1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * comminit.c 26 * 27 * Abstract: This supports the initialization of the host adapter commuication interface. 28 * This is a platform dependent module for the pci cyclone board. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/blkdev.h> 40 #include <linux/completion.h> 41 #include <linux/mm.h> 42 #include <scsi/scsi_host.h> 43 #include <asm/semaphore.h> 44 45 #include "aacraid.h" 46 47 struct aac_common aac_config = { 48 .irq_mod = 1 49 }; 50 51 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign) 52 { 53 unsigned char *base; 54 unsigned long size, align; 55 const unsigned long fibsize = 4096; 56 const unsigned long printfbufsiz = 256; 57 struct aac_init *init; 58 dma_addr_t phys; 59 60 size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz; 61 62 63 base = pci_alloc_consistent(dev->pdev, size, &phys); 64 65 if(base == NULL) 66 { 67 printk(KERN_ERR "aacraid: unable to create mapping.\n"); 68 return 0; 69 } 70 dev->comm_addr = (void *)base; 71 dev->comm_phys = phys; 72 dev->comm_size = size; 73 74 dev->init = (struct aac_init *)(base + fibsize); 75 dev->init_pa = phys + fibsize; 76 77 init = dev->init; 78 79 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION); 80 if (dev->max_fib_size != sizeof(struct hw_fib)) 81 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4); 82 init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION); 83 init->fsrev = cpu_to_le32(dev->fsrev); 84 85 /* 86 * Adapter Fibs are the first thing allocated so that they 87 * start page aligned 88 */ 89 dev->aif_base_va = (struct hw_fib *)base; 90 91 init->AdapterFibsVirtualAddress = 0; 92 init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys); 93 init->AdapterFibsSize = cpu_to_le32(fibsize); 94 init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib)); 95 /* 96 * number of 4k pages of host physical memory. The aacraid fw needs 97 * this number to be less than 4gb worth of pages. num_physpages is in 98 * system page units. New firmware doesn't have any issues with the 99 * mapping system, but older Firmware did, and had *troubles* dealing 100 * with the math overloading past 32 bits, thus we must limit this 101 * field. 102 * 103 * This assumes the memory is mapped zero->n, which isnt 104 * always true on real computers. It also has some slight problems 105 * with the GART on x86-64. I've btw never tried DMA from PCI space 106 * on this platform but don't be suprised if its problematic. 107 */ 108 #ifndef CONFIG_GART_IOMMU 109 if ((num_physpages << (PAGE_SHIFT - 12)) <= AAC_MAX_HOSTPHYSMEMPAGES) { 110 init->HostPhysMemPages = 111 cpu_to_le32(num_physpages << (PAGE_SHIFT-12)); 112 } else 113 #endif 114 { 115 init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES); 116 } 117 118 init->InitFlags = 0; 119 init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 120 init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9); 121 init->MaxFibSize = cpu_to_le32(dev->max_fib_size); 122 123 /* 124 * Increment the base address by the amount already used 125 */ 126 base = base + fibsize + sizeof(struct aac_init); 127 phys = (dma_addr_t)((ulong)phys + fibsize + sizeof(struct aac_init)); 128 /* 129 * Align the beginning of Headers to commalign 130 */ 131 align = (commalign - ((unsigned long)(base) & (commalign - 1))); 132 base = base + align; 133 phys = phys + align; 134 /* 135 * Fill in addresses of the Comm Area Headers and Queues 136 */ 137 *commaddr = base; 138 init->CommHeaderAddress = cpu_to_le32((u32)phys); 139 /* 140 * Increment the base address by the size of the CommArea 141 */ 142 base = base + commsize; 143 phys = phys + commsize; 144 /* 145 * Place the Printf buffer area after the Fast I/O comm area. 146 */ 147 dev->printfbuf = (void *)base; 148 init->printfbuf = cpu_to_le32(phys); 149 init->printfbufsiz = cpu_to_le32(printfbufsiz); 150 memset(base, 0, printfbufsiz); 151 return 1; 152 } 153 154 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize) 155 { 156 q->numpending = 0; 157 q->dev = dev; 158 INIT_LIST_HEAD(&q->pendingq); 159 init_waitqueue_head(&q->cmdready); 160 INIT_LIST_HEAD(&q->cmdq); 161 init_waitqueue_head(&q->qfull); 162 spin_lock_init(&q->lockdata); 163 q->lock = &q->lockdata; 164 q->headers.producer = (__le32 *)mem; 165 q->headers.consumer = (__le32 *)(mem+1); 166 *(q->headers.producer) = cpu_to_le32(qsize); 167 *(q->headers.consumer) = cpu_to_le32(qsize); 168 q->entries = qsize; 169 } 170 171 /** 172 * aac_send_shutdown - shutdown an adapter 173 * @dev: Adapter to shutdown 174 * 175 * This routine will send a VM_CloseAll (shutdown) request to the adapter. 176 */ 177 178 int aac_send_shutdown(struct aac_dev * dev) 179 { 180 struct fib * fibctx; 181 struct aac_close *cmd; 182 int status; 183 184 fibctx = fib_alloc(dev); 185 if (!fibctx) 186 return -ENOMEM; 187 fib_init(fibctx); 188 189 cmd = (struct aac_close *) fib_data(fibctx); 190 191 cmd->command = cpu_to_le32(VM_CloseAll); 192 cmd->cid = cpu_to_le32(0xffffffff); 193 194 status = fib_send(ContainerCommand, 195 fibctx, 196 sizeof(struct aac_close), 197 FsaNormal, 198 1, 1, 199 NULL, NULL); 200 201 if (status == 0) 202 fib_complete(fibctx); 203 fib_free(fibctx); 204 return status; 205 } 206 207 /** 208 * aac_comm_init - Initialise FSA data structures 209 * @dev: Adapter to initialise 210 * 211 * Initializes the data structures that are required for the FSA commuication 212 * interface to operate. 213 * Returns 214 * 1 - if we were able to init the commuication interface. 215 * 0 - If there were errors initing. This is a fatal error. 216 */ 217 218 static int aac_comm_init(struct aac_dev * dev) 219 { 220 unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2; 221 unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES; 222 u32 *headers; 223 struct aac_entry * queues; 224 unsigned long size; 225 struct aac_queue_block * comm = dev->queues; 226 /* 227 * Now allocate and initialize the zone structures used as our 228 * pool of FIB context records. The size of the zone is based 229 * on the system memory size. We also initialize the mutex used 230 * to protect the zone. 231 */ 232 spin_lock_init(&dev->fib_lock); 233 234 /* 235 * Allocate the physically contigous space for the commuication 236 * queue headers. 237 */ 238 239 size = hdrsize + queuesize; 240 241 if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT)) 242 return -ENOMEM; 243 244 queues = (struct aac_entry *)(((ulong)headers) + hdrsize); 245 246 /* Adapter to Host normal priority Command queue */ 247 comm->queue[HostNormCmdQueue].base = queues; 248 aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES); 249 queues += HOST_NORM_CMD_ENTRIES; 250 headers += 2; 251 252 /* Adapter to Host high priority command queue */ 253 comm->queue[HostHighCmdQueue].base = queues; 254 aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES); 255 256 queues += HOST_HIGH_CMD_ENTRIES; 257 headers +=2; 258 259 /* Host to adapter normal priority command queue */ 260 comm->queue[AdapNormCmdQueue].base = queues; 261 aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES); 262 263 queues += ADAP_NORM_CMD_ENTRIES; 264 headers += 2; 265 266 /* host to adapter high priority command queue */ 267 comm->queue[AdapHighCmdQueue].base = queues; 268 aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES); 269 270 queues += ADAP_HIGH_CMD_ENTRIES; 271 headers += 2; 272 273 /* adapter to host normal priority response queue */ 274 comm->queue[HostNormRespQueue].base = queues; 275 aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES); 276 queues += HOST_NORM_RESP_ENTRIES; 277 headers += 2; 278 279 /* adapter to host high priority response queue */ 280 comm->queue[HostHighRespQueue].base = queues; 281 aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES); 282 283 queues += HOST_HIGH_RESP_ENTRIES; 284 headers += 2; 285 286 /* host to adapter normal priority response queue */ 287 comm->queue[AdapNormRespQueue].base = queues; 288 aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES); 289 290 queues += ADAP_NORM_RESP_ENTRIES; 291 headers += 2; 292 293 /* host to adapter high priority response queue */ 294 comm->queue[AdapHighRespQueue].base = queues; 295 aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES); 296 297 comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock; 298 comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock; 299 comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock; 300 comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock; 301 302 return 0; 303 } 304 305 struct aac_dev *aac_init_adapter(struct aac_dev *dev) 306 { 307 u32 status[5]; 308 struct Scsi_Host * host = dev->scsi_host_ptr; 309 310 /* 311 * Check the preferred comm settings, defaults from template. 312 */ 313 dev->max_fib_size = sizeof(struct hw_fib); 314 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size 315 - sizeof(struct aac_fibhdr) 316 - sizeof(struct aac_write) + sizeof(struct sgmap)) 317 / sizeof(struct sgmap); 318 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS, 319 0, 0, 0, 0, 0, 0, 320 status+0, status+1, status+2, status+3, status+4)) 321 && (status[0] == 0x00000001)) { 322 /* 323 * status[1] >> 16 maximum command size in KB 324 * status[1] & 0xFFFF maximum FIB size 325 * status[2] >> 16 maximum SG elements to driver 326 * status[2] & 0xFFFF maximum SG elements from driver 327 * status[3] & 0xFFFF maximum number FIBs outstanding 328 */ 329 host->max_sectors = (status[1] >> 16) << 1; 330 dev->max_fib_size = status[1] & 0xFFFF; 331 host->sg_tablesize = status[2] >> 16; 332 dev->sg_tablesize = status[2] & 0xFFFF; 333 host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB; 334 /* 335 * NOTE: 336 * All these overrides are based on a fixed internal 337 * knowledge and understanding of existing adapters, 338 * acbsize should be set with caution. 339 */ 340 if (acbsize == 512) { 341 host->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 342 dev->max_fib_size = 512; 343 dev->sg_tablesize = host->sg_tablesize 344 = (512 - sizeof(struct aac_fibhdr) 345 - sizeof(struct aac_write) + sizeof(struct sgmap)) 346 / sizeof(struct sgmap); 347 host->can_queue = AAC_NUM_IO_FIB; 348 } else if (acbsize == 2048) { 349 host->max_sectors = 512; 350 dev->max_fib_size = 2048; 351 host->sg_tablesize = 65; 352 dev->sg_tablesize = 81; 353 host->can_queue = 512 - AAC_NUM_MGT_FIB; 354 } else if (acbsize == 4096) { 355 host->max_sectors = 1024; 356 dev->max_fib_size = 4096; 357 host->sg_tablesize = 129; 358 dev->sg_tablesize = 166; 359 host->can_queue = 256 - AAC_NUM_MGT_FIB; 360 } else if (acbsize == 8192) { 361 host->max_sectors = 2048; 362 dev->max_fib_size = 8192; 363 host->sg_tablesize = 257; 364 dev->sg_tablesize = 337; 365 host->can_queue = 128 - AAC_NUM_MGT_FIB; 366 } else if (acbsize > 0) { 367 printk("Illegal acbsize=%d ignored\n", acbsize); 368 } 369 } 370 { 371 372 if (numacb > 0) { 373 if (numacb < host->can_queue) 374 host->can_queue = numacb; 375 else 376 printk("numacb=%d ignored\n", numacb); 377 } 378 } 379 380 /* 381 * Ok now init the communication subsystem 382 */ 383 384 dev->queues = (struct aac_queue_block *) kmalloc(sizeof(struct aac_queue_block), GFP_KERNEL); 385 if (dev->queues == NULL) { 386 printk(KERN_ERR "Error could not allocate comm region.\n"); 387 return NULL; 388 } 389 memset(dev->queues, 0, sizeof(struct aac_queue_block)); 390 391 if (aac_comm_init(dev)<0){ 392 kfree(dev->queues); 393 return NULL; 394 } 395 /* 396 * Initialize the list of fibs 397 */ 398 if(fib_setup(dev)<0){ 399 kfree(dev->queues); 400 return NULL; 401 } 402 403 INIT_LIST_HEAD(&dev->fib_list); 404 init_completion(&dev->aif_completion); 405 406 return dev; 407 } 408 409 410