xref: /linux/drivers/scsi/aacraid/commctrl.c (revision 63307d015b91e626c97bb82e88054af3d0b74643)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commctrl.c
15  *
16  * Abstract: Contains all routines for control of the AFA comm layer
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/blkdev.h>
28 #include <linux/delay.h> /* ssleep prototype */
29 #include <linux/kthread.h>
30 #include <linux/uaccess.h>
31 #include <scsi/scsi_host.h>
32 
33 #include "aacraid.h"
34 
35 /**
36  *	ioctl_send_fib	-	send a FIB from userspace
37  *	@dev:	adapter is being processed
38  *	@arg:	arguments to the ioctl call
39  *
40  *	This routine sends a fib to the adapter on behalf of a user level
41  *	program.
42  */
43 # define AAC_DEBUG_PREAMBLE	KERN_INFO
44 # define AAC_DEBUG_POSTAMBLE
45 
46 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
47 {
48 	struct hw_fib * kfib;
49 	struct fib *fibptr;
50 	struct hw_fib * hw_fib = (struct hw_fib *)0;
51 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
52 	unsigned int size, osize;
53 	int retval;
54 
55 	if (dev->in_reset) {
56 		return -EBUSY;
57 	}
58 	fibptr = aac_fib_alloc(dev);
59 	if(fibptr == NULL) {
60 		return -ENOMEM;
61 	}
62 
63 	kfib = fibptr->hw_fib_va;
64 	/*
65 	 *	First copy in the header so that we can check the size field.
66 	 */
67 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
68 		aac_fib_free(fibptr);
69 		return -EFAULT;
70 	}
71 	/*
72 	 *	Since we copy based on the fib header size, make sure that we
73 	 *	will not overrun the buffer when we copy the memory. Return
74 	 *	an error if we would.
75 	 */
76 	osize = size = le16_to_cpu(kfib->header.Size) +
77 		sizeof(struct aac_fibhdr);
78 	if (size < le16_to_cpu(kfib->header.SenderSize))
79 		size = le16_to_cpu(kfib->header.SenderSize);
80 	if (size > dev->max_fib_size) {
81 		dma_addr_t daddr;
82 
83 		if (size > 2048) {
84 			retval = -EINVAL;
85 			goto cleanup;
86 		}
87 
88 		kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
89 					  GFP_KERNEL);
90 		if (!kfib) {
91 			retval = -ENOMEM;
92 			goto cleanup;
93 		}
94 
95 		/* Highjack the hw_fib */
96 		hw_fib = fibptr->hw_fib_va;
97 		hw_fib_pa = fibptr->hw_fib_pa;
98 		fibptr->hw_fib_va = kfib;
99 		fibptr->hw_fib_pa = daddr;
100 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 		memcpy(kfib, hw_fib, dev->max_fib_size);
102 	}
103 
104 	if (copy_from_user(kfib, arg, size)) {
105 		retval = -EFAULT;
106 		goto cleanup;
107 	}
108 
109 	/* Sanity check the second copy */
110 	if ((osize != le16_to_cpu(kfib->header.Size) +
111 		sizeof(struct aac_fibhdr))
112 		|| (size < le16_to_cpu(kfib->header.SenderSize))) {
113 		retval = -EINVAL;
114 		goto cleanup;
115 	}
116 
117 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
118 		aac_adapter_interrupt(dev);
119 		/*
120 		 * Since we didn't really send a fib, zero out the state to allow
121 		 * cleanup code not to assert.
122 		 */
123 		kfib->header.XferState = 0;
124 	} else {
125 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
126 				le16_to_cpu(kfib->header.Size) , FsaNormal,
127 				1, 1, NULL, NULL);
128 		if (retval) {
129 			goto cleanup;
130 		}
131 		if (aac_fib_complete(fibptr) != 0) {
132 			retval = -EINVAL;
133 			goto cleanup;
134 		}
135 	}
136 	/*
137 	 *	Make sure that the size returned by the adapter (which includes
138 	 *	the header) is less than or equal to the size of a fib, so we
139 	 *	don't corrupt application data. Then copy that size to the user
140 	 *	buffer. (Don't try to add the header information again, since it
141 	 *	was already included by the adapter.)
142 	 */
143 
144 	retval = 0;
145 	if (copy_to_user(arg, (void *)kfib, size))
146 		retval = -EFAULT;
147 cleanup:
148 	if (hw_fib) {
149 		dma_free_coherent(&dev->pdev->dev, size, kfib,
150 				  fibptr->hw_fib_pa);
151 		fibptr->hw_fib_pa = hw_fib_pa;
152 		fibptr->hw_fib_va = hw_fib;
153 	}
154 	if (retval != -ERESTARTSYS)
155 		aac_fib_free(fibptr);
156 	return retval;
157 }
158 
159 /**
160  *	open_getadapter_fib	-	Get the next fib
161  *
162  *	This routine will get the next Fib, if available, from the AdapterFibContext
163  *	passed in from the user.
164  */
165 
166 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
167 {
168 	struct aac_fib_context * fibctx;
169 	int status;
170 
171 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
172 	if (fibctx == NULL) {
173 		status = -ENOMEM;
174 	} else {
175 		unsigned long flags;
176 		struct list_head * entry;
177 		struct aac_fib_context * context;
178 
179 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
180 		fibctx->size = sizeof(struct aac_fib_context);
181 		/*
182 		 *	Yes yes, I know this could be an index, but we have a
183 		 * better guarantee of uniqueness for the locked loop below.
184 		 * Without the aid of a persistent history, this also helps
185 		 * reduce the chance that the opaque context would be reused.
186 		 */
187 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
188 		/*
189 		 *	Initialize the mutex used to wait for the next AIF.
190 		 */
191 		init_completion(&fibctx->completion);
192 		fibctx->wait = 0;
193 		/*
194 		 *	Initialize the fibs and set the count of fibs on
195 		 *	the list to 0.
196 		 */
197 		fibctx->count = 0;
198 		INIT_LIST_HEAD(&fibctx->fib_list);
199 		fibctx->jiffies = jiffies/HZ;
200 		/*
201 		 *	Now add this context onto the adapter's
202 		 *	AdapterFibContext list.
203 		 */
204 		spin_lock_irqsave(&dev->fib_lock, flags);
205 		/* Ensure that we have a unique identifier */
206 		entry = dev->fib_list.next;
207 		while (entry != &dev->fib_list) {
208 			context = list_entry(entry, struct aac_fib_context, next);
209 			if (context->unique == fibctx->unique) {
210 				/* Not unique (32 bits) */
211 				fibctx->unique++;
212 				entry = dev->fib_list.next;
213 			} else {
214 				entry = entry->next;
215 			}
216 		}
217 		list_add_tail(&fibctx->next, &dev->fib_list);
218 		spin_unlock_irqrestore(&dev->fib_lock, flags);
219 		if (copy_to_user(arg, &fibctx->unique,
220 						sizeof(fibctx->unique))) {
221 			status = -EFAULT;
222 		} else {
223 			status = 0;
224 		}
225 	}
226 	return status;
227 }
228 
229 /**
230  *	next_getadapter_fib	-	get the next fib
231  *	@dev: adapter to use
232  *	@arg: ioctl argument
233  *
234  *	This routine will get the next Fib, if available, from the AdapterFibContext
235  *	passed in from the user.
236  */
237 
238 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
239 {
240 	struct fib_ioctl f;
241 	struct fib *fib;
242 	struct aac_fib_context *fibctx;
243 	int status;
244 	struct list_head * entry;
245 	unsigned long flags;
246 
247 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
248 		return -EFAULT;
249 	/*
250 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
251 	 *
252 	 *	Search the list of AdapterFibContext addresses on the adapter
253 	 *	to be sure this is a valid address
254 	 */
255 	spin_lock_irqsave(&dev->fib_lock, flags);
256 	entry = dev->fib_list.next;
257 	fibctx = NULL;
258 
259 	while (entry != &dev->fib_list) {
260 		fibctx = list_entry(entry, struct aac_fib_context, next);
261 		/*
262 		 *	Extract the AdapterFibContext from the Input parameters.
263 		 */
264 		if (fibctx->unique == f.fibctx) { /* We found a winner */
265 			break;
266 		}
267 		entry = entry->next;
268 		fibctx = NULL;
269 	}
270 	if (!fibctx) {
271 		spin_unlock_irqrestore(&dev->fib_lock, flags);
272 		dprintk ((KERN_INFO "Fib Context not found\n"));
273 		return -EINVAL;
274 	}
275 
276 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
277 		 (fibctx->size != sizeof(struct aac_fib_context))) {
278 		spin_unlock_irqrestore(&dev->fib_lock, flags);
279 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
280 		return -EINVAL;
281 	}
282 	status = 0;
283 	/*
284 	 *	If there are no fibs to send back, then either wait or return
285 	 *	-EAGAIN
286 	 */
287 return_fib:
288 	if (!list_empty(&fibctx->fib_list)) {
289 		/*
290 		 *	Pull the next fib from the fibs
291 		 */
292 		entry = fibctx->fib_list.next;
293 		list_del(entry);
294 
295 		fib = list_entry(entry, struct fib, fiblink);
296 		fibctx->count--;
297 		spin_unlock_irqrestore(&dev->fib_lock, flags);
298 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
299 			kfree(fib->hw_fib_va);
300 			kfree(fib);
301 			return -EFAULT;
302 		}
303 		/*
304 		 *	Free the space occupied by this copy of the fib.
305 		 */
306 		kfree(fib->hw_fib_va);
307 		kfree(fib);
308 		status = 0;
309 	} else {
310 		spin_unlock_irqrestore(&dev->fib_lock, flags);
311 		/* If someone killed the AIF aacraid thread, restart it */
312 		status = !dev->aif_thread;
313 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
314 			/* Be paranoid, be very paranoid! */
315 			kthread_stop(dev->thread);
316 			ssleep(1);
317 			dev->aif_thread = 0;
318 			dev->thread = kthread_run(aac_command_thread, dev,
319 						  "%s", dev->name);
320 			ssleep(1);
321 		}
322 		if (f.wait) {
323 			if (wait_for_completion_interruptible(&fibctx->completion) < 0) {
324 				status = -ERESTARTSYS;
325 			} else {
326 				/* Lock again and retry */
327 				spin_lock_irqsave(&dev->fib_lock, flags);
328 				goto return_fib;
329 			}
330 		} else {
331 			status = -EAGAIN;
332 		}
333 	}
334 	fibctx->jiffies = jiffies/HZ;
335 	return status;
336 }
337 
338 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
339 {
340 	struct fib *fib;
341 
342 	/*
343 	 *	First free any FIBs that have not been consumed.
344 	 */
345 	while (!list_empty(&fibctx->fib_list)) {
346 		struct list_head * entry;
347 		/*
348 		 *	Pull the next fib from the fibs
349 		 */
350 		entry = fibctx->fib_list.next;
351 		list_del(entry);
352 		fib = list_entry(entry, struct fib, fiblink);
353 		fibctx->count--;
354 		/*
355 		 *	Free the space occupied by this copy of the fib.
356 		 */
357 		kfree(fib->hw_fib_va);
358 		kfree(fib);
359 	}
360 	/*
361 	 *	Remove the Context from the AdapterFibContext List
362 	 */
363 	list_del(&fibctx->next);
364 	/*
365 	 *	Invalidate context
366 	 */
367 	fibctx->type = 0;
368 	/*
369 	 *	Free the space occupied by the Context
370 	 */
371 	kfree(fibctx);
372 	return 0;
373 }
374 
375 /**
376  *	close_getadapter_fib	-	close down user fib context
377  *	@dev: adapter
378  *	@arg: ioctl arguments
379  *
380  *	This routine will close down the fibctx passed in from the user.
381  */
382 
383 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
384 {
385 	struct aac_fib_context *fibctx;
386 	int status;
387 	unsigned long flags;
388 	struct list_head * entry;
389 
390 	/*
391 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
392 	 *
393 	 *	Search the list of AdapterFibContext addresses on the adapter
394 	 *	to be sure this is a valid address
395 	 */
396 
397 	entry = dev->fib_list.next;
398 	fibctx = NULL;
399 
400 	while(entry != &dev->fib_list) {
401 		fibctx = list_entry(entry, struct aac_fib_context, next);
402 		/*
403 		 *	Extract the fibctx from the input parameters
404 		 */
405 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
406 			break;
407 		entry = entry->next;
408 		fibctx = NULL;
409 	}
410 
411 	if (!fibctx)
412 		return 0; /* Already gone */
413 
414 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
415 		 (fibctx->size != sizeof(struct aac_fib_context)))
416 		return -EINVAL;
417 	spin_lock_irqsave(&dev->fib_lock, flags);
418 	status = aac_close_fib_context(dev, fibctx);
419 	spin_unlock_irqrestore(&dev->fib_lock, flags);
420 	return status;
421 }
422 
423 /**
424  *	check_revision	-	close down user fib context
425  *	@dev: adapter
426  *	@arg: ioctl arguments
427  *
428  *	This routine returns the driver version.
429  *	Under Linux, there have been no version incompatibilities, so this is
430  *	simple!
431  */
432 
433 static int check_revision(struct aac_dev *dev, void __user *arg)
434 {
435 	struct revision response;
436 	char *driver_version = aac_driver_version;
437 	u32 version;
438 
439 	response.compat = 1;
440 	version = (simple_strtol(driver_version,
441 				&driver_version, 10) << 24) | 0x00000400;
442 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
443 	version += simple_strtol(driver_version + 1, NULL, 10);
444 	response.version = cpu_to_le32(version);
445 #	ifdef AAC_DRIVER_BUILD
446 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
447 #	else
448 		response.build = cpu_to_le32(9999);
449 #	endif
450 
451 	if (copy_to_user(arg, &response, sizeof(response)))
452 		return -EFAULT;
453 	return 0;
454 }
455 
456 
457 /**
458  *
459  * aac_send_raw_scb
460  *
461  */
462 
463 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
464 {
465 	struct fib* srbfib;
466 	int status;
467 	struct aac_srb *srbcmd = NULL;
468 	struct aac_hba_cmd_req *hbacmd = NULL;
469 	struct user_aac_srb *user_srbcmd = NULL;
470 	struct user_aac_srb __user *user_srb = arg;
471 	struct aac_srb_reply __user *user_reply;
472 	u32 chn;
473 	u32 fibsize = 0;
474 	u32 flags = 0;
475 	s32 rcode = 0;
476 	u32 data_dir;
477 	void __user *sg_user[HBA_MAX_SG_EMBEDDED];
478 	void *sg_list[HBA_MAX_SG_EMBEDDED];
479 	u32 sg_count[HBA_MAX_SG_EMBEDDED];
480 	u32 sg_indx = 0;
481 	u32 byte_count = 0;
482 	u32 actual_fibsize64, actual_fibsize = 0;
483 	int i;
484 	int is_native_device;
485 	u64 address;
486 
487 
488 	if (dev->in_reset) {
489 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
490 		return -EBUSY;
491 	}
492 	if (!capable(CAP_SYS_ADMIN)){
493 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
494 		return -EPERM;
495 	}
496 	/*
497 	 *	Allocate and initialize a Fib then setup a SRB command
498 	 */
499 	if (!(srbfib = aac_fib_alloc(dev))) {
500 		return -ENOMEM;
501 	}
502 
503 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
504 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
505 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
506 		rcode = -EFAULT;
507 		goto cleanup;
508 	}
509 
510 	if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
511 	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
512 		rcode = -EINVAL;
513 		goto cleanup;
514 	}
515 
516 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
517 	if (!user_srbcmd) {
518 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
519 		rcode = -ENOMEM;
520 		goto cleanup;
521 	}
522 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
523 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
524 		rcode = -EFAULT;
525 		goto cleanup;
526 	}
527 
528 	flags = user_srbcmd->flags; /* from user in cpu order */
529 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
530 	case SRB_DataOut:
531 		data_dir = DMA_TO_DEVICE;
532 		break;
533 	case (SRB_DataIn | SRB_DataOut):
534 		data_dir = DMA_BIDIRECTIONAL;
535 		break;
536 	case SRB_DataIn:
537 		data_dir = DMA_FROM_DEVICE;
538 		break;
539 	default:
540 		data_dir = DMA_NONE;
541 	}
542 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
543 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
544 			user_srbcmd->sg.count));
545 		rcode = -EINVAL;
546 		goto cleanup;
547 	}
548 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
549 		dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
550 		rcode = -EINVAL;
551 		goto cleanup;
552 	}
553 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
554 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
555 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
556 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
557 	/* User made a mistake - should not continue */
558 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
559 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
560 		  "Raw SRB command calculated fibsize=%lu;%lu "
561 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
562 		  "issued fibsize=%d\n",
563 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
564 		  sizeof(struct aac_srb), sizeof(struct sgentry),
565 		  sizeof(struct sgentry64), fibsize));
566 		rcode = -EINVAL;
567 		goto cleanup;
568 	}
569 
570 	chn = user_srbcmd->channel;
571 	if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
572 		dev->hba_map[chn][user_srbcmd->id].devtype ==
573 		AAC_DEVTYPE_NATIVE_RAW) {
574 		is_native_device = 1;
575 		hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
576 		memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
577 
578 		/* iu_type is a parameter of aac_hba_send */
579 		switch (data_dir) {
580 		case DMA_TO_DEVICE:
581 			hbacmd->byte1 = 2;
582 			break;
583 		case DMA_FROM_DEVICE:
584 		case DMA_BIDIRECTIONAL:
585 			hbacmd->byte1 = 1;
586 			break;
587 		case DMA_NONE:
588 		default:
589 			break;
590 		}
591 		hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
592 		hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
593 
594 		/*
595 		 * we fill in reply_qid later in aac_src_deliver_message
596 		 * we fill in iu_type, request_id later in aac_hba_send
597 		 * we fill in emb_data_desc_count, data_length later
598 		 * in sg list build
599 		 */
600 
601 		memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
602 
603 		address = (u64)srbfib->hw_error_pa;
604 		hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
605 		hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
606 		hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
607 		hbacmd->emb_data_desc_count =
608 					cpu_to_le32(user_srbcmd->sg.count);
609 		srbfib->hbacmd_size = 64 +
610 			user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
611 
612 	} else {
613 		is_native_device = 0;
614 		aac_fib_init(srbfib);
615 
616 		/* raw_srb FIB is not FastResponseCapable */
617 		srbfib->hw_fib_va->header.XferState &=
618 			~cpu_to_le32(FastResponseCapable);
619 
620 		srbcmd = (struct aac_srb *) fib_data(srbfib);
621 
622 		// Fix up srb for endian and force some values
623 
624 		srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
625 		srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
626 		srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
627 		srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
628 		srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
629 		srbcmd->flags	 = cpu_to_le32(flags);
630 		srbcmd->retry_limit = 0; // Obsolete parameter
631 		srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
632 		memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
633 	}
634 
635 	byte_count = 0;
636 	if (is_native_device) {
637 		struct user_sgmap *usg32 = &user_srbcmd->sg;
638 		struct user_sgmap64 *usg64 =
639 			(struct user_sgmap64 *)&user_srbcmd->sg;
640 
641 		for (i = 0; i < usg32->count; i++) {
642 			void *p;
643 			u64 addr;
644 
645 			sg_count[i] = (actual_fibsize64 == fibsize) ?
646 				usg64->sg[i].count : usg32->sg[i].count;
647 			if (sg_count[i] >
648 				(dev->scsi_host_ptr->max_sectors << 9)) {
649 				pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
650 					i, sg_count[i],
651 					dev->scsi_host_ptr->max_sectors << 9);
652 				rcode = -EINVAL;
653 				goto cleanup;
654 			}
655 
656 			p = kmalloc(sg_count[i], GFP_KERNEL);
657 			if (!p) {
658 				rcode = -ENOMEM;
659 				goto cleanup;
660 			}
661 
662 			if (actual_fibsize64 == fibsize) {
663 				addr = (u64)usg64->sg[i].addr[0];
664 				addr += ((u64)usg64->sg[i].addr[1]) << 32;
665 			} else {
666 				addr = (u64)usg32->sg[i].addr;
667 			}
668 
669 			sg_user[i] = (void __user *)(uintptr_t)addr;
670 			sg_list[i] = p; // save so we can clean up later
671 			sg_indx = i;
672 
673 			if (flags & SRB_DataOut) {
674 				if (copy_from_user(p, sg_user[i],
675 					sg_count[i])) {
676 					rcode = -EFAULT;
677 					goto cleanup;
678 				}
679 			}
680 			addr = pci_map_single(dev->pdev, p, sg_count[i],
681 						data_dir);
682 			hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
683 			hbacmd->sge[i].addr_lo = cpu_to_le32(
684 						(u32)(addr & 0xffffffff));
685 			hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
686 			hbacmd->sge[i].flags = 0;
687 			byte_count += sg_count[i];
688 		}
689 
690 		if (usg32->count > 0)	/* embedded sglist */
691 			hbacmd->sge[usg32->count-1].flags =
692 				cpu_to_le32(0x40000000);
693 		hbacmd->data_length = cpu_to_le32(byte_count);
694 
695 		status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
696 					NULL, NULL);
697 
698 	} else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
699 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
700 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
701 
702 		/*
703 		 * This should also catch if user used the 32 bit sgmap
704 		 */
705 		if (actual_fibsize64 == fibsize) {
706 			actual_fibsize = actual_fibsize64;
707 			for (i = 0; i < upsg->count; i++) {
708 				u64 addr;
709 				void* p;
710 
711 				sg_count[i] = upsg->sg[i].count;
712 				if (sg_count[i] >
713 				    ((dev->adapter_info.options &
714 				     AAC_OPT_NEW_COMM) ?
715 				      (dev->scsi_host_ptr->max_sectors << 9) :
716 				      65536)) {
717 					rcode = -EINVAL;
718 					goto cleanup;
719 				}
720 
721 				p = kmalloc(sg_count[i], GFP_KERNEL);
722 				if(!p) {
723 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
724 					  sg_count[i], i, upsg->count));
725 					rcode = -ENOMEM;
726 					goto cleanup;
727 				}
728 				addr = (u64)upsg->sg[i].addr[0];
729 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
730 				sg_user[i] = (void __user *)(uintptr_t)addr;
731 				sg_list[i] = p; // save so we can clean up later
732 				sg_indx = i;
733 
734 				if (flags & SRB_DataOut) {
735 					if (copy_from_user(p, sg_user[i],
736 						sg_count[i])){
737 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
738 						rcode = -EFAULT;
739 						goto cleanup;
740 					}
741 				}
742 				addr = pci_map_single(dev->pdev, p,
743 							sg_count[i], data_dir);
744 
745 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
746 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
747 				byte_count += sg_count[i];
748 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
749 			}
750 		} else {
751 			struct user_sgmap* usg;
752 			usg = kmemdup(upsg,
753 				      actual_fibsize - sizeof(struct aac_srb)
754 				      + sizeof(struct sgmap), GFP_KERNEL);
755 			if (!usg) {
756 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
757 				rcode = -ENOMEM;
758 				goto cleanup;
759 			}
760 			actual_fibsize = actual_fibsize64;
761 
762 			for (i = 0; i < usg->count; i++) {
763 				u64 addr;
764 				void* p;
765 
766 				sg_count[i] = usg->sg[i].count;
767 				if (sg_count[i] >
768 				    ((dev->adapter_info.options &
769 				     AAC_OPT_NEW_COMM) ?
770 				      (dev->scsi_host_ptr->max_sectors << 9) :
771 				      65536)) {
772 					kfree(usg);
773 					rcode = -EINVAL;
774 					goto cleanup;
775 				}
776 
777 				p = kmalloc(sg_count[i], GFP_KERNEL);
778 				if(!p) {
779 					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
780 						sg_count[i], i, usg->count));
781 					kfree(usg);
782 					rcode = -ENOMEM;
783 					goto cleanup;
784 				}
785 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
786 				sg_list[i] = p; // save so we can clean up later
787 				sg_indx = i;
788 
789 				if (flags & SRB_DataOut) {
790 					if (copy_from_user(p, sg_user[i],
791 						sg_count[i])) {
792 						kfree (usg);
793 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
794 						rcode = -EFAULT;
795 						goto cleanup;
796 					}
797 				}
798 				addr = pci_map_single(dev->pdev, p,
799 							sg_count[i], data_dir);
800 
801 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
802 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
803 				byte_count += sg_count[i];
804 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
805 			}
806 			kfree (usg);
807 		}
808 		srbcmd->count = cpu_to_le32(byte_count);
809 		if (user_srbcmd->sg.count)
810 			psg->count = cpu_to_le32(sg_indx+1);
811 		else
812 			psg->count = 0;
813 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
814 	} else {
815 		struct user_sgmap* upsg = &user_srbcmd->sg;
816 		struct sgmap* psg = &srbcmd->sg;
817 
818 		if (actual_fibsize64 == fibsize) {
819 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
820 			for (i = 0; i < upsg->count; i++) {
821 				uintptr_t addr;
822 				void* p;
823 
824 				sg_count[i] = usg->sg[i].count;
825 				if (sg_count[i] >
826 				    ((dev->adapter_info.options &
827 				     AAC_OPT_NEW_COMM) ?
828 				      (dev->scsi_host_ptr->max_sectors << 9) :
829 				      65536)) {
830 					rcode = -EINVAL;
831 					goto cleanup;
832 				}
833 				p = kmalloc(sg_count[i], GFP_KERNEL);
834 				if (!p) {
835 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
836 						sg_count[i], i, usg->count));
837 					rcode = -ENOMEM;
838 					goto cleanup;
839 				}
840 				addr = (u64)usg->sg[i].addr[0];
841 				addr += ((u64)usg->sg[i].addr[1]) << 32;
842 				sg_user[i] = (void __user *)addr;
843 				sg_list[i] = p; // save so we can clean up later
844 				sg_indx = i;
845 
846 				if (flags & SRB_DataOut) {
847 					if (copy_from_user(p, sg_user[i],
848 						sg_count[i])){
849 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
850 						rcode = -EFAULT;
851 						goto cleanup;
852 					}
853 				}
854 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
855 
856 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
857 				byte_count += usg->sg[i].count;
858 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
859 			}
860 		} else {
861 			for (i = 0; i < upsg->count; i++) {
862 				dma_addr_t addr;
863 				void* p;
864 
865 				sg_count[i] = upsg->sg[i].count;
866 				if (sg_count[i] >
867 				    ((dev->adapter_info.options &
868 				     AAC_OPT_NEW_COMM) ?
869 				      (dev->scsi_host_ptr->max_sectors << 9) :
870 				      65536)) {
871 					rcode = -EINVAL;
872 					goto cleanup;
873 				}
874 				p = kmalloc(sg_count[i], GFP_KERNEL);
875 				if (!p) {
876 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
877 					  sg_count[i], i, upsg->count));
878 					rcode = -ENOMEM;
879 					goto cleanup;
880 				}
881 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
882 				sg_list[i] = p; // save so we can clean up later
883 				sg_indx = i;
884 
885 				if (flags & SRB_DataOut) {
886 					if (copy_from_user(p, sg_user[i],
887 						sg_count[i])) {
888 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
889 						rcode = -EFAULT;
890 						goto cleanup;
891 					}
892 				}
893 				addr = pci_map_single(dev->pdev, p,
894 					sg_count[i], data_dir);
895 
896 				psg->sg[i].addr = cpu_to_le32(addr);
897 				byte_count += sg_count[i];
898 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
899 			}
900 		}
901 		srbcmd->count = cpu_to_le32(byte_count);
902 		if (user_srbcmd->sg.count)
903 			psg->count = cpu_to_le32(sg_indx+1);
904 		else
905 			psg->count = 0;
906 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
907 	}
908 
909 	if (status == -ERESTARTSYS) {
910 		rcode = -ERESTARTSYS;
911 		goto cleanup;
912 	}
913 
914 	if (status != 0) {
915 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
916 		rcode = -ENXIO;
917 		goto cleanup;
918 	}
919 
920 	if (flags & SRB_DataIn) {
921 		for(i = 0 ; i <= sg_indx; i++){
922 			if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
923 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
924 				rcode = -EFAULT;
925 				goto cleanup;
926 
927 			}
928 		}
929 	}
930 
931 	user_reply = arg + fibsize;
932 	if (is_native_device) {
933 		struct aac_hba_resp *err =
934 			&((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
935 		struct aac_srb_reply reply;
936 
937 		memset(&reply, 0, sizeof(reply));
938 		reply.status = ST_OK;
939 		if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
940 			/* fast response */
941 			reply.srb_status = SRB_STATUS_SUCCESS;
942 			reply.scsi_status = 0;
943 			reply.data_xfer_length = byte_count;
944 			reply.sense_data_size = 0;
945 			memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
946 		} else {
947 			reply.srb_status = err->service_response;
948 			reply.scsi_status = err->status;
949 			reply.data_xfer_length = byte_count -
950 				le32_to_cpu(err->residual_count);
951 			reply.sense_data_size = err->sense_response_data_len;
952 			memcpy(reply.sense_data, err->sense_response_buf,
953 				AAC_SENSE_BUFFERSIZE);
954 		}
955 		if (copy_to_user(user_reply, &reply,
956 			sizeof(struct aac_srb_reply))) {
957 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
958 			rcode = -EFAULT;
959 			goto cleanup;
960 		}
961 	} else {
962 		struct aac_srb_reply *reply;
963 
964 		reply = (struct aac_srb_reply *) fib_data(srbfib);
965 		if (copy_to_user(user_reply, reply,
966 			sizeof(struct aac_srb_reply))) {
967 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
968 			rcode = -EFAULT;
969 			goto cleanup;
970 		}
971 	}
972 
973 cleanup:
974 	kfree(user_srbcmd);
975 	if (rcode != -ERESTARTSYS) {
976 		for (i = 0; i <= sg_indx; i++)
977 			kfree(sg_list[i]);
978 		aac_fib_complete(srbfib);
979 		aac_fib_free(srbfib);
980 	}
981 
982 	return rcode;
983 }
984 
985 struct aac_pci_info {
986 	u32 bus;
987 	u32 slot;
988 };
989 
990 
991 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
992 {
993 	struct aac_pci_info pci_info;
994 
995 	pci_info.bus = dev->pdev->bus->number;
996 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
997 
998 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
999 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
1000 		return -EFAULT;
1001 	}
1002 	return 0;
1003 }
1004 
1005 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1006 {
1007 	struct aac_hba_info hbainfo;
1008 
1009 	memset(&hbainfo, 0, sizeof(hbainfo));
1010 	hbainfo.adapter_number		= (u8) dev->id;
1011 	hbainfo.system_io_bus_number	= dev->pdev->bus->number;
1012 	hbainfo.device_number		= (dev->pdev->devfn >> 3);
1013 	hbainfo.function_number		= (dev->pdev->devfn & 0x0007);
1014 
1015 	hbainfo.vendor_id		= dev->pdev->vendor;
1016 	hbainfo.device_id		= dev->pdev->device;
1017 	hbainfo.sub_vendor_id		= dev->pdev->subsystem_vendor;
1018 	hbainfo.sub_system_id		= dev->pdev->subsystem_device;
1019 
1020 	if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1021 		dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1022 		return -EFAULT;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 struct aac_reset_iop {
1029 	u8	reset_type;
1030 };
1031 
1032 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1033 {
1034 	struct aac_reset_iop reset;
1035 	int retval;
1036 
1037 	if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1038 		return -EFAULT;
1039 
1040 	dev->adapter_shutdown = 1;
1041 
1042 	mutex_unlock(&dev->ioctl_mutex);
1043 	retval = aac_reset_adapter(dev, 0, reset.reset_type);
1044 	mutex_lock(&dev->ioctl_mutex);
1045 
1046 	return retval;
1047 }
1048 
1049 int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
1050 {
1051 	int status;
1052 
1053 	mutex_lock(&dev->ioctl_mutex);
1054 
1055 	if (dev->adapter_shutdown) {
1056 		status = -EACCES;
1057 		goto cleanup;
1058 	}
1059 
1060 	/*
1061 	 *	HBA gets first crack
1062 	 */
1063 
1064 	status = aac_dev_ioctl(dev, cmd, arg);
1065 	if (status != -ENOTTY)
1066 		goto cleanup;
1067 
1068 	switch (cmd) {
1069 	case FSACTL_MINIPORT_REV_CHECK:
1070 		status = check_revision(dev, arg);
1071 		break;
1072 	case FSACTL_SEND_LARGE_FIB:
1073 	case FSACTL_SENDFIB:
1074 		status = ioctl_send_fib(dev, arg);
1075 		break;
1076 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1077 		status = open_getadapter_fib(dev, arg);
1078 		break;
1079 	case FSACTL_GET_NEXT_ADAPTER_FIB:
1080 		status = next_getadapter_fib(dev, arg);
1081 		break;
1082 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1083 		status = close_getadapter_fib(dev, arg);
1084 		break;
1085 	case FSACTL_SEND_RAW_SRB:
1086 		status = aac_send_raw_srb(dev,arg);
1087 		break;
1088 	case FSACTL_GET_PCI_INFO:
1089 		status = aac_get_pci_info(dev,arg);
1090 		break;
1091 	case FSACTL_GET_HBA_INFO:
1092 		status = aac_get_hba_info(dev, arg);
1093 		break;
1094 	case FSACTL_RESET_IOP:
1095 		status = aac_send_reset_adapter(dev, arg);
1096 		break;
1097 
1098 	default:
1099 		status = -ENOTTY;
1100 		break;
1101 	}
1102 
1103 cleanup:
1104 	mutex_unlock(&dev->ioctl_mutex);
1105 
1106 	return status;
1107 }
1108 
1109