1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * commctrl.c 15 * 16 * Abstract: Contains all routines for control of the AFA comm layer 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/blkdev.h> 28 #include <linux/compat.h> 29 #include <linux/delay.h> /* ssleep prototype */ 30 #include <linux/kthread.h> 31 #include <linux/uaccess.h> 32 #include <scsi/scsi_host.h> 33 34 #include "aacraid.h" 35 36 # define AAC_DEBUG_PREAMBLE KERN_INFO 37 # define AAC_DEBUG_POSTAMBLE 38 /** 39 * ioctl_send_fib - send a FIB from userspace 40 * @dev: adapter is being processed 41 * @arg: arguments to the ioctl call 42 * 43 * This routine sends a fib to the adapter on behalf of a user level 44 * program. 45 */ 46 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg) 47 { 48 struct hw_fib * kfib; 49 struct fib *fibptr; 50 struct hw_fib * hw_fib = (struct hw_fib *)0; 51 dma_addr_t hw_fib_pa = (dma_addr_t)0LL; 52 unsigned int size, osize; 53 int retval; 54 55 if (dev->in_reset) { 56 return -EBUSY; 57 } 58 fibptr = aac_fib_alloc(dev); 59 if(fibptr == NULL) { 60 return -ENOMEM; 61 } 62 63 kfib = fibptr->hw_fib_va; 64 /* 65 * First copy in the header so that we can check the size field. 66 */ 67 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) { 68 aac_fib_free(fibptr); 69 return -EFAULT; 70 } 71 /* 72 * Since we copy based on the fib header size, make sure that we 73 * will not overrun the buffer when we copy the memory. Return 74 * an error if we would. 75 */ 76 osize = size = le16_to_cpu(kfib->header.Size) + 77 sizeof(struct aac_fibhdr); 78 if (size < le16_to_cpu(kfib->header.SenderSize)) 79 size = le16_to_cpu(kfib->header.SenderSize); 80 if (size > dev->max_fib_size) { 81 dma_addr_t daddr; 82 83 if (size > 2048) { 84 retval = -EINVAL; 85 goto cleanup; 86 } 87 88 kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr, 89 GFP_KERNEL); 90 if (!kfib) { 91 retval = -ENOMEM; 92 goto cleanup; 93 } 94 95 /* Highjack the hw_fib */ 96 hw_fib = fibptr->hw_fib_va; 97 hw_fib_pa = fibptr->hw_fib_pa; 98 fibptr->hw_fib_va = kfib; 99 fibptr->hw_fib_pa = daddr; 100 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size); 101 memcpy(kfib, hw_fib, dev->max_fib_size); 102 } 103 104 if (copy_from_user(kfib, arg, size)) { 105 retval = -EFAULT; 106 goto cleanup; 107 } 108 109 /* Sanity check the second copy */ 110 if ((osize != le16_to_cpu(kfib->header.Size) + 111 sizeof(struct aac_fibhdr)) 112 || (size < le16_to_cpu(kfib->header.SenderSize))) { 113 retval = -EINVAL; 114 goto cleanup; 115 } 116 117 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) { 118 aac_adapter_interrupt(dev); 119 /* 120 * Since we didn't really send a fib, zero out the state to allow 121 * cleanup code not to assert. 122 */ 123 kfib->header.XferState = 0; 124 } else { 125 retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr, 126 le16_to_cpu(kfib->header.Size) , FsaNormal, 127 1, 1, NULL, NULL); 128 if (retval) { 129 goto cleanup; 130 } 131 if (aac_fib_complete(fibptr) != 0) { 132 retval = -EINVAL; 133 goto cleanup; 134 } 135 } 136 /* 137 * Make sure that the size returned by the adapter (which includes 138 * the header) is less than or equal to the size of a fib, so we 139 * don't corrupt application data. Then copy that size to the user 140 * buffer. (Don't try to add the header information again, since it 141 * was already included by the adapter.) 142 */ 143 144 retval = 0; 145 if (copy_to_user(arg, (void *)kfib, size)) 146 retval = -EFAULT; 147 cleanup: 148 if (hw_fib) { 149 dma_free_coherent(&dev->pdev->dev, size, kfib, 150 fibptr->hw_fib_pa); 151 fibptr->hw_fib_pa = hw_fib_pa; 152 fibptr->hw_fib_va = hw_fib; 153 } 154 if (retval != -ERESTARTSYS) 155 aac_fib_free(fibptr); 156 return retval; 157 } 158 159 /** 160 * open_getadapter_fib - Get the next fib 161 * @dev: adapter is being processed 162 * @arg: arguments to the open call 163 * 164 * This routine will get the next Fib, if available, from the AdapterFibContext 165 * passed in from the user. 166 */ 167 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg) 168 { 169 struct aac_fib_context * fibctx; 170 int status; 171 172 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL); 173 if (fibctx == NULL) { 174 status = -ENOMEM; 175 } else { 176 unsigned long flags; 177 struct list_head * entry; 178 struct aac_fib_context * context; 179 180 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT; 181 fibctx->size = sizeof(struct aac_fib_context); 182 /* 183 * Yes yes, I know this could be an index, but we have a 184 * better guarantee of uniqueness for the locked loop below. 185 * Without the aid of a persistent history, this also helps 186 * reduce the chance that the opaque context would be reused. 187 */ 188 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF); 189 /* 190 * Initialize the mutex used to wait for the next AIF. 191 */ 192 init_completion(&fibctx->completion); 193 fibctx->wait = 0; 194 /* 195 * Initialize the fibs and set the count of fibs on 196 * the list to 0. 197 */ 198 fibctx->count = 0; 199 INIT_LIST_HEAD(&fibctx->fib_list); 200 fibctx->jiffies = jiffies/HZ; 201 /* 202 * Now add this context onto the adapter's 203 * AdapterFibContext list. 204 */ 205 spin_lock_irqsave(&dev->fib_lock, flags); 206 /* Ensure that we have a unique identifier */ 207 entry = dev->fib_list.next; 208 while (entry != &dev->fib_list) { 209 context = list_entry(entry, struct aac_fib_context, next); 210 if (context->unique == fibctx->unique) { 211 /* Not unique (32 bits) */ 212 fibctx->unique++; 213 entry = dev->fib_list.next; 214 } else { 215 entry = entry->next; 216 } 217 } 218 list_add_tail(&fibctx->next, &dev->fib_list); 219 spin_unlock_irqrestore(&dev->fib_lock, flags); 220 if (copy_to_user(arg, &fibctx->unique, 221 sizeof(fibctx->unique))) { 222 status = -EFAULT; 223 } else { 224 status = 0; 225 } 226 } 227 return status; 228 } 229 230 struct compat_fib_ioctl { 231 u32 fibctx; 232 s32 wait; 233 compat_uptr_t fib; 234 }; 235 236 /** 237 * next_getadapter_fib - get the next fib 238 * @dev: adapter to use 239 * @arg: ioctl argument 240 * 241 * This routine will get the next Fib, if available, from the AdapterFibContext 242 * passed in from the user. 243 */ 244 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg) 245 { 246 struct fib_ioctl f; 247 struct fib *fib; 248 struct aac_fib_context *fibctx; 249 int status; 250 struct list_head * entry; 251 unsigned long flags; 252 253 if (in_compat_syscall()) { 254 struct compat_fib_ioctl cf; 255 256 if (copy_from_user(&cf, arg, sizeof(struct compat_fib_ioctl))) 257 return -EFAULT; 258 259 f.fibctx = cf.fibctx; 260 f.wait = cf.wait; 261 f.fib = compat_ptr(cf.fib); 262 } else { 263 if (copy_from_user(&f, arg, sizeof(struct fib_ioctl))) 264 return -EFAULT; 265 } 266 /* 267 * Verify that the HANDLE passed in was a valid AdapterFibContext 268 * 269 * Search the list of AdapterFibContext addresses on the adapter 270 * to be sure this is a valid address 271 */ 272 spin_lock_irqsave(&dev->fib_lock, flags); 273 entry = dev->fib_list.next; 274 fibctx = NULL; 275 276 while (entry != &dev->fib_list) { 277 fibctx = list_entry(entry, struct aac_fib_context, next); 278 /* 279 * Extract the AdapterFibContext from the Input parameters. 280 */ 281 if (fibctx->unique == f.fibctx) { /* We found a winner */ 282 break; 283 } 284 entry = entry->next; 285 fibctx = NULL; 286 } 287 if (!fibctx) { 288 spin_unlock_irqrestore(&dev->fib_lock, flags); 289 dprintk ((KERN_INFO "Fib Context not found\n")); 290 return -EINVAL; 291 } 292 293 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 294 (fibctx->size != sizeof(struct aac_fib_context))) { 295 spin_unlock_irqrestore(&dev->fib_lock, flags); 296 dprintk ((KERN_INFO "Fib Context corrupt?\n")); 297 return -EINVAL; 298 } 299 status = 0; 300 /* 301 * If there are no fibs to send back, then either wait or return 302 * -EAGAIN 303 */ 304 return_fib: 305 if (!list_empty(&fibctx->fib_list)) { 306 /* 307 * Pull the next fib from the fibs 308 */ 309 entry = fibctx->fib_list.next; 310 list_del(entry); 311 312 fib = list_entry(entry, struct fib, fiblink); 313 fibctx->count--; 314 spin_unlock_irqrestore(&dev->fib_lock, flags); 315 if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) { 316 kfree(fib->hw_fib_va); 317 kfree(fib); 318 return -EFAULT; 319 } 320 /* 321 * Free the space occupied by this copy of the fib. 322 */ 323 kfree(fib->hw_fib_va); 324 kfree(fib); 325 status = 0; 326 } else { 327 spin_unlock_irqrestore(&dev->fib_lock, flags); 328 /* If someone killed the AIF aacraid thread, restart it */ 329 status = !dev->aif_thread; 330 if (status && !dev->in_reset && dev->queues && dev->fsa_dev) { 331 /* Be paranoid, be very paranoid! */ 332 kthread_stop(dev->thread); 333 ssleep(1); 334 dev->aif_thread = 0; 335 dev->thread = kthread_run(aac_command_thread, dev, 336 "%s", dev->name); 337 ssleep(1); 338 } 339 if (f.wait) { 340 if (wait_for_completion_interruptible(&fibctx->completion) < 0) { 341 status = -ERESTARTSYS; 342 } else { 343 /* Lock again and retry */ 344 spin_lock_irqsave(&dev->fib_lock, flags); 345 goto return_fib; 346 } 347 } else { 348 status = -EAGAIN; 349 } 350 } 351 fibctx->jiffies = jiffies/HZ; 352 return status; 353 } 354 355 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx) 356 { 357 struct fib *fib; 358 359 /* 360 * First free any FIBs that have not been consumed. 361 */ 362 while (!list_empty(&fibctx->fib_list)) { 363 struct list_head * entry; 364 /* 365 * Pull the next fib from the fibs 366 */ 367 entry = fibctx->fib_list.next; 368 list_del(entry); 369 fib = list_entry(entry, struct fib, fiblink); 370 fibctx->count--; 371 /* 372 * Free the space occupied by this copy of the fib. 373 */ 374 kfree(fib->hw_fib_va); 375 kfree(fib); 376 } 377 /* 378 * Remove the Context from the AdapterFibContext List 379 */ 380 list_del(&fibctx->next); 381 /* 382 * Invalidate context 383 */ 384 fibctx->type = 0; 385 /* 386 * Free the space occupied by the Context 387 */ 388 kfree(fibctx); 389 return 0; 390 } 391 392 /** 393 * close_getadapter_fib - close down user fib context 394 * @dev: adapter 395 * @arg: ioctl arguments 396 * 397 * This routine will close down the fibctx passed in from the user. 398 */ 399 400 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg) 401 { 402 struct aac_fib_context *fibctx; 403 int status; 404 unsigned long flags; 405 struct list_head * entry; 406 407 /* 408 * Verify that the HANDLE passed in was a valid AdapterFibContext 409 * 410 * Search the list of AdapterFibContext addresses on the adapter 411 * to be sure this is a valid address 412 */ 413 414 entry = dev->fib_list.next; 415 fibctx = NULL; 416 417 while(entry != &dev->fib_list) { 418 fibctx = list_entry(entry, struct aac_fib_context, next); 419 /* 420 * Extract the fibctx from the input parameters 421 */ 422 if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */ 423 break; 424 entry = entry->next; 425 fibctx = NULL; 426 } 427 428 if (!fibctx) 429 return 0; /* Already gone */ 430 431 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 432 (fibctx->size != sizeof(struct aac_fib_context))) 433 return -EINVAL; 434 spin_lock_irqsave(&dev->fib_lock, flags); 435 status = aac_close_fib_context(dev, fibctx); 436 spin_unlock_irqrestore(&dev->fib_lock, flags); 437 return status; 438 } 439 440 /** 441 * check_revision - close down user fib context 442 * @dev: adapter 443 * @arg: ioctl arguments 444 * 445 * This routine returns the driver version. 446 * Under Linux, there have been no version incompatibilities, so this is 447 * simple! 448 */ 449 450 static int check_revision(struct aac_dev *dev, void __user *arg) 451 { 452 struct revision response; 453 char *driver_version = aac_driver_version; 454 u32 version; 455 456 response.compat = 1; 457 version = (simple_strtol(driver_version, 458 &driver_version, 10) << 24) | 0x00000400; 459 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16; 460 version += simple_strtol(driver_version + 1, NULL, 10); 461 response.version = cpu_to_le32(version); 462 # ifdef AAC_DRIVER_BUILD 463 response.build = cpu_to_le32(AAC_DRIVER_BUILD); 464 # else 465 response.build = cpu_to_le32(9999); 466 # endif 467 468 if (copy_to_user(arg, &response, sizeof(response))) 469 return -EFAULT; 470 return 0; 471 } 472 473 474 /** 475 * aac_send_raw_srb() 476 * @dev: adapter is being processed 477 * @arg: arguments to the send call 478 */ 479 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg) 480 { 481 struct fib* srbfib; 482 int status; 483 struct aac_srb *srbcmd = NULL; 484 struct aac_hba_cmd_req *hbacmd = NULL; 485 struct user_aac_srb *user_srbcmd = NULL; 486 struct user_aac_srb __user *user_srb = arg; 487 struct aac_srb_reply __user *user_reply; 488 u32 chn; 489 u32 fibsize = 0; 490 u32 flags = 0; 491 s32 rcode = 0; 492 u32 data_dir; 493 void __user *sg_user[HBA_MAX_SG_EMBEDDED]; 494 void *sg_list[HBA_MAX_SG_EMBEDDED]; 495 u32 sg_count[HBA_MAX_SG_EMBEDDED]; 496 u32 sg_indx = 0; 497 u32 byte_count = 0; 498 u32 actual_fibsize64, actual_fibsize = 0; 499 int i; 500 int is_native_device; 501 u64 address; 502 503 504 if (dev->in_reset) { 505 dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n")); 506 return -EBUSY; 507 } 508 if (!capable(CAP_SYS_ADMIN)){ 509 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n")); 510 return -EPERM; 511 } 512 /* 513 * Allocate and initialize a Fib then setup a SRB command 514 */ 515 if (!(srbfib = aac_fib_alloc(dev))) { 516 return -ENOMEM; 517 } 518 519 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */ 520 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){ 521 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n")); 522 rcode = -EFAULT; 523 goto cleanup; 524 } 525 526 if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) || 527 (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) { 528 rcode = -EINVAL; 529 goto cleanup; 530 } 531 532 user_srbcmd = memdup_user(user_srb, fibsize); 533 if (IS_ERR(user_srbcmd)) { 534 rcode = PTR_ERR(user_srbcmd); 535 user_srbcmd = NULL; 536 goto cleanup; 537 } 538 539 flags = user_srbcmd->flags; /* from user in cpu order */ 540 switch (flags & (SRB_DataIn | SRB_DataOut)) { 541 case SRB_DataOut: 542 data_dir = DMA_TO_DEVICE; 543 break; 544 case (SRB_DataIn | SRB_DataOut): 545 data_dir = DMA_BIDIRECTIONAL; 546 break; 547 case SRB_DataIn: 548 data_dir = DMA_FROM_DEVICE; 549 break; 550 default: 551 data_dir = DMA_NONE; 552 } 553 if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) { 554 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n", 555 user_srbcmd->sg.count)); 556 rcode = -EINVAL; 557 goto cleanup; 558 } 559 if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) { 560 dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n")); 561 rcode = -EINVAL; 562 goto cleanup; 563 } 564 actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 565 ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry)); 566 actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) * 567 (sizeof(struct sgentry64) - sizeof(struct sgentry)); 568 /* User made a mistake - should not continue */ 569 if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) { 570 dprintk((KERN_DEBUG"aacraid: Bad Size specified in " 571 "Raw SRB command calculated fibsize=%lu;%lu " 572 "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu " 573 "issued fibsize=%d\n", 574 actual_fibsize, actual_fibsize64, user_srbcmd->sg.count, 575 sizeof(struct aac_srb), sizeof(struct sgentry), 576 sizeof(struct sgentry64), fibsize)); 577 rcode = -EINVAL; 578 goto cleanup; 579 } 580 581 chn = user_srbcmd->channel; 582 if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS && 583 dev->hba_map[chn][user_srbcmd->id].devtype == 584 AAC_DEVTYPE_NATIVE_RAW) { 585 is_native_device = 1; 586 hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va; 587 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 588 589 /* iu_type is a parameter of aac_hba_send */ 590 switch (data_dir) { 591 case DMA_TO_DEVICE: 592 hbacmd->byte1 = 2; 593 break; 594 case DMA_FROM_DEVICE: 595 case DMA_BIDIRECTIONAL: 596 hbacmd->byte1 = 1; 597 break; 598 case DMA_NONE: 599 default: 600 break; 601 } 602 hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun); 603 hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus; 604 605 /* 606 * we fill in reply_qid later in aac_src_deliver_message 607 * we fill in iu_type, request_id later in aac_hba_send 608 * we fill in emb_data_desc_count, data_length later 609 * in sg list build 610 */ 611 612 memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb)); 613 614 address = (u64)srbfib->hw_error_pa; 615 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 616 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 617 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 618 hbacmd->emb_data_desc_count = 619 cpu_to_le32(user_srbcmd->sg.count); 620 srbfib->hbacmd_size = 64 + 621 user_srbcmd->sg.count * sizeof(struct aac_hba_sgl); 622 623 } else { 624 is_native_device = 0; 625 aac_fib_init(srbfib); 626 627 /* raw_srb FIB is not FastResponseCapable */ 628 srbfib->hw_fib_va->header.XferState &= 629 ~cpu_to_le32(FastResponseCapable); 630 631 srbcmd = (struct aac_srb *) fib_data(srbfib); 632 633 // Fix up srb for endian and force some values 634 635 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this 636 srbcmd->channel = cpu_to_le32(user_srbcmd->channel); 637 srbcmd->id = cpu_to_le32(user_srbcmd->id); 638 srbcmd->lun = cpu_to_le32(user_srbcmd->lun); 639 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout); 640 srbcmd->flags = cpu_to_le32(flags); 641 srbcmd->retry_limit = 0; // Obsolete parameter 642 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size); 643 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb)); 644 } 645 646 byte_count = 0; 647 if (is_native_device) { 648 struct user_sgmap *usg32 = &user_srbcmd->sg; 649 struct user_sgmap64 *usg64 = 650 (struct user_sgmap64 *)&user_srbcmd->sg; 651 652 for (i = 0; i < usg32->count; i++) { 653 void *p; 654 u64 addr; 655 656 sg_count[i] = (actual_fibsize64 == fibsize) ? 657 usg64->sg[i].count : usg32->sg[i].count; 658 if (sg_count[i] > 659 (dev->scsi_host_ptr->max_sectors << 9)) { 660 pr_err("aacraid: upsg->sg[%d].count=%u>%u\n", 661 i, sg_count[i], 662 dev->scsi_host_ptr->max_sectors << 9); 663 rcode = -EINVAL; 664 goto cleanup; 665 } 666 667 p = kmalloc(sg_count[i], GFP_KERNEL); 668 if (!p) { 669 rcode = -ENOMEM; 670 goto cleanup; 671 } 672 673 if (actual_fibsize64 == fibsize) { 674 addr = (u64)usg64->sg[i].addr[0]; 675 addr += ((u64)usg64->sg[i].addr[1]) << 32; 676 } else { 677 addr = (u64)usg32->sg[i].addr; 678 } 679 680 sg_user[i] = (void __user *)(uintptr_t)addr; 681 sg_list[i] = p; // save so we can clean up later 682 sg_indx = i; 683 684 if (flags & SRB_DataOut) { 685 if (copy_from_user(p, sg_user[i], 686 sg_count[i])) { 687 rcode = -EFAULT; 688 goto cleanup; 689 } 690 } 691 addr = dma_map_single(&dev->pdev->dev, p, sg_count[i], 692 data_dir); 693 hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32)); 694 hbacmd->sge[i].addr_lo = cpu_to_le32( 695 (u32)(addr & 0xffffffff)); 696 hbacmd->sge[i].len = cpu_to_le32(sg_count[i]); 697 hbacmd->sge[i].flags = 0; 698 byte_count += sg_count[i]; 699 } 700 701 if (usg32->count > 0) /* embedded sglist */ 702 hbacmd->sge[usg32->count-1].flags = 703 cpu_to_le32(0x40000000); 704 hbacmd->data_length = cpu_to_le32(byte_count); 705 706 status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib, 707 NULL, NULL); 708 709 } else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) { 710 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg; 711 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg; 712 713 /* 714 * This should also catch if user used the 32 bit sgmap 715 */ 716 if (actual_fibsize64 == fibsize) { 717 actual_fibsize = actual_fibsize64; 718 for (i = 0; i < upsg->count; i++) { 719 u64 addr; 720 void* p; 721 722 sg_count[i] = upsg->sg[i].count; 723 if (sg_count[i] > 724 ((dev->adapter_info.options & 725 AAC_OPT_NEW_COMM) ? 726 (dev->scsi_host_ptr->max_sectors << 9) : 727 65536)) { 728 rcode = -EINVAL; 729 goto cleanup; 730 } 731 732 p = kmalloc(sg_count[i], GFP_KERNEL); 733 if(!p) { 734 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 735 sg_count[i], i, upsg->count)); 736 rcode = -ENOMEM; 737 goto cleanup; 738 } 739 addr = (u64)upsg->sg[i].addr[0]; 740 addr += ((u64)upsg->sg[i].addr[1]) << 32; 741 sg_user[i] = (void __user *)(uintptr_t)addr; 742 sg_list[i] = p; // save so we can clean up later 743 sg_indx = i; 744 745 if (flags & SRB_DataOut) { 746 if (copy_from_user(p, sg_user[i], 747 sg_count[i])){ 748 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 749 rcode = -EFAULT; 750 goto cleanup; 751 } 752 } 753 addr = dma_map_single(&dev->pdev->dev, p, 754 sg_count[i], data_dir); 755 756 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 757 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 758 byte_count += sg_count[i]; 759 psg->sg[i].count = cpu_to_le32(sg_count[i]); 760 } 761 } else { 762 struct user_sgmap* usg; 763 usg = kmemdup(upsg, 764 actual_fibsize - sizeof(struct aac_srb) 765 + sizeof(struct sgmap), GFP_KERNEL); 766 if (!usg) { 767 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n")); 768 rcode = -ENOMEM; 769 goto cleanup; 770 } 771 actual_fibsize = actual_fibsize64; 772 773 for (i = 0; i < usg->count; i++) { 774 u64 addr; 775 void* p; 776 777 sg_count[i] = usg->sg[i].count; 778 if (sg_count[i] > 779 ((dev->adapter_info.options & 780 AAC_OPT_NEW_COMM) ? 781 (dev->scsi_host_ptr->max_sectors << 9) : 782 65536)) { 783 kfree(usg); 784 rcode = -EINVAL; 785 goto cleanup; 786 } 787 788 p = kmalloc(sg_count[i], GFP_KERNEL); 789 if(!p) { 790 dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 791 sg_count[i], i, usg->count)); 792 kfree(usg); 793 rcode = -ENOMEM; 794 goto cleanup; 795 } 796 sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr; 797 sg_list[i] = p; // save so we can clean up later 798 sg_indx = i; 799 800 if (flags & SRB_DataOut) { 801 if (copy_from_user(p, sg_user[i], 802 sg_count[i])) { 803 kfree (usg); 804 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 805 rcode = -EFAULT; 806 goto cleanup; 807 } 808 } 809 addr = dma_map_single(&dev->pdev->dev, p, 810 sg_count[i], data_dir); 811 812 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 813 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 814 byte_count += sg_count[i]; 815 psg->sg[i].count = cpu_to_le32(sg_count[i]); 816 } 817 kfree (usg); 818 } 819 srbcmd->count = cpu_to_le32(byte_count); 820 if (user_srbcmd->sg.count) 821 psg->count = cpu_to_le32(sg_indx+1); 822 else 823 psg->count = 0; 824 status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL); 825 } else { 826 struct user_sgmap* upsg = &user_srbcmd->sg; 827 struct sgmap* psg = &srbcmd->sg; 828 829 if (actual_fibsize64 == fibsize) { 830 struct user_sgmap64* usg = (struct user_sgmap64 *)upsg; 831 for (i = 0; i < upsg->count; i++) { 832 uintptr_t addr; 833 void* p; 834 835 sg_count[i] = usg->sg[i].count; 836 if (sg_count[i] > 837 ((dev->adapter_info.options & 838 AAC_OPT_NEW_COMM) ? 839 (dev->scsi_host_ptr->max_sectors << 9) : 840 65536)) { 841 rcode = -EINVAL; 842 goto cleanup; 843 } 844 p = kmalloc(sg_count[i], GFP_KERNEL); 845 if (!p) { 846 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 847 sg_count[i], i, usg->count)); 848 rcode = -ENOMEM; 849 goto cleanup; 850 } 851 addr = (u64)usg->sg[i].addr[0]; 852 addr += ((u64)usg->sg[i].addr[1]) << 32; 853 sg_user[i] = (void __user *)addr; 854 sg_list[i] = p; // save so we can clean up later 855 sg_indx = i; 856 857 if (flags & SRB_DataOut) { 858 if (copy_from_user(p, sg_user[i], 859 sg_count[i])){ 860 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 861 rcode = -EFAULT; 862 goto cleanup; 863 } 864 } 865 addr = dma_map_single(&dev->pdev->dev, p, 866 usg->sg[i].count, 867 data_dir); 868 869 psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff); 870 byte_count += usg->sg[i].count; 871 psg->sg[i].count = cpu_to_le32(sg_count[i]); 872 } 873 } else { 874 for (i = 0; i < upsg->count; i++) { 875 dma_addr_t addr; 876 void* p; 877 878 sg_count[i] = upsg->sg[i].count; 879 if (sg_count[i] > 880 ((dev->adapter_info.options & 881 AAC_OPT_NEW_COMM) ? 882 (dev->scsi_host_ptr->max_sectors << 9) : 883 65536)) { 884 rcode = -EINVAL; 885 goto cleanup; 886 } 887 p = kmalloc(sg_count[i], GFP_KERNEL); 888 if (!p) { 889 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 890 sg_count[i], i, upsg->count)); 891 rcode = -ENOMEM; 892 goto cleanup; 893 } 894 sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr; 895 sg_list[i] = p; // save so we can clean up later 896 sg_indx = i; 897 898 if (flags & SRB_DataOut) { 899 if (copy_from_user(p, sg_user[i], 900 sg_count[i])) { 901 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 902 rcode = -EFAULT; 903 goto cleanup; 904 } 905 } 906 addr = dma_map_single(&dev->pdev->dev, p, 907 sg_count[i], data_dir); 908 909 psg->sg[i].addr = cpu_to_le32(addr); 910 byte_count += sg_count[i]; 911 psg->sg[i].count = cpu_to_le32(sg_count[i]); 912 } 913 } 914 srbcmd->count = cpu_to_le32(byte_count); 915 if (user_srbcmd->sg.count) 916 psg->count = cpu_to_le32(sg_indx+1); 917 else 918 psg->count = 0; 919 status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL); 920 } 921 922 if (status == -ERESTARTSYS) { 923 rcode = -ERESTARTSYS; 924 goto cleanup; 925 } 926 927 if (status != 0) { 928 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n")); 929 rcode = -ENXIO; 930 goto cleanup; 931 } 932 933 if (flags & SRB_DataIn) { 934 for(i = 0 ; i <= sg_indx; i++){ 935 if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) { 936 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n")); 937 rcode = -EFAULT; 938 goto cleanup; 939 940 } 941 } 942 } 943 944 user_reply = arg + fibsize; 945 if (is_native_device) { 946 struct aac_hba_resp *err = 947 &((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err; 948 struct aac_srb_reply reply; 949 950 memset(&reply, 0, sizeof(reply)); 951 reply.status = ST_OK; 952 if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) { 953 /* fast response */ 954 reply.srb_status = SRB_STATUS_SUCCESS; 955 reply.scsi_status = 0; 956 reply.data_xfer_length = byte_count; 957 reply.sense_data_size = 0; 958 memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE); 959 } else { 960 reply.srb_status = err->service_response; 961 reply.scsi_status = err->status; 962 reply.data_xfer_length = byte_count - 963 le32_to_cpu(err->residual_count); 964 reply.sense_data_size = err->sense_response_data_len; 965 memcpy(reply.sense_data, err->sense_response_buf, 966 AAC_SENSE_BUFFERSIZE); 967 } 968 if (copy_to_user(user_reply, &reply, 969 sizeof(struct aac_srb_reply))) { 970 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n")); 971 rcode = -EFAULT; 972 goto cleanup; 973 } 974 } else { 975 struct aac_srb_reply *reply; 976 977 reply = (struct aac_srb_reply *) fib_data(srbfib); 978 if (copy_to_user(user_reply, reply, 979 sizeof(struct aac_srb_reply))) { 980 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n")); 981 rcode = -EFAULT; 982 goto cleanup; 983 } 984 } 985 986 cleanup: 987 kfree(user_srbcmd); 988 if (rcode != -ERESTARTSYS) { 989 for (i = 0; i <= sg_indx; i++) 990 kfree(sg_list[i]); 991 aac_fib_complete(srbfib); 992 aac_fib_free(srbfib); 993 } 994 995 return rcode; 996 } 997 998 struct aac_pci_info { 999 u32 bus; 1000 u32 slot; 1001 }; 1002 1003 1004 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg) 1005 { 1006 struct aac_pci_info pci_info; 1007 1008 pci_info.bus = dev->pdev->bus->number; 1009 pci_info.slot = PCI_SLOT(dev->pdev->devfn); 1010 1011 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) { 1012 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n")); 1013 return -EFAULT; 1014 } 1015 return 0; 1016 } 1017 1018 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg) 1019 { 1020 struct aac_hba_info hbainfo; 1021 1022 memset(&hbainfo, 0, sizeof(hbainfo)); 1023 hbainfo.adapter_number = (u8) dev->id; 1024 hbainfo.system_io_bus_number = dev->pdev->bus->number; 1025 hbainfo.device_number = (dev->pdev->devfn >> 3); 1026 hbainfo.function_number = (dev->pdev->devfn & 0x0007); 1027 1028 hbainfo.vendor_id = dev->pdev->vendor; 1029 hbainfo.device_id = dev->pdev->device; 1030 hbainfo.sub_vendor_id = dev->pdev->subsystem_vendor; 1031 hbainfo.sub_system_id = dev->pdev->subsystem_device; 1032 1033 if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) { 1034 dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n")); 1035 return -EFAULT; 1036 } 1037 1038 return 0; 1039 } 1040 1041 struct aac_reset_iop { 1042 u8 reset_type; 1043 }; 1044 1045 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg) 1046 { 1047 struct aac_reset_iop reset; 1048 int retval; 1049 1050 if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop))) 1051 return -EFAULT; 1052 1053 dev->adapter_shutdown = 1; 1054 1055 mutex_unlock(&dev->ioctl_mutex); 1056 retval = aac_reset_adapter(dev, 0, reset.reset_type); 1057 mutex_lock(&dev->ioctl_mutex); 1058 1059 return retval; 1060 } 1061 1062 int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 1063 { 1064 int status; 1065 1066 mutex_lock(&dev->ioctl_mutex); 1067 1068 if (dev->adapter_shutdown) { 1069 status = -EACCES; 1070 goto cleanup; 1071 } 1072 1073 /* 1074 * HBA gets first crack 1075 */ 1076 1077 status = aac_dev_ioctl(dev, cmd, arg); 1078 if (status != -ENOTTY) 1079 goto cleanup; 1080 1081 switch (cmd) { 1082 case FSACTL_MINIPORT_REV_CHECK: 1083 status = check_revision(dev, arg); 1084 break; 1085 case FSACTL_SEND_LARGE_FIB: 1086 case FSACTL_SENDFIB: 1087 status = ioctl_send_fib(dev, arg); 1088 break; 1089 case FSACTL_OPEN_GET_ADAPTER_FIB: 1090 status = open_getadapter_fib(dev, arg); 1091 break; 1092 case FSACTL_GET_NEXT_ADAPTER_FIB: 1093 status = next_getadapter_fib(dev, arg); 1094 break; 1095 case FSACTL_CLOSE_GET_ADAPTER_FIB: 1096 status = close_getadapter_fib(dev, arg); 1097 break; 1098 case FSACTL_SEND_RAW_SRB: 1099 status = aac_send_raw_srb(dev,arg); 1100 break; 1101 case FSACTL_GET_PCI_INFO: 1102 status = aac_get_pci_info(dev,arg); 1103 break; 1104 case FSACTL_GET_HBA_INFO: 1105 status = aac_get_hba_info(dev, arg); 1106 break; 1107 case FSACTL_RESET_IOP: 1108 status = aac_send_reset_adapter(dev, arg); 1109 break; 1110 1111 default: 1112 status = -ENOTTY; 1113 break; 1114 } 1115 1116 cleanup: 1117 mutex_unlock(&dev->ioctl_mutex); 1118 1119 return status; 1120 } 1121 1122