xref: /linux/drivers/scsi/aacraid/commctrl.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commctrl.c
26  *
27  * Abstract: Contains all routines for control of the AFA comm layer
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/pci.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/completion.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h> /* ssleep prototype */
41 #include <linux/kthread.h>
42 #include <asm/semaphore.h>
43 #include <asm/uaccess.h>
44 
45 #include "aacraid.h"
46 
47 /**
48  *	ioctl_send_fib	-	send a FIB from userspace
49  *	@dev:	adapter is being processed
50  *	@arg:	arguments to the ioctl call
51  *
52  *	This routine sends a fib to the adapter on behalf of a user level
53  *	program.
54  */
55 # define AAC_DEBUG_PREAMBLE	KERN_INFO
56 # define AAC_DEBUG_POSTAMBLE
57 
58 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
59 {
60 	struct hw_fib * kfib;
61 	struct fib *fibptr;
62 	struct hw_fib * hw_fib = (struct hw_fib *)0;
63 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
64 	unsigned size;
65 	int retval;
66 
67 	if (dev->in_reset) {
68 		return -EBUSY;
69 	}
70 	fibptr = aac_fib_alloc(dev);
71 	if(fibptr == NULL) {
72 		return -ENOMEM;
73 	}
74 
75 	kfib = fibptr->hw_fib_va;
76 	/*
77 	 *	First copy in the header so that we can check the size field.
78 	 */
79 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
80 		aac_fib_free(fibptr);
81 		return -EFAULT;
82 	}
83 	/*
84 	 *	Since we copy based on the fib header size, make sure that we
85 	 *	will not overrun the buffer when we copy the memory. Return
86 	 *	an error if we would.
87 	 */
88 	size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
89 	if (size < le16_to_cpu(kfib->header.SenderSize))
90 		size = le16_to_cpu(kfib->header.SenderSize);
91 	if (size > dev->max_fib_size) {
92 		if (size > 2048) {
93 			retval = -EINVAL;
94 			goto cleanup;
95 		}
96 		/* Highjack the hw_fib */
97 		hw_fib = fibptr->hw_fib_va;
98 		hw_fib_pa = fibptr->hw_fib_pa;
99 		fibptr->hw_fib_va = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa);
100 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 		memcpy(kfib, hw_fib, dev->max_fib_size);
102 	}
103 
104 	if (copy_from_user(kfib, arg, size)) {
105 		retval = -EFAULT;
106 		goto cleanup;
107 	}
108 
109 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
110 		aac_adapter_interrupt(dev);
111 		/*
112 		 * Since we didn't really send a fib, zero out the state to allow
113 		 * cleanup code not to assert.
114 		 */
115 		kfib->header.XferState = 0;
116 	} else {
117 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
118 				le16_to_cpu(kfib->header.Size) , FsaNormal,
119 				1, 1, NULL, NULL);
120 		if (retval) {
121 			goto cleanup;
122 		}
123 		if (aac_fib_complete(fibptr) != 0) {
124 			retval = -EINVAL;
125 			goto cleanup;
126 		}
127 	}
128 	/*
129 	 *	Make sure that the size returned by the adapter (which includes
130 	 *	the header) is less than or equal to the size of a fib, so we
131 	 *	don't corrupt application data. Then copy that size to the user
132 	 *	buffer. (Don't try to add the header information again, since it
133 	 *	was already included by the adapter.)
134 	 */
135 
136 	retval = 0;
137 	if (copy_to_user(arg, (void *)kfib, size))
138 		retval = -EFAULT;
139 cleanup:
140 	if (hw_fib) {
141 		pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
142 		fibptr->hw_fib_pa = hw_fib_pa;
143 		fibptr->hw_fib_va = hw_fib;
144 	}
145 	if (retval != -EINTR)
146 		aac_fib_free(fibptr);
147 	return retval;
148 }
149 
150 /**
151  *	open_getadapter_fib	-	Get the next fib
152  *
153  *	This routine will get the next Fib, if available, from the AdapterFibContext
154  *	passed in from the user.
155  */
156 
157 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
158 {
159 	struct aac_fib_context * fibctx;
160 	int status;
161 
162 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
163 	if (fibctx == NULL) {
164 		status = -ENOMEM;
165 	} else {
166 		unsigned long flags;
167 		struct list_head * entry;
168 		struct aac_fib_context * context;
169 
170 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
171 		fibctx->size = sizeof(struct aac_fib_context);
172 		/*
173 		 *	Yes yes, I know this could be an index, but we have a
174 		 * better guarantee of uniqueness for the locked loop below.
175 		 * Without the aid of a persistent history, this also helps
176 		 * reduce the chance that the opaque context would be reused.
177 		 */
178 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
179 		/*
180 		 *	Initialize the mutex used to wait for the next AIF.
181 		 */
182 		init_MUTEX_LOCKED(&fibctx->wait_sem);
183 		fibctx->wait = 0;
184 		/*
185 		 *	Initialize the fibs and set the count of fibs on
186 		 *	the list to 0.
187 		 */
188 		fibctx->count = 0;
189 		INIT_LIST_HEAD(&fibctx->fib_list);
190 		fibctx->jiffies = jiffies/HZ;
191 		/*
192 		 *	Now add this context onto the adapter's
193 		 *	AdapterFibContext list.
194 		 */
195 		spin_lock_irqsave(&dev->fib_lock, flags);
196 		/* Ensure that we have a unique identifier */
197 		entry = dev->fib_list.next;
198 		while (entry != &dev->fib_list) {
199 			context = list_entry(entry, struct aac_fib_context, next);
200 			if (context->unique == fibctx->unique) {
201 				/* Not unique (32 bits) */
202 				fibctx->unique++;
203 				entry = dev->fib_list.next;
204 			} else {
205 				entry = entry->next;
206 			}
207 		}
208 		list_add_tail(&fibctx->next, &dev->fib_list);
209 		spin_unlock_irqrestore(&dev->fib_lock, flags);
210 		if (copy_to_user(arg, &fibctx->unique,
211 						sizeof(fibctx->unique))) {
212 			status = -EFAULT;
213 		} else {
214 			status = 0;
215 		}
216 	}
217 	return status;
218 }
219 
220 /**
221  *	next_getadapter_fib	-	get the next fib
222  *	@dev: adapter to use
223  *	@arg: ioctl argument
224  *
225  *	This routine will get the next Fib, if available, from the AdapterFibContext
226  *	passed in from the user.
227  */
228 
229 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
230 {
231 	struct fib_ioctl f;
232 	struct fib *fib;
233 	struct aac_fib_context *fibctx;
234 	int status;
235 	struct list_head * entry;
236 	unsigned long flags;
237 
238 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
239 		return -EFAULT;
240 	/*
241 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
242 	 *
243 	 *	Search the list of AdapterFibContext addresses on the adapter
244 	 *	to be sure this is a valid address
245 	 */
246 	spin_lock_irqsave(&dev->fib_lock, flags);
247 	entry = dev->fib_list.next;
248 	fibctx = NULL;
249 
250 	while (entry != &dev->fib_list) {
251 		fibctx = list_entry(entry, struct aac_fib_context, next);
252 		/*
253 		 *	Extract the AdapterFibContext from the Input parameters.
254 		 */
255 		if (fibctx->unique == f.fibctx) { /* We found a winner */
256 			break;
257 		}
258 		entry = entry->next;
259 		fibctx = NULL;
260 	}
261 	if (!fibctx) {
262 		spin_unlock_irqrestore(&dev->fib_lock, flags);
263 		dprintk ((KERN_INFO "Fib Context not found\n"));
264 		return -EINVAL;
265 	}
266 
267 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
268 		 (fibctx->size != sizeof(struct aac_fib_context))) {
269 		spin_unlock_irqrestore(&dev->fib_lock, flags);
270 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
271 		return -EINVAL;
272 	}
273 	status = 0;
274 	/*
275 	 *	If there are no fibs to send back, then either wait or return
276 	 *	-EAGAIN
277 	 */
278 return_fib:
279 	if (!list_empty(&fibctx->fib_list)) {
280 		/*
281 		 *	Pull the next fib from the fibs
282 		 */
283 		entry = fibctx->fib_list.next;
284 		list_del(entry);
285 
286 		fib = list_entry(entry, struct fib, fiblink);
287 		fibctx->count--;
288 		spin_unlock_irqrestore(&dev->fib_lock, flags);
289 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
290 			kfree(fib->hw_fib_va);
291 			kfree(fib);
292 			return -EFAULT;
293 		}
294 		/*
295 		 *	Free the space occupied by this copy of the fib.
296 		 */
297 		kfree(fib->hw_fib_va);
298 		kfree(fib);
299 		status = 0;
300 	} else {
301 		spin_unlock_irqrestore(&dev->fib_lock, flags);
302 		/* If someone killed the AIF aacraid thread, restart it */
303 		status = !dev->aif_thread;
304 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
305 			/* Be paranoid, be very paranoid! */
306 			kthread_stop(dev->thread);
307 			ssleep(1);
308 			dev->aif_thread = 0;
309 			dev->thread = kthread_run(aac_command_thread, dev, dev->name);
310 			ssleep(1);
311 		}
312 		if (f.wait) {
313 			if(down_interruptible(&fibctx->wait_sem) < 0) {
314 				status = -EINTR;
315 			} else {
316 				/* Lock again and retry */
317 				spin_lock_irqsave(&dev->fib_lock, flags);
318 				goto return_fib;
319 			}
320 		} else {
321 			status = -EAGAIN;
322 		}
323 	}
324 	fibctx->jiffies = jiffies/HZ;
325 	return status;
326 }
327 
328 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
329 {
330 	struct fib *fib;
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(&dev->fib_lock, flags);
334 	/*
335 	 *	First free any FIBs that have not been consumed.
336 	 */
337 	while (!list_empty(&fibctx->fib_list)) {
338 		struct list_head * entry;
339 		/*
340 		 *	Pull the next fib from the fibs
341 		 */
342 		entry = fibctx->fib_list.next;
343 		list_del(entry);
344 		fib = list_entry(entry, struct fib, fiblink);
345 		fibctx->count--;
346 		/*
347 		 *	Free the space occupied by this copy of the fib.
348 		 */
349 		kfree(fib->hw_fib_va);
350 		kfree(fib);
351 	}
352 	/*
353 	 *	Remove the Context from the AdapterFibContext List
354 	 */
355 	list_del(&fibctx->next);
356 	spin_unlock_irqrestore(&dev->fib_lock, flags);
357 	/*
358 	 *	Invalidate context
359 	 */
360 	fibctx->type = 0;
361 	/*
362 	 *	Free the space occupied by the Context
363 	 */
364 	kfree(fibctx);
365 	return 0;
366 }
367 
368 /**
369  *	close_getadapter_fib	-	close down user fib context
370  *	@dev: adapter
371  *	@arg: ioctl arguments
372  *
373  *	This routine will close down the fibctx passed in from the user.
374  */
375 
376 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
377 {
378 	struct aac_fib_context *fibctx;
379 	int status;
380 	unsigned long flags;
381 	struct list_head * entry;
382 
383 	/*
384 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
385 	 *
386 	 *	Search the list of AdapterFibContext addresses on the adapter
387 	 *	to be sure this is a valid address
388 	 */
389 
390 	entry = dev->fib_list.next;
391 	fibctx = NULL;
392 
393 	while(entry != &dev->fib_list) {
394 		fibctx = list_entry(entry, struct aac_fib_context, next);
395 		/*
396 		 *	Extract the fibctx from the input parameters
397 		 */
398 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
399 			break;
400 		entry = entry->next;
401 		fibctx = NULL;
402 	}
403 
404 	if (!fibctx)
405 		return 0; /* Already gone */
406 
407 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
408 		 (fibctx->size != sizeof(struct aac_fib_context)))
409 		return -EINVAL;
410 	spin_lock_irqsave(&dev->fib_lock, flags);
411 	status = aac_close_fib_context(dev, fibctx);
412 	spin_unlock_irqrestore(&dev->fib_lock, flags);
413 	return status;
414 }
415 
416 /**
417  *	check_revision	-	close down user fib context
418  *	@dev: adapter
419  *	@arg: ioctl arguments
420  *
421  *	This routine returns the driver version.
422  *	Under Linux, there have been no version incompatibilities, so this is
423  *	simple!
424  */
425 
426 static int check_revision(struct aac_dev *dev, void __user *arg)
427 {
428 	struct revision response;
429 	char *driver_version = aac_driver_version;
430 	u32 version;
431 
432 	response.compat = 1;
433 	version = (simple_strtol(driver_version,
434 				&driver_version, 10) << 24) | 0x00000400;
435 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
436 	version += simple_strtol(driver_version + 1, NULL, 10);
437 	response.version = cpu_to_le32(version);
438 #	ifdef AAC_DRIVER_BUILD
439 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
440 #	else
441 		response.build = cpu_to_le32(9999);
442 #	endif
443 
444 	if (copy_to_user(arg, &response, sizeof(response)))
445 		return -EFAULT;
446 	return 0;
447 }
448 
449 
450 /**
451  *
452  * aac_send_raw_scb
453  *
454  */
455 
456 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
457 {
458 	struct fib* srbfib;
459 	int status;
460 	struct aac_srb *srbcmd = NULL;
461 	struct user_aac_srb *user_srbcmd = NULL;
462 	struct user_aac_srb __user *user_srb = arg;
463 	struct aac_srb_reply __user *user_reply;
464 	struct aac_srb_reply* reply;
465 	u32 fibsize = 0;
466 	u32 flags = 0;
467 	s32 rcode = 0;
468 	u32 data_dir;
469 	void __user *sg_user[32];
470 	void *sg_list[32];
471 	u32 sg_indx = 0;
472 	u32 byte_count = 0;
473 	u32 actual_fibsize64, actual_fibsize = 0;
474 	int i;
475 
476 
477 	if (dev->in_reset) {
478 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
479 		return -EBUSY;
480 	}
481 	if (!capable(CAP_SYS_ADMIN)){
482 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
483 		return -EPERM;
484 	}
485 	/*
486 	 *	Allocate and initialize a Fib then setup a SRB command
487 	 */
488 	if (!(srbfib = aac_fib_alloc(dev))) {
489 		return -ENOMEM;
490 	}
491 	aac_fib_init(srbfib);
492 
493 	srbcmd = (struct aac_srb*) fib_data(srbfib);
494 
495 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
496 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
497 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
498 		rcode = -EFAULT;
499 		goto cleanup;
500 	}
501 
502 	if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) {
503 		rcode = -EINVAL;
504 		goto cleanup;
505 	}
506 
507 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
508 	if (!user_srbcmd) {
509 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
510 		rcode = -ENOMEM;
511 		goto cleanup;
512 	}
513 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
514 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
515 		rcode = -EFAULT;
516 		goto cleanup;
517 	}
518 
519 	user_reply = arg+fibsize;
520 
521 	flags = user_srbcmd->flags; /* from user in cpu order */
522 	// Fix up srb for endian and force some values
523 
524 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);	// Force this
525 	srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
526 	srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
527 	srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
528 	srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
529 	srbcmd->flags	 = cpu_to_le32(flags);
530 	srbcmd->retry_limit = 0; // Obsolete parameter
531 	srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
532 	memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
533 
534 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
535 	case SRB_DataOut:
536 		data_dir = DMA_TO_DEVICE;
537 		break;
538 	case (SRB_DataIn | SRB_DataOut):
539 		data_dir = DMA_BIDIRECTIONAL;
540 		break;
541 	case SRB_DataIn:
542 		data_dir = DMA_FROM_DEVICE;
543 		break;
544 	default:
545 		data_dir = DMA_NONE;
546 	}
547 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
548 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
549 		  le32_to_cpu(srbcmd->sg.count)));
550 		rcode = -EINVAL;
551 		goto cleanup;
552 	}
553 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
554 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
555 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
556 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
557 	/* User made a mistake - should not continue */
558 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
559 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
560 		  "Raw SRB command calculated fibsize=%lu;%lu "
561 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
562 		  "issued fibsize=%d\n",
563 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
564 		  sizeof(struct aac_srb), sizeof(struct sgentry),
565 		  sizeof(struct sgentry64), fibsize));
566 		rcode = -EINVAL;
567 		goto cleanup;
568 	}
569 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
570 		dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
571 		rcode = -EINVAL;
572 		goto cleanup;
573 	}
574 	byte_count = 0;
575 	if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
576 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
577 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
578 
579 		/*
580 		 * This should also catch if user used the 32 bit sgmap
581 		 */
582 		if (actual_fibsize64 == fibsize) {
583 			actual_fibsize = actual_fibsize64;
584 			for (i = 0; i < upsg->count; i++) {
585 				u64 addr;
586 				void* p;
587 				/* Does this really need to be GFP_DMA? */
588 				p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA);
589 				if(!p) {
590 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
591 					  upsg->sg[i].count,i,upsg->count));
592 					rcode = -ENOMEM;
593 					goto cleanup;
594 				}
595 				addr = (u64)upsg->sg[i].addr[0];
596 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
597 				sg_user[i] = (void __user *)(uintptr_t)addr;
598 				sg_list[i] = p; // save so we can clean up later
599 				sg_indx = i;
600 
601 				if (flags & SRB_DataOut) {
602 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
603 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
604 						rcode = -EFAULT;
605 						goto cleanup;
606 					}
607 				}
608 				addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir);
609 
610 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
611 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
612 				byte_count += upsg->sg[i].count;
613 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
614 			}
615 		} else {
616 			struct user_sgmap* usg;
617 			usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
618 			  + sizeof(struct sgmap), GFP_KERNEL);
619 			if (!usg) {
620 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
621 				rcode = -ENOMEM;
622 				goto cleanup;
623 			}
624 			memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
625 			  + sizeof(struct sgmap));
626 			actual_fibsize = actual_fibsize64;
627 
628 			for (i = 0; i < usg->count; i++) {
629 				u64 addr;
630 				void* p;
631 				/* Does this really need to be GFP_DMA? */
632 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
633 				if(!p) {
634 					kfree (usg);
635 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
636 					  usg->sg[i].count,i,usg->count));
637 					rcode = -ENOMEM;
638 					goto cleanup;
639 				}
640 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
641 				sg_list[i] = p; // save so we can clean up later
642 				sg_indx = i;
643 
644 				if (flags & SRB_DataOut) {
645 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
646 						kfree (usg);
647 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
648 						rcode = -EFAULT;
649 						goto cleanup;
650 					}
651 				}
652 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
653 
654 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
655 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
656 				byte_count += usg->sg[i].count;
657 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
658 			}
659 			kfree (usg);
660 		}
661 		srbcmd->count = cpu_to_le32(byte_count);
662 		psg->count = cpu_to_le32(sg_indx+1);
663 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
664 	} else {
665 		struct user_sgmap* upsg = &user_srbcmd->sg;
666 		struct sgmap* psg = &srbcmd->sg;
667 
668 		if (actual_fibsize64 == fibsize) {
669 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
670 			for (i = 0; i < upsg->count; i++) {
671 				uintptr_t addr;
672 				void* p;
673 				/* Does this really need to be GFP_DMA? */
674 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
675 				if(!p) {
676 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
677 					  usg->sg[i].count,i,usg->count));
678 					rcode = -ENOMEM;
679 					goto cleanup;
680 				}
681 				addr = (u64)usg->sg[i].addr[0];
682 				addr += ((u64)usg->sg[i].addr[1]) << 32;
683 				sg_user[i] = (void __user *)addr;
684 				sg_list[i] = p; // save so we can clean up later
685 				sg_indx = i;
686 
687 				if (flags & SRB_DataOut) {
688 					if(copy_from_user(p,sg_user[i],usg->sg[i].count)){
689 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
690 						rcode = -EFAULT;
691 						goto cleanup;
692 					}
693 				}
694 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
695 
696 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
697 				byte_count += usg->sg[i].count;
698 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
699 			}
700 		} else {
701 			for (i = 0; i < upsg->count; i++) {
702 				dma_addr_t addr;
703 				void* p;
704 				p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
705 				if (!p) {
706 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
707 					  upsg->sg[i].count, i, upsg->count));
708 					rcode = -ENOMEM;
709 					goto cleanup;
710 				}
711 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
712 				sg_list[i] = p; // save so we can clean up later
713 				sg_indx = i;
714 
715 				if (flags & SRB_DataOut) {
716 					if(copy_from_user(p, sg_user[i],
717 							upsg->sg[i].count)) {
718 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
719 						rcode = -EFAULT;
720 						goto cleanup;
721 					}
722 				}
723 				addr = pci_map_single(dev->pdev, p,
724 					upsg->sg[i].count, data_dir);
725 
726 				psg->sg[i].addr = cpu_to_le32(addr);
727 				byte_count += upsg->sg[i].count;
728 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
729 			}
730 		}
731 		srbcmd->count = cpu_to_le32(byte_count);
732 		psg->count = cpu_to_le32(sg_indx+1);
733 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
734 	}
735 	if (status == -EINTR) {
736 		rcode = -EINTR;
737 		goto cleanup;
738 	}
739 
740 	if (status != 0){
741 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
742 		rcode = -ENXIO;
743 		goto cleanup;
744 	}
745 
746 	if (flags & SRB_DataIn) {
747 		for(i = 0 ; i <= sg_indx; i++){
748 			byte_count = le32_to_cpu(
749 			  (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)
750 			      ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
751 			      : srbcmd->sg.sg[i].count);
752 			if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
753 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
754 				rcode = -EFAULT;
755 				goto cleanup;
756 
757 			}
758 		}
759 	}
760 
761 	reply = (struct aac_srb_reply *) fib_data(srbfib);
762 	if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
763 		dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n"));
764 		rcode = -EFAULT;
765 		goto cleanup;
766 	}
767 
768 cleanup:
769 	kfree(user_srbcmd);
770 	for(i=0; i <= sg_indx; i++){
771 		kfree(sg_list[i]);
772 	}
773 	if (rcode != -EINTR) {
774 		aac_fib_complete(srbfib);
775 		aac_fib_free(srbfib);
776 	}
777 
778 	return rcode;
779 }
780 
781 struct aac_pci_info {
782 	u32 bus;
783 	u32 slot;
784 };
785 
786 
787 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
788 {
789 	struct aac_pci_info pci_info;
790 
791 	pci_info.bus = dev->pdev->bus->number;
792 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
793 
794 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
795 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
796 		return -EFAULT;
797 	}
798 	return 0;
799 }
800 
801 
802 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
803 {
804 	int status;
805 
806 	/*
807 	 *	HBA gets first crack
808 	 */
809 
810 	status = aac_dev_ioctl(dev, cmd, arg);
811 	if(status != -ENOTTY)
812 		return status;
813 
814 	switch (cmd) {
815 	case FSACTL_MINIPORT_REV_CHECK:
816 		status = check_revision(dev, arg);
817 		break;
818 	case FSACTL_SEND_LARGE_FIB:
819 	case FSACTL_SENDFIB:
820 		status = ioctl_send_fib(dev, arg);
821 		break;
822 	case FSACTL_OPEN_GET_ADAPTER_FIB:
823 		status = open_getadapter_fib(dev, arg);
824 		break;
825 	case FSACTL_GET_NEXT_ADAPTER_FIB:
826 		status = next_getadapter_fib(dev, arg);
827 		break;
828 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
829 		status = close_getadapter_fib(dev, arg);
830 		break;
831 	case FSACTL_SEND_RAW_SRB:
832 		status = aac_send_raw_srb(dev,arg);
833 		break;
834 	case FSACTL_GET_PCI_INFO:
835 		status = aac_get_pci_info(dev,arg);
836 		break;
837 	default:
838 		status = -ENOTTY;
839 		break;
840 	}
841 	return status;
842 }
843 
844