1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; see the file COPYING. If not, write to 23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Module Name: 26 * commsup.c 27 * 28 * Abstract: Contain all routines that are required for FSA host/adapter 29 * communication. 30 * 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/types.h> 36 #include <linux/sched.h> 37 #include <linux/pci.h> 38 #include <linux/spinlock.h> 39 #include <linux/slab.h> 40 #include <linux/completion.h> 41 #include <linux/blkdev.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/interrupt.h> 45 #include <linux/semaphore.h> 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_device.h> 49 #include <scsi/scsi_cmnd.h> 50 51 #include "aacraid.h" 52 53 /** 54 * fib_map_alloc - allocate the fib objects 55 * @dev: Adapter to allocate for 56 * 57 * Allocate and map the shared PCI space for the FIB blocks used to 58 * talk to the Adaptec firmware. 59 */ 60 61 static int fib_map_alloc(struct aac_dev *dev) 62 { 63 dprintk((KERN_INFO 64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev, 68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) 69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 70 &dev->hw_fib_pa); 71 if (dev->hw_fib_va == NULL) 72 return -ENOMEM; 73 return 0; 74 } 75 76 /** 77 * aac_fib_map_free - free the fib objects 78 * @dev: Adapter to free 79 * 80 * Free the PCI mappings and the memory allocated for FIB blocks 81 * on this adapter. 82 */ 83 84 void aac_fib_map_free(struct aac_dev *dev) 85 { 86 if (dev->hw_fib_va && dev->max_fib_size) { 87 pci_free_consistent(dev->pdev, 88 (dev->max_fib_size * 89 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)), 90 dev->hw_fib_va, dev->hw_fib_pa); 91 } 92 dev->hw_fib_va = NULL; 93 dev->hw_fib_pa = 0; 94 } 95 96 void aac_fib_vector_assign(struct aac_dev *dev) 97 { 98 u32 i = 0; 99 u32 vector = 1; 100 struct fib *fibptr = NULL; 101 102 for (i = 0, fibptr = &dev->fibs[i]; 103 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 104 i++, fibptr++) { 105 if ((dev->max_msix == 1) || 106 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 107 - dev->vector_cap))) { 108 fibptr->vector_no = 0; 109 } else { 110 fibptr->vector_no = vector; 111 vector++; 112 if (vector == dev->max_msix) 113 vector = 1; 114 } 115 } 116 } 117 118 /** 119 * aac_fib_setup - setup the fibs 120 * @dev: Adapter to set up 121 * 122 * Allocate the PCI space for the fibs, map it and then initialise the 123 * fib area, the unmapped fib data and also the free list 124 */ 125 126 int aac_fib_setup(struct aac_dev * dev) 127 { 128 struct fib *fibptr; 129 struct hw_fib *hw_fib; 130 dma_addr_t hw_fib_pa; 131 int i; 132 133 while (((i = fib_map_alloc(dev)) == -ENOMEM) 134 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 135 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 136 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 137 } 138 if (i<0) 139 return -ENOMEM; 140 141 /* 32 byte alignment for PMC */ 142 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 143 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 144 (hw_fib_pa - dev->hw_fib_pa)); 145 dev->hw_fib_pa = hw_fib_pa; 146 memset(dev->hw_fib_va, 0, 147 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) * 148 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 149 150 /* add Xport header */ 151 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 152 sizeof(struct aac_fib_xporthdr)); 153 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr); 154 155 hw_fib = dev->hw_fib_va; 156 hw_fib_pa = dev->hw_fib_pa; 157 /* 158 * Initialise the fibs 159 */ 160 for (i = 0, fibptr = &dev->fibs[i]; 161 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 162 i++, fibptr++) 163 { 164 fibptr->flags = 0; 165 fibptr->size = sizeof(struct fib); 166 fibptr->dev = dev; 167 fibptr->hw_fib_va = hw_fib; 168 fibptr->data = (void *) fibptr->hw_fib_va->data; 169 fibptr->next = fibptr+1; /* Forward chain the fibs */ 170 sema_init(&fibptr->event_wait, 0); 171 spin_lock_init(&fibptr->event_lock); 172 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 173 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); 174 fibptr->hw_fib_pa = hw_fib_pa; 175 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 176 dev->max_fib_size + sizeof(struct aac_fib_xporthdr)); 177 hw_fib_pa = hw_fib_pa + 178 dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 179 } 180 181 /* 182 *Assign vector numbers to fibs 183 */ 184 aac_fib_vector_assign(dev); 185 186 /* 187 * Add the fib chain to the free list 188 */ 189 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 190 /* 191 * Set 8 fibs aside for management tools 192 */ 193 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 194 return 0; 195 } 196 197 /** 198 * aac_fib_alloc_tag-allocate a fib using tags 199 * @dev: Adapter to allocate the fib for 200 * 201 * Allocate a fib from the adapter fib pool using tags 202 * from the blk layer. 203 */ 204 205 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 206 { 207 struct fib *fibptr; 208 209 fibptr = &dev->fibs[scmd->request->tag]; 210 /* 211 * Null out fields that depend on being zero at the start of 212 * each I/O 213 */ 214 fibptr->hw_fib_va->header.XferState = 0; 215 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 216 fibptr->callback_data = NULL; 217 fibptr->callback = NULL; 218 219 return fibptr; 220 } 221 222 /** 223 * aac_fib_alloc - allocate a fib 224 * @dev: Adapter to allocate the fib for 225 * 226 * Allocate a fib from the adapter fib pool. If the pool is empty we 227 * return NULL. 228 */ 229 230 struct fib *aac_fib_alloc(struct aac_dev *dev) 231 { 232 struct fib * fibptr; 233 unsigned long flags; 234 spin_lock_irqsave(&dev->fib_lock, flags); 235 fibptr = dev->free_fib; 236 if(!fibptr){ 237 spin_unlock_irqrestore(&dev->fib_lock, flags); 238 return fibptr; 239 } 240 dev->free_fib = fibptr->next; 241 spin_unlock_irqrestore(&dev->fib_lock, flags); 242 /* 243 * Set the proper node type code and node byte size 244 */ 245 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 246 fibptr->size = sizeof(struct fib); 247 /* 248 * Null out fields that depend on being zero at the start of 249 * each I/O 250 */ 251 fibptr->hw_fib_va->header.XferState = 0; 252 fibptr->flags = 0; 253 fibptr->callback = NULL; 254 fibptr->callback_data = NULL; 255 256 return fibptr; 257 } 258 259 /** 260 * aac_fib_free - free a fib 261 * @fibptr: fib to free up 262 * 263 * Frees up a fib and places it on the appropriate queue 264 */ 265 266 void aac_fib_free(struct fib *fibptr) 267 { 268 unsigned long flags; 269 270 if (fibptr->done == 2) 271 return; 272 273 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 274 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 275 aac_config.fib_timeouts++; 276 if (fibptr->hw_fib_va->header.XferState != 0) { 277 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 278 (void*)fibptr, 279 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 280 } 281 fibptr->next = fibptr->dev->free_fib; 282 fibptr->dev->free_fib = fibptr; 283 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 284 } 285 286 /** 287 * aac_fib_init - initialise a fib 288 * @fibptr: The fib to initialize 289 * 290 * Set up the generic fib fields ready for use 291 */ 292 293 void aac_fib_init(struct fib *fibptr) 294 { 295 struct hw_fib *hw_fib = fibptr->hw_fib_va; 296 297 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 298 hw_fib->header.StructType = FIB_MAGIC; 299 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 300 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 301 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 302 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 303 } 304 305 /** 306 * fib_deallocate - deallocate a fib 307 * @fibptr: fib to deallocate 308 * 309 * Will deallocate and return to the free pool the FIB pointed to by the 310 * caller. 311 */ 312 313 static void fib_dealloc(struct fib * fibptr) 314 { 315 struct hw_fib *hw_fib = fibptr->hw_fib_va; 316 hw_fib->header.XferState = 0; 317 } 318 319 /* 320 * Commuication primitives define and support the queuing method we use to 321 * support host to adapter commuication. All queue accesses happen through 322 * these routines and are the only routines which have a knowledge of the 323 * how these queues are implemented. 324 */ 325 326 /** 327 * aac_get_entry - get a queue entry 328 * @dev: Adapter 329 * @qid: Queue Number 330 * @entry: Entry return 331 * @index: Index return 332 * @nonotify: notification control 333 * 334 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 335 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 336 * returned. 337 */ 338 339 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 340 { 341 struct aac_queue * q; 342 unsigned long idx; 343 344 /* 345 * All of the queues wrap when they reach the end, so we check 346 * to see if they have reached the end and if they have we just 347 * set the index back to zero. This is a wrap. You could or off 348 * the high bits in all updates but this is a bit faster I think. 349 */ 350 351 q = &dev->queues->queue[qid]; 352 353 idx = *index = le32_to_cpu(*(q->headers.producer)); 354 /* Interrupt Moderation, only interrupt for first two entries */ 355 if (idx != le32_to_cpu(*(q->headers.consumer))) { 356 if (--idx == 0) { 357 if (qid == AdapNormCmdQueue) 358 idx = ADAP_NORM_CMD_ENTRIES; 359 else 360 idx = ADAP_NORM_RESP_ENTRIES; 361 } 362 if (idx != le32_to_cpu(*(q->headers.consumer))) 363 *nonotify = 1; 364 } 365 366 if (qid == AdapNormCmdQueue) { 367 if (*index >= ADAP_NORM_CMD_ENTRIES) 368 *index = 0; /* Wrap to front of the Producer Queue. */ 369 } else { 370 if (*index >= ADAP_NORM_RESP_ENTRIES) 371 *index = 0; /* Wrap to front of the Producer Queue. */ 372 } 373 374 /* Queue is full */ 375 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 376 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 377 qid, atomic_read(&q->numpending)); 378 return 0; 379 } else { 380 *entry = q->base + *index; 381 return 1; 382 } 383 } 384 385 /** 386 * aac_queue_get - get the next free QE 387 * @dev: Adapter 388 * @index: Returned index 389 * @priority: Priority of fib 390 * @fib: Fib to associate with the queue entry 391 * @wait: Wait if queue full 392 * @fibptr: Driver fib object to go with fib 393 * @nonotify: Don't notify the adapter 394 * 395 * Gets the next free QE off the requested priorty adapter command 396 * queue and associates the Fib with the QE. The QE represented by 397 * index is ready to insert on the queue when this routine returns 398 * success. 399 */ 400 401 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 402 { 403 struct aac_entry * entry = NULL; 404 int map = 0; 405 406 if (qid == AdapNormCmdQueue) { 407 /* if no entries wait for some if caller wants to */ 408 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 409 printk(KERN_ERR "GetEntries failed\n"); 410 } 411 /* 412 * Setup queue entry with a command, status and fib mapped 413 */ 414 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 415 map = 1; 416 } else { 417 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 418 /* if no entries wait for some if caller wants to */ 419 } 420 /* 421 * Setup queue entry with command, status and fib mapped 422 */ 423 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 424 entry->addr = hw_fib->header.SenderFibAddress; 425 /* Restore adapters pointer to the FIB */ 426 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 427 map = 0; 428 } 429 /* 430 * If MapFib is true than we need to map the Fib and put pointers 431 * in the queue entry. 432 */ 433 if (map) 434 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 435 return 0; 436 } 437 438 /* 439 * Define the highest level of host to adapter communication routines. 440 * These routines will support host to adapter FS commuication. These 441 * routines have no knowledge of the commuication method used. This level 442 * sends and receives FIBs. This level has no knowledge of how these FIBs 443 * get passed back and forth. 444 */ 445 446 /** 447 * aac_fib_send - send a fib to the adapter 448 * @command: Command to send 449 * @fibptr: The fib 450 * @size: Size of fib data area 451 * @priority: Priority of Fib 452 * @wait: Async/sync select 453 * @reply: True if a reply is wanted 454 * @callback: Called with reply 455 * @callback_data: Passed to callback 456 * 457 * Sends the requested FIB to the adapter and optionally will wait for a 458 * response FIB. If the caller does not wish to wait for a response than 459 * an event to wait on must be supplied. This event will be set when a 460 * response FIB is received from the adapter. 461 */ 462 463 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 464 int priority, int wait, int reply, fib_callback callback, 465 void *callback_data) 466 { 467 struct aac_dev * dev = fibptr->dev; 468 struct hw_fib * hw_fib = fibptr->hw_fib_va; 469 unsigned long flags = 0; 470 unsigned long mflags = 0; 471 unsigned long sflags = 0; 472 473 474 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 475 return -EBUSY; 476 /* 477 * There are 5 cases with the wait and response requested flags. 478 * The only invalid cases are if the caller requests to wait and 479 * does not request a response and if the caller does not want a 480 * response and the Fib is not allocated from pool. If a response 481 * is not requesed the Fib will just be deallocaed by the DPC 482 * routine when the response comes back from the adapter. No 483 * further processing will be done besides deleting the Fib. We 484 * will have a debug mode where the adapter can notify the host 485 * it had a problem and the host can log that fact. 486 */ 487 fibptr->flags = 0; 488 if (wait && !reply) { 489 return -EINVAL; 490 } else if (!wait && reply) { 491 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 492 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 493 } else if (!wait && !reply) { 494 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 495 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 496 } else if (wait && reply) { 497 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 498 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 499 } 500 /* 501 * Map the fib into 32bits by using the fib number 502 */ 503 504 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 505 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1; 506 /* 507 * Set FIB state to indicate where it came from and if we want a 508 * response from the adapter. Also load the command from the 509 * caller. 510 * 511 * Map the hw fib pointer as a 32bit value 512 */ 513 hw_fib->header.Command = cpu_to_le16(command); 514 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 515 /* 516 * Set the size of the Fib we want to send to the adapter 517 */ 518 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 519 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 520 return -EMSGSIZE; 521 } 522 /* 523 * Get a queue entry connect the FIB to it and send an notify 524 * the adapter a command is ready. 525 */ 526 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 527 528 /* 529 * Fill in the Callback and CallbackContext if we are not 530 * going to wait. 531 */ 532 if (!wait) { 533 fibptr->callback = callback; 534 fibptr->callback_data = callback_data; 535 fibptr->flags = FIB_CONTEXT_FLAG; 536 } 537 538 fibptr->done = 0; 539 540 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 541 542 dprintk((KERN_DEBUG "Fib contents:.\n")); 543 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 544 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 545 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 546 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 547 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 548 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 549 550 if (!dev->queues) 551 return -EBUSY; 552 553 if (wait) { 554 555 spin_lock_irqsave(&dev->manage_lock, mflags); 556 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 557 printk(KERN_INFO "No management Fibs Available:%d\n", 558 dev->management_fib_count); 559 spin_unlock_irqrestore(&dev->manage_lock, mflags); 560 return -EBUSY; 561 } 562 dev->management_fib_count++; 563 spin_unlock_irqrestore(&dev->manage_lock, mflags); 564 spin_lock_irqsave(&fibptr->event_lock, flags); 565 } 566 567 if (dev->sync_mode) { 568 if (wait) 569 spin_unlock_irqrestore(&fibptr->event_lock, flags); 570 spin_lock_irqsave(&dev->sync_lock, sflags); 571 if (dev->sync_fib) { 572 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 573 spin_unlock_irqrestore(&dev->sync_lock, sflags); 574 } else { 575 dev->sync_fib = fibptr; 576 spin_unlock_irqrestore(&dev->sync_lock, sflags); 577 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 578 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 579 NULL, NULL, NULL, NULL, NULL); 580 } 581 if (wait) { 582 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 583 if (down_interruptible(&fibptr->event_wait)) { 584 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 585 return -EFAULT; 586 } 587 return 0; 588 } 589 return -EINPROGRESS; 590 } 591 592 if (aac_adapter_deliver(fibptr) != 0) { 593 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 594 if (wait) { 595 spin_unlock_irqrestore(&fibptr->event_lock, flags); 596 spin_lock_irqsave(&dev->manage_lock, mflags); 597 dev->management_fib_count--; 598 spin_unlock_irqrestore(&dev->manage_lock, mflags); 599 } 600 return -EBUSY; 601 } 602 603 604 /* 605 * If the caller wanted us to wait for response wait now. 606 */ 607 608 if (wait) { 609 spin_unlock_irqrestore(&fibptr->event_lock, flags); 610 /* Only set for first known interruptable command */ 611 if (wait < 0) { 612 /* 613 * *VERY* Dangerous to time out a command, the 614 * assumption is made that we have no hope of 615 * functioning because an interrupt routing or other 616 * hardware failure has occurred. 617 */ 618 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 619 while (down_trylock(&fibptr->event_wait)) { 620 int blink; 621 if (time_is_before_eq_jiffies(timeout)) { 622 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 623 atomic_dec(&q->numpending); 624 if (wait == -1) { 625 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 626 "Usually a result of a PCI interrupt routing problem;\n" 627 "update mother board BIOS or consider utilizing one of\n" 628 "the SAFE mode kernel options (acpi, apic etc)\n"); 629 } 630 return -ETIMEDOUT; 631 } 632 if ((blink = aac_adapter_check_health(dev)) > 0) { 633 if (wait == -1) { 634 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 635 "Usually a result of a serious unrecoverable hardware problem\n", 636 blink); 637 } 638 return -EFAULT; 639 } 640 /* 641 * Allow other processes / CPUS to use core 642 */ 643 schedule(); 644 } 645 } else if (down_interruptible(&fibptr->event_wait)) { 646 /* Do nothing ... satisfy 647 * down_interruptible must_check */ 648 } 649 650 spin_lock_irqsave(&fibptr->event_lock, flags); 651 if (fibptr->done == 0) { 652 fibptr->done = 2; /* Tell interrupt we aborted */ 653 spin_unlock_irqrestore(&fibptr->event_lock, flags); 654 return -ERESTARTSYS; 655 } 656 spin_unlock_irqrestore(&fibptr->event_lock, flags); 657 BUG_ON(fibptr->done == 0); 658 659 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 660 return -ETIMEDOUT; 661 return 0; 662 } 663 /* 664 * If the user does not want a response than return success otherwise 665 * return pending 666 */ 667 if (reply) 668 return -EINPROGRESS; 669 else 670 return 0; 671 } 672 673 /** 674 * aac_consumer_get - get the top of the queue 675 * @dev: Adapter 676 * @q: Queue 677 * @entry: Return entry 678 * 679 * Will return a pointer to the entry on the top of the queue requested that 680 * we are a consumer of, and return the address of the queue entry. It does 681 * not change the state of the queue. 682 */ 683 684 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 685 { 686 u32 index; 687 int status; 688 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 689 status = 0; 690 } else { 691 /* 692 * The consumer index must be wrapped if we have reached 693 * the end of the queue, else we just use the entry 694 * pointed to by the header index 695 */ 696 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 697 index = 0; 698 else 699 index = le32_to_cpu(*q->headers.consumer); 700 *entry = q->base + index; 701 status = 1; 702 } 703 return(status); 704 } 705 706 /** 707 * aac_consumer_free - free consumer entry 708 * @dev: Adapter 709 * @q: Queue 710 * @qid: Queue ident 711 * 712 * Frees up the current top of the queue we are a consumer of. If the 713 * queue was full notify the producer that the queue is no longer full. 714 */ 715 716 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 717 { 718 int wasfull = 0; 719 u32 notify; 720 721 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 722 wasfull = 1; 723 724 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 725 *q->headers.consumer = cpu_to_le32(1); 726 else 727 le32_add_cpu(q->headers.consumer, 1); 728 729 if (wasfull) { 730 switch (qid) { 731 732 case HostNormCmdQueue: 733 notify = HostNormCmdNotFull; 734 break; 735 case HostNormRespQueue: 736 notify = HostNormRespNotFull; 737 break; 738 default: 739 BUG(); 740 return; 741 } 742 aac_adapter_notify(dev, notify); 743 } 744 } 745 746 /** 747 * aac_fib_adapter_complete - complete adapter issued fib 748 * @fibptr: fib to complete 749 * @size: size of fib 750 * 751 * Will do all necessary work to complete a FIB that was sent from 752 * the adapter. 753 */ 754 755 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 756 { 757 struct hw_fib * hw_fib = fibptr->hw_fib_va; 758 struct aac_dev * dev = fibptr->dev; 759 struct aac_queue * q; 760 unsigned long nointr = 0; 761 unsigned long qflags; 762 763 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 764 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) { 765 kfree(hw_fib); 766 return 0; 767 } 768 769 if (hw_fib->header.XferState == 0) { 770 if (dev->comm_interface == AAC_COMM_MESSAGE) 771 kfree(hw_fib); 772 return 0; 773 } 774 /* 775 * If we plan to do anything check the structure type first. 776 */ 777 if (hw_fib->header.StructType != FIB_MAGIC && 778 hw_fib->header.StructType != FIB_MAGIC2 && 779 hw_fib->header.StructType != FIB_MAGIC2_64) { 780 if (dev->comm_interface == AAC_COMM_MESSAGE) 781 kfree(hw_fib); 782 return -EINVAL; 783 } 784 /* 785 * This block handles the case where the adapter had sent us a 786 * command and we have finished processing the command. We 787 * call completeFib when we are done processing the command 788 * and want to send a response back to the adapter. This will 789 * send the completed cdb to the adapter. 790 */ 791 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 792 if (dev->comm_interface == AAC_COMM_MESSAGE) { 793 kfree (hw_fib); 794 } else { 795 u32 index; 796 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 797 if (size) { 798 size += sizeof(struct aac_fibhdr); 799 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 800 return -EMSGSIZE; 801 hw_fib->header.Size = cpu_to_le16(size); 802 } 803 q = &dev->queues->queue[AdapNormRespQueue]; 804 spin_lock_irqsave(q->lock, qflags); 805 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 806 *(q->headers.producer) = cpu_to_le32(index + 1); 807 spin_unlock_irqrestore(q->lock, qflags); 808 if (!(nointr & (int)aac_config.irq_mod)) 809 aac_adapter_notify(dev, AdapNormRespQueue); 810 } 811 } else { 812 printk(KERN_WARNING "aac_fib_adapter_complete: " 813 "Unknown xferstate detected.\n"); 814 BUG(); 815 } 816 return 0; 817 } 818 819 /** 820 * aac_fib_complete - fib completion handler 821 * @fib: FIB to complete 822 * 823 * Will do all necessary work to complete a FIB. 824 */ 825 826 int aac_fib_complete(struct fib *fibptr) 827 { 828 struct hw_fib * hw_fib = fibptr->hw_fib_va; 829 830 /* 831 * Check for a fib which has already been completed 832 */ 833 834 if (hw_fib->header.XferState == 0) 835 return 0; 836 /* 837 * If we plan to do anything check the structure type first. 838 */ 839 840 if (hw_fib->header.StructType != FIB_MAGIC && 841 hw_fib->header.StructType != FIB_MAGIC2 && 842 hw_fib->header.StructType != FIB_MAGIC2_64) 843 return -EINVAL; 844 /* 845 * This block completes a cdb which orginated on the host and we 846 * just need to deallocate the cdb or reinit it. At this point the 847 * command is complete that we had sent to the adapter and this 848 * cdb could be reused. 849 */ 850 851 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 852 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 853 { 854 fib_dealloc(fibptr); 855 } 856 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 857 { 858 /* 859 * This handles the case when the host has aborted the I/O 860 * to the adapter because the adapter is not responding 861 */ 862 fib_dealloc(fibptr); 863 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 864 fib_dealloc(fibptr); 865 } else { 866 BUG(); 867 } 868 return 0; 869 } 870 871 /** 872 * aac_printf - handle printf from firmware 873 * @dev: Adapter 874 * @val: Message info 875 * 876 * Print a message passed to us by the controller firmware on the 877 * Adaptec board 878 */ 879 880 void aac_printf(struct aac_dev *dev, u32 val) 881 { 882 char *cp = dev->printfbuf; 883 if (dev->printf_enabled) 884 { 885 int length = val & 0xffff; 886 int level = (val >> 16) & 0xffff; 887 888 /* 889 * The size of the printfbuf is set in port.c 890 * There is no variable or define for it 891 */ 892 if (length > 255) 893 length = 255; 894 if (cp[length] != 0) 895 cp[length] = 0; 896 if (level == LOG_AAC_HIGH_ERROR) 897 printk(KERN_WARNING "%s:%s", dev->name, cp); 898 else 899 printk(KERN_INFO "%s:%s", dev->name, cp); 900 } 901 memset(cp, 0, 256); 902 } 903 904 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 905 { 906 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 907 } 908 909 910 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 911 { 912 switch (aac_aif_data(aifcmd, 1)) { 913 case AifBuCacheDataLoss: 914 if (aac_aif_data(aifcmd, 2)) 915 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 916 aac_aif_data(aifcmd, 2)); 917 else 918 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 919 break; 920 case AifBuCacheDataRecover: 921 if (aac_aif_data(aifcmd, 2)) 922 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 923 aac_aif_data(aifcmd, 2)); 924 else 925 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 926 break; 927 } 928 } 929 930 /** 931 * aac_handle_aif - Handle a message from the firmware 932 * @dev: Which adapter this fib is from 933 * @fibptr: Pointer to fibptr from adapter 934 * 935 * This routine handles a driver notify fib from the adapter and 936 * dispatches it to the appropriate routine for handling. 937 */ 938 939 #define AIF_SNIFF_TIMEOUT (500*HZ) 940 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 941 { 942 struct hw_fib * hw_fib = fibptr->hw_fib_va; 943 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 944 u32 channel, id, lun, container; 945 struct scsi_device *device; 946 enum { 947 NOTHING, 948 DELETE, 949 ADD, 950 CHANGE 951 } device_config_needed = NOTHING; 952 953 /* Sniff for container changes */ 954 955 if (!dev || !dev->fsa_dev) 956 return; 957 container = channel = id = lun = (u32)-1; 958 959 /* 960 * We have set this up to try and minimize the number of 961 * re-configures that take place. As a result of this when 962 * certain AIF's come in we will set a flag waiting for another 963 * type of AIF before setting the re-config flag. 964 */ 965 switch (le32_to_cpu(aifcmd->command)) { 966 case AifCmdDriverNotify: 967 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 968 case AifRawDeviceRemove: 969 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 970 if ((container >> 28)) { 971 container = (u32)-1; 972 break; 973 } 974 channel = (container >> 24) & 0xF; 975 if (channel >= dev->maximum_num_channels) { 976 container = (u32)-1; 977 break; 978 } 979 id = container & 0xFFFF; 980 if (id >= dev->maximum_num_physicals) { 981 container = (u32)-1; 982 break; 983 } 984 lun = (container >> 16) & 0xFF; 985 container = (u32)-1; 986 channel = aac_phys_to_logical(channel); 987 device_config_needed = 988 (((__le32 *)aifcmd->data)[0] == 989 cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD; 990 991 if (device_config_needed == ADD) { 992 device = scsi_device_lookup( 993 dev->scsi_host_ptr, 994 channel, id, lun); 995 if (device) { 996 scsi_remove_device(device); 997 scsi_device_put(device); 998 } 999 } 1000 break; 1001 /* 1002 * Morph or Expand complete 1003 */ 1004 case AifDenMorphComplete: 1005 case AifDenVolumeExtendComplete: 1006 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1007 if (container >= dev->maximum_num_containers) 1008 break; 1009 1010 /* 1011 * Find the scsi_device associated with the SCSI 1012 * address. Make sure we have the right array, and if 1013 * so set the flag to initiate a new re-config once we 1014 * see an AifEnConfigChange AIF come through. 1015 */ 1016 1017 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1018 device = scsi_device_lookup(dev->scsi_host_ptr, 1019 CONTAINER_TO_CHANNEL(container), 1020 CONTAINER_TO_ID(container), 1021 CONTAINER_TO_LUN(container)); 1022 if (device) { 1023 dev->fsa_dev[container].config_needed = CHANGE; 1024 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1025 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1026 scsi_device_put(device); 1027 } 1028 } 1029 } 1030 1031 /* 1032 * If we are waiting on something and this happens to be 1033 * that thing then set the re-configure flag. 1034 */ 1035 if (container != (u32)-1) { 1036 if (container >= dev->maximum_num_containers) 1037 break; 1038 if ((dev->fsa_dev[container].config_waiting_on == 1039 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1040 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1041 dev->fsa_dev[container].config_waiting_on = 0; 1042 } else for (container = 0; 1043 container < dev->maximum_num_containers; ++container) { 1044 if ((dev->fsa_dev[container].config_waiting_on == 1045 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1046 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1047 dev->fsa_dev[container].config_waiting_on = 0; 1048 } 1049 break; 1050 1051 case AifCmdEventNotify: 1052 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1053 case AifEnBatteryEvent: 1054 dev->cache_protected = 1055 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1056 break; 1057 /* 1058 * Add an Array. 1059 */ 1060 case AifEnAddContainer: 1061 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1062 if (container >= dev->maximum_num_containers) 1063 break; 1064 dev->fsa_dev[container].config_needed = ADD; 1065 dev->fsa_dev[container].config_waiting_on = 1066 AifEnConfigChange; 1067 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1068 break; 1069 1070 /* 1071 * Delete an Array. 1072 */ 1073 case AifEnDeleteContainer: 1074 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1075 if (container >= dev->maximum_num_containers) 1076 break; 1077 dev->fsa_dev[container].config_needed = DELETE; 1078 dev->fsa_dev[container].config_waiting_on = 1079 AifEnConfigChange; 1080 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1081 break; 1082 1083 /* 1084 * Container change detected. If we currently are not 1085 * waiting on something else, setup to wait on a Config Change. 1086 */ 1087 case AifEnContainerChange: 1088 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1089 if (container >= dev->maximum_num_containers) 1090 break; 1091 if (dev->fsa_dev[container].config_waiting_on && 1092 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1093 break; 1094 dev->fsa_dev[container].config_needed = CHANGE; 1095 dev->fsa_dev[container].config_waiting_on = 1096 AifEnConfigChange; 1097 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1098 break; 1099 1100 case AifEnConfigChange: 1101 break; 1102 1103 case AifEnAddJBOD: 1104 case AifEnDeleteJBOD: 1105 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1106 if ((container >> 28)) { 1107 container = (u32)-1; 1108 break; 1109 } 1110 channel = (container >> 24) & 0xF; 1111 if (channel >= dev->maximum_num_channels) { 1112 container = (u32)-1; 1113 break; 1114 } 1115 id = container & 0xFFFF; 1116 if (id >= dev->maximum_num_physicals) { 1117 container = (u32)-1; 1118 break; 1119 } 1120 lun = (container >> 16) & 0xFF; 1121 container = (u32)-1; 1122 channel = aac_phys_to_logical(channel); 1123 device_config_needed = 1124 (((__le32 *)aifcmd->data)[0] == 1125 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1126 if (device_config_needed == ADD) { 1127 device = scsi_device_lookup(dev->scsi_host_ptr, 1128 channel, 1129 id, 1130 lun); 1131 if (device) { 1132 scsi_remove_device(device); 1133 scsi_device_put(device); 1134 } 1135 } 1136 break; 1137 1138 case AifEnEnclosureManagement: 1139 /* 1140 * If in JBOD mode, automatic exposure of new 1141 * physical target to be suppressed until configured. 1142 */ 1143 if (dev->jbod) 1144 break; 1145 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1146 case EM_DRIVE_INSERTION: 1147 case EM_DRIVE_REMOVAL: 1148 case EM_SES_DRIVE_INSERTION: 1149 case EM_SES_DRIVE_REMOVAL: 1150 container = le32_to_cpu( 1151 ((__le32 *)aifcmd->data)[2]); 1152 if ((container >> 28)) { 1153 container = (u32)-1; 1154 break; 1155 } 1156 channel = (container >> 24) & 0xF; 1157 if (channel >= dev->maximum_num_channels) { 1158 container = (u32)-1; 1159 break; 1160 } 1161 id = container & 0xFFFF; 1162 lun = (container >> 16) & 0xFF; 1163 container = (u32)-1; 1164 if (id >= dev->maximum_num_physicals) { 1165 /* legacy dev_t ? */ 1166 if ((0x2000 <= id) || lun || channel || 1167 ((channel = (id >> 7) & 0x3F) >= 1168 dev->maximum_num_channels)) 1169 break; 1170 lun = (id >> 4) & 7; 1171 id &= 0xF; 1172 } 1173 channel = aac_phys_to_logical(channel); 1174 device_config_needed = 1175 ((((__le32 *)aifcmd->data)[3] 1176 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1177 (((__le32 *)aifcmd->data)[3] 1178 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1179 ADD : DELETE; 1180 break; 1181 } 1182 case AifBuManagerEvent: 1183 aac_handle_aif_bu(dev, aifcmd); 1184 break; 1185 } 1186 1187 /* 1188 * If we are waiting on something and this happens to be 1189 * that thing then set the re-configure flag. 1190 */ 1191 if (container != (u32)-1) { 1192 if (container >= dev->maximum_num_containers) 1193 break; 1194 if ((dev->fsa_dev[container].config_waiting_on == 1195 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1196 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1197 dev->fsa_dev[container].config_waiting_on = 0; 1198 } else for (container = 0; 1199 container < dev->maximum_num_containers; ++container) { 1200 if ((dev->fsa_dev[container].config_waiting_on == 1201 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1202 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1203 dev->fsa_dev[container].config_waiting_on = 0; 1204 } 1205 break; 1206 1207 case AifCmdJobProgress: 1208 /* 1209 * These are job progress AIF's. When a Clear is being 1210 * done on a container it is initially created then hidden from 1211 * the OS. When the clear completes we don't get a config 1212 * change so we monitor the job status complete on a clear then 1213 * wait for a container change. 1214 */ 1215 1216 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1217 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1218 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1219 for (container = 0; 1220 container < dev->maximum_num_containers; 1221 ++container) { 1222 /* 1223 * Stomp on all config sequencing for all 1224 * containers? 1225 */ 1226 dev->fsa_dev[container].config_waiting_on = 1227 AifEnContainerChange; 1228 dev->fsa_dev[container].config_needed = ADD; 1229 dev->fsa_dev[container].config_waiting_stamp = 1230 jiffies; 1231 } 1232 } 1233 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1234 ((__le32 *)aifcmd->data)[6] == 0 && 1235 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1236 for (container = 0; 1237 container < dev->maximum_num_containers; 1238 ++container) { 1239 /* 1240 * Stomp on all config sequencing for all 1241 * containers? 1242 */ 1243 dev->fsa_dev[container].config_waiting_on = 1244 AifEnContainerChange; 1245 dev->fsa_dev[container].config_needed = DELETE; 1246 dev->fsa_dev[container].config_waiting_stamp = 1247 jiffies; 1248 } 1249 } 1250 break; 1251 } 1252 1253 container = 0; 1254 retry_next: 1255 if (device_config_needed == NOTHING) 1256 for (; container < dev->maximum_num_containers; ++container) { 1257 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1258 (dev->fsa_dev[container].config_needed != NOTHING) && 1259 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1260 device_config_needed = 1261 dev->fsa_dev[container].config_needed; 1262 dev->fsa_dev[container].config_needed = NOTHING; 1263 channel = CONTAINER_TO_CHANNEL(container); 1264 id = CONTAINER_TO_ID(container); 1265 lun = CONTAINER_TO_LUN(container); 1266 break; 1267 } 1268 } 1269 if (device_config_needed == NOTHING) 1270 return; 1271 1272 /* 1273 * If we decided that a re-configuration needs to be done, 1274 * schedule it here on the way out the door, please close the door 1275 * behind you. 1276 */ 1277 1278 /* 1279 * Find the scsi_device associated with the SCSI address, 1280 * and mark it as changed, invalidating the cache. This deals 1281 * with changes to existing device IDs. 1282 */ 1283 1284 if (!dev || !dev->scsi_host_ptr) 1285 return; 1286 /* 1287 * force reload of disk info via aac_probe_container 1288 */ 1289 if ((channel == CONTAINER_CHANNEL) && 1290 (device_config_needed != NOTHING)) { 1291 if (dev->fsa_dev[container].valid == 1) 1292 dev->fsa_dev[container].valid = 2; 1293 aac_probe_container(dev, container); 1294 } 1295 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1296 if (device) { 1297 switch (device_config_needed) { 1298 case DELETE: 1299 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1300 scsi_remove_device(device); 1301 #else 1302 if (scsi_device_online(device)) { 1303 scsi_device_set_state(device, SDEV_OFFLINE); 1304 sdev_printk(KERN_INFO, device, 1305 "Device offlined - %s\n", 1306 (channel == CONTAINER_CHANNEL) ? 1307 "array deleted" : 1308 "enclosure services event"); 1309 } 1310 #endif 1311 break; 1312 case ADD: 1313 if (!scsi_device_online(device)) { 1314 sdev_printk(KERN_INFO, device, 1315 "Device online - %s\n", 1316 (channel == CONTAINER_CHANNEL) ? 1317 "array created" : 1318 "enclosure services event"); 1319 scsi_device_set_state(device, SDEV_RUNNING); 1320 } 1321 /* FALLTHRU */ 1322 case CHANGE: 1323 if ((channel == CONTAINER_CHANNEL) 1324 && (!dev->fsa_dev[container].valid)) { 1325 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1326 scsi_remove_device(device); 1327 #else 1328 if (!scsi_device_online(device)) 1329 break; 1330 scsi_device_set_state(device, SDEV_OFFLINE); 1331 sdev_printk(KERN_INFO, device, 1332 "Device offlined - %s\n", 1333 "array failed"); 1334 #endif 1335 break; 1336 } 1337 scsi_rescan_device(&device->sdev_gendev); 1338 1339 default: 1340 break; 1341 } 1342 scsi_device_put(device); 1343 device_config_needed = NOTHING; 1344 } 1345 if (device_config_needed == ADD) 1346 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1347 if (channel == CONTAINER_CHANNEL) { 1348 container++; 1349 device_config_needed = NOTHING; 1350 goto retry_next; 1351 } 1352 } 1353 1354 static int _aac_reset_adapter(struct aac_dev *aac, int forced) 1355 { 1356 int index, quirks; 1357 int retval; 1358 struct Scsi_Host *host; 1359 struct scsi_device *dev; 1360 struct scsi_cmnd *command; 1361 struct scsi_cmnd *command_list; 1362 int jafo = 0; 1363 1364 /* 1365 * Assumptions: 1366 * - host is locked, unless called by the aacraid thread. 1367 * (a matter of convenience, due to legacy issues surrounding 1368 * eh_host_adapter_reset). 1369 * - in_reset is asserted, so no new i/o is getting to the 1370 * card. 1371 * - The card is dead, or will be very shortly ;-/ so no new 1372 * commands are completing in the interrupt service. 1373 */ 1374 host = aac->scsi_host_ptr; 1375 scsi_block_requests(host); 1376 aac_adapter_disable_int(aac); 1377 if (aac->thread->pid != current->pid) { 1378 spin_unlock_irq(host->host_lock); 1379 kthread_stop(aac->thread); 1380 jafo = 1; 1381 } 1382 1383 /* 1384 * If a positive health, means in a known DEAD PANIC 1385 * state and the adapter could be reset to `try again'. 1386 */ 1387 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); 1388 1389 if (retval) 1390 goto out; 1391 1392 /* 1393 * Loop through the fibs, close the synchronous FIBS 1394 */ 1395 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1396 struct fib *fib = &aac->fibs[index]; 1397 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1398 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { 1399 unsigned long flagv; 1400 spin_lock_irqsave(&fib->event_lock, flagv); 1401 up(&fib->event_wait); 1402 spin_unlock_irqrestore(&fib->event_lock, flagv); 1403 schedule(); 1404 retval = 0; 1405 } 1406 } 1407 /* Give some extra time for ioctls to complete. */ 1408 if (retval == 0) 1409 ssleep(2); 1410 index = aac->cardtype; 1411 1412 /* 1413 * Re-initialize the adapter, first free resources, then carefully 1414 * apply the initialization sequence to come back again. Only risk 1415 * is a change in Firmware dropping cache, it is assumed the caller 1416 * will ensure that i/o is queisced and the card is flushed in that 1417 * case. 1418 */ 1419 aac_fib_map_free(aac); 1420 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1421 aac->comm_addr = NULL; 1422 aac->comm_phys = 0; 1423 kfree(aac->queues); 1424 aac->queues = NULL; 1425 aac_free_irq(aac); 1426 kfree(aac->fsa_dev); 1427 aac->fsa_dev = NULL; 1428 quirks = aac_get_driver_ident(index)->quirks; 1429 if (quirks & AAC_QUIRK_31BIT) { 1430 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) || 1431 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31))))) 1432 goto out; 1433 } else { 1434 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) || 1435 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32))))) 1436 goto out; 1437 } 1438 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1439 goto out; 1440 if (quirks & AAC_QUIRK_31BIT) 1441 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) 1442 goto out; 1443 if (jafo) { 1444 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1445 aac->name); 1446 if (IS_ERR(aac->thread)) { 1447 retval = PTR_ERR(aac->thread); 1448 goto out; 1449 } 1450 } 1451 (void)aac_get_adapter_info(aac); 1452 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1453 host->sg_tablesize = 34; 1454 host->max_sectors = (host->sg_tablesize * 8) + 112; 1455 } 1456 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1457 host->sg_tablesize = 17; 1458 host->max_sectors = (host->sg_tablesize * 8) + 112; 1459 } 1460 aac_get_config_status(aac, 1); 1461 aac_get_containers(aac); 1462 /* 1463 * This is where the assumption that the Adapter is quiesced 1464 * is important. 1465 */ 1466 command_list = NULL; 1467 __shost_for_each_device(dev, host) { 1468 unsigned long flags; 1469 spin_lock_irqsave(&dev->list_lock, flags); 1470 list_for_each_entry(command, &dev->cmd_list, list) 1471 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1472 command->SCp.buffer = (struct scatterlist *)command_list; 1473 command_list = command; 1474 } 1475 spin_unlock_irqrestore(&dev->list_lock, flags); 1476 } 1477 while ((command = command_list)) { 1478 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1479 command->SCp.buffer = NULL; 1480 command->result = DID_OK << 16 1481 | COMMAND_COMPLETE << 8 1482 | SAM_STAT_TASK_SET_FULL; 1483 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1484 command->scsi_done(command); 1485 } 1486 retval = 0; 1487 1488 out: 1489 aac->in_reset = 0; 1490 scsi_unblock_requests(host); 1491 if (jafo) { 1492 spin_lock_irq(host->host_lock); 1493 } 1494 return retval; 1495 } 1496 1497 int aac_reset_adapter(struct aac_dev * aac, int forced) 1498 { 1499 unsigned long flagv = 0; 1500 int retval; 1501 struct Scsi_Host * host; 1502 1503 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1504 return -EBUSY; 1505 1506 if (aac->in_reset) { 1507 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1508 return -EBUSY; 1509 } 1510 aac->in_reset = 1; 1511 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1512 1513 /* 1514 * Wait for all commands to complete to this specific 1515 * target (block maximum 60 seconds). Although not necessary, 1516 * it does make us a good storage citizen. 1517 */ 1518 host = aac->scsi_host_ptr; 1519 scsi_block_requests(host); 1520 if (forced < 2) for (retval = 60; retval; --retval) { 1521 struct scsi_device * dev; 1522 struct scsi_cmnd * command; 1523 int active = 0; 1524 1525 __shost_for_each_device(dev, host) { 1526 spin_lock_irqsave(&dev->list_lock, flagv); 1527 list_for_each_entry(command, &dev->cmd_list, list) { 1528 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1529 active++; 1530 break; 1531 } 1532 } 1533 spin_unlock_irqrestore(&dev->list_lock, flagv); 1534 if (active) 1535 break; 1536 1537 } 1538 /* 1539 * We can exit If all the commands are complete 1540 */ 1541 if (active == 0) 1542 break; 1543 ssleep(1); 1544 } 1545 1546 /* Quiesce build, flush cache, write through mode */ 1547 if (forced < 2) 1548 aac_send_shutdown(aac); 1549 spin_lock_irqsave(host->host_lock, flagv); 1550 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1))); 1551 spin_unlock_irqrestore(host->host_lock, flagv); 1552 1553 if ((forced < 2) && (retval == -ENODEV)) { 1554 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1555 struct fib * fibctx = aac_fib_alloc(aac); 1556 if (fibctx) { 1557 struct aac_pause *cmd; 1558 int status; 1559 1560 aac_fib_init(fibctx); 1561 1562 cmd = (struct aac_pause *) fib_data(fibctx); 1563 1564 cmd->command = cpu_to_le32(VM_ContainerConfig); 1565 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1566 cmd->timeout = cpu_to_le32(1); 1567 cmd->min = cpu_to_le32(1); 1568 cmd->noRescan = cpu_to_le32(1); 1569 cmd->count = cpu_to_le32(0); 1570 1571 status = aac_fib_send(ContainerCommand, 1572 fibctx, 1573 sizeof(struct aac_pause), 1574 FsaNormal, 1575 -2 /* Timeout silently */, 1, 1576 NULL, NULL); 1577 1578 if (status >= 0) 1579 aac_fib_complete(fibctx); 1580 /* FIB should be freed only after getting 1581 * the response from the F/W */ 1582 if (status != -ERESTARTSYS) 1583 aac_fib_free(fibctx); 1584 } 1585 } 1586 1587 return retval; 1588 } 1589 1590 int aac_check_health(struct aac_dev * aac) 1591 { 1592 int BlinkLED; 1593 unsigned long time_now, flagv = 0; 1594 struct list_head * entry; 1595 struct Scsi_Host * host; 1596 1597 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1598 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1599 return 0; 1600 1601 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1602 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1603 return 0; /* OK */ 1604 } 1605 1606 aac->in_reset = 1; 1607 1608 /* Fake up an AIF: 1609 * aac_aifcmd.command = AifCmdEventNotify = 1 1610 * aac_aifcmd.seqnum = 0xFFFFFFFF 1611 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1612 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1613 * aac.aifcmd.data[2] = AifHighPriority = 3 1614 * aac.aifcmd.data[3] = BlinkLED 1615 */ 1616 1617 time_now = jiffies/HZ; 1618 entry = aac->fib_list.next; 1619 1620 /* 1621 * For each Context that is on the 1622 * fibctxList, make a copy of the 1623 * fib, and then set the event to wake up the 1624 * thread that is waiting for it. 1625 */ 1626 while (entry != &aac->fib_list) { 1627 /* 1628 * Extract the fibctx 1629 */ 1630 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1631 struct hw_fib * hw_fib; 1632 struct fib * fib; 1633 /* 1634 * Check if the queue is getting 1635 * backlogged 1636 */ 1637 if (fibctx->count > 20) { 1638 /* 1639 * It's *not* jiffies folks, 1640 * but jiffies / HZ, so do not 1641 * panic ... 1642 */ 1643 u32 time_last = fibctx->jiffies; 1644 /* 1645 * Has it been > 2 minutes 1646 * since the last read off 1647 * the queue? 1648 */ 1649 if ((time_now - time_last) > aif_timeout) { 1650 entry = entry->next; 1651 aac_close_fib_context(aac, fibctx); 1652 continue; 1653 } 1654 } 1655 /* 1656 * Warning: no sleep allowed while 1657 * holding spinlock 1658 */ 1659 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1660 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1661 if (fib && hw_fib) { 1662 struct aac_aifcmd * aif; 1663 1664 fib->hw_fib_va = hw_fib; 1665 fib->dev = aac; 1666 aac_fib_init(fib); 1667 fib->type = FSAFS_NTC_FIB_CONTEXT; 1668 fib->size = sizeof (struct fib); 1669 fib->data = hw_fib->data; 1670 aif = (struct aac_aifcmd *)hw_fib->data; 1671 aif->command = cpu_to_le32(AifCmdEventNotify); 1672 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1673 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1674 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1675 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1676 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1677 1678 /* 1679 * Put the FIB onto the 1680 * fibctx's fibs 1681 */ 1682 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1683 fibctx->count++; 1684 /* 1685 * Set the event to wake up the 1686 * thread that will waiting. 1687 */ 1688 up(&fibctx->wait_sem); 1689 } else { 1690 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1691 kfree(fib); 1692 kfree(hw_fib); 1693 } 1694 entry = entry->next; 1695 } 1696 1697 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1698 1699 if (BlinkLED < 0) { 1700 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1701 goto out; 1702 } 1703 1704 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1705 1706 if (!aac_check_reset || ((aac_check_reset == 1) && 1707 (aac->supplement_adapter_info.SupportedOptions2 & 1708 AAC_OPTION_IGNORE_RESET))) 1709 goto out; 1710 host = aac->scsi_host_ptr; 1711 if (aac->thread->pid != current->pid) 1712 spin_lock_irqsave(host->host_lock, flagv); 1713 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1); 1714 if (aac->thread->pid != current->pid) 1715 spin_unlock_irqrestore(host->host_lock, flagv); 1716 return BlinkLED; 1717 1718 out: 1719 aac->in_reset = 0; 1720 return BlinkLED; 1721 } 1722 1723 1724 /** 1725 * aac_command_thread - command processing thread 1726 * @dev: Adapter to monitor 1727 * 1728 * Waits on the commandready event in it's queue. When the event gets set 1729 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1730 * until the queue is empty. When the queue is empty it will wait for 1731 * more FIBs. 1732 */ 1733 1734 int aac_command_thread(void *data) 1735 { 1736 struct aac_dev *dev = data; 1737 struct hw_fib *hw_fib, *hw_newfib; 1738 struct fib *fib, *newfib; 1739 struct aac_fib_context *fibctx; 1740 unsigned long flags; 1741 DECLARE_WAITQUEUE(wait, current); 1742 unsigned long next_jiffies = jiffies + HZ; 1743 unsigned long next_check_jiffies = next_jiffies; 1744 long difference = HZ; 1745 1746 /* 1747 * We can only have one thread per adapter for AIF's. 1748 */ 1749 if (dev->aif_thread) 1750 return -EINVAL; 1751 1752 /* 1753 * Let the DPC know it has a place to send the AIF's to. 1754 */ 1755 dev->aif_thread = 1; 1756 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1757 set_current_state(TASK_INTERRUPTIBLE); 1758 dprintk ((KERN_INFO "aac_command_thread start\n")); 1759 while (1) { 1760 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1761 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1762 struct list_head *entry; 1763 struct aac_aifcmd * aifcmd; 1764 1765 set_current_state(TASK_RUNNING); 1766 1767 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1768 list_del(entry); 1769 1770 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1771 fib = list_entry(entry, struct fib, fiblink); 1772 /* 1773 * We will process the FIB here or pass it to a 1774 * worker thread that is TBD. We Really can't 1775 * do anything at this point since we don't have 1776 * anything defined for this thread to do. 1777 */ 1778 hw_fib = fib->hw_fib_va; 1779 memset(fib, 0, sizeof(struct fib)); 1780 fib->type = FSAFS_NTC_FIB_CONTEXT; 1781 fib->size = sizeof(struct fib); 1782 fib->hw_fib_va = hw_fib; 1783 fib->data = hw_fib->data; 1784 fib->dev = dev; 1785 /* 1786 * We only handle AifRequest fibs from the adapter. 1787 */ 1788 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1789 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1790 /* Handle Driver Notify Events */ 1791 aac_handle_aif(dev, fib); 1792 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1793 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1794 } else { 1795 /* The u32 here is important and intended. We are using 1796 32bit wrapping time to fit the adapter field */ 1797 1798 u32 time_now, time_last; 1799 unsigned long flagv; 1800 unsigned num; 1801 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1802 struct fib ** fib_pool, ** fib_p; 1803 1804 /* Sniff events */ 1805 if ((aifcmd->command == 1806 cpu_to_le32(AifCmdEventNotify)) || 1807 (aifcmd->command == 1808 cpu_to_le32(AifCmdJobProgress))) { 1809 aac_handle_aif(dev, fib); 1810 } 1811 1812 time_now = jiffies/HZ; 1813 1814 /* 1815 * Warning: no sleep allowed while 1816 * holding spinlock. We take the estimate 1817 * and pre-allocate a set of fibs outside the 1818 * lock. 1819 */ 1820 num = le32_to_cpu(dev->init->AdapterFibsSize) 1821 / sizeof(struct hw_fib); /* some extra */ 1822 spin_lock_irqsave(&dev->fib_lock, flagv); 1823 entry = dev->fib_list.next; 1824 while (entry != &dev->fib_list) { 1825 entry = entry->next; 1826 ++num; 1827 } 1828 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1829 hw_fib_pool = NULL; 1830 fib_pool = NULL; 1831 if (num 1832 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1833 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1834 hw_fib_p = hw_fib_pool; 1835 fib_p = fib_pool; 1836 while (hw_fib_p < &hw_fib_pool[num]) { 1837 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1838 --hw_fib_p; 1839 break; 1840 } 1841 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1842 kfree(*(--hw_fib_p)); 1843 break; 1844 } 1845 } 1846 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1847 kfree(fib_pool); 1848 fib_pool = NULL; 1849 kfree(hw_fib_pool); 1850 hw_fib_pool = NULL; 1851 } 1852 } else { 1853 kfree(hw_fib_pool); 1854 hw_fib_pool = NULL; 1855 } 1856 spin_lock_irqsave(&dev->fib_lock, flagv); 1857 entry = dev->fib_list.next; 1858 /* 1859 * For each Context that is on the 1860 * fibctxList, make a copy of the 1861 * fib, and then set the event to wake up the 1862 * thread that is waiting for it. 1863 */ 1864 hw_fib_p = hw_fib_pool; 1865 fib_p = fib_pool; 1866 while (entry != &dev->fib_list) { 1867 /* 1868 * Extract the fibctx 1869 */ 1870 fibctx = list_entry(entry, struct aac_fib_context, next); 1871 /* 1872 * Check if the queue is getting 1873 * backlogged 1874 */ 1875 if (fibctx->count > 20) 1876 { 1877 /* 1878 * It's *not* jiffies folks, 1879 * but jiffies / HZ so do not 1880 * panic ... 1881 */ 1882 time_last = fibctx->jiffies; 1883 /* 1884 * Has it been > 2 minutes 1885 * since the last read off 1886 * the queue? 1887 */ 1888 if ((time_now - time_last) > aif_timeout) { 1889 entry = entry->next; 1890 aac_close_fib_context(dev, fibctx); 1891 continue; 1892 } 1893 } 1894 /* 1895 * Warning: no sleep allowed while 1896 * holding spinlock 1897 */ 1898 if (hw_fib_p < &hw_fib_pool[num]) { 1899 hw_newfib = *hw_fib_p; 1900 *(hw_fib_p++) = NULL; 1901 newfib = *fib_p; 1902 *(fib_p++) = NULL; 1903 /* 1904 * Make the copy of the FIB 1905 */ 1906 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1907 memcpy(newfib, fib, sizeof(struct fib)); 1908 newfib->hw_fib_va = hw_newfib; 1909 /* 1910 * Put the FIB onto the 1911 * fibctx's fibs 1912 */ 1913 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1914 fibctx->count++; 1915 /* 1916 * Set the event to wake up the 1917 * thread that is waiting. 1918 */ 1919 up(&fibctx->wait_sem); 1920 } else { 1921 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1922 } 1923 entry = entry->next; 1924 } 1925 /* 1926 * Set the status of this FIB 1927 */ 1928 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1929 aac_fib_adapter_complete(fib, sizeof(u32)); 1930 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1931 /* Free up the remaining resources */ 1932 hw_fib_p = hw_fib_pool; 1933 fib_p = fib_pool; 1934 while (hw_fib_p < &hw_fib_pool[num]) { 1935 kfree(*hw_fib_p); 1936 kfree(*fib_p); 1937 ++fib_p; 1938 ++hw_fib_p; 1939 } 1940 kfree(hw_fib_pool); 1941 kfree(fib_pool); 1942 } 1943 kfree(fib); 1944 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1945 } 1946 /* 1947 * There are no more AIF's 1948 */ 1949 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1950 1951 /* 1952 * Background activity 1953 */ 1954 if ((time_before(next_check_jiffies,next_jiffies)) 1955 && ((difference = next_check_jiffies - jiffies) <= 0)) { 1956 next_check_jiffies = next_jiffies; 1957 if (aac_check_health(dev) == 0) { 1958 difference = ((long)(unsigned)check_interval) 1959 * HZ; 1960 next_check_jiffies = jiffies + difference; 1961 } else if (!dev->queues) 1962 break; 1963 } 1964 if (!time_before(next_check_jiffies,next_jiffies) 1965 && ((difference = next_jiffies - jiffies) <= 0)) { 1966 struct timeval now; 1967 int ret; 1968 1969 /* Don't even try to talk to adapter if its sick */ 1970 ret = aac_check_health(dev); 1971 if (!ret && !dev->queues) 1972 break; 1973 next_check_jiffies = jiffies 1974 + ((long)(unsigned)check_interval) 1975 * HZ; 1976 do_gettimeofday(&now); 1977 1978 /* Synchronize our watches */ 1979 if (((1000000 - (1000000 / HZ)) > now.tv_usec) 1980 && (now.tv_usec > (1000000 / HZ))) 1981 difference = (((1000000 - now.tv_usec) * HZ) 1982 + 500000) / 1000000; 1983 else if (ret == 0) { 1984 struct fib *fibptr; 1985 1986 if ((fibptr = aac_fib_alloc(dev))) { 1987 int status; 1988 __le32 *info; 1989 1990 aac_fib_init(fibptr); 1991 1992 info = (__le32 *) fib_data(fibptr); 1993 if (now.tv_usec > 500000) 1994 ++now.tv_sec; 1995 1996 *info = cpu_to_le32(now.tv_sec); 1997 1998 status = aac_fib_send(SendHostTime, 1999 fibptr, 2000 sizeof(*info), 2001 FsaNormal, 2002 1, 1, 2003 NULL, 2004 NULL); 2005 /* Do not set XferState to zero unless 2006 * receives a response from F/W */ 2007 if (status >= 0) 2008 aac_fib_complete(fibptr); 2009 /* FIB should be freed only after 2010 * getting the response from the F/W */ 2011 if (status != -ERESTARTSYS) 2012 aac_fib_free(fibptr); 2013 } 2014 difference = (long)(unsigned)update_interval*HZ; 2015 } else { 2016 /* retry shortly */ 2017 difference = 10 * HZ; 2018 } 2019 next_jiffies = jiffies + difference; 2020 if (time_before(next_check_jiffies,next_jiffies)) 2021 difference = next_check_jiffies - jiffies; 2022 } 2023 if (difference <= 0) 2024 difference = 1; 2025 set_current_state(TASK_INTERRUPTIBLE); 2026 2027 if (kthread_should_stop()) 2028 break; 2029 2030 schedule_timeout(difference); 2031 2032 if (kthread_should_stop()) 2033 break; 2034 } 2035 if (dev->queues) 2036 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2037 dev->aif_thread = 0; 2038 return 0; 2039 } 2040 2041 int aac_acquire_irq(struct aac_dev *dev) 2042 { 2043 int i; 2044 int j; 2045 int ret = 0; 2046 int cpu; 2047 2048 cpu = cpumask_first(cpu_online_mask); 2049 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2050 for (i = 0; i < dev->max_msix; i++) { 2051 dev->aac_msix[i].vector_no = i; 2052 dev->aac_msix[i].dev = dev; 2053 if (request_irq(dev->msixentry[i].vector, 2054 dev->a_ops.adapter_intr, 2055 0, "aacraid", &(dev->aac_msix[i]))) { 2056 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2057 dev->name, dev->id, i); 2058 for (j = 0 ; j < i ; j++) 2059 free_irq(dev->msixentry[j].vector, 2060 &(dev->aac_msix[j])); 2061 pci_disable_msix(dev->pdev); 2062 ret = -1; 2063 } 2064 if (irq_set_affinity_hint(dev->msixentry[i].vector, 2065 get_cpu_mask(cpu))) { 2066 printk(KERN_ERR "%s%d: Failed to set IRQ affinity for cpu %d\n", 2067 dev->name, dev->id, cpu); 2068 } 2069 cpu = cpumask_next(cpu, cpu_online_mask); 2070 } 2071 } else { 2072 dev->aac_msix[0].vector_no = 0; 2073 dev->aac_msix[0].dev = dev; 2074 2075 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2076 IRQF_SHARED, "aacraid", 2077 &(dev->aac_msix[0])) < 0) { 2078 if (dev->msi) 2079 pci_disable_msi(dev->pdev); 2080 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2081 dev->name, dev->id); 2082 ret = -1; 2083 } 2084 } 2085 return ret; 2086 } 2087 2088 void aac_free_irq(struct aac_dev *dev) 2089 { 2090 int i; 2091 int cpu; 2092 2093 cpu = cpumask_first(cpu_online_mask); 2094 if (dev->pdev->device == PMC_DEVICE_S6 || 2095 dev->pdev->device == PMC_DEVICE_S7 || 2096 dev->pdev->device == PMC_DEVICE_S8 || 2097 dev->pdev->device == PMC_DEVICE_S9) { 2098 if (dev->max_msix > 1) { 2099 for (i = 0; i < dev->max_msix; i++) { 2100 if (irq_set_affinity_hint( 2101 dev->msixentry[i].vector, NULL)) { 2102 printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n", 2103 dev->name, dev->id, cpu); 2104 } 2105 cpu = cpumask_next(cpu, cpu_online_mask); 2106 free_irq(dev->msixentry[i].vector, 2107 &(dev->aac_msix[i])); 2108 } 2109 } else { 2110 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2111 } 2112 } else { 2113 free_irq(dev->pdev->irq, dev); 2114 } 2115 if (dev->msi) 2116 pci_disable_msi(dev->pdev); 2117 else if (dev->max_msix > 1) 2118 pci_disable_msix(dev->pdev); 2119 } 2120