything check the structure type first. 628 */ 629 if ( hw_fib->header.StructType != FIB_MAGIC ) { 630 return -EINVAL; 631 } 632 /* 633 * This block handles the case where the adapter had sent us a 634 * command and we have finished processing the command. We 635 * call completeFib when we are done processing the command 636 * and want to send a response back to the adapter. This will 637 * send the completed cdb to the adapter. 638 */ 639 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 640 u32 index; 641 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 642 if (size) { 643 size += sizeof(struct aac_fibhdr); 644 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 645 return -EMSGSIZE; 646 hw_fib->header.Size = cpu_to_le16(size); 647 } 648 q = &dev->queues->queue[AdapNormRespQueue]; 649 spin_lock_irqsave(q->lock, qflags); 650 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 651 *(q->headers.producer) = cpu_to_le32(index + 1); 652 spin_unlock_irqrestore(q->lock, qflags); 653 if (!(nointr & (int)aac_config.irq_mod)) 654 aac_adapter_notify(dev, AdapNormRespQueue); 655 } 656 else 657 { 658 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n"); 659 BUG(); 660 } 661 return 0; 662 } 663 664 /** 665 * fib_complete - fib completion handler 666 * @fib: FIB to complete 667 * 668 * Will do all necessary work to complete a FIB. 669 */ 670 671 int fib_complete(struct fib * fibptr) 672 { 673 struct hw_fib * hw_fib = fibptr->hw_fib; 674 675 /* 676 * Check for a fib which has already been completed 677 */ 678 679 if (hw_fib->header.XferState == 0) 680 return 0; 681 /* 682 * If we plan to do anything check the structure type first. 683 */ 684 685 if (hw_fib->header.StructType != FIB_MAGIC) 686 return -EINVAL; 687 /* 688 * This block completes a cdb which orginated on the host and we 689 * just need to deallocate the cdb or reinit it. At this point the 690 * command is complete that we had sent to the adapter and this 691 * cdb could be reused. 692 */ 693 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 694 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 695 { 696 fib_dealloc(fibptr); 697 } 698 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 699 { 700 /* 701 * This handles the case when the host has aborted the I/O 702 * to the adapter because the adapter is not responding 703 */ 704 fib_dealloc(fibptr); 705 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 706 fib_dealloc(fibptr); 707 } else { 708 BUG(); 709 } 710 return 0; 711 } 712 713 /** 714 * aac_printf - handle printf from firmware 715 * @dev: Adapter 716 * @val: Message info 717 * 718 * Print a message passed to us by the controller firmware on the 719 * Adaptec board 720 */ 721 722 void aac_printf(struct aac_dev *dev, u32 val) 723 { 724 char *cp = dev->printfbuf; 725 if (dev->printf_enabled) 726 { 727 int length = val & 0xffff; 728 int level = (val >> 16) & 0xffff; 729 730 /* 731 * The size of the printfbuf is set in port.c 732 * There is no variable or define for it 733 */ 734 if (length > 255) 735 length = 255; 736 if (cp[length] != 0) 737 cp[length] = 0; 738 if (level == LOG_AAC_HIGH_ERROR) 739 printk(KERN_WARNING "aacraid:%s", cp); 740 else 741 printk(KERN_INFO "aacraid:%s", cp); 742 } 743 memset(cp, 0, 256); 744 } 745 746 747 /** 748 * aac_handle_aif - Handle a message from the firmware 749 * @dev: Which adapter this fib is from 750 * @fibptr: Pointer to fibptr from adapter 751 * 752 * This routine handles a driver notify fib from the adapter and 753 * dispatches it to the appropriate routine for handling. 754 */ 755 756 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 757 { 758 struct hw_fib * hw_fib = fibptr->hw_fib; 759 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 760 int busy; 761 u32 container; 762 struct scsi_device *device; 763 enum { 764 NOTHING, 765 DELETE, 766 ADD, 767 CHANGE 768 } device_config_needed; 769 770 /* Sniff for container changes */ 771 772 if (!dev) 773 return; 774 container = (u32)-1; 775 776 /* 777 * We have set this up to try and minimize the number of 778 * re-configures that take place. As a result of this when 779 * certain AIF's come in we will set a flag waiting for another 780 * type of AIF before setting the re-config flag. 781 */ 782 switch (le32_to_cpu(aifcmd->command)) { 783 case AifCmdDriverNotify: 784 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 785 /* 786 * Morph or Expand complete 787 */ 788 case AifDenMorphComplete: 789 case AifDenVolumeExtendComplete: 790 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 791 if (container >= dev->maximum_num_containers) 792 break; 793 794 /* 795 * Find the Scsi_Device associated with the SCSI 796 * address. Make sure we have the right array, and if 797 * so set the flag to initiate a new re-config once we 798 * see an AifEnConfigChange AIF come through. 799 */ 800 801 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 802 device = scsi_device_lookup(dev->scsi_host_ptr, 803 CONTAINER_TO_CHANNEL(container), 804 CONTAINER_TO_ID(container), 805 CONTAINER_TO_LUN(container)); 806 if (device) { 807 dev->fsa_dev[container].config_needed = CHANGE; 808 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 809 scsi_device_put(device); 810 } 811 } 812 } 813 814 /* 815 * If we are waiting on something and this happens to be 816 * that thing then set the re-configure flag. 817 */ 818 if (container != (u32)-1) { 819 if (container >= dev->maximum_num_containers) 820 break; 821 if (dev->fsa_dev[container].config_waiting_on == 822 le32_to_cpu(*(u32 *)aifcmd->data)) 823 dev->fsa_dev[container].config_waiting_on = 0; 824 } else for (container = 0; 825 container < dev->maximum_num_containers; ++container) { 826 if (dev->fsa_dev[container].config_waiting_on == 827 le32_to_cpu(*(u32 *)aifcmd->data)) 828 dev->fsa_dev[container].config_waiting_on = 0; 829 } 830 break; 831 832 case AifCmdEventNotify: 833 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 834 /* 835 * Add an Array. 836 */ 837 case AifEnAddContainer: 838 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 839 if (container >= dev->maximum_num_containers) 840 break; 841 dev->fsa_dev[container].config_needed = ADD; 842 dev->fsa_dev[container].config_waiting_on = 843 AifEnConfigChange; 844 break; 845 846 /* 847 * Delete an Array. 848 */ 849 case AifEnDeleteContainer: 850 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 851 if (container >= dev->maximum_num_containers) 852 break; 853 dev->fsa_dev[container].config_needed = DELETE; 854 dev->fsa_dev[container].config_waiting_on = 855 AifEnConfigChange; 856 break; 857 858 /* 859 * Container change detected. If we currently are not 860 * waiting on something else, setup to wait on a Config Change. 861 */ 862 case AifEnContainerChange: 863 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 864 if (container >= dev->maximum_num_containers) 865 break; 866 if (dev->fsa_dev[container].config_waiting_on) 867 break; 868 dev->fsa_dev[container].config_needed = CHANGE; 869 dev->fsa_dev[container].config_waiting_on = 870 AifEnConfigChange; 871 break; 872 873 case AifEnConfigChange: 874 break; 875 876 } 877 878 /* 879 * If we are waiting on something and this happens to be 880 * that thing then set the re-configure flag. 881 */ 882 if (container != (u32)-1) { 883 if (container >= dev->maximum_num_containers) 884 break; 885 if (dev->fsa_dev[container].config_waiting_on == 886 le32_to_cpu(*(u32 *)aifcmd->data)) 887 dev->fsa_dev[container].config_waiting_on = 0; 888 } else for (container = 0; 889 container < dev->maximum_num_containers; ++container) { 890 if (dev->fsa_dev[container].config_waiting_on == 891 le32_to_cpu(*(u32 *)aifcmd->data)) 892 dev->fsa_dev[container].config_waiting_on = 0; 893 } 894 break; 895 896 case AifCmdJobProgress: 897 /* 898 * These are job progress AIF's. When a Clear is being 899 * done on a container it is initially created then hidden from 900 * the OS. When the clear completes we don't get a config 901 * change so we monitor the job status complete on a clear then 902 * wait for a container change. 903 */ 904 905 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 906 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) 907 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { 908 for (container = 0; 909 container < dev->maximum_num_containers; 910 ++container) { 911 /* 912 * Stomp on all config sequencing for all 913 * containers? 914 */ 915 dev->fsa_dev[container].config_waiting_on = 916 AifEnContainerChange; 917 dev->fsa_dev[container].config_needed = ADD; 918 } 919 } 920 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 921 && (((u32 *)aifcmd->data)[6] == 0) 922 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { 923 for (container = 0; 924 container < dev->maximum_num_containers; 925 ++container) { 926 /* 927 * Stomp on all config sequencing for all 928 * containers? 929 */ 930 dev->fsa_dev[container].config_waiting_on = 931 AifEnContainerChange; 932 dev->fsa_dev[container].config_needed = DELETE; 933 } 934 } 935 break; 936 } 937 938 device_config_needed = NOTHING; 939 for (container = 0; container < dev->maximum_num_containers; 940 ++container) { 941 if ((dev->fsa_dev[container].config_waiting_on == 0) 942 && (dev->fsa_dev[container].config_needed != NOTHING)) { 943 device_config_needed = 944 dev->fsa_dev[container].config_needed; 945 dev->fsa_dev[container].config_needed = NOTHING; 946 break; 947 } 948 } 949 if (device_config_needed == NOTHING) 950 return; 951 952 /* 953 * If we decided that a re-configuration needs to be done, 954 * schedule it here on the way out the door, please close the door 955 * behind you. 956 */ 957 958 busy = 0; 959 960 961 /* 962 * Find the Scsi_Device associated with the SCSI address, 963 * and mark it as changed, invalidating the cache. This deals 964 * with changes to existing device IDs. 965 */ 966 967 if (!dev || !dev->scsi_host_ptr) 968 return; 969 /* 970 * force reload of disk info via probe_container 971 */ 972 if ((device_config_needed == CHANGE) 973 && (dev->fsa_dev[container].valid == 1)) 974 dev->fsa_dev[container].valid = 2; 975 if ((device_config_needed == CHANGE) || 976 (device_config_needed == ADD)) 977 probe_container(dev, container); 978 device = scsi_device_lookup(dev->scsi_host_ptr, 979 CONTAINER_TO_CHANNEL(container), 980 CONTAINER_TO_ID(container), 981 CONTAINER_TO_LUN(container)); 982 if (device) { 983 switch (device_config_needed) { 984 case DELETE: 985 scsi_remove_device(device); 986 break; 987 case CHANGE: 988 if (!dev->fsa_dev[container].valid) { 989 scsi_remove_device(device); 990 break; 991 } 992 scsi_rescan_device(&device->sdev_gendev); 993 994 default: 995 break; 996 } 997 scsi_device_put(device); 998 } 999 if (device_config_needed == ADD) { 1000 scsi_add_device(dev->scsi_host_ptr, 1001 CONTAINER_TO_CHANNEL(container), 1002 CONTAINER_TO_ID(container), 1003 CONTAINER_TO_LUN(container)); 1004 } 1005 1006 } 1007 1008 /** 1009 * aac_command_thread - command processing thread 1010 * @dev: Adapter to monitor 1011 * 1012 * Waits on the commandready event in it's queue. When the event gets set 1013 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1014 * until the queue is empty. When the queue is empty it will wait for 1015 * more FIBs. 1016 */ 1017 1018 int aac_command_thread(struct aac_dev * dev) 1019 { 1020 struct hw_fib *hw_fib, *hw_newfib; 1021 struct fib *fib, *newfib; 1022 struct aac_fib_context *fibctx; 1023 unsigned long flags; 1024 DECLARE_WAITQUEUE(wait, current); 1025 1026 /* 1027 * We can only have one thread per adapter for AIF's. 1028 */ 1029 if (dev->aif_thread) 1030 return -EINVAL; 1031 /* 1032 * Set up the name that will appear in 'ps' 1033 * stored in task_struct.comm[16]. 1034 */ 1035 daemonize("aacraid"); 1036 allow_signal(SIGKILL); 1037 /* 1038 * Let the DPC know it has a place to send the AIF's to. 1039 */ 1040 dev->aif_thread = 1; 1041 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1042 set_current_state(TASK_INTERRUPTIBLE); 1043 dprintk ((KERN_INFO "aac_command_thread start\n")); 1044 while(1) 1045 { 1046 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1047 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1048 struct list_head *entry; 1049 struct aac_aifcmd * aifcmd; 1050 1051 set_current_state(TASK_RUNNING); 1052 1053 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1054 list_del(entry); 1055 1056 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1057 fib = list_entry(entry, struct fib, fiblink); 1058 /* 1059 * We will process the FIB here or pass it to a 1060 * worker thread that is TBD. We Really can't 1061 * do anything at this point since we don't have 1062 * anything defined for this thread to do. 1063 */ 1064 hw_fib = fib->hw_fib; 1065 memset(fib, 0, sizeof(struct fib)); 1066 fib->type = FSAFS_NTC_FIB_CONTEXT; 1067 fib->size = sizeof( struct fib ); 1068 fib->hw_fib = hw_fib; 1069 fib->data = hw_fib->data; 1070 fib->dev = dev; 1071 /* 1072 * We only handle AifRequest fibs from the adapter. 1073 */ 1074 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1075 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1076 /* Handle Driver Notify Events */ 1077 aac_handle_aif(dev, fib); 1078 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1079 fib_adapter_complete(fib, (u16)sizeof(u32)); 1080 } else { 1081 struct list_head *entry; 1082 /* The u32 here is important and intended. We are using 1083 32bit wrapping time to fit the adapter field */ 1084 1085 u32 time_now, time_last; 1086 unsigned long flagv; 1087 unsigned num; 1088 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1089 struct fib ** fib_pool, ** fib_p; 1090 1091 /* Sniff events */ 1092 if ((aifcmd->command == 1093 cpu_to_le32(AifCmdEventNotify)) || 1094 (aifcmd->command == 1095 cpu_to_le32(AifCmdJobProgress))) { 1096 aac_handle_aif(dev, fib); 1097 } 1098 1099 time_now = jiffies/HZ; 1100 1101 /* 1102 * Warning: no sleep allowed while 1103 * holding spinlock. We take the estimate 1104 * and pre-allocate a set of fibs outside the 1105 * lock. 1106 */ 1107 num = le32_to_cpu(dev->init->AdapterFibsSize) 1108 / sizeof(struct hw_fib); /* some extra */ 1109 spin_lock_irqsave(&dev->fib_lock, flagv); 1110 entry = dev->fib_list.next; 1111 while (entry != &dev->fib_list) { 1112 entry = entry->next; 1113 ++num; 1114 } 1115 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1116 hw_fib_pool = NULL; 1117 fib_pool = NULL; 1118 if (num 1119 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1120 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1121 hw_fib_p = hw_fib_pool; 1122 fib_p = fib_pool; 1123 while (hw_fib_p < &hw_fib_pool[num]) { 1124 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1125 --hw_fib_p; 1126 break; 1127 } 1128 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1129 kfree(*(--hw_fib_p)); 1130 break; 1131 } 1132 } 1133 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1134 kfree(fib_pool); 1135 fib_pool = NULL; 1136 kfree(hw_fib_pool); 1137 hw_fib_pool = NULL; 1138 } 1139 } else if (hw_fib_pool) { 1140 kfree(hw_fib_pool); 1141 hw_fib_pool = NULL; 1142 } 1143 spin_lock_irqsave(&dev->fib_lock, flagv); 1144 entry = dev->fib_list.next; 1145 /* 1146 * For each Context that is on the 1147 * fibctxList, make a copy of the 1148 * fib, and then set the event to wake up the 1149 * thread that is waiting for it. 1150 */ 1151 hw_fib_p = hw_fib_pool; 1152 fib_p = fib_pool; 1153 while (entry != &dev->fib_list) { 1154 /* 1155 * Extract the fibctx 1156 */ 1157 fibctx = list_entry(entry, struct aac_fib_context, next); 1158 /* 1159 * Check if the queue is getting 1160 * backlogged 1161 */ 1162 if (fibctx->count > 20) 1163 { 1164 /* 1165 * It's *not* jiffies folks, 1166 * but jiffies / HZ so do not 1167 * panic ... 1168 */ 1169 time_last = fibctx->jiffies; 1170 /* 1171 * Has it been > 2 minutes 1172 * since the last read off 1173 * the queue? 1174 */ 1175 if ((time_now - time_last) > 120) { 1176 entry = entry->next; 1177 aac_close_fib_context(dev, fibctx); 1178 continue; 1179 } 1180 } 1181 /* 1182 * Warning: no sleep allowed while 1183 * holding spinlock 1184 */ 1185 if (hw_fib_p < &hw_fib_pool[num]) { 1186 hw_newfib = *hw_fib_p; 1187 *(hw_fib_p++) = NULL; 1188 newfib = *fib_p; 1189 *(fib_p++) = NULL; 1190 /* 1191 * Make the copy of the FIB 1192 */ 1193 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1194 memcpy(newfib, fib, sizeof(struct fib)); 1195 newfib->hw_fib = hw_newfib; 1196 /* 1197 * Put the FIB onto the 1198 * fibctx's fibs 1199 */ 1200 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1201 fibctx->count++; 1202 /* 1203 * Set the event to wake up the 1204 * thread that is waiting. 1205 */ 1206 up(&fibctx->wait_sem); 1207 } else { 1208 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1209 } 1210 entry = entry->next; 1211 } 1212 /* 1213 * Set the status of this FIB 1214 */ 1215 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1216 fib_adapter_complete(fib, sizeof(u32)); 1217 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1218 /* Free up the remaining resources */ 1219 hw_fib_p = hw_fib_pool; 1220 fib_p = fib_pool; 1221 while (hw_fib_p < &hw_fib_pool[num]) { 1222 if (*hw_fib_p) 1223 kfree(*hw_fib_p); 1224 if (*fib_p) 1225 kfree(*fib_p); 1226 ++fib_p; 1227 ++hw_fib_p; 1228 } 1229 if (hw_fib_pool) 1230 kfree(hw_fib_pool); 1231 if (fib_pool) 1232 kfree(fib_pool); 1233 } 1234 kfree(fib); 1235 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1236 } 1237 /* 1238 * There are no more AIF's 1239 */ 1240 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1241 schedule(); 1242 1243 if(signal_pending(current)) 1244 break; 1245 set_current_state(TASK_INTERRUPTIBLE); 1246 } 1247 if (dev->queues) 1248 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1249 dev->aif_thread = 0; 1250 complete_and_exit(&dev->aif_completion, 0); 1251 return 0; 1252 } 1253