xref: /linux/drivers/scsi/aacraid/commsup.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_device.h>
43 #include <asm/semaphore.h>
44 #include <asm/delay.h>
45 
46 #include "aacraid.h"
47 
48 /**
49  *	fib_map_alloc		-	allocate the fib objects
50  *	@dev: Adapter to allocate for
51  *
52  *	Allocate and map the shared PCI space for the FIB blocks used to
53  *	talk to the Adaptec firmware.
54  */
55 
56 static int fib_map_alloc(struct aac_dev *dev)
57 {
58 	dprintk((KERN_INFO
59 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62 	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63 	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64 	  &dev->hw_fib_pa))==NULL)
65 		return -ENOMEM;
66 	return 0;
67 }
68 
69 /**
70  *	fib_map_free		-	free the fib objects
71  *	@dev: Adapter to free
72  *
73  *	Free the PCI mappings and the memory allocated for FIB blocks
74  *	on this adapter.
75  */
76 
77 void fib_map_free(struct aac_dev *dev)
78 {
79 	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
80 }
81 
82 /**
83  *	fib_setup	-	setup the fibs
84  *	@dev: Adapter to set up
85  *
86  *	Allocate the PCI space for the fibs, map it and then intialise the
87  *	fib area, the unmapped fib data and also the free list
88  */
89 
90 int fib_setup(struct aac_dev * dev)
91 {
92 	struct fib *fibptr;
93 	struct hw_fib *hw_fib_va;
94 	dma_addr_t hw_fib_pa;
95 	int i;
96 
97 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
98 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
101 	}
102 	if (i<0)
103 		return -ENOMEM;
104 
105 	hw_fib_va = dev->hw_fib_va;
106 	hw_fib_pa = dev->hw_fib_pa;
107 	memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
108 	/*
109 	 *	Initialise the fibs
110 	 */
111 	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
112 	{
113 		fibptr->dev = dev;
114 		fibptr->hw_fib = hw_fib_va;
115 		fibptr->data = (void *) fibptr->hw_fib->data;
116 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
117 		init_MUTEX_LOCKED(&fibptr->event_wait);
118 		spin_lock_init(&fibptr->event_lock);
119 		hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120 		hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121 		fibptr->hw_fib_pa = hw_fib_pa;
122 		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123 		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
124 	}
125 	/*
126 	 *	Add the fib chain to the free list
127 	 */
128 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
129 	/*
130 	 *	Enable this to debug out of queue space
131 	 */
132 	dev->free_fib = &dev->fibs[0];
133 	return 0;
134 }
135 
136 /**
137  *	fib_alloc	-	allocate a fib
138  *	@dev: Adapter to allocate the fib for
139  *
140  *	Allocate a fib from the adapter fib pool. If the pool is empty we
141  *	return NULL.
142  */
143 
144 struct fib * fib_alloc(struct aac_dev *dev)
145 {
146 	struct fib * fibptr;
147 	unsigned long flags;
148 	spin_lock_irqsave(&dev->fib_lock, flags);
149 	fibptr = dev->free_fib;
150 	if(!fibptr){
151 		spin_unlock_irqrestore(&dev->fib_lock, flags);
152 		return fibptr;
153 	}
154 	dev->free_fib = fibptr->next;
155 	spin_unlock_irqrestore(&dev->fib_lock, flags);
156 	/*
157 	 *	Set the proper node type code and node byte size
158 	 */
159 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160 	fibptr->size = sizeof(struct fib);
161 	/*
162 	 *	Null out fields that depend on being zero at the start of
163 	 *	each I/O
164 	 */
165 	fibptr->hw_fib->header.XferState = 0;
166 	fibptr->callback = NULL;
167 	fibptr->callback_data = NULL;
168 
169 	return fibptr;
170 }
171 
172 /**
173  *	fib_free	-	free a fib
174  *	@fibptr: fib to free up
175  *
176  *	Frees up a fib and places it on the appropriate queue
177  *	(either free or timed out)
178  */
179 
180 void fib_free(struct fib * fibptr)
181 {
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185 	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186 		aac_config.fib_timeouts++;
187 		fibptr->next = fibptr->dev->timeout_fib;
188 		fibptr->dev->timeout_fib = fibptr;
189 	} else {
190 		if (fibptr->hw_fib->header.XferState != 0) {
191 			printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 				 (void*)fibptr,
193 				 le32_to_cpu(fibptr->hw_fib->header.XferState));
194 		}
195 		fibptr->next = fibptr->dev->free_fib;
196 		fibptr->dev->free_fib = fibptr;
197 	}
198 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
199 }
200 
201 /**
202  *	fib_init	-	initialise a fib
203  *	@fibptr: The fib to initialize
204  *
205  *	Set up the generic fib fields ready for use
206  */
207 
208 void fib_init(struct fib *fibptr)
209 {
210 	struct hw_fib *hw_fib = fibptr->hw_fib;
211 
212 	hw_fib->header.StructType = FIB_MAGIC;
213 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215 	hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
218 }
219 
220 /**
221  *	fib_deallocate		-	deallocate a fib
222  *	@fibptr: fib to deallocate
223  *
224  *	Will deallocate and return to the free pool the FIB pointed to by the
225  *	caller.
226  */
227 
228 static void fib_dealloc(struct fib * fibptr)
229 {
230 	struct hw_fib *hw_fib = fibptr->hw_fib;
231 	if(hw_fib->header.StructType != FIB_MAGIC)
232 		BUG();
233 	hw_fib->header.XferState = 0;
234 }
235 
236 /*
237  *	Commuication primitives define and support the queuing method we use to
238  *	support host to adapter commuication. All queue accesses happen through
239  *	these routines and are the only routines which have a knowledge of the
240  *	 how these queues are implemented.
241  */
242 
243 /**
244  *	aac_get_entry		-	get a queue entry
245  *	@dev: Adapter
246  *	@qid: Queue Number
247  *	@entry: Entry return
248  *	@index: Index return
249  *	@nonotify: notification control
250  *
251  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
252  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253  *	returned.
254  */
255 
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258 	struct aac_queue * q;
259 	unsigned long idx;
260 
261 	/*
262 	 *	All of the queues wrap when they reach the end, so we check
263 	 *	to see if they have reached the end and if they have we just
264 	 *	set the index back to zero. This is a wrap. You could or off
265 	 *	the high bits in all updates but this is a bit faster I think.
266 	 */
267 
268 	q = &dev->queues->queue[qid];
269 
270 	idx = *index = le32_to_cpu(*(q->headers.producer));
271 	/* Interrupt Moderation, only interrupt for first two entries */
272 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
273 		if (--idx == 0) {
274 			if (qid == AdapNormCmdQueue)
275 				idx = ADAP_NORM_CMD_ENTRIES;
276 			else
277 				idx = ADAP_NORM_RESP_ENTRIES;
278 		}
279 		if (idx != le32_to_cpu(*(q->headers.consumer)))
280 			*nonotify = 1;
281 	}
282 
283 	if (qid == AdapNormCmdQueue) {
284 	        if (*index >= ADAP_NORM_CMD_ENTRIES)
285 			*index = 0; /* Wrap to front of the Producer Queue. */
286 	} else {
287 		if (*index >= ADAP_NORM_RESP_ENTRIES)
288 			*index = 0; /* Wrap to front of the Producer Queue. */
289 	}
290 
291         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293 				qid, q->numpending);
294 		return 0;
295 	} else {
296 	        *entry = q->base + *index;
297 		return 1;
298 	}
299 }
300 
301 /**
302  *	aac_queue_get		-	get the next free QE
303  *	@dev: Adapter
304  *	@index: Returned index
305  *	@priority: Priority of fib
306  *	@fib: Fib to associate with the queue entry
307  *	@wait: Wait if queue full
308  *	@fibptr: Driver fib object to go with fib
309  *	@nonotify: Don't notify the adapter
310  *
311  *	Gets the next free QE off the requested priorty adapter command
312  *	queue and associates the Fib with the QE. The QE represented by
313  *	index is ready to insert on the queue when this routine returns
314  *	success.
315  */
316 
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319 	struct aac_entry * entry = NULL;
320 	int map = 0;
321 
322 	if (qid == AdapNormCmdQueue) {
323 		/*  if no entries wait for some if caller wants to */
324         	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
325         	{
326 			printk(KERN_ERR "GetEntries failed\n");
327 		}
328 	        /*
329 	         *	Setup queue entry with a command, status and fib mapped
330 	         */
331 	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332 	        map = 1;
333 	} else {
334 	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
335 	        {
336 			/* if no entries wait for some if caller wants to */
337 		}
338         	/*
339         	 *	Setup queue entry with command, status and fib mapped
340         	 */
341         	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342         	entry->addr = hw_fib->header.SenderFibAddress;
343      			/* Restore adapters pointer to the FIB */
344 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
345         	map = 0;
346 	}
347 	/*
348 	 *	If MapFib is true than we need to map the Fib and put pointers
349 	 *	in the queue entry.
350 	 */
351 	if (map)
352 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353 	return 0;
354 }
355 
356 /*
357  *	Define the highest level of host to adapter communication routines.
358  *	These routines will support host to adapter FS commuication. These
359  *	routines have no knowledge of the commuication method used. This level
360  *	sends and receives FIBs. This level has no knowledge of how these FIBs
361  *	get passed back and forth.
362  */
363 
364 /**
365  *	fib_send	-	send a fib to the adapter
366  *	@command: Command to send
367  *	@fibptr: The fib
368  *	@size: Size of fib data area
369  *	@priority: Priority of Fib
370  *	@wait: Async/sync select
371  *	@reply: True if a reply is wanted
372  *	@callback: Called with reply
373  *	@callback_data: Passed to callback
374  *
375  *	Sends the requested FIB to the adapter and optionally will wait for a
376  *	response FIB. If the caller does not wish to wait for a response than
377  *	an event to wait on must be supplied. This event will be set when a
378  *	response FIB is received from the adapter.
379  */
380 
381 int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
382 {
383 	u32 index;
384 	struct aac_dev * dev = fibptr->dev;
385 	unsigned long nointr = 0;
386 	struct hw_fib * hw_fib = fibptr->hw_fib;
387 	struct aac_queue * q;
388 	unsigned long flags = 0;
389 	unsigned long qflags;
390 
391 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392 		return -EBUSY;
393 	/*
394 	 *	There are 5 cases with the wait and reponse requested flags.
395 	 *	The only invalid cases are if the caller requests to wait and
396 	 *	does not request a response and if the caller does not want a
397 	 *	response and the Fib is not allocated from pool. If a response
398 	 *	is not requesed the Fib will just be deallocaed by the DPC
399 	 *	routine when the response comes back from the adapter. No
400 	 *	further processing will be done besides deleting the Fib. We
401 	 *	will have a debug mode where the adapter can notify the host
402 	 *	it had a problem and the host can log that fact.
403 	 */
404 	if (wait && !reply) {
405 		return -EINVAL;
406 	} else if (!wait && reply) {
407 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409 	} else if (!wait && !reply) {
410 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412 	} else if (wait && reply) {
413 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415 	}
416 	/*
417 	 *	Map the fib into 32bits by using the fib number
418 	 */
419 
420 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
421 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
422 	/*
423 	 *	Set FIB state to indicate where it came from and if we want a
424 	 *	response from the adapter. Also load the command from the
425 	 *	caller.
426 	 *
427 	 *	Map the hw fib pointer as a 32bit value
428 	 */
429 	hw_fib->header.Command = cpu_to_le16(command);
430 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431 	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
432 	/*
433 	 *	Set the size of the Fib we want to send to the adapter
434 	 */
435 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437 		return -EMSGSIZE;
438 	}
439 	/*
440 	 *	Get a queue entry connect the FIB to it and send an notify
441 	 *	the adapter a command is ready.
442 	 */
443 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444 
445 	/*
446 	 *	Fill in the Callback and CallbackContext if we are not
447 	 *	going to wait.
448 	 */
449 	if (!wait) {
450 		fibptr->callback = callback;
451 		fibptr->callback_data = callback_data;
452 	}
453 
454 	fibptr->done = 0;
455 	fibptr->flags = 0;
456 
457 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
458 
459 	dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
460 	dprintk((KERN_DEBUG "Fib contents:.\n"));
461 	dprintk((KERN_DEBUG "  Command =               %d.\n", hw_fib->header.Command));
462 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", hw_fib->header.XferState));
463 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
464 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
466 
467 	q = &dev->queues->queue[AdapNormCmdQueue];
468 
469 	if(wait)
470 		spin_lock_irqsave(&fibptr->event_lock, flags);
471 	spin_lock_irqsave(q->lock, qflags);
472 	aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
473 
474 	list_add_tail(&fibptr->queue, &q->pendingq);
475 	q->numpending++;
476 	*(q->headers.producer) = cpu_to_le32(index + 1);
477 	spin_unlock_irqrestore(q->lock, qflags);
478 	if (!(nointr & aac_config.irq_mod))
479 		aac_adapter_notify(dev, AdapNormCmdQueue);
480 	/*
481 	 *	If the caller wanted us to wait for response wait now.
482 	 */
483 
484 	if (wait) {
485 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
486 		/* Only set for first known interruptable command */
487 		if (wait < 0) {
488 			/*
489 			 * *VERY* Dangerous to time out a command, the
490 			 * assumption is made that we have no hope of
491 			 * functioning because an interrupt routing or other
492 			 * hardware failure has occurred.
493 			 */
494 			unsigned long count = 36000000L; /* 3 minutes */
495 			unsigned long qflags;
496 			while (down_trylock(&fibptr->event_wait)) {
497 				if (--count == 0) {
498 					spin_lock_irqsave(q->lock, qflags);
499 					q->numpending--;
500 					list_del(&fibptr->queue);
501 					spin_unlock_irqrestore(q->lock, qflags);
502 					if (wait == -1) {
503 	        				printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
504 						  "Usually a result of a PCI interrupt routing problem;\n"
505 						  "update mother board BIOS or consider utilizing one of\n"
506 						  "the SAFE mode kernel options (acpi, apic etc)\n");
507 					}
508 					return -ETIMEDOUT;
509 				}
510 				udelay(5);
511 			}
512 		} else
513 			down(&fibptr->event_wait);
514 		if(fibptr->done == 0)
515 			BUG();
516 
517 		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
518 			return -ETIMEDOUT;
519 		} else {
520 			return 0;
521 		}
522 	}
523 	/*
524 	 *	If the user does not want a response than return success otherwise
525 	 *	return pending
526 	 */
527 	if (reply)
528 		return -EINPROGRESS;
529 	else
530 		return 0;
531 }
532 
533 /**
534  *	aac_consumer_get	-	get the top of the queue
535  *	@dev: Adapter
536  *	@q: Queue
537  *	@entry: Return entry
538  *
539  *	Will return a pointer to the entry on the top of the queue requested that
540  * 	we are a consumer of, and return the address of the queue entry. It does
541  *	not change the state of the queue.
542  */
543 
544 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
545 {
546 	u32 index;
547 	int status;
548 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
549 		status = 0;
550 	} else {
551 		/*
552 		 *	The consumer index must be wrapped if we have reached
553 		 *	the end of the queue, else we just use the entry
554 		 *	pointed to by the header index
555 		 */
556 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
557 			index = 0;
558 		else
559 		        index = le32_to_cpu(*q->headers.consumer);
560 		*entry = q->base + index;
561 		status = 1;
562 	}
563 	return(status);
564 }
565 
566 /**
567  *	aac_consumer_free	-	free consumer entry
568  *	@dev: Adapter
569  *	@q: Queue
570  *	@qid: Queue ident
571  *
572  *	Frees up the current top of the queue we are a consumer of. If the
573  *	queue was full notify the producer that the queue is no longer full.
574  */
575 
576 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
577 {
578 	int wasfull = 0;
579 	u32 notify;
580 
581 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
582 		wasfull = 1;
583 
584 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
585 		*q->headers.consumer = cpu_to_le32(1);
586 	else
587 		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
588 
589 	if (wasfull) {
590 		switch (qid) {
591 
592 		case HostNormCmdQueue:
593 			notify = HostNormCmdNotFull;
594 			break;
595 		case HostNormRespQueue:
596 			notify = HostNormRespNotFull;
597 			break;
598 		default:
599 			BUG();
600 			return;
601 		}
602 		aac_adapter_notify(dev, notify);
603 	}
604 }
605 
606 /**
607  *	fib_adapter_complete	-	complete adapter issued fib
608  *	@fibptr: fib to complete
609  *	@size: size of fib
610  *
611  *	Will do all necessary work to complete a FIB that was sent from
612  *	the adapter.
613  */
614 
615 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
616 {
617 	struct hw_fib * hw_fib = fibptr->hw_fib;
618 	struct aac_dev * dev = fibptr->dev;
619 	struct aac_queue * q;
620 	unsigned long nointr = 0;
621 	unsigned long qflags;
622 
623 	if (hw_fib->header.XferState == 0) {
624         	return 0;
625 	}
626 	/*
627 	 *	If we plan to do anything check the structure type first.
628 	 */
629 	if ( hw_fib->header.StructType != FIB_MAGIC ) {
630         	return -EINVAL;
631 	}
632 	/*
633 	 *	This block handles the case where the adapter had sent us a
634 	 *	command and we have finished processing the command. We
635 	 *	call completeFib when we are done processing the command
636 	 *	and want to send a response back to the adapter. This will
637 	 *	send the completed cdb to the adapter.
638 	 */
639 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
640 		u32 index;
641 	        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
642 		if (size) {
643 			size += sizeof(struct aac_fibhdr);
644 			if (size > le16_to_cpu(hw_fib->header.SenderSize))
645 				return -EMSGSIZE;
646 			hw_fib->header.Size = cpu_to_le16(size);
647 		}
648 		q = &dev->queues->queue[AdapNormRespQueue];
649 		spin_lock_irqsave(q->lock, qflags);
650 		aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
651 		*(q->headers.producer) = cpu_to_le32(index + 1);
652 		spin_unlock_irqrestore(q->lock, qflags);
653 		if (!(nointr & (int)aac_config.irq_mod))
654 			aac_adapter_notify(dev, AdapNormRespQueue);
655 	}
656 	else
657 	{
658         	printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
659         	BUG();
660 	}
661 	return 0;
662 }
663 
664 /**
665  *	fib_complete	-	fib completion handler
666  *	@fib: FIB to complete
667  *
668  *	Will do all necessary work to complete a FIB.
669  */
670 
671 int fib_complete(struct fib * fibptr)
672 {
673 	struct hw_fib * hw_fib = fibptr->hw_fib;
674 
675 	/*
676 	 *	Check for a fib which has already been completed
677 	 */
678 
679 	if (hw_fib->header.XferState == 0)
680         	return 0;
681 	/*
682 	 *	If we plan to do anything check the structure type first.
683 	 */
684 
685 	if (hw_fib->header.StructType != FIB_MAGIC)
686 	        return -EINVAL;
687 	/*
688 	 *	This block completes a cdb which orginated on the host and we
689 	 *	just need to deallocate the cdb or reinit it. At this point the
690 	 *	command is complete that we had sent to the adapter and this
691 	 *	cdb could be reused.
692 	 */
693 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
694 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
695 	{
696 		fib_dealloc(fibptr);
697 	}
698 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
699 	{
700 		/*
701 		 *	This handles the case when the host has aborted the I/O
702 		 *	to the adapter because the adapter is not responding
703 		 */
704 		fib_dealloc(fibptr);
705 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
706 		fib_dealloc(fibptr);
707 	} else {
708 		BUG();
709 	}
710 	return 0;
711 }
712 
713 /**
714  *	aac_printf	-	handle printf from firmware
715  *	@dev: Adapter
716  *	@val: Message info
717  *
718  *	Print a message passed to us by the controller firmware on the
719  *	Adaptec board
720  */
721 
722 void aac_printf(struct aac_dev *dev, u32 val)
723 {
724 	char *cp = dev->printfbuf;
725 	if (dev->printf_enabled)
726 	{
727 		int length = val & 0xffff;
728 		int level = (val >> 16) & 0xffff;
729 
730 		/*
731 		 *	The size of the printfbuf is set in port.c
732 		 *	There is no variable or define for it
733 		 */
734 		if (length > 255)
735 			length = 255;
736 		if (cp[length] != 0)
737 			cp[length] = 0;
738 		if (level == LOG_AAC_HIGH_ERROR)
739 			printk(KERN_WARNING "aacraid:%s", cp);
740 		else
741 			printk(KERN_INFO "aacraid:%s", cp);
742 	}
743 	memset(cp, 0,  256);
744 }
745 
746 
747 /**
748  *	aac_handle_aif		-	Handle a message from the firmware
749  *	@dev: Which adapter this fib is from
750  *	@fibptr: Pointer to fibptr from adapter
751  *
752  *	This routine handles a driver notify fib from the adapter and
753  *	dispatches it to the appropriate routine for handling.
754  */
755 
756 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
757 {
758 	struct hw_fib * hw_fib = fibptr->hw_fib;
759 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
760 	int busy;
761 	u32 container;
762 	struct scsi_device *device;
763 	enum {
764 		NOTHING,
765 		DELETE,
766 		ADD,
767 		CHANGE
768 	} device_config_needed;
769 
770 	/* Sniff for container changes */
771 
772 	if (!dev)
773 		return;
774 	container = (u32)-1;
775 
776 	/*
777 	 *	We have set this up to try and minimize the number of
778 	 * re-configures that take place. As a result of this when
779 	 * certain AIF's come in we will set a flag waiting for another
780 	 * type of AIF before setting the re-config flag.
781 	 */
782 	switch (le32_to_cpu(aifcmd->command)) {
783 	case AifCmdDriverNotify:
784 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
785 		/*
786 		 *	Morph or Expand complete
787 		 */
788 		case AifDenMorphComplete:
789 		case AifDenVolumeExtendComplete:
790 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
791 			if (container >= dev->maximum_num_containers)
792 				break;
793 
794 			/*
795 			 *	Find the Scsi_Device associated with the SCSI
796 			 * address. Make sure we have the right array, and if
797 			 * so set the flag to initiate a new re-config once we
798 			 * see an AifEnConfigChange AIF come through.
799 			 */
800 
801 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
802 				device = scsi_device_lookup(dev->scsi_host_ptr,
803 					CONTAINER_TO_CHANNEL(container),
804 					CONTAINER_TO_ID(container),
805 					CONTAINER_TO_LUN(container));
806 				if (device) {
807 					dev->fsa_dev[container].config_needed = CHANGE;
808 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
809 					scsi_device_put(device);
810 				}
811 			}
812 		}
813 
814 		/*
815 		 *	If we are waiting on something and this happens to be
816 		 * that thing then set the re-configure flag.
817 		 */
818 		if (container != (u32)-1) {
819 			if (container >= dev->maximum_num_containers)
820 				break;
821 			if (dev->fsa_dev[container].config_waiting_on ==
822 			    le32_to_cpu(*(u32 *)aifcmd->data))
823 				dev->fsa_dev[container].config_waiting_on = 0;
824 		} else for (container = 0;
825 		    container < dev->maximum_num_containers; ++container) {
826 			if (dev->fsa_dev[container].config_waiting_on ==
827 			    le32_to_cpu(*(u32 *)aifcmd->data))
828 				dev->fsa_dev[container].config_waiting_on = 0;
829 		}
830 		break;
831 
832 	case AifCmdEventNotify:
833 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
834 		/*
835 		 *	Add an Array.
836 		 */
837 		case AifEnAddContainer:
838 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
839 			if (container >= dev->maximum_num_containers)
840 				break;
841 			dev->fsa_dev[container].config_needed = ADD;
842 			dev->fsa_dev[container].config_waiting_on =
843 				AifEnConfigChange;
844 			break;
845 
846 		/*
847 		 *	Delete an Array.
848 		 */
849 		case AifEnDeleteContainer:
850 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
851 			if (container >= dev->maximum_num_containers)
852 				break;
853 			dev->fsa_dev[container].config_needed = DELETE;
854 			dev->fsa_dev[container].config_waiting_on =
855 				AifEnConfigChange;
856 			break;
857 
858 		/*
859 		 *	Container change detected. If we currently are not
860 		 * waiting on something else, setup to wait on a Config Change.
861 		 */
862 		case AifEnContainerChange:
863 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
864 			if (container >= dev->maximum_num_containers)
865 				break;
866 			if (dev->fsa_dev[container].config_waiting_on)
867 				break;
868 			dev->fsa_dev[container].config_needed = CHANGE;
869 			dev->fsa_dev[container].config_waiting_on =
870 				AifEnConfigChange;
871 			break;
872 
873 		case AifEnConfigChange:
874 			break;
875 
876 		}
877 
878 		/*
879 		 *	If we are waiting on something and this happens to be
880 		 * that thing then set the re-configure flag.
881 		 */
882 		if (container != (u32)-1) {
883 			if (container >= dev->maximum_num_containers)
884 				break;
885 			if (dev->fsa_dev[container].config_waiting_on ==
886 			    le32_to_cpu(*(u32 *)aifcmd->data))
887 				dev->fsa_dev[container].config_waiting_on = 0;
888 		} else for (container = 0;
889 		    container < dev->maximum_num_containers; ++container) {
890 			if (dev->fsa_dev[container].config_waiting_on ==
891 			    le32_to_cpu(*(u32 *)aifcmd->data))
892 				dev->fsa_dev[container].config_waiting_on = 0;
893 		}
894 		break;
895 
896 	case AifCmdJobProgress:
897 		/*
898 		 *	These are job progress AIF's. When a Clear is being
899 		 * done on a container it is initially created then hidden from
900 		 * the OS. When the clear completes we don't get a config
901 		 * change so we monitor the job status complete on a clear then
902 		 * wait for a container change.
903 		 */
904 
905 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
906 		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
907 		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
908 			for (container = 0;
909 			    container < dev->maximum_num_containers;
910 			    ++container) {
911 				/*
912 				 * Stomp on all config sequencing for all
913 				 * containers?
914 				 */
915 				dev->fsa_dev[container].config_waiting_on =
916 					AifEnContainerChange;
917 				dev->fsa_dev[container].config_needed = ADD;
918 			}
919 		}
920 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
921 		 && (((u32 *)aifcmd->data)[6] == 0)
922 		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
923 			for (container = 0;
924 			    container < dev->maximum_num_containers;
925 			    ++container) {
926 				/*
927 				 * Stomp on all config sequencing for all
928 				 * containers?
929 				 */
930 				dev->fsa_dev[container].config_waiting_on =
931 					AifEnContainerChange;
932 				dev->fsa_dev[container].config_needed = DELETE;
933 			}
934 		}
935 		break;
936 	}
937 
938 	device_config_needed = NOTHING;
939 	for (container = 0; container < dev->maximum_num_containers;
940 	    ++container) {
941 		if ((dev->fsa_dev[container].config_waiting_on == 0)
942 		 && (dev->fsa_dev[container].config_needed != NOTHING)) {
943 			device_config_needed =
944 				dev->fsa_dev[container].config_needed;
945 			dev->fsa_dev[container].config_needed = NOTHING;
946 			break;
947 		}
948 	}
949 	if (device_config_needed == NOTHING)
950 		return;
951 
952 	/*
953 	 *	If we decided that a re-configuration needs to be done,
954 	 * schedule it here on the way out the door, please close the door
955 	 * behind you.
956 	 */
957 
958 	busy = 0;
959 
960 
961 	/*
962 	 *	Find the Scsi_Device associated with the SCSI address,
963 	 * and mark it as changed, invalidating the cache. This deals
964 	 * with changes to existing device IDs.
965 	 */
966 
967 	if (!dev || !dev->scsi_host_ptr)
968 		return;
969 	/*
970 	 * force reload of disk info via probe_container
971 	 */
972 	if ((device_config_needed == CHANGE)
973 	 && (dev->fsa_dev[container].valid == 1))
974 		dev->fsa_dev[container].valid = 2;
975 	if ((device_config_needed == CHANGE) ||
976 			(device_config_needed == ADD))
977 		probe_container(dev, container);
978 	device = scsi_device_lookup(dev->scsi_host_ptr,
979 		CONTAINER_TO_CHANNEL(container),
980 		CONTAINER_TO_ID(container),
981 		CONTAINER_TO_LUN(container));
982 	if (device) {
983 		switch (device_config_needed) {
984 		case DELETE:
985 			scsi_remove_device(device);
986 			break;
987 		case CHANGE:
988 			if (!dev->fsa_dev[container].valid) {
989 				scsi_remove_device(device);
990 				break;
991 			}
992 			scsi_rescan_device(&device->sdev_gendev);
993 
994 		default:
995 			break;
996 		}
997 		scsi_device_put(device);
998 	}
999 	if (device_config_needed == ADD) {
1000 		scsi_add_device(dev->scsi_host_ptr,
1001 		  CONTAINER_TO_CHANNEL(container),
1002 		  CONTAINER_TO_ID(container),
1003 		  CONTAINER_TO_LUN(container));
1004 	}
1005 
1006 }
1007 
1008 /**
1009  *	aac_command_thread	-	command processing thread
1010  *	@dev: Adapter to monitor
1011  *
1012  *	Waits on the commandready event in it's queue. When the event gets set
1013  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1014  *	until the queue is empty. When the queue is empty it will wait for
1015  *	more FIBs.
1016  */
1017 
1018 int aac_command_thread(struct aac_dev * dev)
1019 {
1020 	struct hw_fib *hw_fib, *hw_newfib;
1021 	struct fib *fib, *newfib;
1022 	struct aac_fib_context *fibctx;
1023 	unsigned long flags;
1024 	DECLARE_WAITQUEUE(wait, current);
1025 
1026 	/*
1027 	 *	We can only have one thread per adapter for AIF's.
1028 	 */
1029 	if (dev->aif_thread)
1030 		return -EINVAL;
1031 	/*
1032 	 *	Set up the name that will appear in 'ps'
1033 	 *	stored in  task_struct.comm[16].
1034 	 */
1035 	daemonize("aacraid");
1036 	allow_signal(SIGKILL);
1037 	/*
1038 	 *	Let the DPC know it has a place to send the AIF's to.
1039 	 */
1040 	dev->aif_thread = 1;
1041 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1042 	set_current_state(TASK_INTERRUPTIBLE);
1043 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1044 	while(1)
1045 	{
1046 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1047 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1048 			struct list_head *entry;
1049 			struct aac_aifcmd * aifcmd;
1050 
1051 			set_current_state(TASK_RUNNING);
1052 
1053 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1054 			list_del(entry);
1055 
1056 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1057 			fib = list_entry(entry, struct fib, fiblink);
1058 			/*
1059 			 *	We will process the FIB here or pass it to a
1060 			 *	worker thread that is TBD. We Really can't
1061 			 *	do anything at this point since we don't have
1062 			 *	anything defined for this thread to do.
1063 			 */
1064 			hw_fib = fib->hw_fib;
1065 			memset(fib, 0, sizeof(struct fib));
1066 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1067 			fib->size = sizeof( struct fib );
1068 			fib->hw_fib = hw_fib;
1069 			fib->data = hw_fib->data;
1070 			fib->dev = dev;
1071 			/*
1072 			 *	We only handle AifRequest fibs from the adapter.
1073 			 */
1074 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1075 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1076 				/* Handle Driver Notify Events */
1077 				aac_handle_aif(dev, fib);
1078 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1079 				fib_adapter_complete(fib, (u16)sizeof(u32));
1080 			} else {
1081 				struct list_head *entry;
1082 				/* The u32 here is important and intended. We are using
1083 				   32bit wrapping time to fit the adapter field */
1084 
1085 				u32 time_now, time_last;
1086 				unsigned long flagv;
1087 				unsigned num;
1088 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1089 				struct fib ** fib_pool, ** fib_p;
1090 
1091 				/* Sniff events */
1092 				if ((aifcmd->command ==
1093 				     cpu_to_le32(AifCmdEventNotify)) ||
1094 				    (aifcmd->command ==
1095 				     cpu_to_le32(AifCmdJobProgress))) {
1096 					aac_handle_aif(dev, fib);
1097 				}
1098 
1099 				time_now = jiffies/HZ;
1100 
1101 				/*
1102 				 * Warning: no sleep allowed while
1103 				 * holding spinlock. We take the estimate
1104 				 * and pre-allocate a set of fibs outside the
1105 				 * lock.
1106 				 */
1107 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1108 				    / sizeof(struct hw_fib); /* some extra */
1109 				spin_lock_irqsave(&dev->fib_lock, flagv);
1110 				entry = dev->fib_list.next;
1111 				while (entry != &dev->fib_list) {
1112 					entry = entry->next;
1113 					++num;
1114 				}
1115 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1116 				hw_fib_pool = NULL;
1117 				fib_pool = NULL;
1118 				if (num
1119 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1120 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1121 					hw_fib_p = hw_fib_pool;
1122 					fib_p = fib_pool;
1123 					while (hw_fib_p < &hw_fib_pool[num]) {
1124 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1125 							--hw_fib_p;
1126 							break;
1127 						}
1128 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1129 							kfree(*(--hw_fib_p));
1130 							break;
1131 						}
1132 					}
1133 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1134 						kfree(fib_pool);
1135 						fib_pool = NULL;
1136 						kfree(hw_fib_pool);
1137 						hw_fib_pool = NULL;
1138 					}
1139 				} else if (hw_fib_pool) {
1140 					kfree(hw_fib_pool);
1141 					hw_fib_pool = NULL;
1142 				}
1143 				spin_lock_irqsave(&dev->fib_lock, flagv);
1144 				entry = dev->fib_list.next;
1145 				/*
1146 				 * For each Context that is on the
1147 				 * fibctxList, make a copy of the
1148 				 * fib, and then set the event to wake up the
1149 				 * thread that is waiting for it.
1150 				 */
1151 				hw_fib_p = hw_fib_pool;
1152 				fib_p = fib_pool;
1153 				while (entry != &dev->fib_list) {
1154 					/*
1155 					 * Extract the fibctx
1156 					 */
1157 					fibctx = list_entry(entry, struct aac_fib_context, next);
1158 					/*
1159 					 * Check if the queue is getting
1160 					 * backlogged
1161 					 */
1162 					if (fibctx->count > 20)
1163 					{
1164 						/*
1165 						 * It's *not* jiffies folks,
1166 						 * but jiffies / HZ so do not
1167 						 * panic ...
1168 						 */
1169 						time_last = fibctx->jiffies;
1170 						/*
1171 						 * Has it been > 2 minutes
1172 						 * since the last read off
1173 						 * the queue?
1174 						 */
1175 						if ((time_now - time_last) > 120) {
1176 							entry = entry->next;
1177 							aac_close_fib_context(dev, fibctx);
1178 							continue;
1179 						}
1180 					}
1181 					/*
1182 					 * Warning: no sleep allowed while
1183 					 * holding spinlock
1184 					 */
1185 					if (hw_fib_p < &hw_fib_pool[num]) {
1186 						hw_newfib = *hw_fib_p;
1187 						*(hw_fib_p++) = NULL;
1188 						newfib = *fib_p;
1189 						*(fib_p++) = NULL;
1190 						/*
1191 						 * Make the copy of the FIB
1192 						 */
1193 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1194 						memcpy(newfib, fib, sizeof(struct fib));
1195 						newfib->hw_fib = hw_newfib;
1196 						/*
1197 						 * Put the FIB onto the
1198 						 * fibctx's fibs
1199 						 */
1200 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1201 						fibctx->count++;
1202 						/*
1203 						 * Set the event to wake up the
1204 						 * thread that is waiting.
1205 						 */
1206 						up(&fibctx->wait_sem);
1207 					} else {
1208 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1209 					}
1210 					entry = entry->next;
1211 				}
1212 				/*
1213 				 *	Set the status of this FIB
1214 				 */
1215 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1216 				fib_adapter_complete(fib, sizeof(u32));
1217 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1218 				/* Free up the remaining resources */
1219 				hw_fib_p = hw_fib_pool;
1220 				fib_p = fib_pool;
1221 				while (hw_fib_p < &hw_fib_pool[num]) {
1222 					if (*hw_fib_p)
1223 						kfree(*hw_fib_p);
1224 					if (*fib_p)
1225 						kfree(*fib_p);
1226 					++fib_p;
1227 					++hw_fib_p;
1228 				}
1229 				if (hw_fib_pool)
1230 					kfree(hw_fib_pool);
1231 				if (fib_pool)
1232 					kfree(fib_pool);
1233 			}
1234 			kfree(fib);
1235 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1236 		}
1237 		/*
1238 		 *	There are no more AIF's
1239 		 */
1240 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1241 		schedule();
1242 
1243 		if(signal_pending(current))
1244 			break;
1245 		set_current_state(TASK_INTERRUPTIBLE);
1246 	}
1247 	if (dev->queues)
1248 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1249 	dev->aif_thread = 0;
1250 	complete_and_exit(&dev->aif_completion, 0);
1251 	return 0;
1252 }
1253