xref: /linux/drivers/scsi/aacraid/commctrl.c (revision 2cd86f02c017bf9733e5cd891381b7d40f6f37ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commctrl.c
15  *
16  * Abstract: Contains all routines for control of the AFA comm layer
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/blkdev.h>
28 #include <linux/compat.h>
29 #include <linux/delay.h> /* ssleep prototype */
30 #include <linux/kthread.h>
31 #include <linux/uaccess.h>
32 #include <scsi/scsi_host.h>
33 
34 #include "aacraid.h"
35 
36 # define AAC_DEBUG_PREAMBLE	KERN_INFO
37 # define AAC_DEBUG_POSTAMBLE
38 /**
39  *	ioctl_send_fib	-	send a FIB from userspace
40  *	@dev:	adapter is being processed
41  *	@arg:	arguments to the ioctl call
42  *
43  *	This routine sends a fib to the adapter on behalf of a user level
44  *	program.
45  */
46 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
47 {
48 	struct hw_fib * kfib;
49 	struct fib *fibptr;
50 	struct hw_fib * hw_fib = (struct hw_fib *)0;
51 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
52 	unsigned int size, osize;
53 	int retval;
54 
55 	if (dev->in_reset) {
56 		return -EBUSY;
57 	}
58 	fibptr = aac_fib_alloc(dev);
59 	if(fibptr == NULL) {
60 		return -ENOMEM;
61 	}
62 
63 	kfib = fibptr->hw_fib_va;
64 	/*
65 	 *	First copy in the header so that we can check the size field.
66 	 */
67 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
68 		aac_fib_free(fibptr);
69 		return -EFAULT;
70 	}
71 	/*
72 	 *	Since we copy based on the fib header size, make sure that we
73 	 *	will not overrun the buffer when we copy the memory. Return
74 	 *	an error if we would.
75 	 */
76 	osize = size = le16_to_cpu(kfib->header.Size) +
77 		sizeof(struct aac_fibhdr);
78 	if (size < le16_to_cpu(kfib->header.SenderSize))
79 		size = le16_to_cpu(kfib->header.SenderSize);
80 	if (size > dev->max_fib_size) {
81 		dma_addr_t daddr;
82 
83 		if (size > 2048) {
84 			retval = -EINVAL;
85 			goto cleanup;
86 		}
87 
88 		kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
89 					  GFP_KERNEL);
90 		if (!kfib) {
91 			retval = -ENOMEM;
92 			goto cleanup;
93 		}
94 
95 		/* Highjack the hw_fib */
96 		hw_fib = fibptr->hw_fib_va;
97 		hw_fib_pa = fibptr->hw_fib_pa;
98 		fibptr->hw_fib_va = kfib;
99 		fibptr->hw_fib_pa = daddr;
100 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 		memcpy(kfib, hw_fib, dev->max_fib_size);
102 	}
103 
104 	if (copy_from_user(kfib, arg, size)) {
105 		retval = -EFAULT;
106 		goto cleanup;
107 	}
108 
109 	/* Sanity check the second copy */
110 	if ((osize != le16_to_cpu(kfib->header.Size) +
111 		sizeof(struct aac_fibhdr))
112 		|| (size < le16_to_cpu(kfib->header.SenderSize))) {
113 		retval = -EINVAL;
114 		goto cleanup;
115 	}
116 
117 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
118 		aac_adapter_interrupt(dev);
119 		/*
120 		 * Since we didn't really send a fib, zero out the state to allow
121 		 * cleanup code not to assert.
122 		 */
123 		kfib->header.XferState = 0;
124 	} else {
125 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
126 				le16_to_cpu(kfib->header.Size) , FsaNormal,
127 				1, 1, NULL, NULL);
128 		if (retval) {
129 			goto cleanup;
130 		}
131 		if (aac_fib_complete(fibptr) != 0) {
132 			retval = -EINVAL;
133 			goto cleanup;
134 		}
135 	}
136 	/*
137 	 *	Make sure that the size returned by the adapter (which includes
138 	 *	the header) is less than or equal to the size of a fib, so we
139 	 *	don't corrupt application data. Then copy that size to the user
140 	 *	buffer. (Don't try to add the header information again, since it
141 	 *	was already included by the adapter.)
142 	 */
143 
144 	retval = 0;
145 	if (copy_to_user(arg, (void *)kfib, size))
146 		retval = -EFAULT;
147 cleanup:
148 	if (hw_fib) {
149 		dma_free_coherent(&dev->pdev->dev, size, kfib,
150 				  fibptr->hw_fib_pa);
151 		fibptr->hw_fib_pa = hw_fib_pa;
152 		fibptr->hw_fib_va = hw_fib;
153 	}
154 	if (retval != -ERESTARTSYS)
155 		aac_fib_free(fibptr);
156 	return retval;
157 }
158 
159 /**
160  *	open_getadapter_fib	-	Get the next fib
161  *	@dev:	adapter is being processed
162  *	@arg:	arguments to the open call
163  *
164  *	This routine will get the next Fib, if available, from the AdapterFibContext
165  *	passed in from the user.
166  */
167 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
168 {
169 	struct aac_fib_context * fibctx;
170 	int status;
171 
172 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
173 	if (fibctx == NULL) {
174 		status = -ENOMEM;
175 	} else {
176 		unsigned long flags;
177 		struct list_head * entry;
178 		struct aac_fib_context * context;
179 
180 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
181 		fibctx->size = sizeof(struct aac_fib_context);
182 		/*
183 		 *	Yes yes, I know this could be an index, but we have a
184 		 * better guarantee of uniqueness for the locked loop below.
185 		 * Without the aid of a persistent history, this also helps
186 		 * reduce the chance that the opaque context would be reused.
187 		 */
188 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
189 		/*
190 		 *	Initialize the mutex used to wait for the next AIF.
191 		 */
192 		init_completion(&fibctx->completion);
193 		fibctx->wait = 0;
194 		/*
195 		 *	Initialize the fibs and set the count of fibs on
196 		 *	the list to 0.
197 		 */
198 		fibctx->count = 0;
199 		INIT_LIST_HEAD(&fibctx->fib_list);
200 		fibctx->jiffies = jiffies/HZ;
201 		/*
202 		 *	Now add this context onto the adapter's
203 		 *	AdapterFibContext list.
204 		 */
205 		spin_lock_irqsave(&dev->fib_lock, flags);
206 		/* Ensure that we have a unique identifier */
207 		entry = dev->fib_list.next;
208 		while (entry != &dev->fib_list) {
209 			context = list_entry(entry, struct aac_fib_context, next);
210 			if (context->unique == fibctx->unique) {
211 				/* Not unique (32 bits) */
212 				fibctx->unique++;
213 				entry = dev->fib_list.next;
214 			} else {
215 				entry = entry->next;
216 			}
217 		}
218 		list_add_tail(&fibctx->next, &dev->fib_list);
219 		spin_unlock_irqrestore(&dev->fib_lock, flags);
220 		if (copy_to_user(arg, &fibctx->unique,
221 						sizeof(fibctx->unique))) {
222 			status = -EFAULT;
223 		} else {
224 			status = 0;
225 		}
226 	}
227 	return status;
228 }
229 
230 struct compat_fib_ioctl {
231 	u32	fibctx;
232 	s32	wait;
233 	compat_uptr_t fib;
234 };
235 
236 /**
237  *	next_getadapter_fib	-	get the next fib
238  *	@dev: adapter to use
239  *	@arg: ioctl argument
240  *
241  *	This routine will get the next Fib, if available, from the AdapterFibContext
242  *	passed in from the user.
243  */
244 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
245 {
246 	struct fib_ioctl f;
247 	struct fib *fib;
248 	struct aac_fib_context *fibctx;
249 	int status;
250 	struct list_head * entry;
251 	unsigned long flags;
252 
253 	if (in_compat_syscall()) {
254 		struct compat_fib_ioctl cf;
255 
256 		if (copy_from_user(&cf, arg, sizeof(struct compat_fib_ioctl)))
257 			return -EFAULT;
258 
259 		f.fibctx = cf.fibctx;
260 		f.wait = cf.wait;
261 		f.fib = compat_ptr(cf.fib);
262 	} else {
263 		if (copy_from_user(&f, arg, sizeof(struct fib_ioctl)))
264 			return -EFAULT;
265 	}
266 	/*
267 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
268 	 *
269 	 *	Search the list of AdapterFibContext addresses on the adapter
270 	 *	to be sure this is a valid address
271 	 */
272 	spin_lock_irqsave(&dev->fib_lock, flags);
273 	entry = dev->fib_list.next;
274 	fibctx = NULL;
275 
276 	while (entry != &dev->fib_list) {
277 		fibctx = list_entry(entry, struct aac_fib_context, next);
278 		/*
279 		 *	Extract the AdapterFibContext from the Input parameters.
280 		 */
281 		if (fibctx->unique == f.fibctx) { /* We found a winner */
282 			break;
283 		}
284 		entry = entry->next;
285 		fibctx = NULL;
286 	}
287 	if (!fibctx) {
288 		spin_unlock_irqrestore(&dev->fib_lock, flags);
289 		dprintk ((KERN_INFO "Fib Context not found\n"));
290 		return -EINVAL;
291 	}
292 
293 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
294 		 (fibctx->size != sizeof(struct aac_fib_context))) {
295 		spin_unlock_irqrestore(&dev->fib_lock, flags);
296 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
297 		return -EINVAL;
298 	}
299 	status = 0;
300 	/*
301 	 *	If there are no fibs to send back, then either wait or return
302 	 *	-EAGAIN
303 	 */
304 return_fib:
305 	if (!list_empty(&fibctx->fib_list)) {
306 		/*
307 		 *	Pull the next fib from the fibs
308 		 */
309 		entry = fibctx->fib_list.next;
310 		list_del(entry);
311 
312 		fib = list_entry(entry, struct fib, fiblink);
313 		fibctx->count--;
314 		spin_unlock_irqrestore(&dev->fib_lock, flags);
315 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
316 			kfree(fib->hw_fib_va);
317 			kfree(fib);
318 			return -EFAULT;
319 		}
320 		/*
321 		 *	Free the space occupied by this copy of the fib.
322 		 */
323 		kfree(fib->hw_fib_va);
324 		kfree(fib);
325 		status = 0;
326 	} else {
327 		spin_unlock_irqrestore(&dev->fib_lock, flags);
328 		/* If someone killed the AIF aacraid thread, restart it */
329 		status = !dev->aif_thread;
330 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
331 			/* Be paranoid, be very paranoid! */
332 			kthread_stop(dev->thread);
333 			ssleep(1);
334 			dev->aif_thread = 0;
335 			dev->thread = kthread_run(aac_command_thread, dev,
336 						  "%s", dev->name);
337 			ssleep(1);
338 		}
339 		if (f.wait) {
340 			if (wait_for_completion_interruptible(&fibctx->completion) < 0) {
341 				status = -ERESTARTSYS;
342 			} else {
343 				/* Lock again and retry */
344 				spin_lock_irqsave(&dev->fib_lock, flags);
345 				goto return_fib;
346 			}
347 		} else {
348 			status = -EAGAIN;
349 		}
350 	}
351 	fibctx->jiffies = jiffies/HZ;
352 	return status;
353 }
354 
355 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
356 {
357 	struct fib *fib;
358 
359 	/*
360 	 *	First free any FIBs that have not been consumed.
361 	 */
362 	while (!list_empty(&fibctx->fib_list)) {
363 		struct list_head * entry;
364 		/*
365 		 *	Pull the next fib from the fibs
366 		 */
367 		entry = fibctx->fib_list.next;
368 		list_del(entry);
369 		fib = list_entry(entry, struct fib, fiblink);
370 		fibctx->count--;
371 		/*
372 		 *	Free the space occupied by this copy of the fib.
373 		 */
374 		kfree(fib->hw_fib_va);
375 		kfree(fib);
376 	}
377 	/*
378 	 *	Remove the Context from the AdapterFibContext List
379 	 */
380 	list_del(&fibctx->next);
381 	/*
382 	 *	Invalidate context
383 	 */
384 	fibctx->type = 0;
385 	/*
386 	 *	Free the space occupied by the Context
387 	 */
388 	kfree(fibctx);
389 	return 0;
390 }
391 
392 /**
393  *	close_getadapter_fib	-	close down user fib context
394  *	@dev: adapter
395  *	@arg: ioctl arguments
396  *
397  *	This routine will close down the fibctx passed in from the user.
398  */
399 
400 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
401 {
402 	struct aac_fib_context *fibctx;
403 	int status;
404 	unsigned long flags;
405 	struct list_head * entry;
406 
407 	/*
408 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
409 	 *
410 	 *	Search the list of AdapterFibContext addresses on the adapter
411 	 *	to be sure this is a valid address
412 	 */
413 
414 	entry = dev->fib_list.next;
415 	fibctx = NULL;
416 
417 	while(entry != &dev->fib_list) {
418 		fibctx = list_entry(entry, struct aac_fib_context, next);
419 		/*
420 		 *	Extract the fibctx from the input parameters
421 		 */
422 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
423 			break;
424 		entry = entry->next;
425 		fibctx = NULL;
426 	}
427 
428 	if (!fibctx)
429 		return 0; /* Already gone */
430 
431 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
432 		 (fibctx->size != sizeof(struct aac_fib_context)))
433 		return -EINVAL;
434 	spin_lock_irqsave(&dev->fib_lock, flags);
435 	status = aac_close_fib_context(dev, fibctx);
436 	spin_unlock_irqrestore(&dev->fib_lock, flags);
437 	return status;
438 }
439 
440 /**
441  *	check_revision	-	close down user fib context
442  *	@dev: adapter
443  *	@arg: ioctl arguments
444  *
445  *	This routine returns the driver version.
446  *	Under Linux, there have been no version incompatibilities, so this is
447  *	simple!
448  */
449 
450 static int check_revision(struct aac_dev *dev, void __user *arg)
451 {
452 	struct revision response;
453 	char *driver_version = aac_driver_version;
454 	u32 version;
455 
456 	response.compat = 1;
457 	version = (simple_strtol(driver_version,
458 				&driver_version, 10) << 24) | 0x00000400;
459 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
460 	version += simple_strtol(driver_version + 1, NULL, 10);
461 	response.version = cpu_to_le32(version);
462 #	ifdef AAC_DRIVER_BUILD
463 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
464 #	else
465 		response.build = cpu_to_le32(9999);
466 #	endif
467 
468 	if (copy_to_user(arg, &response, sizeof(response)))
469 		return -EFAULT;
470 	return 0;
471 }
472 
473 
474 /**
475  * aac_send_raw_srb()
476  *	@dev:	adapter is being processed
477  *	@arg:	arguments to the send call
478  */
479 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
480 {
481 	struct fib* srbfib;
482 	int status;
483 	struct aac_srb *srbcmd = NULL;
484 	struct aac_hba_cmd_req *hbacmd = NULL;
485 	struct user_aac_srb *user_srbcmd = NULL;
486 	struct user_aac_srb __user *user_srb = arg;
487 	struct aac_srb_reply __user *user_reply;
488 	u32 chn;
489 	u32 fibsize = 0;
490 	u32 flags = 0;
491 	s32 rcode = 0;
492 	u32 data_dir;
493 	void __user *sg_user[HBA_MAX_SG_EMBEDDED];
494 	void *sg_list[HBA_MAX_SG_EMBEDDED];
495 	u32 sg_count[HBA_MAX_SG_EMBEDDED];
496 	u32 sg_indx = 0;
497 	u32 byte_count = 0;
498 	u32 actual_fibsize64, actual_fibsize = 0;
499 	int i;
500 	int is_native_device;
501 	u64 address;
502 
503 
504 	if (dev->in_reset) {
505 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
506 		return -EBUSY;
507 	}
508 	if (!capable(CAP_SYS_ADMIN)){
509 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
510 		return -EPERM;
511 	}
512 	/*
513 	 *	Allocate and initialize a Fib then setup a SRB command
514 	 */
515 	if (!(srbfib = aac_fib_alloc(dev))) {
516 		return -ENOMEM;
517 	}
518 
519 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
520 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
521 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
522 		rcode = -EFAULT;
523 		goto cleanup;
524 	}
525 
526 	if ((fibsize < sizeof(struct user_aac_srb)) ||
527 	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
528 		rcode = -EINVAL;
529 		goto cleanup;
530 	}
531 
532 	user_srbcmd = memdup_user(user_srb, fibsize);
533 	if (IS_ERR(user_srbcmd)) {
534 		rcode = PTR_ERR(user_srbcmd);
535 		user_srbcmd = NULL;
536 		goto cleanup;
537 	}
538 
539 	flags = user_srbcmd->flags; /* from user in cpu order */
540 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
541 	case SRB_DataOut:
542 		data_dir = DMA_TO_DEVICE;
543 		break;
544 	case (SRB_DataIn | SRB_DataOut):
545 		data_dir = DMA_BIDIRECTIONAL;
546 		break;
547 	case SRB_DataIn:
548 		data_dir = DMA_FROM_DEVICE;
549 		break;
550 	default:
551 		data_dir = DMA_NONE;
552 	}
553 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
554 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
555 			user_srbcmd->sg.count));
556 		rcode = -EINVAL;
557 		goto cleanup;
558 	}
559 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
560 		dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
561 		rcode = -EINVAL;
562 		goto cleanup;
563 	}
564 	actual_fibsize = sizeof(struct aac_srb) +
565 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
566 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
567 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
568 	/* User made a mistake - should not continue */
569 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
570 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
571 		  "Raw SRB command calculated fibsize=%lu;%lu "
572 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
573 		  "issued fibsize=%d\n",
574 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
575 		  sizeof(struct aac_srb), sizeof(struct sgentry),
576 		  sizeof(struct sgentry64), fibsize));
577 		rcode = -EINVAL;
578 		goto cleanup;
579 	}
580 
581 	chn = user_srbcmd->channel;
582 	if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
583 		dev->hba_map[chn][user_srbcmd->id].devtype ==
584 		AAC_DEVTYPE_NATIVE_RAW) {
585 		is_native_device = 1;
586 		hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
587 		memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
588 
589 		/* iu_type is a parameter of aac_hba_send */
590 		switch (data_dir) {
591 		case DMA_TO_DEVICE:
592 			hbacmd->byte1 = 2;
593 			break;
594 		case DMA_FROM_DEVICE:
595 		case DMA_BIDIRECTIONAL:
596 			hbacmd->byte1 = 1;
597 			break;
598 		case DMA_NONE:
599 		default:
600 			break;
601 		}
602 		hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
603 		hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
604 
605 		/*
606 		 * we fill in reply_qid later in aac_src_deliver_message
607 		 * we fill in iu_type, request_id later in aac_hba_send
608 		 * we fill in emb_data_desc_count, data_length later
609 		 * in sg list build
610 		 */
611 
612 		memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
613 
614 		address = (u64)srbfib->hw_error_pa;
615 		hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
616 		hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
617 		hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
618 		hbacmd->emb_data_desc_count =
619 					cpu_to_le32(user_srbcmd->sg.count);
620 		srbfib->hbacmd_size = 64 +
621 			user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
622 
623 	} else {
624 		is_native_device = 0;
625 		aac_fib_init(srbfib);
626 
627 		/* raw_srb FIB is not FastResponseCapable */
628 		srbfib->hw_fib_va->header.XferState &=
629 			~cpu_to_le32(FastResponseCapable);
630 
631 		srbcmd = (struct aac_srb *) fib_data(srbfib);
632 
633 		// Fix up srb for endian and force some values
634 
635 		srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
636 		srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
637 		srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
638 		srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
639 		srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
640 		srbcmd->flags	 = cpu_to_le32(flags);
641 		srbcmd->retry_limit = 0; // Obsolete parameter
642 		srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
643 		memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
644 	}
645 
646 	byte_count = 0;
647 	if (is_native_device) {
648 		struct user_sgmap *usg32 = &user_srbcmd->sg;
649 		struct user_sgmap64 *usg64 =
650 			(struct user_sgmap64 *)&user_srbcmd->sg;
651 
652 		for (i = 0; i < usg32->count; i++) {
653 			void *p;
654 			u64 addr;
655 
656 			sg_count[i] = (actual_fibsize64 == fibsize) ?
657 				usg64->sg[i].count : usg32->sg[i].count;
658 			if (sg_count[i] >
659 				(dev->scsi_host_ptr->max_sectors << 9)) {
660 				pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
661 					i, sg_count[i],
662 					dev->scsi_host_ptr->max_sectors << 9);
663 				rcode = -EINVAL;
664 				goto cleanup;
665 			}
666 
667 			p = kmalloc(sg_count[i], GFP_KERNEL);
668 			if (!p) {
669 				rcode = -ENOMEM;
670 				goto cleanup;
671 			}
672 
673 			if (actual_fibsize64 == fibsize) {
674 				addr = (u64)usg64->sg[i].addr[0];
675 				addr += ((u64)usg64->sg[i].addr[1]) << 32;
676 			} else {
677 				addr = (u64)usg32->sg[i].addr;
678 			}
679 
680 			sg_user[i] = (void __user *)(uintptr_t)addr;
681 			sg_list[i] = p; // save so we can clean up later
682 			sg_indx = i;
683 
684 			if (flags & SRB_DataOut) {
685 				if (copy_from_user(p, sg_user[i],
686 					sg_count[i])) {
687 					rcode = -EFAULT;
688 					goto cleanup;
689 				}
690 			}
691 			addr = dma_map_single(&dev->pdev->dev, p, sg_count[i],
692 					      data_dir);
693 			hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
694 			hbacmd->sge[i].addr_lo = cpu_to_le32(
695 						(u32)(addr & 0xffffffff));
696 			hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
697 			hbacmd->sge[i].flags = 0;
698 			byte_count += sg_count[i];
699 		}
700 
701 		if (usg32->count > 0)	/* embedded sglist */
702 			hbacmd->sge[usg32->count-1].flags =
703 				cpu_to_le32(0x40000000);
704 		hbacmd->data_length = cpu_to_le32(byte_count);
705 
706 		status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
707 					NULL, NULL);
708 
709 	} else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
710 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
711 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
712 
713 		/*
714 		 * This should also catch if user used the 32 bit sgmap
715 		 */
716 		if (actual_fibsize64 == fibsize) {
717 			actual_fibsize = actual_fibsize64;
718 			for (i = 0; i < upsg->count; i++) {
719 				u64 addr;
720 				void* p;
721 
722 				sg_count[i] = upsg->sg[i].count;
723 				if (sg_count[i] >
724 				    ((dev->adapter_info.options &
725 				     AAC_OPT_NEW_COMM) ?
726 				      (dev->scsi_host_ptr->max_sectors << 9) :
727 				      65536)) {
728 					rcode = -EINVAL;
729 					goto cleanup;
730 				}
731 
732 				p = kmalloc(sg_count[i], GFP_KERNEL);
733 				if(!p) {
734 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
735 					  sg_count[i], i, upsg->count));
736 					rcode = -ENOMEM;
737 					goto cleanup;
738 				}
739 				addr = (u64)upsg->sg[i].addr[0];
740 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
741 				sg_user[i] = (void __user *)(uintptr_t)addr;
742 				sg_list[i] = p; // save so we can clean up later
743 				sg_indx = i;
744 
745 				if (flags & SRB_DataOut) {
746 					if (copy_from_user(p, sg_user[i],
747 						sg_count[i])){
748 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
749 						rcode = -EFAULT;
750 						goto cleanup;
751 					}
752 				}
753 				addr = dma_map_single(&dev->pdev->dev, p,
754 						      sg_count[i], data_dir);
755 
756 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
757 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
758 				byte_count += sg_count[i];
759 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
760 			}
761 		} else {
762 			struct user_sgmap* usg;
763 			usg = kmemdup(upsg,
764 				      actual_fibsize - sizeof(struct aac_srb)
765 				      + sizeof(struct sgmap), GFP_KERNEL);
766 			if (!usg) {
767 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
768 				rcode = -ENOMEM;
769 				goto cleanup;
770 			}
771 			actual_fibsize = actual_fibsize64;
772 
773 			for (i = 0; i < usg->count; i++) {
774 				u64 addr;
775 				void* p;
776 
777 				sg_count[i] = usg->sg[i].count;
778 				if (sg_count[i] >
779 				    ((dev->adapter_info.options &
780 				     AAC_OPT_NEW_COMM) ?
781 				      (dev->scsi_host_ptr->max_sectors << 9) :
782 				      65536)) {
783 					kfree(usg);
784 					rcode = -EINVAL;
785 					goto cleanup;
786 				}
787 
788 				p = kmalloc(sg_count[i], GFP_KERNEL);
789 				if(!p) {
790 					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
791 						sg_count[i], i, usg->count));
792 					kfree(usg);
793 					rcode = -ENOMEM;
794 					goto cleanup;
795 				}
796 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
797 				sg_list[i] = p; // save so we can clean up later
798 				sg_indx = i;
799 
800 				if (flags & SRB_DataOut) {
801 					if (copy_from_user(p, sg_user[i],
802 						sg_count[i])) {
803 						kfree (usg);
804 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
805 						rcode = -EFAULT;
806 						goto cleanup;
807 					}
808 				}
809 				addr = dma_map_single(&dev->pdev->dev, p,
810 						      sg_count[i], data_dir);
811 
812 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
813 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
814 				byte_count += sg_count[i];
815 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
816 			}
817 			kfree (usg);
818 		}
819 		srbcmd->count = cpu_to_le32(byte_count);
820 		if (user_srbcmd->sg.count)
821 			psg->count = cpu_to_le32(sg_indx+1);
822 		else
823 			psg->count = 0;
824 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
825 	} else {
826 		struct user_sgmap* upsg = &user_srbcmd->sg;
827 		struct sgmap* psg = &srbcmd->sg;
828 
829 		if (actual_fibsize64 == fibsize) {
830 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
831 			for (i = 0; i < upsg->count; i++) {
832 				uintptr_t addr;
833 				void* p;
834 
835 				sg_count[i] = usg->sg[i].count;
836 				if (sg_count[i] >
837 				    ((dev->adapter_info.options &
838 				     AAC_OPT_NEW_COMM) ?
839 				      (dev->scsi_host_ptr->max_sectors << 9) :
840 				      65536)) {
841 					rcode = -EINVAL;
842 					goto cleanup;
843 				}
844 				p = kmalloc(sg_count[i], GFP_KERNEL);
845 				if (!p) {
846 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
847 						sg_count[i], i, usg->count));
848 					rcode = -ENOMEM;
849 					goto cleanup;
850 				}
851 				addr = (u64)usg->sg[i].addr[0];
852 				addr += ((u64)usg->sg[i].addr[1]) << 32;
853 				sg_user[i] = (void __user *)addr;
854 				sg_list[i] = p; // save so we can clean up later
855 				sg_indx = i;
856 
857 				if (flags & SRB_DataOut) {
858 					if (copy_from_user(p, sg_user[i],
859 						sg_count[i])){
860 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
861 						rcode = -EFAULT;
862 						goto cleanup;
863 					}
864 				}
865 				addr = dma_map_single(&dev->pdev->dev, p,
866 						      usg->sg[i].count,
867 						      data_dir);
868 
869 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
870 				byte_count += usg->sg[i].count;
871 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
872 			}
873 		} else {
874 			for (i = 0; i < upsg->count; i++) {
875 				dma_addr_t addr;
876 				void* p;
877 
878 				sg_count[i] = upsg->sg[i].count;
879 				if (sg_count[i] >
880 				    ((dev->adapter_info.options &
881 				     AAC_OPT_NEW_COMM) ?
882 				      (dev->scsi_host_ptr->max_sectors << 9) :
883 				      65536)) {
884 					rcode = -EINVAL;
885 					goto cleanup;
886 				}
887 				p = kmalloc(sg_count[i], GFP_KERNEL);
888 				if (!p) {
889 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
890 					  sg_count[i], i, upsg->count));
891 					rcode = -ENOMEM;
892 					goto cleanup;
893 				}
894 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
895 				sg_list[i] = p; // save so we can clean up later
896 				sg_indx = i;
897 
898 				if (flags & SRB_DataOut) {
899 					if (copy_from_user(p, sg_user[i],
900 						sg_count[i])) {
901 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
902 						rcode = -EFAULT;
903 						goto cleanup;
904 					}
905 				}
906 				addr = dma_map_single(&dev->pdev->dev, p,
907 						      sg_count[i], data_dir);
908 
909 				psg->sg[i].addr = cpu_to_le32(addr);
910 				byte_count += sg_count[i];
911 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
912 			}
913 		}
914 		srbcmd->count = cpu_to_le32(byte_count);
915 		if (user_srbcmd->sg.count)
916 			psg->count = cpu_to_le32(sg_indx+1);
917 		else
918 			psg->count = 0;
919 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
920 	}
921 
922 	if (status == -ERESTARTSYS) {
923 		rcode = -ERESTARTSYS;
924 		goto cleanup;
925 	}
926 
927 	if (status != 0) {
928 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
929 		rcode = -ENXIO;
930 		goto cleanup;
931 	}
932 
933 	if (flags & SRB_DataIn) {
934 		for(i = 0 ; i <= sg_indx; i++){
935 			if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
936 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
937 				rcode = -EFAULT;
938 				goto cleanup;
939 
940 			}
941 		}
942 	}
943 
944 	user_reply = arg + fibsize;
945 	if (is_native_device) {
946 		struct aac_hba_resp *err =
947 			&((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
948 		struct aac_srb_reply reply;
949 
950 		memset(&reply, 0, sizeof(reply));
951 		reply.status = ST_OK;
952 		if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
953 			/* fast response */
954 			reply.srb_status = SRB_STATUS_SUCCESS;
955 			reply.scsi_status = 0;
956 			reply.data_xfer_length = byte_count;
957 			reply.sense_data_size = 0;
958 			memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
959 		} else {
960 			reply.srb_status = err->service_response;
961 			reply.scsi_status = err->status;
962 			reply.data_xfer_length = byte_count -
963 				le32_to_cpu(err->residual_count);
964 			reply.sense_data_size = err->sense_response_data_len;
965 			memcpy(reply.sense_data, err->sense_response_buf,
966 				AAC_SENSE_BUFFERSIZE);
967 		}
968 		if (copy_to_user(user_reply, &reply,
969 			sizeof(struct aac_srb_reply))) {
970 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
971 			rcode = -EFAULT;
972 			goto cleanup;
973 		}
974 	} else {
975 		struct aac_srb_reply *reply;
976 
977 		reply = (struct aac_srb_reply *) fib_data(srbfib);
978 		if (copy_to_user(user_reply, reply,
979 			sizeof(struct aac_srb_reply))) {
980 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
981 			rcode = -EFAULT;
982 			goto cleanup;
983 		}
984 	}
985 
986 cleanup:
987 	kfree(user_srbcmd);
988 	if (rcode != -ERESTARTSYS) {
989 		for (i = 0; i <= sg_indx; i++)
990 			kfree(sg_list[i]);
991 		aac_fib_complete(srbfib);
992 		aac_fib_free(srbfib);
993 	}
994 
995 	return rcode;
996 }
997 
998 struct aac_pci_info {
999 	u32 bus;
1000 	u32 slot;
1001 };
1002 
1003 
1004 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
1005 {
1006 	struct aac_pci_info pci_info;
1007 
1008 	pci_info.bus = dev->pdev->bus->number;
1009 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
1010 
1011 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
1012 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
1013 		return -EFAULT;
1014 	}
1015 	return 0;
1016 }
1017 
1018 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1019 {
1020 	struct aac_hba_info hbainfo;
1021 
1022 	memset(&hbainfo, 0, sizeof(hbainfo));
1023 	hbainfo.adapter_number		= (u8) dev->id;
1024 	hbainfo.system_io_bus_number	= dev->pdev->bus->number;
1025 	hbainfo.device_number		= (dev->pdev->devfn >> 3);
1026 	hbainfo.function_number		= (dev->pdev->devfn & 0x0007);
1027 
1028 	hbainfo.vendor_id		= dev->pdev->vendor;
1029 	hbainfo.device_id		= dev->pdev->device;
1030 	hbainfo.sub_vendor_id		= dev->pdev->subsystem_vendor;
1031 	hbainfo.sub_system_id		= dev->pdev->subsystem_device;
1032 
1033 	if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1034 		dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1035 		return -EFAULT;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 struct aac_reset_iop {
1042 	u8	reset_type;
1043 };
1044 
1045 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1046 {
1047 	struct aac_reset_iop reset;
1048 	int retval;
1049 
1050 	if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1051 		return -EFAULT;
1052 
1053 	dev->adapter_shutdown = 1;
1054 
1055 	mutex_unlock(&dev->ioctl_mutex);
1056 	retval = aac_reset_adapter(dev, 0, reset.reset_type);
1057 	mutex_lock(&dev->ioctl_mutex);
1058 
1059 	return retval;
1060 }
1061 
1062 int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
1063 {
1064 	int status;
1065 
1066 	mutex_lock(&dev->ioctl_mutex);
1067 
1068 	if (dev->adapter_shutdown) {
1069 		status = -EACCES;
1070 		goto cleanup;
1071 	}
1072 
1073 	/*
1074 	 *	HBA gets first crack
1075 	 */
1076 
1077 	status = aac_dev_ioctl(dev, cmd, arg);
1078 	if (status != -ENOTTY)
1079 		goto cleanup;
1080 
1081 	switch (cmd) {
1082 	case FSACTL_MINIPORT_REV_CHECK:
1083 		status = check_revision(dev, arg);
1084 		break;
1085 	case FSACTL_SEND_LARGE_FIB:
1086 	case FSACTL_SENDFIB:
1087 		status = ioctl_send_fib(dev, arg);
1088 		break;
1089 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1090 		status = open_getadapter_fib(dev, arg);
1091 		break;
1092 	case FSACTL_GET_NEXT_ADAPTER_FIB:
1093 		status = next_getadapter_fib(dev, arg);
1094 		break;
1095 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1096 		status = close_getadapter_fib(dev, arg);
1097 		break;
1098 	case FSACTL_SEND_RAW_SRB:
1099 		status = aac_send_raw_srb(dev,arg);
1100 		break;
1101 	case FSACTL_GET_PCI_INFO:
1102 		status = aac_get_pci_info(dev,arg);
1103 		break;
1104 	case FSACTL_GET_HBA_INFO:
1105 		status = aac_get_hba_info(dev, arg);
1106 		break;
1107 	case FSACTL_RESET_IOP:
1108 		status = aac_send_reset_adapter(dev, arg);
1109 		break;
1110 
1111 	default:
1112 		status = -ENOTTY;
1113 		break;
1114 	}
1115 
1116 cleanup:
1117 	mutex_unlock(&dev->ioctl_mutex);
1118 
1119 	return status;
1120 }
1121 
1122