xref: /linux/drivers/scsi/aacraid/commctrl.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commctrl.c
26  *
27  * Abstract: Contains all routines for control of the AFA comm layer
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/pci.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/completion.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h> /* ssleep prototype */
41 #include <linux/kthread.h>
42 #include <linux/semaphore.h>
43 #include <asm/uaccess.h>
44 
45 #include "aacraid.h"
46 
47 /**
48  *	ioctl_send_fib	-	send a FIB from userspace
49  *	@dev:	adapter is being processed
50  *	@arg:	arguments to the ioctl call
51  *
52  *	This routine sends a fib to the adapter on behalf of a user level
53  *	program.
54  */
55 # define AAC_DEBUG_PREAMBLE	KERN_INFO
56 # define AAC_DEBUG_POSTAMBLE
57 
58 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
59 {
60 	struct hw_fib * kfib;
61 	struct fib *fibptr;
62 	struct hw_fib * hw_fib = (struct hw_fib *)0;
63 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
64 	unsigned size;
65 	int retval;
66 
67 	if (dev->in_reset) {
68 		return -EBUSY;
69 	}
70 	fibptr = aac_fib_alloc(dev);
71 	if(fibptr == NULL) {
72 		return -ENOMEM;
73 	}
74 
75 	kfib = fibptr->hw_fib_va;
76 	/*
77 	 *	First copy in the header so that we can check the size field.
78 	 */
79 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
80 		aac_fib_free(fibptr);
81 		return -EFAULT;
82 	}
83 	/*
84 	 *	Since we copy based on the fib header size, make sure that we
85 	 *	will not overrun the buffer when we copy the memory. Return
86 	 *	an error if we would.
87 	 */
88 	size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
89 	if (size < le16_to_cpu(kfib->header.SenderSize))
90 		size = le16_to_cpu(kfib->header.SenderSize);
91 	if (size > dev->max_fib_size) {
92 		if (size > 2048) {
93 			retval = -EINVAL;
94 			goto cleanup;
95 		}
96 		/* Highjack the hw_fib */
97 		hw_fib = fibptr->hw_fib_va;
98 		hw_fib_pa = fibptr->hw_fib_pa;
99 		fibptr->hw_fib_va = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa);
100 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 		memcpy(kfib, hw_fib, dev->max_fib_size);
102 	}
103 
104 	if (copy_from_user(kfib, arg, size)) {
105 		retval = -EFAULT;
106 		goto cleanup;
107 	}
108 
109 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
110 		aac_adapter_interrupt(dev);
111 		/*
112 		 * Since we didn't really send a fib, zero out the state to allow
113 		 * cleanup code not to assert.
114 		 */
115 		kfib->header.XferState = 0;
116 	} else {
117 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
118 				le16_to_cpu(kfib->header.Size) , FsaNormal,
119 				1, 1, NULL, NULL);
120 		if (retval) {
121 			goto cleanup;
122 		}
123 		if (aac_fib_complete(fibptr) != 0) {
124 			retval = -EINVAL;
125 			goto cleanup;
126 		}
127 	}
128 	/*
129 	 *	Make sure that the size returned by the adapter (which includes
130 	 *	the header) is less than or equal to the size of a fib, so we
131 	 *	don't corrupt application data. Then copy that size to the user
132 	 *	buffer. (Don't try to add the header information again, since it
133 	 *	was already included by the adapter.)
134 	 */
135 
136 	retval = 0;
137 	if (copy_to_user(arg, (void *)kfib, size))
138 		retval = -EFAULT;
139 cleanup:
140 	if (hw_fib) {
141 		pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
142 		fibptr->hw_fib_pa = hw_fib_pa;
143 		fibptr->hw_fib_va = hw_fib;
144 	}
145 	if (retval != -EINTR)
146 		aac_fib_free(fibptr);
147 	return retval;
148 }
149 
150 /**
151  *	open_getadapter_fib	-	Get the next fib
152  *
153  *	This routine will get the next Fib, if available, from the AdapterFibContext
154  *	passed in from the user.
155  */
156 
157 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
158 {
159 	struct aac_fib_context * fibctx;
160 	int status;
161 
162 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
163 	if (fibctx == NULL) {
164 		status = -ENOMEM;
165 	} else {
166 		unsigned long flags;
167 		struct list_head * entry;
168 		struct aac_fib_context * context;
169 
170 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
171 		fibctx->size = sizeof(struct aac_fib_context);
172 		/*
173 		 *	Yes yes, I know this could be an index, but we have a
174 		 * better guarantee of uniqueness for the locked loop below.
175 		 * Without the aid of a persistent history, this also helps
176 		 * reduce the chance that the opaque context would be reused.
177 		 */
178 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
179 		/*
180 		 *	Initialize the mutex used to wait for the next AIF.
181 		 */
182 		init_MUTEX_LOCKED(&fibctx->wait_sem);
183 		fibctx->wait = 0;
184 		/*
185 		 *	Initialize the fibs and set the count of fibs on
186 		 *	the list to 0.
187 		 */
188 		fibctx->count = 0;
189 		INIT_LIST_HEAD(&fibctx->fib_list);
190 		fibctx->jiffies = jiffies/HZ;
191 		/*
192 		 *	Now add this context onto the adapter's
193 		 *	AdapterFibContext list.
194 		 */
195 		spin_lock_irqsave(&dev->fib_lock, flags);
196 		/* Ensure that we have a unique identifier */
197 		entry = dev->fib_list.next;
198 		while (entry != &dev->fib_list) {
199 			context = list_entry(entry, struct aac_fib_context, next);
200 			if (context->unique == fibctx->unique) {
201 				/* Not unique (32 bits) */
202 				fibctx->unique++;
203 				entry = dev->fib_list.next;
204 			} else {
205 				entry = entry->next;
206 			}
207 		}
208 		list_add_tail(&fibctx->next, &dev->fib_list);
209 		spin_unlock_irqrestore(&dev->fib_lock, flags);
210 		if (copy_to_user(arg, &fibctx->unique,
211 						sizeof(fibctx->unique))) {
212 			status = -EFAULT;
213 		} else {
214 			status = 0;
215 		}
216 	}
217 	return status;
218 }
219 
220 /**
221  *	next_getadapter_fib	-	get the next fib
222  *	@dev: adapter to use
223  *	@arg: ioctl argument
224  *
225  *	This routine will get the next Fib, if available, from the AdapterFibContext
226  *	passed in from the user.
227  */
228 
229 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
230 {
231 	struct fib_ioctl f;
232 	struct fib *fib;
233 	struct aac_fib_context *fibctx;
234 	int status;
235 	struct list_head * entry;
236 	unsigned long flags;
237 
238 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
239 		return -EFAULT;
240 	/*
241 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
242 	 *
243 	 *	Search the list of AdapterFibContext addresses on the adapter
244 	 *	to be sure this is a valid address
245 	 */
246 	spin_lock_irqsave(&dev->fib_lock, flags);
247 	entry = dev->fib_list.next;
248 	fibctx = NULL;
249 
250 	while (entry != &dev->fib_list) {
251 		fibctx = list_entry(entry, struct aac_fib_context, next);
252 		/*
253 		 *	Extract the AdapterFibContext from the Input parameters.
254 		 */
255 		if (fibctx->unique == f.fibctx) { /* We found a winner */
256 			break;
257 		}
258 		entry = entry->next;
259 		fibctx = NULL;
260 	}
261 	if (!fibctx) {
262 		spin_unlock_irqrestore(&dev->fib_lock, flags);
263 		dprintk ((KERN_INFO "Fib Context not found\n"));
264 		return -EINVAL;
265 	}
266 
267 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
268 		 (fibctx->size != sizeof(struct aac_fib_context))) {
269 		spin_unlock_irqrestore(&dev->fib_lock, flags);
270 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
271 		return -EINVAL;
272 	}
273 	status = 0;
274 	/*
275 	 *	If there are no fibs to send back, then either wait or return
276 	 *	-EAGAIN
277 	 */
278 return_fib:
279 	if (!list_empty(&fibctx->fib_list)) {
280 		/*
281 		 *	Pull the next fib from the fibs
282 		 */
283 		entry = fibctx->fib_list.next;
284 		list_del(entry);
285 
286 		fib = list_entry(entry, struct fib, fiblink);
287 		fibctx->count--;
288 		spin_unlock_irqrestore(&dev->fib_lock, flags);
289 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
290 			kfree(fib->hw_fib_va);
291 			kfree(fib);
292 			return -EFAULT;
293 		}
294 		/*
295 		 *	Free the space occupied by this copy of the fib.
296 		 */
297 		kfree(fib->hw_fib_va);
298 		kfree(fib);
299 		status = 0;
300 	} else {
301 		spin_unlock_irqrestore(&dev->fib_lock, flags);
302 		/* If someone killed the AIF aacraid thread, restart it */
303 		status = !dev->aif_thread;
304 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
305 			/* Be paranoid, be very paranoid! */
306 			kthread_stop(dev->thread);
307 			ssleep(1);
308 			dev->aif_thread = 0;
309 			dev->thread = kthread_run(aac_command_thread, dev, dev->name);
310 			ssleep(1);
311 		}
312 		if (f.wait) {
313 			if(down_interruptible(&fibctx->wait_sem) < 0) {
314 				status = -EINTR;
315 			} else {
316 				/* Lock again and retry */
317 				spin_lock_irqsave(&dev->fib_lock, flags);
318 				goto return_fib;
319 			}
320 		} else {
321 			status = -EAGAIN;
322 		}
323 	}
324 	fibctx->jiffies = jiffies/HZ;
325 	return status;
326 }
327 
328 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
329 {
330 	struct fib *fib;
331 
332 	/*
333 	 *	First free any FIBs that have not been consumed.
334 	 */
335 	while (!list_empty(&fibctx->fib_list)) {
336 		struct list_head * entry;
337 		/*
338 		 *	Pull the next fib from the fibs
339 		 */
340 		entry = fibctx->fib_list.next;
341 		list_del(entry);
342 		fib = list_entry(entry, struct fib, fiblink);
343 		fibctx->count--;
344 		/*
345 		 *	Free the space occupied by this copy of the fib.
346 		 */
347 		kfree(fib->hw_fib_va);
348 		kfree(fib);
349 	}
350 	/*
351 	 *	Remove the Context from the AdapterFibContext List
352 	 */
353 	list_del(&fibctx->next);
354 	/*
355 	 *	Invalidate context
356 	 */
357 	fibctx->type = 0;
358 	/*
359 	 *	Free the space occupied by the Context
360 	 */
361 	kfree(fibctx);
362 	return 0;
363 }
364 
365 /**
366  *	close_getadapter_fib	-	close down user fib context
367  *	@dev: adapter
368  *	@arg: ioctl arguments
369  *
370  *	This routine will close down the fibctx passed in from the user.
371  */
372 
373 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
374 {
375 	struct aac_fib_context *fibctx;
376 	int status;
377 	unsigned long flags;
378 	struct list_head * entry;
379 
380 	/*
381 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
382 	 *
383 	 *	Search the list of AdapterFibContext addresses on the adapter
384 	 *	to be sure this is a valid address
385 	 */
386 
387 	entry = dev->fib_list.next;
388 	fibctx = NULL;
389 
390 	while(entry != &dev->fib_list) {
391 		fibctx = list_entry(entry, struct aac_fib_context, next);
392 		/*
393 		 *	Extract the fibctx from the input parameters
394 		 */
395 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
396 			break;
397 		entry = entry->next;
398 		fibctx = NULL;
399 	}
400 
401 	if (!fibctx)
402 		return 0; /* Already gone */
403 
404 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
405 		 (fibctx->size != sizeof(struct aac_fib_context)))
406 		return -EINVAL;
407 	spin_lock_irqsave(&dev->fib_lock, flags);
408 	status = aac_close_fib_context(dev, fibctx);
409 	spin_unlock_irqrestore(&dev->fib_lock, flags);
410 	return status;
411 }
412 
413 /**
414  *	check_revision	-	close down user fib context
415  *	@dev: adapter
416  *	@arg: ioctl arguments
417  *
418  *	This routine returns the driver version.
419  *	Under Linux, there have been no version incompatibilities, so this is
420  *	simple!
421  */
422 
423 static int check_revision(struct aac_dev *dev, void __user *arg)
424 {
425 	struct revision response;
426 	char *driver_version = aac_driver_version;
427 	u32 version;
428 
429 	response.compat = 1;
430 	version = (simple_strtol(driver_version,
431 				&driver_version, 10) << 24) | 0x00000400;
432 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
433 	version += simple_strtol(driver_version + 1, NULL, 10);
434 	response.version = cpu_to_le32(version);
435 #	ifdef AAC_DRIVER_BUILD
436 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
437 #	else
438 		response.build = cpu_to_le32(9999);
439 #	endif
440 
441 	if (copy_to_user(arg, &response, sizeof(response)))
442 		return -EFAULT;
443 	return 0;
444 }
445 
446 
447 /**
448  *
449  * aac_send_raw_scb
450  *
451  */
452 
453 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
454 {
455 	struct fib* srbfib;
456 	int status;
457 	struct aac_srb *srbcmd = NULL;
458 	struct user_aac_srb *user_srbcmd = NULL;
459 	struct user_aac_srb __user *user_srb = arg;
460 	struct aac_srb_reply __user *user_reply;
461 	struct aac_srb_reply* reply;
462 	u32 fibsize = 0;
463 	u32 flags = 0;
464 	s32 rcode = 0;
465 	u32 data_dir;
466 	void __user *sg_user[32];
467 	void *sg_list[32];
468 	u32 sg_indx = 0;
469 	u32 byte_count = 0;
470 	u32 actual_fibsize64, actual_fibsize = 0;
471 	int i;
472 
473 
474 	if (dev->in_reset) {
475 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
476 		return -EBUSY;
477 	}
478 	if (!capable(CAP_SYS_ADMIN)){
479 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
480 		return -EPERM;
481 	}
482 	/*
483 	 *	Allocate and initialize a Fib then setup a SRB command
484 	 */
485 	if (!(srbfib = aac_fib_alloc(dev))) {
486 		return -ENOMEM;
487 	}
488 	aac_fib_init(srbfib);
489 
490 	srbcmd = (struct aac_srb*) fib_data(srbfib);
491 
492 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
493 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
494 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
495 		rcode = -EFAULT;
496 		goto cleanup;
497 	}
498 
499 	if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) {
500 		rcode = -EINVAL;
501 		goto cleanup;
502 	}
503 
504 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
505 	if (!user_srbcmd) {
506 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
507 		rcode = -ENOMEM;
508 		goto cleanup;
509 	}
510 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
511 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
512 		rcode = -EFAULT;
513 		goto cleanup;
514 	}
515 
516 	user_reply = arg+fibsize;
517 
518 	flags = user_srbcmd->flags; /* from user in cpu order */
519 	// Fix up srb for endian and force some values
520 
521 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);	// Force this
522 	srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
523 	srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
524 	srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
525 	srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
526 	srbcmd->flags	 = cpu_to_le32(flags);
527 	srbcmd->retry_limit = 0; // Obsolete parameter
528 	srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
529 	memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
530 
531 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
532 	case SRB_DataOut:
533 		data_dir = DMA_TO_DEVICE;
534 		break;
535 	case (SRB_DataIn | SRB_DataOut):
536 		data_dir = DMA_BIDIRECTIONAL;
537 		break;
538 	case SRB_DataIn:
539 		data_dir = DMA_FROM_DEVICE;
540 		break;
541 	default:
542 		data_dir = DMA_NONE;
543 	}
544 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
545 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
546 		  le32_to_cpu(srbcmd->sg.count)));
547 		rcode = -EINVAL;
548 		goto cleanup;
549 	}
550 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
551 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
552 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
553 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
554 	/* User made a mistake - should not continue */
555 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
556 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
557 		  "Raw SRB command calculated fibsize=%lu;%lu "
558 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
559 		  "issued fibsize=%d\n",
560 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
561 		  sizeof(struct aac_srb), sizeof(struct sgentry),
562 		  sizeof(struct sgentry64), fibsize));
563 		rcode = -EINVAL;
564 		goto cleanup;
565 	}
566 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
567 		dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
568 		rcode = -EINVAL;
569 		goto cleanup;
570 	}
571 	byte_count = 0;
572 	if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
573 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
574 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
575 
576 		/*
577 		 * This should also catch if user used the 32 bit sgmap
578 		 */
579 		if (actual_fibsize64 == fibsize) {
580 			actual_fibsize = actual_fibsize64;
581 			for (i = 0; i < upsg->count; i++) {
582 				u64 addr;
583 				void* p;
584 				/* Does this really need to be GFP_DMA? */
585 				p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA);
586 				if(!p) {
587 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
588 					  upsg->sg[i].count,i,upsg->count));
589 					rcode = -ENOMEM;
590 					goto cleanup;
591 				}
592 				addr = (u64)upsg->sg[i].addr[0];
593 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
594 				sg_user[i] = (void __user *)(uintptr_t)addr;
595 				sg_list[i] = p; // save so we can clean up later
596 				sg_indx = i;
597 
598 				if (flags & SRB_DataOut) {
599 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
600 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
601 						rcode = -EFAULT;
602 						goto cleanup;
603 					}
604 				}
605 				addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir);
606 
607 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
608 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
609 				byte_count += upsg->sg[i].count;
610 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
611 			}
612 		} else {
613 			struct user_sgmap* usg;
614 			usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
615 			  + sizeof(struct sgmap), GFP_KERNEL);
616 			if (!usg) {
617 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
618 				rcode = -ENOMEM;
619 				goto cleanup;
620 			}
621 			memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
622 			  + sizeof(struct sgmap));
623 			actual_fibsize = actual_fibsize64;
624 
625 			for (i = 0; i < usg->count; i++) {
626 				u64 addr;
627 				void* p;
628 				/* Does this really need to be GFP_DMA? */
629 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
630 				if(!p) {
631 					kfree (usg);
632 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
633 					  usg->sg[i].count,i,usg->count));
634 					rcode = -ENOMEM;
635 					goto cleanup;
636 				}
637 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
638 				sg_list[i] = p; // save so we can clean up later
639 				sg_indx = i;
640 
641 				if (flags & SRB_DataOut) {
642 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
643 						kfree (usg);
644 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
645 						rcode = -EFAULT;
646 						goto cleanup;
647 					}
648 				}
649 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
650 
651 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
652 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
653 				byte_count += usg->sg[i].count;
654 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
655 			}
656 			kfree (usg);
657 		}
658 		srbcmd->count = cpu_to_le32(byte_count);
659 		psg->count = cpu_to_le32(sg_indx+1);
660 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
661 	} else {
662 		struct user_sgmap* upsg = &user_srbcmd->sg;
663 		struct sgmap* psg = &srbcmd->sg;
664 
665 		if (actual_fibsize64 == fibsize) {
666 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
667 			for (i = 0; i < upsg->count; i++) {
668 				uintptr_t addr;
669 				void* p;
670 				/* Does this really need to be GFP_DMA? */
671 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
672 				if(!p) {
673 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
674 					  usg->sg[i].count,i,usg->count));
675 					rcode = -ENOMEM;
676 					goto cleanup;
677 				}
678 				addr = (u64)usg->sg[i].addr[0];
679 				addr += ((u64)usg->sg[i].addr[1]) << 32;
680 				sg_user[i] = (void __user *)addr;
681 				sg_list[i] = p; // save so we can clean up later
682 				sg_indx = i;
683 
684 				if (flags & SRB_DataOut) {
685 					if(copy_from_user(p,sg_user[i],usg->sg[i].count)){
686 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
687 						rcode = -EFAULT;
688 						goto cleanup;
689 					}
690 				}
691 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
692 
693 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
694 				byte_count += usg->sg[i].count;
695 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
696 			}
697 		} else {
698 			for (i = 0; i < upsg->count; i++) {
699 				dma_addr_t addr;
700 				void* p;
701 				p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
702 				if (!p) {
703 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
704 					  upsg->sg[i].count, i, upsg->count));
705 					rcode = -ENOMEM;
706 					goto cleanup;
707 				}
708 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
709 				sg_list[i] = p; // save so we can clean up later
710 				sg_indx = i;
711 
712 				if (flags & SRB_DataOut) {
713 					if(copy_from_user(p, sg_user[i],
714 							upsg->sg[i].count)) {
715 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
716 						rcode = -EFAULT;
717 						goto cleanup;
718 					}
719 				}
720 				addr = pci_map_single(dev->pdev, p,
721 					upsg->sg[i].count, data_dir);
722 
723 				psg->sg[i].addr = cpu_to_le32(addr);
724 				byte_count += upsg->sg[i].count;
725 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
726 			}
727 		}
728 		srbcmd->count = cpu_to_le32(byte_count);
729 		psg->count = cpu_to_le32(sg_indx+1);
730 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
731 	}
732 	if (status == -EINTR) {
733 		rcode = -EINTR;
734 		goto cleanup;
735 	}
736 
737 	if (status != 0){
738 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
739 		rcode = -ENXIO;
740 		goto cleanup;
741 	}
742 
743 	if (flags & SRB_DataIn) {
744 		for(i = 0 ; i <= sg_indx; i++){
745 			byte_count = le32_to_cpu(
746 			  (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)
747 			      ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
748 			      : srbcmd->sg.sg[i].count);
749 			if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
750 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
751 				rcode = -EFAULT;
752 				goto cleanup;
753 
754 			}
755 		}
756 	}
757 
758 	reply = (struct aac_srb_reply *) fib_data(srbfib);
759 	if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
760 		dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n"));
761 		rcode = -EFAULT;
762 		goto cleanup;
763 	}
764 
765 cleanup:
766 	kfree(user_srbcmd);
767 	for(i=0; i <= sg_indx; i++){
768 		kfree(sg_list[i]);
769 	}
770 	if (rcode != -EINTR) {
771 		aac_fib_complete(srbfib);
772 		aac_fib_free(srbfib);
773 	}
774 
775 	return rcode;
776 }
777 
778 struct aac_pci_info {
779 	u32 bus;
780 	u32 slot;
781 };
782 
783 
784 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
785 {
786 	struct aac_pci_info pci_info;
787 
788 	pci_info.bus = dev->pdev->bus->number;
789 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
790 
791 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
792 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
793 		return -EFAULT;
794 	}
795 	return 0;
796 }
797 
798 
799 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
800 {
801 	int status;
802 
803 	/*
804 	 *	HBA gets first crack
805 	 */
806 
807 	status = aac_dev_ioctl(dev, cmd, arg);
808 	if(status != -ENOTTY)
809 		return status;
810 
811 	switch (cmd) {
812 	case FSACTL_MINIPORT_REV_CHECK:
813 		status = check_revision(dev, arg);
814 		break;
815 	case FSACTL_SEND_LARGE_FIB:
816 	case FSACTL_SENDFIB:
817 		status = ioctl_send_fib(dev, arg);
818 		break;
819 	case FSACTL_OPEN_GET_ADAPTER_FIB:
820 		status = open_getadapter_fib(dev, arg);
821 		break;
822 	case FSACTL_GET_NEXT_ADAPTER_FIB:
823 		status = next_getadapter_fib(dev, arg);
824 		break;
825 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
826 		status = close_getadapter_fib(dev, arg);
827 		break;
828 	case FSACTL_SEND_RAW_SRB:
829 		status = aac_send_raw_srb(dev,arg);
830 		break;
831 	case FSACTL_GET_PCI_INFO:
832 		status = aac_get_pci_info(dev,arg);
833 		break;
834 	default:
835 		status = -ENOTTY;
836 		break;
837 	}
838 	return status;
839 }
840 
841