1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commctrl.c 26 * 27 * Abstract: Contains all routines for control of the AFA comm layer 28 * 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/pci.h> 36 #include <linux/spinlock.h> 37 #include <linux/slab.h> 38 #include <linux/completion.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/blkdev.h> 41 #include <asm/semaphore.h> 42 #include <asm/uaccess.h> 43 44 #include "aacraid.h" 45 46 /** 47 * ioctl_send_fib - send a FIB from userspace 48 * @dev: adapter is being processed 49 * @arg: arguments to the ioctl call 50 * 51 * This routine sends a fib to the adapter on behalf of a user level 52 * program. 53 */ 54 # define AAC_DEBUG_PREAMBLE KERN_INFO 55 # define AAC_DEBUG_POSTAMBLE 56 57 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg) 58 { 59 struct hw_fib * kfib; 60 struct fib *fibptr; 61 struct hw_fib * hw_fib = (struct hw_fib *)0; 62 dma_addr_t hw_fib_pa = (dma_addr_t)0LL; 63 unsigned size; 64 int retval; 65 66 fibptr = aac_fib_alloc(dev); 67 if(fibptr == NULL) { 68 return -ENOMEM; 69 } 70 71 kfib = fibptr->hw_fib; 72 /* 73 * First copy in the header so that we can check the size field. 74 */ 75 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) { 76 aac_fib_free(fibptr); 77 return -EFAULT; 78 } 79 /* 80 * Since we copy based on the fib header size, make sure that we 81 * will not overrun the buffer when we copy the memory. Return 82 * an error if we would. 83 */ 84 size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr); 85 if (size < le16_to_cpu(kfib->header.SenderSize)) 86 size = le16_to_cpu(kfib->header.SenderSize); 87 if (size > dev->max_fib_size) { 88 if (size > 2048) { 89 retval = -EINVAL; 90 goto cleanup; 91 } 92 /* Highjack the hw_fib */ 93 hw_fib = fibptr->hw_fib; 94 hw_fib_pa = fibptr->hw_fib_pa; 95 fibptr->hw_fib = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa); 96 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size); 97 memcpy(kfib, hw_fib, dev->max_fib_size); 98 } 99 100 if (copy_from_user(kfib, arg, size)) { 101 retval = -EFAULT; 102 goto cleanup; 103 } 104 105 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) { 106 aac_adapter_interrupt(dev); 107 /* 108 * Since we didn't really send a fib, zero out the state to allow 109 * cleanup code not to assert. 110 */ 111 kfib->header.XferState = 0; 112 } else { 113 retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr, 114 le16_to_cpu(kfib->header.Size) , FsaNormal, 115 1, 1, NULL, NULL); 116 if (retval) { 117 goto cleanup; 118 } 119 if (aac_fib_complete(fibptr) != 0) { 120 retval = -EINVAL; 121 goto cleanup; 122 } 123 } 124 /* 125 * Make sure that the size returned by the adapter (which includes 126 * the header) is less than or equal to the size of a fib, so we 127 * don't corrupt application data. Then copy that size to the user 128 * buffer. (Don't try to add the header information again, since it 129 * was already included by the adapter.) 130 */ 131 132 retval = 0; 133 if (copy_to_user(arg, (void *)kfib, size)) 134 retval = -EFAULT; 135 cleanup: 136 if (hw_fib) { 137 pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa); 138 fibptr->hw_fib_pa = hw_fib_pa; 139 fibptr->hw_fib = hw_fib; 140 } 141 aac_fib_free(fibptr); 142 return retval; 143 } 144 145 /** 146 * open_getadapter_fib - Get the next fib 147 * 148 * This routine will get the next Fib, if available, from the AdapterFibContext 149 * passed in from the user. 150 */ 151 152 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg) 153 { 154 struct aac_fib_context * fibctx; 155 int status; 156 157 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL); 158 if (fibctx == NULL) { 159 status = -ENOMEM; 160 } else { 161 unsigned long flags; 162 struct list_head * entry; 163 struct aac_fib_context * context; 164 165 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT; 166 fibctx->size = sizeof(struct aac_fib_context); 167 /* 168 * Yes yes, I know this could be an index, but we have a 169 * better guarantee of uniqueness for the locked loop below. 170 * Without the aid of a persistent history, this also helps 171 * reduce the chance that the opaque context would be reused. 172 */ 173 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF); 174 /* 175 * Initialize the mutex used to wait for the next AIF. 176 */ 177 init_MUTEX_LOCKED(&fibctx->wait_sem); 178 fibctx->wait = 0; 179 /* 180 * Initialize the fibs and set the count of fibs on 181 * the list to 0. 182 */ 183 fibctx->count = 0; 184 INIT_LIST_HEAD(&fibctx->fib_list); 185 fibctx->jiffies = jiffies/HZ; 186 /* 187 * Now add this context onto the adapter's 188 * AdapterFibContext list. 189 */ 190 spin_lock_irqsave(&dev->fib_lock, flags); 191 /* Ensure that we have a unique identifier */ 192 entry = dev->fib_list.next; 193 while (entry != &dev->fib_list) { 194 context = list_entry(entry, struct aac_fib_context, next); 195 if (context->unique == fibctx->unique) { 196 /* Not unique (32 bits) */ 197 fibctx->unique++; 198 entry = dev->fib_list.next; 199 } else { 200 entry = entry->next; 201 } 202 } 203 list_add_tail(&fibctx->next, &dev->fib_list); 204 spin_unlock_irqrestore(&dev->fib_lock, flags); 205 if (copy_to_user(arg, &fibctx->unique, 206 sizeof(fibctx->unique))) { 207 status = -EFAULT; 208 } else { 209 status = 0; 210 } 211 } 212 return status; 213 } 214 215 /** 216 * next_getadapter_fib - get the next fib 217 * @dev: adapter to use 218 * @arg: ioctl argument 219 * 220 * This routine will get the next Fib, if available, from the AdapterFibContext 221 * passed in from the user. 222 */ 223 224 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg) 225 { 226 struct fib_ioctl f; 227 struct fib *fib; 228 struct aac_fib_context *fibctx; 229 int status; 230 struct list_head * entry; 231 unsigned long flags; 232 233 if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl))) 234 return -EFAULT; 235 /* 236 * Verify that the HANDLE passed in was a valid AdapterFibContext 237 * 238 * Search the list of AdapterFibContext addresses on the adapter 239 * to be sure this is a valid address 240 */ 241 entry = dev->fib_list.next; 242 fibctx = NULL; 243 244 while (entry != &dev->fib_list) { 245 fibctx = list_entry(entry, struct aac_fib_context, next); 246 /* 247 * Extract the AdapterFibContext from the Input parameters. 248 */ 249 if (fibctx->unique == f.fibctx) { /* We found a winner */ 250 break; 251 } 252 entry = entry->next; 253 fibctx = NULL; 254 } 255 if (!fibctx) { 256 dprintk ((KERN_INFO "Fib Context not found\n")); 257 return -EINVAL; 258 } 259 260 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 261 (fibctx->size != sizeof(struct aac_fib_context))) { 262 dprintk ((KERN_INFO "Fib Context corrupt?\n")); 263 return -EINVAL; 264 } 265 status = 0; 266 spin_lock_irqsave(&dev->fib_lock, flags); 267 /* 268 * If there are no fibs to send back, then either wait or return 269 * -EAGAIN 270 */ 271 return_fib: 272 if (!list_empty(&fibctx->fib_list)) { 273 struct list_head * entry; 274 /* 275 * Pull the next fib from the fibs 276 */ 277 entry = fibctx->fib_list.next; 278 list_del(entry); 279 280 fib = list_entry(entry, struct fib, fiblink); 281 fibctx->count--; 282 spin_unlock_irqrestore(&dev->fib_lock, flags); 283 if (copy_to_user(f.fib, fib->hw_fib, sizeof(struct hw_fib))) { 284 kfree(fib->hw_fib); 285 kfree(fib); 286 return -EFAULT; 287 } 288 /* 289 * Free the space occupied by this copy of the fib. 290 */ 291 kfree(fib->hw_fib); 292 kfree(fib); 293 status = 0; 294 } else { 295 spin_unlock_irqrestore(&dev->fib_lock, flags); 296 if (f.wait) { 297 if(down_interruptible(&fibctx->wait_sem) < 0) { 298 status = -EINTR; 299 } else { 300 /* Lock again and retry */ 301 spin_lock_irqsave(&dev->fib_lock, flags); 302 goto return_fib; 303 } 304 } else { 305 status = -EAGAIN; 306 } 307 } 308 fibctx->jiffies = jiffies/HZ; 309 return status; 310 } 311 312 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx) 313 { 314 struct fib *fib; 315 316 /* 317 * First free any FIBs that have not been consumed. 318 */ 319 while (!list_empty(&fibctx->fib_list)) { 320 struct list_head * entry; 321 /* 322 * Pull the next fib from the fibs 323 */ 324 entry = fibctx->fib_list.next; 325 list_del(entry); 326 fib = list_entry(entry, struct fib, fiblink); 327 fibctx->count--; 328 /* 329 * Free the space occupied by this copy of the fib. 330 */ 331 kfree(fib->hw_fib); 332 kfree(fib); 333 } 334 /* 335 * Remove the Context from the AdapterFibContext List 336 */ 337 list_del(&fibctx->next); 338 /* 339 * Invalidate context 340 */ 341 fibctx->type = 0; 342 /* 343 * Free the space occupied by the Context 344 */ 345 kfree(fibctx); 346 return 0; 347 } 348 349 /** 350 * close_getadapter_fib - close down user fib context 351 * @dev: adapter 352 * @arg: ioctl arguments 353 * 354 * This routine will close down the fibctx passed in from the user. 355 */ 356 357 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg) 358 { 359 struct aac_fib_context *fibctx; 360 int status; 361 unsigned long flags; 362 struct list_head * entry; 363 364 /* 365 * Verify that the HANDLE passed in was a valid AdapterFibContext 366 * 367 * Search the list of AdapterFibContext addresses on the adapter 368 * to be sure this is a valid address 369 */ 370 371 entry = dev->fib_list.next; 372 fibctx = NULL; 373 374 while(entry != &dev->fib_list) { 375 fibctx = list_entry(entry, struct aac_fib_context, next); 376 /* 377 * Extract the fibctx from the input parameters 378 */ 379 if (fibctx->unique == (u32)(unsigned long)arg) { 380 /* We found a winner */ 381 break; 382 } 383 entry = entry->next; 384 fibctx = NULL; 385 } 386 387 if (!fibctx) 388 return 0; /* Already gone */ 389 390 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 391 (fibctx->size != sizeof(struct aac_fib_context))) 392 return -EINVAL; 393 spin_lock_irqsave(&dev->fib_lock, flags); 394 status = aac_close_fib_context(dev, fibctx); 395 spin_unlock_irqrestore(&dev->fib_lock, flags); 396 return status; 397 } 398 399 /** 400 * check_revision - close down user fib context 401 * @dev: adapter 402 * @arg: ioctl arguments 403 * 404 * This routine returns the driver version. 405 * Under Linux, there have been no version incompatibilities, so this is 406 * simple! 407 */ 408 409 static int check_revision(struct aac_dev *dev, void __user *arg) 410 { 411 struct revision response; 412 char *driver_version = aac_driver_version; 413 u32 version; 414 415 response.compat = 1; 416 version = (simple_strtol(driver_version, 417 &driver_version, 10) << 24) | 0x00000400; 418 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16; 419 version += simple_strtol(driver_version + 1, NULL, 10); 420 response.version = cpu_to_le32(version); 421 # if (defined(AAC_DRIVER_BUILD)) 422 response.build = cpu_to_le32(AAC_DRIVER_BUILD); 423 # else 424 response.build = cpu_to_le32(9999); 425 # endif 426 427 if (copy_to_user(arg, &response, sizeof(response))) 428 return -EFAULT; 429 return 0; 430 } 431 432 433 /** 434 * 435 * aac_send_raw_scb 436 * 437 */ 438 439 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg) 440 { 441 struct fib* srbfib; 442 int status; 443 struct aac_srb *srbcmd = NULL; 444 struct user_aac_srb *user_srbcmd = NULL; 445 struct user_aac_srb __user *user_srb = arg; 446 struct aac_srb_reply __user *user_reply; 447 struct aac_srb_reply* reply; 448 u32 fibsize = 0; 449 u32 flags = 0; 450 s32 rcode = 0; 451 u32 data_dir; 452 void __user *sg_user[32]; 453 void *sg_list[32]; 454 u32 sg_indx = 0; 455 u32 byte_count = 0; 456 u32 actual_fibsize = 0; 457 int i; 458 459 460 if (!capable(CAP_SYS_ADMIN)){ 461 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n")); 462 return -EPERM; 463 } 464 /* 465 * Allocate and initialize a Fib then setup a BlockWrite command 466 */ 467 if (!(srbfib = aac_fib_alloc(dev))) { 468 return -ENOMEM; 469 } 470 aac_fib_init(srbfib); 471 472 srbcmd = (struct aac_srb*) fib_data(srbfib); 473 474 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */ 475 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){ 476 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n")); 477 rcode = -EFAULT; 478 goto cleanup; 479 } 480 481 if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) { 482 rcode = -EINVAL; 483 goto cleanup; 484 } 485 486 user_srbcmd = kmalloc(fibsize, GFP_KERNEL); 487 if (!user_srbcmd) { 488 dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n")); 489 rcode = -ENOMEM; 490 goto cleanup; 491 } 492 if(copy_from_user(user_srbcmd, user_srb,fibsize)){ 493 dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n")); 494 rcode = -EFAULT; 495 goto cleanup; 496 } 497 498 user_reply = arg+fibsize; 499 500 flags = user_srbcmd->flags; /* from user in cpu order */ 501 // Fix up srb for endian and force some values 502 503 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this 504 srbcmd->channel = cpu_to_le32(user_srbcmd->channel); 505 srbcmd->id = cpu_to_le32(user_srbcmd->id); 506 srbcmd->lun = cpu_to_le32(user_srbcmd->lun); 507 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout); 508 srbcmd->flags = cpu_to_le32(flags); 509 srbcmd->retry_limit = 0; // Obsolete parameter 510 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size); 511 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb)); 512 513 switch (flags & (SRB_DataIn | SRB_DataOut)) { 514 case SRB_DataOut: 515 data_dir = DMA_TO_DEVICE; 516 break; 517 case (SRB_DataIn | SRB_DataOut): 518 data_dir = DMA_BIDIRECTIONAL; 519 break; 520 case SRB_DataIn: 521 data_dir = DMA_FROM_DEVICE; 522 break; 523 default: 524 data_dir = DMA_NONE; 525 } 526 if (user_srbcmd->sg.count > (sizeof(sg_list)/sizeof(sg_list[0]))) { 527 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n", 528 le32_to_cpu(srbcmd->sg.count))); 529 rcode = -EINVAL; 530 goto cleanup; 531 } 532 if (dev->dac_support == 1) { 533 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg; 534 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg; 535 struct user_sgmap* usg; 536 byte_count = 0; 537 538 /* 539 * This should also catch if user used the 32 bit sgmap 540 */ 541 actual_fibsize = sizeof(struct aac_srb) - 542 sizeof(struct sgentry) + 543 ((upsg->count & 0xff) * 544 sizeof(struct sgentry)); 545 if(actual_fibsize != fibsize){ // User made a mistake - should not continue 546 dprintk((KERN_DEBUG"aacraid: Bad Size specified in Raw SRB command\n")); 547 rcode = -EINVAL; 548 goto cleanup; 549 } 550 usg = kmalloc(actual_fibsize - sizeof(struct aac_srb) 551 + sizeof(struct sgmap), GFP_KERNEL); 552 if (!usg) { 553 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n")); 554 rcode = -ENOMEM; 555 goto cleanup; 556 } 557 memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb) 558 + sizeof(struct sgmap)); 559 actual_fibsize = sizeof(struct aac_srb) - 560 sizeof(struct sgentry) + ((usg->count & 0xff) * 561 sizeof(struct sgentry64)); 562 if ((data_dir == DMA_NONE) && upsg->count) { 563 kfree (usg); 564 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n")); 565 rcode = -EINVAL; 566 goto cleanup; 567 } 568 569 for (i = 0; i < usg->count; i++) { 570 u64 addr; 571 void* p; 572 /* Does this really need to be GFP_DMA? */ 573 p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA); 574 if(p == 0) { 575 kfree (usg); 576 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 577 usg->sg[i].count,i,usg->count)); 578 rcode = -ENOMEM; 579 goto cleanup; 580 } 581 sg_user[i] = (void __user *)(long)usg->sg[i].addr; 582 sg_list[i] = p; // save so we can clean up later 583 sg_indx = i; 584 585 if( flags & SRB_DataOut ){ 586 if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){ 587 kfree (usg); 588 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 589 rcode = -EFAULT; 590 goto cleanup; 591 } 592 } 593 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir); 594 595 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 596 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 597 psg->sg[i].count = cpu_to_le32(usg->sg[i].count); 598 byte_count += usg->sg[i].count; 599 } 600 kfree (usg); 601 602 srbcmd->count = cpu_to_le32(byte_count); 603 psg->count = cpu_to_le32(sg_indx+1); 604 status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL); 605 } else { 606 struct user_sgmap* upsg = &user_srbcmd->sg; 607 struct sgmap* psg = &srbcmd->sg; 608 byte_count = 0; 609 610 actual_fibsize = sizeof (struct aac_srb) + (((user_srbcmd->sg.count & 0xff) - 1) * sizeof (struct sgentry)); 611 if(actual_fibsize != fibsize){ // User made a mistake - should not continue 612 dprintk((KERN_DEBUG"aacraid: Bad Size specified in Raw SRB command\n")); 613 rcode = -EINVAL; 614 goto cleanup; 615 } 616 if ((data_dir == DMA_NONE) && upsg->count) { 617 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n")); 618 rcode = -EINVAL; 619 goto cleanup; 620 } 621 for (i = 0; i < upsg->count; i++) { 622 dma_addr_t addr; 623 void* p; 624 p = kmalloc(upsg->sg[i].count, GFP_KERNEL); 625 if(p == 0) { 626 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 627 upsg->sg[i].count, i, upsg->count)); 628 rcode = -ENOMEM; 629 goto cleanup; 630 } 631 sg_user[i] = (void __user *)(long)upsg->sg[i].addr; 632 sg_list[i] = p; // save so we can clean up later 633 sg_indx = i; 634 635 if( flags & SRB_DataOut ){ 636 if(copy_from_user(p, sg_user[i], 637 upsg->sg[i].count)) { 638 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 639 rcode = -EFAULT; 640 goto cleanup; 641 } 642 } 643 addr = pci_map_single(dev->pdev, p, 644 upsg->sg[i].count, data_dir); 645 646 psg->sg[i].addr = cpu_to_le32(addr); 647 psg->sg[i].count = cpu_to_le32(upsg->sg[i].count); 648 byte_count += upsg->sg[i].count; 649 } 650 srbcmd->count = cpu_to_le32(byte_count); 651 psg->count = cpu_to_le32(sg_indx+1); 652 status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL); 653 } 654 655 if (status != 0){ 656 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n")); 657 rcode = -ENXIO; 658 goto cleanup; 659 } 660 661 if( flags & SRB_DataIn ) { 662 for(i = 0 ; i <= sg_indx; i++){ 663 byte_count = le32_to_cpu((dev->dac_support == 1) 664 ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count 665 : srbcmd->sg.sg[i].count); 666 if(copy_to_user(sg_user[i], sg_list[i], byte_count)){ 667 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n")); 668 rcode = -EFAULT; 669 goto cleanup; 670 671 } 672 } 673 } 674 675 reply = (struct aac_srb_reply *) fib_data(srbfib); 676 if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){ 677 dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n")); 678 rcode = -EFAULT; 679 goto cleanup; 680 } 681 682 cleanup: 683 kfree(user_srbcmd); 684 for(i=0; i <= sg_indx; i++){ 685 kfree(sg_list[i]); 686 } 687 aac_fib_complete(srbfib); 688 aac_fib_free(srbfib); 689 690 return rcode; 691 } 692 693 struct aac_pci_info { 694 u32 bus; 695 u32 slot; 696 }; 697 698 699 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg) 700 { 701 struct aac_pci_info pci_info; 702 703 pci_info.bus = dev->pdev->bus->number; 704 pci_info.slot = PCI_SLOT(dev->pdev->devfn); 705 706 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) { 707 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n")); 708 return -EFAULT; 709 } 710 return 0; 711 } 712 713 714 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg) 715 { 716 int status; 717 718 /* 719 * HBA gets first crack 720 */ 721 722 status = aac_dev_ioctl(dev, cmd, arg); 723 if(status != -ENOTTY) 724 return status; 725 726 switch (cmd) { 727 case FSACTL_MINIPORT_REV_CHECK: 728 status = check_revision(dev, arg); 729 break; 730 case FSACTL_SEND_LARGE_FIB: 731 case FSACTL_SENDFIB: 732 status = ioctl_send_fib(dev, arg); 733 break; 734 case FSACTL_OPEN_GET_ADAPTER_FIB: 735 status = open_getadapter_fib(dev, arg); 736 break; 737 case FSACTL_GET_NEXT_ADAPTER_FIB: 738 status = next_getadapter_fib(dev, arg); 739 break; 740 case FSACTL_CLOSE_GET_ADAPTER_FIB: 741 status = close_getadapter_fib(dev, arg); 742 break; 743 case FSACTL_SEND_RAW_SRB: 744 status = aac_send_raw_srb(dev,arg); 745 break; 746 case FSACTL_GET_PCI_INFO: 747 status = aac_get_pci_info(dev,arg); 748 break; 749 default: 750 status = -ENOTTY; 751 break; 752 } 753 return status; 754 } 755 756