1 /* $Id: envctrl.c,v 1.25 2002/01/15 09:01:26 davem Exp $ 2 * envctrl.c: Temperature and Fan monitoring on Machines providing it. 3 * 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 2000 Vinh Truong (vinh.truong@eng.sun.com) 6 * VT - The implementation is to support Sun Microelectronics (SME) platform 7 * environment monitoring. SME platforms use pcf8584 as the i2c bus 8 * controller to access pcf8591 (8-bit A/D and D/A converter) and 9 * pcf8571 (256 x 8-bit static low-voltage RAM with I2C-bus interface). 10 * At board level, it follows SME Firmware I2C Specification. Reference: 11 * http://www-eu2.semiconductors.com/pip/PCF8584P 12 * http://www-eu2.semiconductors.com/pip/PCF8574AP 13 * http://www-eu2.semiconductors.com/pip/PCF8591P 14 * 15 * EB - Added support for CP1500 Global Address and PS/Voltage monitoring. 16 * Eric Brower <ebrower@usa.net> 17 * 18 * DB - Audit every copy_to_user in envctrl_read. 19 * Daniele Bellucci <bellucda@tiscali.it> 20 */ 21 22 #define __KERNEL_SYSCALLS__ 23 static int errno; 24 25 #include <linux/config.h> 26 #include <linux/module.h> 27 #include <linux/sched.h> 28 #include <linux/kthread.h> 29 #include <linux/errno.h> 30 #include <linux/delay.h> 31 #include <linux/ioport.h> 32 #include <linux/init.h> 33 #include <linux/miscdevice.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/kernel.h> 37 38 #include <asm/ebus.h> 39 #include <asm/uaccess.h> 40 #include <asm/envctrl.h> 41 42 #define ENVCTRL_MINOR 162 43 44 #define PCF8584_ADDRESS 0x55 45 46 #define CONTROL_PIN 0x80 47 #define CONTROL_ES0 0x40 48 #define CONTROL_ES1 0x20 49 #define CONTROL_ES2 0x10 50 #define CONTROL_ENI 0x08 51 #define CONTROL_STA 0x04 52 #define CONTROL_STO 0x02 53 #define CONTROL_ACK 0x01 54 55 #define STATUS_PIN 0x80 56 #define STATUS_STS 0x20 57 #define STATUS_BER 0x10 58 #define STATUS_LRB 0x08 59 #define STATUS_AD0 0x08 60 #define STATUS_AAB 0x04 61 #define STATUS_LAB 0x02 62 #define STATUS_BB 0x01 63 64 /* 65 * CLK Mode Register. 66 */ 67 #define BUS_CLK_90 0x00 68 #define BUS_CLK_45 0x01 69 #define BUS_CLK_11 0x02 70 #define BUS_CLK_1_5 0x03 71 72 #define CLK_3 0x00 73 #define CLK_4_43 0x10 74 #define CLK_6 0x14 75 #define CLK_8 0x18 76 #define CLK_12 0x1c 77 78 #define OBD_SEND_START 0xc5 /* value to generate I2c_bus START condition */ 79 #define OBD_SEND_STOP 0xc3 /* value to generate I2c_bus STOP condition */ 80 81 /* Monitor type of i2c child device. 82 * Firmware definitions. 83 */ 84 #define PCF8584_MAX_CHANNELS 8 85 #define PCF8584_GLOBALADDR_TYPE 6 /* global address monitor */ 86 #define PCF8584_FANSTAT_TYPE 3 /* fan status monitor */ 87 #define PCF8584_VOLTAGE_TYPE 2 /* voltage monitor */ 88 #define PCF8584_TEMP_TYPE 1 /* temperature monitor*/ 89 90 /* Monitor type of i2c child device. 91 * Driver definitions. 92 */ 93 #define ENVCTRL_NOMON 0 94 #define ENVCTRL_CPUTEMP_MON 1 /* cpu temperature monitor */ 95 #define ENVCTRL_CPUVOLTAGE_MON 2 /* voltage monitor */ 96 #define ENVCTRL_FANSTAT_MON 3 /* fan status monitor */ 97 #define ENVCTRL_ETHERTEMP_MON 4 /* ethernet temperarture */ 98 /* monitor */ 99 #define ENVCTRL_VOLTAGESTAT_MON 5 /* voltage status monitor */ 100 #define ENVCTRL_MTHRBDTEMP_MON 6 /* motherboard temperature */ 101 #define ENVCTRL_SCSITEMP_MON 7 /* scsi temperarture */ 102 #define ENVCTRL_GLOBALADDR_MON 8 /* global address */ 103 104 /* Child device type. 105 * Driver definitions. 106 */ 107 #define I2C_ADC 0 /* pcf8591 */ 108 #define I2C_GPIO 1 /* pcf8571 */ 109 110 /* Data read from child device may need to decode 111 * through a data table and a scale. 112 * Translation type as defined by firmware. 113 */ 114 #define ENVCTRL_TRANSLATE_NO 0 115 #define ENVCTRL_TRANSLATE_PARTIAL 1 116 #define ENVCTRL_TRANSLATE_COMBINED 2 117 #define ENVCTRL_TRANSLATE_FULL 3 /* table[data] */ 118 #define ENVCTRL_TRANSLATE_SCALE 4 /* table[data]/scale */ 119 120 /* Driver miscellaneous definitions. */ 121 #define ENVCTRL_MAX_CPU 4 122 #define CHANNEL_DESC_SZ 256 123 124 /* Mask values for combined GlobalAddress/PowerStatus node */ 125 #define ENVCTRL_GLOBALADDR_ADDR_MASK 0x1F 126 #define ENVCTRL_GLOBALADDR_PSTAT_MASK 0x60 127 128 /* Node 0x70 ignored on CompactPCI CP1400/1500 platforms 129 * (see envctrl_init_i2c_child) 130 */ 131 #define ENVCTRL_CPCI_IGNORED_NODE 0x70 132 133 #define PCF8584_DATA 0x00 134 #define PCF8584_CSR 0x01 135 136 /* Each child device can be monitored by up to PCF8584_MAX_CHANNELS. 137 * Property of a port or channel as defined by the firmware. 138 */ 139 struct pcf8584_channel { 140 unsigned char chnl_no; 141 unsigned char io_direction; 142 unsigned char type; 143 unsigned char last; 144 }; 145 146 /* Each child device may have one or more tables of bytes to help decode 147 * data. Table property as defined by the firmware. 148 */ 149 struct pcf8584_tblprop { 150 unsigned int type; 151 unsigned int scale; 152 unsigned int offset; /* offset from the beginning of the table */ 153 unsigned int size; 154 }; 155 156 /* i2c child */ 157 struct i2c_child_t { 158 /* Either ADC or GPIO. */ 159 unsigned char i2ctype; 160 unsigned long addr; 161 struct pcf8584_channel chnl_array[PCF8584_MAX_CHANNELS]; 162 163 /* Channel info. */ 164 unsigned int total_chnls; /* Number of monitor channels. */ 165 unsigned char fan_mask; /* Byte mask for fan status channels. */ 166 unsigned char voltage_mask; /* Byte mask for voltage status channels. */ 167 struct pcf8584_tblprop tblprop_array[PCF8584_MAX_CHANNELS]; 168 169 /* Properties of all monitor channels. */ 170 unsigned int total_tbls; /* Number of monitor tables. */ 171 char *tables; /* Pointer to table(s). */ 172 char chnls_desc[CHANNEL_DESC_SZ]; /* Channel description. */ 173 char mon_type[PCF8584_MAX_CHANNELS]; 174 }; 175 176 static void __iomem *i2c; 177 static struct i2c_child_t i2c_childlist[ENVCTRL_MAX_CPU*2]; 178 static unsigned char chnls_mask[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; 179 static unsigned int warning_temperature = 0; 180 static unsigned int shutdown_temperature = 0; 181 static char read_cpu; 182 183 /* Forward declarations. */ 184 static struct i2c_child_t *envctrl_get_i2c_child(unsigned char); 185 186 /* Function Description: Test the PIN bit (Pending Interrupt Not) 187 * to test when serial transmission is completed . 188 * Return : None. 189 */ 190 static void envtrl_i2c_test_pin(void) 191 { 192 int limit = 1000000; 193 194 while (--limit > 0) { 195 if (!(readb(i2c + PCF8584_CSR) & STATUS_PIN)) 196 break; 197 udelay(1); 198 } 199 200 if (limit <= 0) 201 printk(KERN_INFO "envctrl: Pin status will not clear.\n"); 202 } 203 204 /* Function Description: Test busy bit. 205 * Return : None. 206 */ 207 static void envctrl_i2c_test_bb(void) 208 { 209 int limit = 1000000; 210 211 while (--limit > 0) { 212 /* Busy bit 0 means busy. */ 213 if (readb(i2c + PCF8584_CSR) & STATUS_BB) 214 break; 215 udelay(1); 216 } 217 218 if (limit <= 0) 219 printk(KERN_INFO "envctrl: Busy bit will not clear.\n"); 220 } 221 222 /* Function Description: Send the address for a read access. 223 * Return : 0 if not acknowledged, otherwise acknowledged. 224 */ 225 static int envctrl_i2c_read_addr(unsigned char addr) 226 { 227 envctrl_i2c_test_bb(); 228 229 /* Load address. */ 230 writeb(addr + 1, i2c + PCF8584_DATA); 231 232 envctrl_i2c_test_bb(); 233 234 writeb(OBD_SEND_START, i2c + PCF8584_CSR); 235 236 /* Wait for PIN. */ 237 envtrl_i2c_test_pin(); 238 239 /* CSR 0 means acknowledged. */ 240 if (!(readb(i2c + PCF8584_CSR) & STATUS_LRB)) { 241 return readb(i2c + PCF8584_DATA); 242 } else { 243 writeb(OBD_SEND_STOP, i2c + PCF8584_CSR); 244 return 0; 245 } 246 } 247 248 /* Function Description: Send the address for write mode. 249 * Return : None. 250 */ 251 static void envctrl_i2c_write_addr(unsigned char addr) 252 { 253 envctrl_i2c_test_bb(); 254 writeb(addr, i2c + PCF8584_DATA); 255 256 /* Generate Start condition. */ 257 writeb(OBD_SEND_START, i2c + PCF8584_CSR); 258 } 259 260 /* Function Description: Read 1 byte of data from addr 261 * set by envctrl_i2c_read_addr() 262 * Return : Data from address set by envctrl_i2c_read_addr(). 263 */ 264 static unsigned char envctrl_i2c_read_data(void) 265 { 266 envtrl_i2c_test_pin(); 267 writeb(CONTROL_ES0, i2c + PCF8584_CSR); /* Send neg ack. */ 268 return readb(i2c + PCF8584_DATA); 269 } 270 271 /* Function Description: Instruct the device which port to read data from. 272 * Return : None. 273 */ 274 static void envctrl_i2c_write_data(unsigned char port) 275 { 276 envtrl_i2c_test_pin(); 277 writeb(port, i2c + PCF8584_DATA); 278 } 279 280 /* Function Description: Generate Stop condition after last byte is sent. 281 * Return : None. 282 */ 283 static void envctrl_i2c_stop(void) 284 { 285 envtrl_i2c_test_pin(); 286 writeb(OBD_SEND_STOP, i2c + PCF8584_CSR); 287 } 288 289 /* Function Description: Read adc device. 290 * Return : Data at address and port. 291 */ 292 static unsigned char envctrl_i2c_read_8591(unsigned char addr, unsigned char port) 293 { 294 /* Send address. */ 295 envctrl_i2c_write_addr(addr); 296 297 /* Setup port to read. */ 298 envctrl_i2c_write_data(port); 299 envctrl_i2c_stop(); 300 301 /* Read port. */ 302 envctrl_i2c_read_addr(addr); 303 304 /* Do a single byte read and send stop. */ 305 envctrl_i2c_read_data(); 306 envctrl_i2c_stop(); 307 308 return readb(i2c + PCF8584_DATA); 309 } 310 311 /* Function Description: Read gpio device. 312 * Return : Data at address. 313 */ 314 static unsigned char envctrl_i2c_read_8574(unsigned char addr) 315 { 316 unsigned char rd; 317 318 envctrl_i2c_read_addr(addr); 319 320 /* Do a single byte read and send stop. */ 321 rd = envctrl_i2c_read_data(); 322 envctrl_i2c_stop(); 323 return rd; 324 } 325 326 /* Function Description: Decode data read from an adc device using firmware 327 * table. 328 * Return: Number of read bytes. Data is stored in bufdata in ascii format. 329 */ 330 static int envctrl_i2c_data_translate(unsigned char data, int translate_type, 331 int scale, char *tbl, char *bufdata) 332 { 333 int len = 0; 334 335 switch (translate_type) { 336 case ENVCTRL_TRANSLATE_NO: 337 /* No decode necessary. */ 338 len = 1; 339 bufdata[0] = data; 340 break; 341 342 case ENVCTRL_TRANSLATE_FULL: 343 /* Decode this way: data = table[data]. */ 344 len = 1; 345 bufdata[0] = tbl[data]; 346 break; 347 348 case ENVCTRL_TRANSLATE_SCALE: 349 /* Decode this way: data = table[data]/scale */ 350 sprintf(bufdata,"%d ", (tbl[data] * 10) / (scale)); 351 len = strlen(bufdata); 352 bufdata[len - 1] = bufdata[len - 2]; 353 bufdata[len - 2] = '.'; 354 break; 355 356 default: 357 break; 358 }; 359 360 return len; 361 } 362 363 /* Function Description: Read cpu-related data such as cpu temperature, voltage. 364 * Return: Number of read bytes. Data is stored in bufdata in ascii format. 365 */ 366 static int envctrl_read_cpu_info(int cpu, struct i2c_child_t *pchild, 367 char mon_type, unsigned char *bufdata) 368 { 369 unsigned char data; 370 int i; 371 char *tbl, j = -1; 372 373 /* Find the right monitor type and channel. */ 374 for (i = 0; i < PCF8584_MAX_CHANNELS; i++) { 375 if (pchild->mon_type[i] == mon_type) { 376 if (++j == cpu) { 377 break; 378 } 379 } 380 } 381 382 if (j != cpu) 383 return 0; 384 385 /* Read data from address and port. */ 386 data = envctrl_i2c_read_8591((unsigned char)pchild->addr, 387 (unsigned char)pchild->chnl_array[i].chnl_no); 388 389 /* Find decoding table. */ 390 tbl = pchild->tables + pchild->tblprop_array[i].offset; 391 392 return envctrl_i2c_data_translate(data, pchild->tblprop_array[i].type, 393 pchild->tblprop_array[i].scale, 394 tbl, bufdata); 395 } 396 397 /* Function Description: Read noncpu-related data such as motherboard 398 * temperature. 399 * Return: Number of read bytes. Data is stored in bufdata in ascii format. 400 */ 401 static int envctrl_read_noncpu_info(struct i2c_child_t *pchild, 402 char mon_type, unsigned char *bufdata) 403 { 404 unsigned char data; 405 int i; 406 char *tbl = NULL; 407 408 for (i = 0; i < PCF8584_MAX_CHANNELS; i++) { 409 if (pchild->mon_type[i] == mon_type) 410 break; 411 } 412 413 if (i >= PCF8584_MAX_CHANNELS) 414 return 0; 415 416 /* Read data from address and port. */ 417 data = envctrl_i2c_read_8591((unsigned char)pchild->addr, 418 (unsigned char)pchild->chnl_array[i].chnl_no); 419 420 /* Find decoding table. */ 421 tbl = pchild->tables + pchild->tblprop_array[i].offset; 422 423 return envctrl_i2c_data_translate(data, pchild->tblprop_array[i].type, 424 pchild->tblprop_array[i].scale, 425 tbl, bufdata); 426 } 427 428 /* Function Description: Read fan status. 429 * Return : Always 1 byte. Status stored in bufdata. 430 */ 431 static int envctrl_i2c_fan_status(struct i2c_child_t *pchild, 432 unsigned char data, 433 char *bufdata) 434 { 435 unsigned char tmp, ret = 0; 436 int i, j = 0; 437 438 tmp = data & pchild->fan_mask; 439 440 if (tmp == pchild->fan_mask) { 441 /* All bits are on. All fans are functioning. */ 442 ret = ENVCTRL_ALL_FANS_GOOD; 443 } else if (tmp == 0) { 444 /* No bits are on. No fans are functioning. */ 445 ret = ENVCTRL_ALL_FANS_BAD; 446 } else { 447 /* Go through all channels, mark 'on' the matched bits. 448 * Notice that fan_mask may have discontiguous bits but 449 * return mask are always contiguous. For example if we 450 * monitor 4 fans at channels 0,1,2,4, the return mask 451 * should be 00010000 if only fan at channel 4 is working. 452 */ 453 for (i = 0; i < PCF8584_MAX_CHANNELS;i++) { 454 if (pchild->fan_mask & chnls_mask[i]) { 455 if (!(chnls_mask[i] & tmp)) 456 ret |= chnls_mask[j]; 457 458 j++; 459 } 460 } 461 } 462 463 bufdata[0] = ret; 464 return 1; 465 } 466 467 /* Function Description: Read global addressing line. 468 * Return : Always 1 byte. Status stored in bufdata. 469 */ 470 static int envctrl_i2c_globaladdr(struct i2c_child_t *pchild, 471 unsigned char data, 472 char *bufdata) 473 { 474 /* Translatation table is not necessary, as global 475 * addr is the integer value of the GA# bits. 476 * 477 * NOTE: MSB is documented as zero, but I see it as '1' always.... 478 * 479 * ----------------------------------------------- 480 * | 0 | FAL | DEG | GA4 | GA3 | GA2 | GA1 | GA0 | 481 * ----------------------------------------------- 482 * GA0 - GA4 integer value of Global Address (backplane slot#) 483 * DEG 0 = cPCI Power supply output is starting to degrade 484 * 1 = cPCI Power supply output is OK 485 * FAL 0 = cPCI Power supply has failed 486 * 1 = cPCI Power supply output is OK 487 */ 488 bufdata[0] = (data & ENVCTRL_GLOBALADDR_ADDR_MASK); 489 return 1; 490 } 491 492 /* Function Description: Read standard voltage and power supply status. 493 * Return : Always 1 byte. Status stored in bufdata. 494 */ 495 static unsigned char envctrl_i2c_voltage_status(struct i2c_child_t *pchild, 496 unsigned char data, 497 char *bufdata) 498 { 499 unsigned char tmp, ret = 0; 500 int i, j = 0; 501 502 tmp = data & pchild->voltage_mask; 503 504 /* Two channels are used to monitor voltage and power supply. */ 505 if (tmp == pchild->voltage_mask) { 506 /* All bits are on. Voltage and power supply are okay. */ 507 ret = ENVCTRL_VOLTAGE_POWERSUPPLY_GOOD; 508 } else if (tmp == 0) { 509 /* All bits are off. Voltage and power supply are bad */ 510 ret = ENVCTRL_VOLTAGE_POWERSUPPLY_BAD; 511 } else { 512 /* Either voltage or power supply has problem. */ 513 for (i = 0; i < PCF8584_MAX_CHANNELS; i++) { 514 if (pchild->voltage_mask & chnls_mask[i]) { 515 j++; 516 517 /* Break out when there is a mismatch. */ 518 if (!(chnls_mask[i] & tmp)) 519 break; 520 } 521 } 522 523 /* Make a wish that hardware will always use the 524 * first channel for voltage and the second for 525 * power supply. 526 */ 527 if (j == 1) 528 ret = ENVCTRL_VOLTAGE_BAD; 529 else 530 ret = ENVCTRL_POWERSUPPLY_BAD; 531 } 532 533 bufdata[0] = ret; 534 return 1; 535 } 536 537 /* Function Description: Read a byte from /dev/envctrl. Mapped to user read(). 538 * Return: Number of read bytes. 0 for error. 539 */ 540 static ssize_t 541 envctrl_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 542 { 543 struct i2c_child_t *pchild; 544 unsigned char data[10]; 545 int ret = 0; 546 547 /* Get the type of read as decided in ioctl() call. 548 * Find the appropriate i2c child. 549 * Get the data and put back to the user buffer. 550 */ 551 552 switch ((int)(long)file->private_data) { 553 case ENVCTRL_RD_WARNING_TEMPERATURE: 554 if (warning_temperature == 0) 555 return 0; 556 557 data[0] = (unsigned char)(warning_temperature); 558 ret = 1; 559 if (copy_to_user(buf, data, ret)) 560 ret = -EFAULT; 561 break; 562 563 case ENVCTRL_RD_SHUTDOWN_TEMPERATURE: 564 if (shutdown_temperature == 0) 565 return 0; 566 567 data[0] = (unsigned char)(shutdown_temperature); 568 ret = 1; 569 if (copy_to_user(buf, data, ret)) 570 ret = -EFAULT; 571 break; 572 573 case ENVCTRL_RD_MTHRBD_TEMPERATURE: 574 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_MTHRBDTEMP_MON))) 575 return 0; 576 ret = envctrl_read_noncpu_info(pchild, ENVCTRL_MTHRBDTEMP_MON, data); 577 if (copy_to_user(buf, data, ret)) 578 ret = -EFAULT; 579 break; 580 581 case ENVCTRL_RD_CPU_TEMPERATURE: 582 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUTEMP_MON))) 583 return 0; 584 ret = envctrl_read_cpu_info(read_cpu, pchild, ENVCTRL_CPUTEMP_MON, data); 585 586 /* Reset cpu to the default cpu0. */ 587 if (copy_to_user(buf, data, ret)) 588 ret = -EFAULT; 589 break; 590 591 case ENVCTRL_RD_CPU_VOLTAGE: 592 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUVOLTAGE_MON))) 593 return 0; 594 ret = envctrl_read_cpu_info(read_cpu, pchild, ENVCTRL_CPUVOLTAGE_MON, data); 595 596 /* Reset cpu to the default cpu0. */ 597 if (copy_to_user(buf, data, ret)) 598 ret = -EFAULT; 599 break; 600 601 case ENVCTRL_RD_SCSI_TEMPERATURE: 602 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_SCSITEMP_MON))) 603 return 0; 604 ret = envctrl_read_noncpu_info(pchild, ENVCTRL_SCSITEMP_MON, data); 605 if (copy_to_user(buf, data, ret)) 606 ret = -EFAULT; 607 break; 608 609 case ENVCTRL_RD_ETHERNET_TEMPERATURE: 610 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_ETHERTEMP_MON))) 611 return 0; 612 ret = envctrl_read_noncpu_info(pchild, ENVCTRL_ETHERTEMP_MON, data); 613 if (copy_to_user(buf, data, ret)) 614 ret = -EFAULT; 615 break; 616 617 case ENVCTRL_RD_FAN_STATUS: 618 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_FANSTAT_MON))) 619 return 0; 620 data[0] = envctrl_i2c_read_8574(pchild->addr); 621 ret = envctrl_i2c_fan_status(pchild,data[0], data); 622 if (copy_to_user(buf, data, ret)) 623 ret = -EFAULT; 624 break; 625 626 case ENVCTRL_RD_GLOBALADDRESS: 627 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON))) 628 return 0; 629 data[0] = envctrl_i2c_read_8574(pchild->addr); 630 ret = envctrl_i2c_globaladdr(pchild, data[0], data); 631 if (copy_to_user(buf, data, ret)) 632 ret = -EFAULT; 633 break; 634 635 case ENVCTRL_RD_VOLTAGE_STATUS: 636 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_VOLTAGESTAT_MON))) 637 /* If voltage monitor not present, check for CPCI equivalent */ 638 if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON))) 639 return 0; 640 data[0] = envctrl_i2c_read_8574(pchild->addr); 641 ret = envctrl_i2c_voltage_status(pchild, data[0], data); 642 if (copy_to_user(buf, data, ret)) 643 ret = -EFAULT; 644 break; 645 646 default: 647 break; 648 649 }; 650 651 return ret; 652 } 653 654 /* Function Description: Command what to read. Mapped to user ioctl(). 655 * Return: Gives 0 for implemented commands, -EINVAL otherwise. 656 */ 657 static int 658 envctrl_ioctl(struct inode *inode, struct file *file, 659 unsigned int cmd, unsigned long arg) 660 { 661 char __user *infobuf; 662 663 switch (cmd) { 664 case ENVCTRL_RD_WARNING_TEMPERATURE: 665 case ENVCTRL_RD_SHUTDOWN_TEMPERATURE: 666 case ENVCTRL_RD_MTHRBD_TEMPERATURE: 667 case ENVCTRL_RD_FAN_STATUS: 668 case ENVCTRL_RD_VOLTAGE_STATUS: 669 case ENVCTRL_RD_ETHERNET_TEMPERATURE: 670 case ENVCTRL_RD_SCSI_TEMPERATURE: 671 case ENVCTRL_RD_GLOBALADDRESS: 672 file->private_data = (void *)(long)cmd; 673 break; 674 675 case ENVCTRL_RD_CPU_TEMPERATURE: 676 case ENVCTRL_RD_CPU_VOLTAGE: 677 /* Check to see if application passes in any cpu number, 678 * the default is cpu0. 679 */ 680 infobuf = (char __user *) arg; 681 if (infobuf == NULL) { 682 read_cpu = 0; 683 }else { 684 get_user(read_cpu, infobuf); 685 } 686 687 /* Save the command for use when reading. */ 688 file->private_data = (void *)(long)cmd; 689 break; 690 691 default: 692 return -EINVAL; 693 }; 694 695 return 0; 696 } 697 698 /* Function Description: open device. Mapped to user open(). 699 * Return: Always 0. 700 */ 701 static int 702 envctrl_open(struct inode *inode, struct file *file) 703 { 704 file->private_data = NULL; 705 return 0; 706 } 707 708 /* Function Description: Open device. Mapped to user close(). 709 * Return: Always 0. 710 */ 711 static int 712 envctrl_release(struct inode *inode, struct file *file) 713 { 714 return 0; 715 } 716 717 static struct file_operations envctrl_fops = { 718 .owner = THIS_MODULE, 719 .read = envctrl_read, 720 .ioctl = envctrl_ioctl, 721 .open = envctrl_open, 722 .release = envctrl_release, 723 }; 724 725 static struct miscdevice envctrl_dev = { 726 ENVCTRL_MINOR, 727 "envctrl", 728 &envctrl_fops 729 }; 730 731 /* Function Description: Set monitor type based on firmware description. 732 * Return: None. 733 */ 734 static void envctrl_set_mon(struct i2c_child_t *pchild, 735 char *chnl_desc, 736 int chnl_no) 737 { 738 /* Firmware only has temperature type. It does not distinguish 739 * different kinds of temperatures. We use channel description 740 * to disinguish them. 741 */ 742 if (!(strcmp(chnl_desc,"temp,cpu")) || 743 !(strcmp(chnl_desc,"temp,cpu0")) || 744 !(strcmp(chnl_desc,"temp,cpu1")) || 745 !(strcmp(chnl_desc,"temp,cpu2")) || 746 !(strcmp(chnl_desc,"temp,cpu3"))) 747 pchild->mon_type[chnl_no] = ENVCTRL_CPUTEMP_MON; 748 749 if (!(strcmp(chnl_desc,"vddcore,cpu0")) || 750 !(strcmp(chnl_desc,"vddcore,cpu1")) || 751 !(strcmp(chnl_desc,"vddcore,cpu2")) || 752 !(strcmp(chnl_desc,"vddcore,cpu3"))) 753 pchild->mon_type[chnl_no] = ENVCTRL_CPUVOLTAGE_MON; 754 755 if (!(strcmp(chnl_desc,"temp,motherboard"))) 756 pchild->mon_type[chnl_no] = ENVCTRL_MTHRBDTEMP_MON; 757 758 if (!(strcmp(chnl_desc,"temp,scsi"))) 759 pchild->mon_type[chnl_no] = ENVCTRL_SCSITEMP_MON; 760 761 if (!(strcmp(chnl_desc,"temp,ethernet"))) 762 pchild->mon_type[chnl_no] = ENVCTRL_ETHERTEMP_MON; 763 } 764 765 /* Function Description: Initialize monitor channel with channel desc, 766 * decoding tables, monitor type, optional properties. 767 * Return: None. 768 */ 769 static void envctrl_init_adc(struct i2c_child_t *pchild, int node) 770 { 771 char chnls_desc[CHANNEL_DESC_SZ]; 772 int i = 0, len; 773 char *pos = chnls_desc; 774 775 /* Firmware describe channels into a stream separated by a '\0'. */ 776 len = prom_getproperty(node, "channels-description", chnls_desc, 777 CHANNEL_DESC_SZ); 778 chnls_desc[CHANNEL_DESC_SZ - 1] = '\0'; 779 780 while (len > 0) { 781 int l = strlen(pos) + 1; 782 envctrl_set_mon(pchild, pos, i++); 783 len -= l; 784 pos += l; 785 } 786 787 /* Get optional properties. */ 788 len = prom_getproperty(node, "warning-temp", (char *)&warning_temperature, 789 sizeof(warning_temperature)); 790 len = prom_getproperty(node, "shutdown-temp", (char *)&shutdown_temperature, 791 sizeof(shutdown_temperature)); 792 } 793 794 /* Function Description: Initialize child device monitoring fan status. 795 * Return: None. 796 */ 797 static void envctrl_init_fanstat(struct i2c_child_t *pchild) 798 { 799 int i; 800 801 /* Go through all channels and set up the mask. */ 802 for (i = 0; i < pchild->total_chnls; i++) 803 pchild->fan_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no]; 804 805 /* We only need to know if this child has fan status monitored. 806 * We don't care which channels since we have the mask already. 807 */ 808 pchild->mon_type[0] = ENVCTRL_FANSTAT_MON; 809 } 810 811 /* Function Description: Initialize child device for global addressing line. 812 * Return: None. 813 */ 814 static void envctrl_init_globaladdr(struct i2c_child_t *pchild) 815 { 816 int i; 817 818 /* Voltage/PowerSupply monitoring is piggybacked 819 * with Global Address on CompactPCI. See comments 820 * within envctrl_i2c_globaladdr for bit assignments. 821 * 822 * The mask is created here by assigning mask bits to each 823 * bit position that represents PCF8584_VOLTAGE_TYPE data. 824 * Channel numbers are not consecutive within the globaladdr 825 * node (why?), so we use the actual counter value as chnls_mask 826 * index instead of the chnl_array[x].chnl_no value. 827 * 828 * NOTE: This loop could be replaced with a constant representing 829 * a mask of bits 5&6 (ENVCTRL_GLOBALADDR_PSTAT_MASK). 830 */ 831 for (i = 0; i < pchild->total_chnls; i++) { 832 if (PCF8584_VOLTAGE_TYPE == pchild->chnl_array[i].type) { 833 pchild->voltage_mask |= chnls_mask[i]; 834 } 835 } 836 837 /* We only need to know if this child has global addressing 838 * line monitored. We don't care which channels since we know 839 * the mask already (ENVCTRL_GLOBALADDR_ADDR_MASK). 840 */ 841 pchild->mon_type[0] = ENVCTRL_GLOBALADDR_MON; 842 } 843 844 /* Initialize child device monitoring voltage status. */ 845 static void envctrl_init_voltage_status(struct i2c_child_t *pchild) 846 { 847 int i; 848 849 /* Go through all channels and set up the mask. */ 850 for (i = 0; i < pchild->total_chnls; i++) 851 pchild->voltage_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no]; 852 853 /* We only need to know if this child has voltage status monitored. 854 * We don't care which channels since we have the mask already. 855 */ 856 pchild->mon_type[0] = ENVCTRL_VOLTAGESTAT_MON; 857 } 858 859 /* Function Description: Initialize i2c child device. 860 * Return: None. 861 */ 862 static void envctrl_init_i2c_child(struct linux_ebus_child *edev_child, 863 struct i2c_child_t *pchild) 864 { 865 int node, len, i, tbls_size = 0; 866 867 node = edev_child->prom_node; 868 869 /* Get device address. */ 870 len = prom_getproperty(node, "reg", 871 (char *) &(pchild->addr), 872 sizeof(pchild->addr)); 873 874 /* Get tables property. Read firmware temperature tables. */ 875 len = prom_getproperty(node, "translation", 876 (char *) pchild->tblprop_array, 877 (PCF8584_MAX_CHANNELS * 878 sizeof(struct pcf8584_tblprop))); 879 if (len > 0) { 880 pchild->total_tbls = len / sizeof(struct pcf8584_tblprop); 881 for (i = 0; i < pchild->total_tbls; i++) { 882 if ((pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset) > tbls_size) { 883 tbls_size = pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset; 884 } 885 } 886 887 pchild->tables = kmalloc(tbls_size, GFP_KERNEL); 888 if (pchild->tables == NULL){ 889 printk("envctrl: Failed to allocate table.\n"); 890 return; 891 } 892 len = prom_getproperty(node, "tables", 893 (char *) pchild->tables, tbls_size); 894 if (len <= 0) { 895 printk("envctrl: Failed to get table.\n"); 896 return; 897 } 898 } 899 900 /* SPARCengine ASM Reference Manual (ref. SMI doc 805-7581-04) 901 * sections 2.5, 3.5, 4.5 state node 0x70 for CP1400/1500 is 902 * "For Factory Use Only." 903 * 904 * We ignore the node on these platforms by assigning the 905 * 'NULL' monitor type. 906 */ 907 if (ENVCTRL_CPCI_IGNORED_NODE == pchild->addr) { 908 int len; 909 char prop[56]; 910 911 len = prom_getproperty(prom_root_node, "name", prop, sizeof(prop)); 912 if (0 < len && (0 == strncmp(prop, "SUNW,UltraSPARC-IIi-cEngine", len))) 913 { 914 for (len = 0; len < PCF8584_MAX_CHANNELS; ++len) { 915 pchild->mon_type[len] = ENVCTRL_NOMON; 916 } 917 return; 918 } 919 } 920 921 /* Get the monitor channels. */ 922 len = prom_getproperty(node, "channels-in-use", 923 (char *) pchild->chnl_array, 924 (PCF8584_MAX_CHANNELS * 925 sizeof(struct pcf8584_channel))); 926 pchild->total_chnls = len / sizeof(struct pcf8584_channel); 927 928 for (i = 0; i < pchild->total_chnls; i++) { 929 switch (pchild->chnl_array[i].type) { 930 case PCF8584_TEMP_TYPE: 931 envctrl_init_adc(pchild, node); 932 break; 933 934 case PCF8584_GLOBALADDR_TYPE: 935 envctrl_init_globaladdr(pchild); 936 i = pchild->total_chnls; 937 break; 938 939 case PCF8584_FANSTAT_TYPE: 940 envctrl_init_fanstat(pchild); 941 i = pchild->total_chnls; 942 break; 943 944 case PCF8584_VOLTAGE_TYPE: 945 if (pchild->i2ctype == I2C_ADC) { 946 envctrl_init_adc(pchild,node); 947 } else { 948 envctrl_init_voltage_status(pchild); 949 } 950 i = pchild->total_chnls; 951 break; 952 953 default: 954 break; 955 }; 956 } 957 } 958 959 /* Function Description: Search the child device list for a device. 960 * Return : The i2c child if found. NULL otherwise. 961 */ 962 static struct i2c_child_t *envctrl_get_i2c_child(unsigned char mon_type) 963 { 964 int i, j; 965 966 for (i = 0; i < ENVCTRL_MAX_CPU*2; i++) { 967 for (j = 0; j < PCF8584_MAX_CHANNELS; j++) { 968 if (i2c_childlist[i].mon_type[j] == mon_type) { 969 return (struct i2c_child_t *)(&(i2c_childlist[i])); 970 } 971 } 972 } 973 return NULL; 974 } 975 976 static void envctrl_do_shutdown(void) 977 { 978 static int inprog = 0; 979 static char *envp[] = { 980 "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; 981 char *argv[] = { 982 "/sbin/shutdown", "-h", "now", NULL }; 983 984 if (inprog != 0) 985 return; 986 987 inprog = 1; 988 printk(KERN_CRIT "kenvctrld: WARNING: Shutting down the system now.\n"); 989 if (0 > execve("/sbin/shutdown", argv, envp)) { 990 printk(KERN_CRIT "kenvctrld: WARNING: system shutdown failed!\n"); 991 inprog = 0; /* unlikely to succeed, but we could try again */ 992 } 993 } 994 995 static struct task_struct *kenvctrld_task; 996 997 static int kenvctrld(void *__unused) 998 { 999 int poll_interval; 1000 int whichcpu; 1001 char tempbuf[10]; 1002 struct i2c_child_t *cputemp; 1003 1004 if (NULL == (cputemp = envctrl_get_i2c_child(ENVCTRL_CPUTEMP_MON))) { 1005 printk(KERN_ERR 1006 "envctrl: kenvctrld unable to monitor CPU temp-- exiting\n"); 1007 return -ENODEV; 1008 } 1009 1010 poll_interval = 5000; /* TODO env_mon_interval */ 1011 1012 printk(KERN_INFO "envctrl: %s starting...\n", current->comm); 1013 for (;;) { 1014 msleep_interruptible(poll_interval); 1015 1016 if (kthread_should_stop()) 1017 break; 1018 1019 for (whichcpu = 0; whichcpu < ENVCTRL_MAX_CPU; ++whichcpu) { 1020 if (0 < envctrl_read_cpu_info(whichcpu, cputemp, 1021 ENVCTRL_CPUTEMP_MON, 1022 tempbuf)) { 1023 if (tempbuf[0] >= shutdown_temperature) { 1024 printk(KERN_CRIT 1025 "%s: WARNING: CPU%i temperature %i C meets or exceeds "\ 1026 "shutdown threshold %i C\n", 1027 current->comm, whichcpu, 1028 tempbuf[0], shutdown_temperature); 1029 envctrl_do_shutdown(); 1030 } 1031 } 1032 } 1033 } 1034 printk(KERN_INFO "envctrl: %s exiting...\n", current->comm); 1035 return 0; 1036 } 1037 1038 static int __init envctrl_init(void) 1039 { 1040 struct linux_ebus *ebus = NULL; 1041 struct linux_ebus_device *edev = NULL; 1042 struct linux_ebus_child *edev_child = NULL; 1043 int err, i = 0; 1044 1045 for_each_ebus(ebus) { 1046 for_each_ebusdev(edev, ebus) { 1047 if (!strcmp(edev->prom_name, "bbc")) { 1048 /* If we find a boot-bus controller node, 1049 * then this envctrl driver is not for us. 1050 */ 1051 return -ENODEV; 1052 } 1053 } 1054 } 1055 1056 /* Traverse through ebus and ebus device list for i2c device and 1057 * adc and gpio nodes. 1058 */ 1059 for_each_ebus(ebus) { 1060 for_each_ebusdev(edev, ebus) { 1061 if (!strcmp(edev->prom_name, "i2c")) { 1062 i2c = ioremap(edev->resource[0].start, 0x2); 1063 for_each_edevchild(edev, edev_child) { 1064 if (!strcmp("gpio", edev_child->prom_name)) { 1065 i2c_childlist[i].i2ctype = I2C_GPIO; 1066 envctrl_init_i2c_child(edev_child, &(i2c_childlist[i++])); 1067 } 1068 if (!strcmp("adc", edev_child->prom_name)) { 1069 i2c_childlist[i].i2ctype = I2C_ADC; 1070 envctrl_init_i2c_child(edev_child, &(i2c_childlist[i++])); 1071 } 1072 } 1073 goto done; 1074 } 1075 } 1076 } 1077 1078 done: 1079 if (!edev) { 1080 printk("envctrl: I2C device not found.\n"); 1081 return -ENODEV; 1082 } 1083 1084 /* Set device address. */ 1085 writeb(CONTROL_PIN, i2c + PCF8584_CSR); 1086 writeb(PCF8584_ADDRESS, i2c + PCF8584_DATA); 1087 1088 /* Set system clock and SCL frequencies. */ 1089 writeb(CONTROL_PIN | CONTROL_ES1, i2c + PCF8584_CSR); 1090 writeb(CLK_4_43 | BUS_CLK_90, i2c + PCF8584_DATA); 1091 1092 /* Enable serial interface. */ 1093 writeb(CONTROL_PIN | CONTROL_ES0 | CONTROL_ACK, i2c + PCF8584_CSR); 1094 udelay(200); 1095 1096 /* Register the device as a minor miscellaneous device. */ 1097 err = misc_register(&envctrl_dev); 1098 if (err) { 1099 printk("envctrl: Unable to get misc minor %d\n", 1100 envctrl_dev.minor); 1101 goto out_iounmap; 1102 } 1103 1104 /* Note above traversal routine post-incremented 'i' to accommodate 1105 * a next child device, so we decrement before reverse-traversal of 1106 * child devices. 1107 */ 1108 printk("envctrl: initialized "); 1109 for (--i; i >= 0; --i) { 1110 printk("[%s 0x%lx]%s", 1111 (I2C_ADC == i2c_childlist[i].i2ctype) ? ("adc") : 1112 ((I2C_GPIO == i2c_childlist[i].i2ctype) ? ("gpio") : ("unknown")), 1113 i2c_childlist[i].addr, (0 == i) ? ("\n") : (" ")); 1114 } 1115 1116 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld"); 1117 if (IS_ERR(kenvctrld_task)) { 1118 err = PTR_ERR(kenvctrld_task); 1119 goto out_deregister; 1120 } 1121 1122 return 0; 1123 1124 out_deregister: 1125 misc_deregister(&envctrl_dev); 1126 out_iounmap: 1127 iounmap(i2c); 1128 for (i = 0; i < ENVCTRL_MAX_CPU * 2; i++) { 1129 if (i2c_childlist[i].tables) 1130 kfree(i2c_childlist[i].tables); 1131 } 1132 return err; 1133 } 1134 1135 static void __exit envctrl_cleanup(void) 1136 { 1137 int i; 1138 1139 kthread_stop(kenvctrld_task); 1140 1141 iounmap(i2c); 1142 misc_deregister(&envctrl_dev); 1143 1144 for (i = 0; i < ENVCTRL_MAX_CPU * 2; i++) { 1145 if (i2c_childlist[i].tables) 1146 kfree(i2c_childlist[i].tables); 1147 } 1148 } 1149 1150 module_init(envctrl_init); 1151 module_exit(envctrl_cleanup); 1152 MODULE_LICENSE("GPL"); 1153