xref: /linux/drivers/scsi/aacraid/commctrl.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commctrl.c
27  *
28  * Abstract: Contains all routines for control of the AFA comm layer
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/pci.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/completion.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h> /* ssleep prototype */
42 #include <linux/kthread.h>
43 #include <linux/semaphore.h>
44 #include <asm/uaccess.h>
45 #include <scsi/scsi_host.h>
46 
47 #include "aacraid.h"
48 
49 /**
50  *	ioctl_send_fib	-	send a FIB from userspace
51  *	@dev:	adapter is being processed
52  *	@arg:	arguments to the ioctl call
53  *
54  *	This routine sends a fib to the adapter on behalf of a user level
55  *	program.
56  */
57 # define AAC_DEBUG_PREAMBLE	KERN_INFO
58 # define AAC_DEBUG_POSTAMBLE
59 
60 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
61 {
62 	struct hw_fib * kfib;
63 	struct fib *fibptr;
64 	struct hw_fib * hw_fib = (struct hw_fib *)0;
65 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
66 	unsigned size;
67 	int retval;
68 
69 	if (dev->in_reset) {
70 		return -EBUSY;
71 	}
72 	fibptr = aac_fib_alloc(dev);
73 	if(fibptr == NULL) {
74 		return -ENOMEM;
75 	}
76 
77 	kfib = fibptr->hw_fib_va;
78 	/*
79 	 *	First copy in the header so that we can check the size field.
80 	 */
81 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
82 		aac_fib_free(fibptr);
83 		return -EFAULT;
84 	}
85 	/*
86 	 *	Since we copy based on the fib header size, make sure that we
87 	 *	will not overrun the buffer when we copy the memory. Return
88 	 *	an error if we would.
89 	 */
90 	size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
91 	if (size < le16_to_cpu(kfib->header.SenderSize))
92 		size = le16_to_cpu(kfib->header.SenderSize);
93 	if (size > dev->max_fib_size) {
94 		dma_addr_t daddr;
95 
96 		if (size > 2048) {
97 			retval = -EINVAL;
98 			goto cleanup;
99 		}
100 
101 		kfib = pci_alloc_consistent(dev->pdev, size, &daddr);
102 		if (!kfib) {
103 			retval = -ENOMEM;
104 			goto cleanup;
105 		}
106 
107 		/* Highjack the hw_fib */
108 		hw_fib = fibptr->hw_fib_va;
109 		hw_fib_pa = fibptr->hw_fib_pa;
110 		fibptr->hw_fib_va = kfib;
111 		fibptr->hw_fib_pa = daddr;
112 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
113 		memcpy(kfib, hw_fib, dev->max_fib_size);
114 	}
115 
116 	if (copy_from_user(kfib, arg, size)) {
117 		retval = -EFAULT;
118 		goto cleanup;
119 	}
120 
121 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
122 		aac_adapter_interrupt(dev);
123 		/*
124 		 * Since we didn't really send a fib, zero out the state to allow
125 		 * cleanup code not to assert.
126 		 */
127 		kfib->header.XferState = 0;
128 	} else {
129 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
130 				le16_to_cpu(kfib->header.Size) , FsaNormal,
131 				1, 1, NULL, NULL);
132 		if (retval) {
133 			goto cleanup;
134 		}
135 		if (aac_fib_complete(fibptr) != 0) {
136 			retval = -EINVAL;
137 			goto cleanup;
138 		}
139 	}
140 	/*
141 	 *	Make sure that the size returned by the adapter (which includes
142 	 *	the header) is less than or equal to the size of a fib, so we
143 	 *	don't corrupt application data. Then copy that size to the user
144 	 *	buffer. (Don't try to add the header information again, since it
145 	 *	was already included by the adapter.)
146 	 */
147 
148 	retval = 0;
149 	if (copy_to_user(arg, (void *)kfib, size))
150 		retval = -EFAULT;
151 cleanup:
152 	if (hw_fib) {
153 		pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
154 		fibptr->hw_fib_pa = hw_fib_pa;
155 		fibptr->hw_fib_va = hw_fib;
156 	}
157 	if (retval != -ERESTARTSYS)
158 		aac_fib_free(fibptr);
159 	return retval;
160 }
161 
162 /**
163  *	open_getadapter_fib	-	Get the next fib
164  *
165  *	This routine will get the next Fib, if available, from the AdapterFibContext
166  *	passed in from the user.
167  */
168 
169 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
170 {
171 	struct aac_fib_context * fibctx;
172 	int status;
173 
174 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
175 	if (fibctx == NULL) {
176 		status = -ENOMEM;
177 	} else {
178 		unsigned long flags;
179 		struct list_head * entry;
180 		struct aac_fib_context * context;
181 
182 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
183 		fibctx->size = sizeof(struct aac_fib_context);
184 		/*
185 		 *	Yes yes, I know this could be an index, but we have a
186 		 * better guarantee of uniqueness for the locked loop below.
187 		 * Without the aid of a persistent history, this also helps
188 		 * reduce the chance that the opaque context would be reused.
189 		 */
190 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
191 		/*
192 		 *	Initialize the mutex used to wait for the next AIF.
193 		 */
194 		sema_init(&fibctx->wait_sem, 0);
195 		fibctx->wait = 0;
196 		/*
197 		 *	Initialize the fibs and set the count of fibs on
198 		 *	the list to 0.
199 		 */
200 		fibctx->count = 0;
201 		INIT_LIST_HEAD(&fibctx->fib_list);
202 		fibctx->jiffies = jiffies/HZ;
203 		/*
204 		 *	Now add this context onto the adapter's
205 		 *	AdapterFibContext list.
206 		 */
207 		spin_lock_irqsave(&dev->fib_lock, flags);
208 		/* Ensure that we have a unique identifier */
209 		entry = dev->fib_list.next;
210 		while (entry != &dev->fib_list) {
211 			context = list_entry(entry, struct aac_fib_context, next);
212 			if (context->unique == fibctx->unique) {
213 				/* Not unique (32 bits) */
214 				fibctx->unique++;
215 				entry = dev->fib_list.next;
216 			} else {
217 				entry = entry->next;
218 			}
219 		}
220 		list_add_tail(&fibctx->next, &dev->fib_list);
221 		spin_unlock_irqrestore(&dev->fib_lock, flags);
222 		if (copy_to_user(arg, &fibctx->unique,
223 						sizeof(fibctx->unique))) {
224 			status = -EFAULT;
225 		} else {
226 			status = 0;
227 		}
228 	}
229 	return status;
230 }
231 
232 /**
233  *	next_getadapter_fib	-	get the next fib
234  *	@dev: adapter to use
235  *	@arg: ioctl argument
236  *
237  *	This routine will get the next Fib, if available, from the AdapterFibContext
238  *	passed in from the user.
239  */
240 
241 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
242 {
243 	struct fib_ioctl f;
244 	struct fib *fib;
245 	struct aac_fib_context *fibctx;
246 	int status;
247 	struct list_head * entry;
248 	unsigned long flags;
249 
250 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
251 		return -EFAULT;
252 	/*
253 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
254 	 *
255 	 *	Search the list of AdapterFibContext addresses on the adapter
256 	 *	to be sure this is a valid address
257 	 */
258 	spin_lock_irqsave(&dev->fib_lock, flags);
259 	entry = dev->fib_list.next;
260 	fibctx = NULL;
261 
262 	while (entry != &dev->fib_list) {
263 		fibctx = list_entry(entry, struct aac_fib_context, next);
264 		/*
265 		 *	Extract the AdapterFibContext from the Input parameters.
266 		 */
267 		if (fibctx->unique == f.fibctx) { /* We found a winner */
268 			break;
269 		}
270 		entry = entry->next;
271 		fibctx = NULL;
272 	}
273 	if (!fibctx) {
274 		spin_unlock_irqrestore(&dev->fib_lock, flags);
275 		dprintk ((KERN_INFO "Fib Context not found\n"));
276 		return -EINVAL;
277 	}
278 
279 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
280 		 (fibctx->size != sizeof(struct aac_fib_context))) {
281 		spin_unlock_irqrestore(&dev->fib_lock, flags);
282 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
283 		return -EINVAL;
284 	}
285 	status = 0;
286 	/*
287 	 *	If there are no fibs to send back, then either wait or return
288 	 *	-EAGAIN
289 	 */
290 return_fib:
291 	if (!list_empty(&fibctx->fib_list)) {
292 		/*
293 		 *	Pull the next fib from the fibs
294 		 */
295 		entry = fibctx->fib_list.next;
296 		list_del(entry);
297 
298 		fib = list_entry(entry, struct fib, fiblink);
299 		fibctx->count--;
300 		spin_unlock_irqrestore(&dev->fib_lock, flags);
301 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
302 			kfree(fib->hw_fib_va);
303 			kfree(fib);
304 			return -EFAULT;
305 		}
306 		/*
307 		 *	Free the space occupied by this copy of the fib.
308 		 */
309 		kfree(fib->hw_fib_va);
310 		kfree(fib);
311 		status = 0;
312 	} else {
313 		spin_unlock_irqrestore(&dev->fib_lock, flags);
314 		/* If someone killed the AIF aacraid thread, restart it */
315 		status = !dev->aif_thread;
316 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
317 			/* Be paranoid, be very paranoid! */
318 			kthread_stop(dev->thread);
319 			ssleep(1);
320 			dev->aif_thread = 0;
321 			dev->thread = kthread_run(aac_command_thread, dev,
322 						  "%s", dev->name);
323 			ssleep(1);
324 		}
325 		if (f.wait) {
326 			if(down_interruptible(&fibctx->wait_sem) < 0) {
327 				status = -ERESTARTSYS;
328 			} else {
329 				/* Lock again and retry */
330 				spin_lock_irqsave(&dev->fib_lock, flags);
331 				goto return_fib;
332 			}
333 		} else {
334 			status = -EAGAIN;
335 		}
336 	}
337 	fibctx->jiffies = jiffies/HZ;
338 	return status;
339 }
340 
341 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
342 {
343 	struct fib *fib;
344 
345 	/*
346 	 *	First free any FIBs that have not been consumed.
347 	 */
348 	while (!list_empty(&fibctx->fib_list)) {
349 		struct list_head * entry;
350 		/*
351 		 *	Pull the next fib from the fibs
352 		 */
353 		entry = fibctx->fib_list.next;
354 		list_del(entry);
355 		fib = list_entry(entry, struct fib, fiblink);
356 		fibctx->count--;
357 		/*
358 		 *	Free the space occupied by this copy of the fib.
359 		 */
360 		kfree(fib->hw_fib_va);
361 		kfree(fib);
362 	}
363 	/*
364 	 *	Remove the Context from the AdapterFibContext List
365 	 */
366 	list_del(&fibctx->next);
367 	/*
368 	 *	Invalidate context
369 	 */
370 	fibctx->type = 0;
371 	/*
372 	 *	Free the space occupied by the Context
373 	 */
374 	kfree(fibctx);
375 	return 0;
376 }
377 
378 /**
379  *	close_getadapter_fib	-	close down user fib context
380  *	@dev: adapter
381  *	@arg: ioctl arguments
382  *
383  *	This routine will close down the fibctx passed in from the user.
384  */
385 
386 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
387 {
388 	struct aac_fib_context *fibctx;
389 	int status;
390 	unsigned long flags;
391 	struct list_head * entry;
392 
393 	/*
394 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
395 	 *
396 	 *	Search the list of AdapterFibContext addresses on the adapter
397 	 *	to be sure this is a valid address
398 	 */
399 
400 	entry = dev->fib_list.next;
401 	fibctx = NULL;
402 
403 	while(entry != &dev->fib_list) {
404 		fibctx = list_entry(entry, struct aac_fib_context, next);
405 		/*
406 		 *	Extract the fibctx from the input parameters
407 		 */
408 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
409 			break;
410 		entry = entry->next;
411 		fibctx = NULL;
412 	}
413 
414 	if (!fibctx)
415 		return 0; /* Already gone */
416 
417 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
418 		 (fibctx->size != sizeof(struct aac_fib_context)))
419 		return -EINVAL;
420 	spin_lock_irqsave(&dev->fib_lock, flags);
421 	status = aac_close_fib_context(dev, fibctx);
422 	spin_unlock_irqrestore(&dev->fib_lock, flags);
423 	return status;
424 }
425 
426 /**
427  *	check_revision	-	close down user fib context
428  *	@dev: adapter
429  *	@arg: ioctl arguments
430  *
431  *	This routine returns the driver version.
432  *	Under Linux, there have been no version incompatibilities, so this is
433  *	simple!
434  */
435 
436 static int check_revision(struct aac_dev *dev, void __user *arg)
437 {
438 	struct revision response;
439 	char *driver_version = aac_driver_version;
440 	u32 version;
441 
442 	response.compat = 1;
443 	version = (simple_strtol(driver_version,
444 				&driver_version, 10) << 24) | 0x00000400;
445 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
446 	version += simple_strtol(driver_version + 1, NULL, 10);
447 	response.version = cpu_to_le32(version);
448 #	ifdef AAC_DRIVER_BUILD
449 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
450 #	else
451 		response.build = cpu_to_le32(9999);
452 #	endif
453 
454 	if (copy_to_user(arg, &response, sizeof(response)))
455 		return -EFAULT;
456 	return 0;
457 }
458 
459 
460 /**
461  *
462  * aac_send_raw_scb
463  *
464  */
465 
466 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
467 {
468 	struct fib* srbfib;
469 	int status;
470 	struct aac_srb *srbcmd = NULL;
471 	struct user_aac_srb *user_srbcmd = NULL;
472 	struct user_aac_srb __user *user_srb = arg;
473 	struct aac_srb_reply __user *user_reply;
474 	struct aac_srb_reply* reply;
475 	u32 fibsize = 0;
476 	u32 flags = 0;
477 	s32 rcode = 0;
478 	u32 data_dir;
479 	void __user *sg_user[32];
480 	void *sg_list[32];
481 	u32 sg_indx = 0;
482 	u32 byte_count = 0;
483 	u32 actual_fibsize64, actual_fibsize = 0;
484 	int i;
485 
486 
487 	if (dev->in_reset) {
488 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
489 		return -EBUSY;
490 	}
491 	if (!capable(CAP_SYS_ADMIN)){
492 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
493 		return -EPERM;
494 	}
495 	/*
496 	 *	Allocate and initialize a Fib then setup a SRB command
497 	 */
498 	if (!(srbfib = aac_fib_alloc(dev))) {
499 		return -ENOMEM;
500 	}
501 	aac_fib_init(srbfib);
502 	/* raw_srb FIB is not FastResponseCapable */
503 	srbfib->hw_fib_va->header.XferState &= ~cpu_to_le32(FastResponseCapable);
504 
505 	srbcmd = (struct aac_srb*) fib_data(srbfib);
506 
507 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
508 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
509 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
510 		rcode = -EFAULT;
511 		goto cleanup;
512 	}
513 
514 	if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) {
515 		rcode = -EINVAL;
516 		goto cleanup;
517 	}
518 
519 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
520 	if (!user_srbcmd) {
521 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
522 		rcode = -ENOMEM;
523 		goto cleanup;
524 	}
525 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
526 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
527 		rcode = -EFAULT;
528 		goto cleanup;
529 	}
530 
531 	user_reply = arg+fibsize;
532 
533 	flags = user_srbcmd->flags; /* from user in cpu order */
534 	// Fix up srb for endian and force some values
535 
536 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);	// Force this
537 	srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
538 	srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
539 	srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
540 	srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
541 	srbcmd->flags	 = cpu_to_le32(flags);
542 	srbcmd->retry_limit = 0; // Obsolete parameter
543 	srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
544 	memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
545 
546 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
547 	case SRB_DataOut:
548 		data_dir = DMA_TO_DEVICE;
549 		break;
550 	case (SRB_DataIn | SRB_DataOut):
551 		data_dir = DMA_BIDIRECTIONAL;
552 		break;
553 	case SRB_DataIn:
554 		data_dir = DMA_FROM_DEVICE;
555 		break;
556 	default:
557 		data_dir = DMA_NONE;
558 	}
559 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
560 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
561 		  le32_to_cpu(srbcmd->sg.count)));
562 		rcode = -EINVAL;
563 		goto cleanup;
564 	}
565 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
566 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
567 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
568 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
569 	/* User made a mistake - should not continue */
570 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
571 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
572 		  "Raw SRB command calculated fibsize=%lu;%lu "
573 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
574 		  "issued fibsize=%d\n",
575 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
576 		  sizeof(struct aac_srb), sizeof(struct sgentry),
577 		  sizeof(struct sgentry64), fibsize));
578 		rcode = -EINVAL;
579 		goto cleanup;
580 	}
581 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
582 		dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
583 		rcode = -EINVAL;
584 		goto cleanup;
585 	}
586 	byte_count = 0;
587 	if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
588 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
589 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
590 
591 		/*
592 		 * This should also catch if user used the 32 bit sgmap
593 		 */
594 		if (actual_fibsize64 == fibsize) {
595 			actual_fibsize = actual_fibsize64;
596 			for (i = 0; i < upsg->count; i++) {
597 				u64 addr;
598 				void* p;
599 				if (upsg->sg[i].count >
600 				    ((dev->adapter_info.options &
601 				     AAC_OPT_NEW_COMM) ?
602 				      (dev->scsi_host_ptr->max_sectors << 9) :
603 				      65536)) {
604 					rcode = -EINVAL;
605 					goto cleanup;
606 				}
607 				/* Does this really need to be GFP_DMA? */
608 				p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA);
609 				if(!p) {
610 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
611 					  upsg->sg[i].count,i,upsg->count));
612 					rcode = -ENOMEM;
613 					goto cleanup;
614 				}
615 				addr = (u64)upsg->sg[i].addr[0];
616 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
617 				sg_user[i] = (void __user *)(uintptr_t)addr;
618 				sg_list[i] = p; // save so we can clean up later
619 				sg_indx = i;
620 
621 				if (flags & SRB_DataOut) {
622 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
623 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
624 						rcode = -EFAULT;
625 						goto cleanup;
626 					}
627 				}
628 				addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir);
629 
630 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
631 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
632 				byte_count += upsg->sg[i].count;
633 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
634 			}
635 		} else {
636 			struct user_sgmap* usg;
637 			usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
638 			  + sizeof(struct sgmap), GFP_KERNEL);
639 			if (!usg) {
640 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
641 				rcode = -ENOMEM;
642 				goto cleanup;
643 			}
644 			memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
645 			  + sizeof(struct sgmap));
646 			actual_fibsize = actual_fibsize64;
647 
648 			for (i = 0; i < usg->count; i++) {
649 				u64 addr;
650 				void* p;
651 				if (usg->sg[i].count >
652 				    ((dev->adapter_info.options &
653 				     AAC_OPT_NEW_COMM) ?
654 				      (dev->scsi_host_ptr->max_sectors << 9) :
655 				      65536)) {
656 					kfree(usg);
657 					rcode = -EINVAL;
658 					goto cleanup;
659 				}
660 				/* Does this really need to be GFP_DMA? */
661 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
662 				if(!p) {
663 					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
664 					  usg->sg[i].count,i,usg->count));
665 					kfree(usg);
666 					rcode = -ENOMEM;
667 					goto cleanup;
668 				}
669 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
670 				sg_list[i] = p; // save so we can clean up later
671 				sg_indx = i;
672 
673 				if (flags & SRB_DataOut) {
674 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
675 						kfree (usg);
676 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
677 						rcode = -EFAULT;
678 						goto cleanup;
679 					}
680 				}
681 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
682 
683 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
684 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
685 				byte_count += usg->sg[i].count;
686 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
687 			}
688 			kfree (usg);
689 		}
690 		srbcmd->count = cpu_to_le32(byte_count);
691 		psg->count = cpu_to_le32(sg_indx+1);
692 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
693 	} else {
694 		struct user_sgmap* upsg = &user_srbcmd->sg;
695 		struct sgmap* psg = &srbcmd->sg;
696 
697 		if (actual_fibsize64 == fibsize) {
698 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
699 			for (i = 0; i < upsg->count; i++) {
700 				uintptr_t addr;
701 				void* p;
702 				if (usg->sg[i].count >
703 				    ((dev->adapter_info.options &
704 				     AAC_OPT_NEW_COMM) ?
705 				      (dev->scsi_host_ptr->max_sectors << 9) :
706 				      65536)) {
707 					rcode = -EINVAL;
708 					goto cleanup;
709 				}
710 				/* Does this really need to be GFP_DMA? */
711 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
712 				if(!p) {
713 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
714 					  usg->sg[i].count,i,usg->count));
715 					rcode = -ENOMEM;
716 					goto cleanup;
717 				}
718 				addr = (u64)usg->sg[i].addr[0];
719 				addr += ((u64)usg->sg[i].addr[1]) << 32;
720 				sg_user[i] = (void __user *)addr;
721 				sg_list[i] = p; // save so we can clean up later
722 				sg_indx = i;
723 
724 				if (flags & SRB_DataOut) {
725 					if(copy_from_user(p,sg_user[i],usg->sg[i].count)){
726 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
727 						rcode = -EFAULT;
728 						goto cleanup;
729 					}
730 				}
731 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
732 
733 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
734 				byte_count += usg->sg[i].count;
735 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
736 			}
737 		} else {
738 			for (i = 0; i < upsg->count; i++) {
739 				dma_addr_t addr;
740 				void* p;
741 				if (upsg->sg[i].count >
742 				    ((dev->adapter_info.options &
743 				     AAC_OPT_NEW_COMM) ?
744 				      (dev->scsi_host_ptr->max_sectors << 9) :
745 				      65536)) {
746 					rcode = -EINVAL;
747 					goto cleanup;
748 				}
749 				p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
750 				if (!p) {
751 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
752 					  upsg->sg[i].count, i, upsg->count));
753 					rcode = -ENOMEM;
754 					goto cleanup;
755 				}
756 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
757 				sg_list[i] = p; // save so we can clean up later
758 				sg_indx = i;
759 
760 				if (flags & SRB_DataOut) {
761 					if(copy_from_user(p, sg_user[i],
762 							upsg->sg[i].count)) {
763 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
764 						rcode = -EFAULT;
765 						goto cleanup;
766 					}
767 				}
768 				addr = pci_map_single(dev->pdev, p,
769 					upsg->sg[i].count, data_dir);
770 
771 				psg->sg[i].addr = cpu_to_le32(addr);
772 				byte_count += upsg->sg[i].count;
773 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
774 			}
775 		}
776 		srbcmd->count = cpu_to_le32(byte_count);
777 		psg->count = cpu_to_le32(sg_indx+1);
778 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
779 	}
780 	if (status == -ERESTARTSYS) {
781 		rcode = -ERESTARTSYS;
782 		goto cleanup;
783 	}
784 
785 	if (status != 0){
786 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
787 		rcode = -ENXIO;
788 		goto cleanup;
789 	}
790 
791 	if (flags & SRB_DataIn) {
792 		for(i = 0 ; i <= sg_indx; i++){
793 			byte_count = le32_to_cpu(
794 			  (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)
795 			      ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
796 			      : srbcmd->sg.sg[i].count);
797 			if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
798 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
799 				rcode = -EFAULT;
800 				goto cleanup;
801 
802 			}
803 		}
804 	}
805 
806 	reply = (struct aac_srb_reply *) fib_data(srbfib);
807 	if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
808 		dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n"));
809 		rcode = -EFAULT;
810 		goto cleanup;
811 	}
812 
813 cleanup:
814 	kfree(user_srbcmd);
815 	for(i=0; i <= sg_indx; i++){
816 		kfree(sg_list[i]);
817 	}
818 	if (rcode != -ERESTARTSYS) {
819 		aac_fib_complete(srbfib);
820 		aac_fib_free(srbfib);
821 	}
822 
823 	return rcode;
824 }
825 
826 struct aac_pci_info {
827 	u32 bus;
828 	u32 slot;
829 };
830 
831 
832 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
833 {
834 	struct aac_pci_info pci_info;
835 
836 	pci_info.bus = dev->pdev->bus->number;
837 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
838 
839 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
840 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
841 		return -EFAULT;
842 	}
843 	return 0;
844 }
845 
846 
847 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
848 {
849 	int status;
850 
851 	/*
852 	 *	HBA gets first crack
853 	 */
854 
855 	status = aac_dev_ioctl(dev, cmd, arg);
856 	if (status != -ENOTTY)
857 		return status;
858 
859 	switch (cmd) {
860 	case FSACTL_MINIPORT_REV_CHECK:
861 		status = check_revision(dev, arg);
862 		break;
863 	case FSACTL_SEND_LARGE_FIB:
864 	case FSACTL_SENDFIB:
865 		status = ioctl_send_fib(dev, arg);
866 		break;
867 	case FSACTL_OPEN_GET_ADAPTER_FIB:
868 		status = open_getadapter_fib(dev, arg);
869 		break;
870 	case FSACTL_GET_NEXT_ADAPTER_FIB:
871 		status = next_getadapter_fib(dev, arg);
872 		break;
873 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
874 		status = close_getadapter_fib(dev, arg);
875 		break;
876 	case FSACTL_SEND_RAW_SRB:
877 		status = aac_send_raw_srb(dev,arg);
878 		break;
879 	case FSACTL_GET_PCI_INFO:
880 		status = aac_get_pci_info(dev,arg);
881 		break;
882 	default:
883 		status = -ENOTTY;
884 		break;
885 	}
886 	return status;
887 }
888 
889