xref: /linux/drivers/s390/crypto/ap_bus.c (revision ff9a79307f89563da6d841da8b7cc4a0afceb0e2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2023
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41 #include <asm/uv.h>
42 #include <asm/chsc.h>
43 
44 #include "ap_bus.h"
45 #include "ap_debug.h"
46 
47 MODULE_AUTHOR("IBM Corporation");
48 MODULE_DESCRIPTION("Adjunct Processor Bus driver");
49 MODULE_LICENSE("GPL");
50 
51 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
52 static DEFINE_SPINLOCK(ap_domain_lock);
53 module_param_named(domain, ap_domain_index, int, 0440);
54 MODULE_PARM_DESC(domain, "domain index for ap devices");
55 EXPORT_SYMBOL(ap_domain_index);
56 
57 static int ap_thread_flag;
58 module_param_named(poll_thread, ap_thread_flag, int, 0440);
59 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
60 
61 static char *apm_str;
62 module_param_named(apmask, apm_str, charp, 0440);
63 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
64 
65 static char *aqm_str;
66 module_param_named(aqmask, aqm_str, charp, 0440);
67 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
68 
69 static int ap_useirq = 1;
70 module_param_named(useirq, ap_useirq, int, 0440);
71 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
72 
73 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
74 EXPORT_SYMBOL(ap_max_msg_size);
75 
76 static struct device *ap_root_device;
77 
78 /* Hashtable of all queue devices on the AP bus */
79 DEFINE_HASHTABLE(ap_queues, 8);
80 /* lock used for the ap_queues hashtable */
81 DEFINE_SPINLOCK(ap_queues_lock);
82 
83 /* Default permissions (ioctl, card and domain masking) */
84 struct ap_perms ap_perms;
85 EXPORT_SYMBOL(ap_perms);
86 DEFINE_MUTEX(ap_perms_mutex);
87 EXPORT_SYMBOL(ap_perms_mutex);
88 
89 /* # of bindings complete since init */
90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91 
92 /* completion for APQN bindings complete */
93 static DECLARE_COMPLETION(ap_apqn_bindings_complete);
94 
95 static struct ap_config_info qci[2];
96 static struct ap_config_info *const ap_qci_info = &qci[0];
97 static struct ap_config_info *const ap_qci_info_old = &qci[1];
98 
99 /*
100  * AP bus related debug feature things.
101  */
102 debug_info_t *ap_dbf_info;
103 
104 /*
105  * AP bus rescan related things.
106  */
107 static bool ap_scan_bus(void);
108 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
109 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
110 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
111 static int ap_scan_bus_time = AP_CONFIG_TIME;
112 static struct timer_list ap_scan_bus_timer;
113 static void ap_scan_bus_wq_callback(struct work_struct *);
114 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
115 
116 /*
117  * Tasklet & timer for AP request polling and interrupts
118  */
119 static void ap_tasklet_fn(unsigned long);
120 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
121 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
122 static struct task_struct *ap_poll_kthread;
123 static DEFINE_MUTEX(ap_poll_thread_mutex);
124 static DEFINE_SPINLOCK(ap_poll_timer_lock);
125 static struct hrtimer ap_poll_timer;
126 /*
127  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
128  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
129  */
130 static unsigned long poll_high_timeout = 250000UL;
131 
132 /*
133  * Some state machine states only require a low frequency polling.
134  * We use 25 Hz frequency for these.
135  */
136 static unsigned long poll_low_timeout = 40000000UL;
137 
138 /* Maximum domain id, if not given via qci */
139 static int ap_max_domain_id = 15;
140 /* Maximum adapter id, if not given via qci */
141 static int ap_max_adapter_id = 63;
142 
143 static const struct bus_type ap_bus_type;
144 
145 /* Adapter interrupt definitions */
146 static void ap_interrupt_handler(struct airq_struct *airq,
147 				 struct tpi_info *tpi_info);
148 
149 static bool ap_irq_flag;
150 
151 static struct airq_struct ap_airq = {
152 	.handler = ap_interrupt_handler,
153 	.isc = AP_ISC,
154 };
155 
156 /**
157  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
158  *
159  * Returns the address of the local-summary-indicator of the adapter
160  * interrupt handler for AP, or NULL if adapter interrupts are not
161  * available.
162  */
163 void *ap_airq_ptr(void)
164 {
165 	if (ap_irq_flag)
166 		return ap_airq.lsi_ptr;
167 	return NULL;
168 }
169 
170 /**
171  * ap_interrupts_available(): Test if AP interrupts are available.
172  *
173  * Returns 1 if AP interrupts are available.
174  */
175 static int ap_interrupts_available(void)
176 {
177 	return test_facility(65);
178 }
179 
180 /**
181  * ap_qci_available(): Test if AP configuration
182  * information can be queried via QCI subfunction.
183  *
184  * Returns 1 if subfunction PQAP(QCI) is available.
185  */
186 static int ap_qci_available(void)
187 {
188 	return test_facility(12);
189 }
190 
191 /**
192  * ap_apft_available(): Test if AP facilities test (APFT)
193  * facility is available.
194  *
195  * Returns 1 if APFT is available.
196  */
197 static int ap_apft_available(void)
198 {
199 	return test_facility(15);
200 }
201 
202 /*
203  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
204  *
205  * Returns 1 if the QACT subfunction is available.
206  */
207 static inline int ap_qact_available(void)
208 {
209 	return ap_qci_info->qact;
210 }
211 
212 /*
213  * ap_sb_available(): Test if the AP secure binding facility is available.
214  *
215  * Returns 1 if secure binding facility is available.
216  */
217 int ap_sb_available(void)
218 {
219 	return ap_qci_info->apsb;
220 }
221 
222 /*
223  * ap_is_se_guest(): Check for SE guest with AP pass-through support.
224  */
225 bool ap_is_se_guest(void)
226 {
227 	return is_prot_virt_guest() && ap_sb_available();
228 }
229 EXPORT_SYMBOL(ap_is_se_guest);
230 
231 /**
232  * ap_init_qci_info(): Allocate and query qci config info.
233  * Does also update the static variables ap_max_domain_id
234  * and ap_max_adapter_id if this info is available.
235  */
236 static void __init ap_init_qci_info(void)
237 {
238 	if (!ap_qci_available() ||
239 	    ap_qci(ap_qci_info)) {
240 		AP_DBF_INFO("%s QCI not supported\n", __func__);
241 		return;
242 	}
243 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
244 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
245 
246 	if (ap_qci_info->apxa) {
247 		if (ap_qci_info->na) {
248 			ap_max_adapter_id = ap_qci_info->na;
249 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
250 				    __func__, ap_max_adapter_id);
251 		}
252 		if (ap_qci_info->nd) {
253 			ap_max_domain_id = ap_qci_info->nd;
254 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
255 				    __func__, ap_max_domain_id);
256 		}
257 	}
258 }
259 
260 /*
261  * ap_test_config(): helper function to extract the nrth bit
262  *		     within the unsigned int array field.
263  */
264 static inline int ap_test_config(unsigned int *field, unsigned int nr)
265 {
266 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
267 }
268 
269 /*
270  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
271  *
272  * Returns 0 if the card is not configured
273  *	   1 if the card is configured or
274  *	     if the configuration information is not available
275  */
276 static inline int ap_test_config_card_id(unsigned int id)
277 {
278 	if (id > ap_max_adapter_id)
279 		return 0;
280 	if (ap_qci_info->flags)
281 		return ap_test_config(ap_qci_info->apm, id);
282 	return 1;
283 }
284 
285 /*
286  * ap_test_config_usage_domain(): Test, whether an AP usage domain
287  * is configured.
288  *
289  * Returns 0 if the usage domain is not configured
290  *	   1 if the usage domain is configured or
291  *	     if the configuration information is not available
292  */
293 int ap_test_config_usage_domain(unsigned int domain)
294 {
295 	if (domain > ap_max_domain_id)
296 		return 0;
297 	if (ap_qci_info->flags)
298 		return ap_test_config(ap_qci_info->aqm, domain);
299 	return 1;
300 }
301 EXPORT_SYMBOL(ap_test_config_usage_domain);
302 
303 /*
304  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
305  * is configured.
306  * @domain AP control domain ID
307  *
308  * Returns 1 if the control domain is configured
309  *	   0 in all other cases
310  */
311 int ap_test_config_ctrl_domain(unsigned int domain)
312 {
313 	if (!ap_qci_info || domain > ap_max_domain_id)
314 		return 0;
315 	return ap_test_config(ap_qci_info->adm, domain);
316 }
317 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
318 
319 /*
320  * ap_queue_info(): Check and get AP queue info.
321  * Returns: 1 if APQN exists and info is filled,
322  *	    0 if APQN seems to exist but there is no info
323  *	      available (eg. caused by an asynch pending error)
324  *	   -1 invalid APQN, TAPQ error or AP queue status which
325  *	      indicates there is no APQN.
326  */
327 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
328 			 bool *decfg, bool *cstop)
329 {
330 	struct ap_queue_status status;
331 
332 	hwinfo->value = 0;
333 
334 	/* make sure we don't run into a specifiation exception */
335 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
336 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
337 		return -1;
338 
339 	/* call TAPQ on this APQN */
340 	status = ap_test_queue(qid, ap_apft_available(), hwinfo);
341 
342 	switch (status.response_code) {
343 	case AP_RESPONSE_NORMAL:
344 	case AP_RESPONSE_RESET_IN_PROGRESS:
345 	case AP_RESPONSE_DECONFIGURED:
346 	case AP_RESPONSE_CHECKSTOPPED:
347 	case AP_RESPONSE_BUSY:
348 		/* For all these RCs the tapq info should be available */
349 		break;
350 	default:
351 		/* On a pending async error the info should be available */
352 		if (!status.async)
353 			return -1;
354 		break;
355 	}
356 
357 	/* There should be at least one of the mode bits set */
358 	if (WARN_ON_ONCE(!hwinfo->value))
359 		return 0;
360 
361 	*decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
362 	*cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
363 
364 	return 1;
365 }
366 
367 void ap_wait(enum ap_sm_wait wait)
368 {
369 	ktime_t hr_time;
370 
371 	switch (wait) {
372 	case AP_SM_WAIT_AGAIN:
373 	case AP_SM_WAIT_INTERRUPT:
374 		if (ap_irq_flag)
375 			break;
376 		if (ap_poll_kthread) {
377 			wake_up(&ap_poll_wait);
378 			break;
379 		}
380 		fallthrough;
381 	case AP_SM_WAIT_LOW_TIMEOUT:
382 	case AP_SM_WAIT_HIGH_TIMEOUT:
383 		spin_lock_bh(&ap_poll_timer_lock);
384 		if (!hrtimer_is_queued(&ap_poll_timer)) {
385 			hr_time =
386 				wait == AP_SM_WAIT_LOW_TIMEOUT ?
387 				poll_low_timeout : poll_high_timeout;
388 			hrtimer_forward_now(&ap_poll_timer, hr_time);
389 			hrtimer_restart(&ap_poll_timer);
390 		}
391 		spin_unlock_bh(&ap_poll_timer_lock);
392 		break;
393 	case AP_SM_WAIT_NONE:
394 	default:
395 		break;
396 	}
397 }
398 
399 /**
400  * ap_request_timeout(): Handling of request timeouts
401  * @t: timer making this callback
402  *
403  * Handles request timeouts.
404  */
405 void ap_request_timeout(struct timer_list *t)
406 {
407 	struct ap_queue *aq = from_timer(aq, t, timeout);
408 
409 	spin_lock_bh(&aq->lock);
410 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
411 	spin_unlock_bh(&aq->lock);
412 }
413 
414 /**
415  * ap_poll_timeout(): AP receive polling for finished AP requests.
416  * @unused: Unused pointer.
417  *
418  * Schedules the AP tasklet using a high resolution timer.
419  */
420 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
421 {
422 	tasklet_schedule(&ap_tasklet);
423 	return HRTIMER_NORESTART;
424 }
425 
426 /**
427  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
428  * @airq: pointer to adapter interrupt descriptor
429  * @tpi_info: ignored
430  */
431 static void ap_interrupt_handler(struct airq_struct *airq,
432 				 struct tpi_info *tpi_info)
433 {
434 	inc_irq_stat(IRQIO_APB);
435 	tasklet_schedule(&ap_tasklet);
436 }
437 
438 /**
439  * ap_tasklet_fn(): Tasklet to poll all AP devices.
440  * @dummy: Unused variable
441  *
442  * Poll all AP devices on the bus.
443  */
444 static void ap_tasklet_fn(unsigned long dummy)
445 {
446 	int bkt;
447 	struct ap_queue *aq;
448 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
449 
450 	/* Reset the indicator if interrupts are used. Thus new interrupts can
451 	 * be received. Doing it in the beginning of the tasklet is therefore
452 	 * important that no requests on any AP get lost.
453 	 */
454 	if (ap_irq_flag)
455 		xchg(ap_airq.lsi_ptr, 0);
456 
457 	spin_lock_bh(&ap_queues_lock);
458 	hash_for_each(ap_queues, bkt, aq, hnode) {
459 		spin_lock_bh(&aq->lock);
460 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
461 		spin_unlock_bh(&aq->lock);
462 	}
463 	spin_unlock_bh(&ap_queues_lock);
464 
465 	ap_wait(wait);
466 }
467 
468 static int ap_pending_requests(void)
469 {
470 	int bkt;
471 	struct ap_queue *aq;
472 
473 	spin_lock_bh(&ap_queues_lock);
474 	hash_for_each(ap_queues, bkt, aq, hnode) {
475 		if (aq->queue_count == 0)
476 			continue;
477 		spin_unlock_bh(&ap_queues_lock);
478 		return 1;
479 	}
480 	spin_unlock_bh(&ap_queues_lock);
481 	return 0;
482 }
483 
484 /**
485  * ap_poll_thread(): Thread that polls for finished requests.
486  * @data: Unused pointer
487  *
488  * AP bus poll thread. The purpose of this thread is to poll for
489  * finished requests in a loop if there is a "free" cpu - that is
490  * a cpu that doesn't have anything better to do. The polling stops
491  * as soon as there is another task or if all messages have been
492  * delivered.
493  */
494 static int ap_poll_thread(void *data)
495 {
496 	DECLARE_WAITQUEUE(wait, current);
497 
498 	set_user_nice(current, MAX_NICE);
499 	set_freezable();
500 	while (!kthread_should_stop()) {
501 		add_wait_queue(&ap_poll_wait, &wait);
502 		set_current_state(TASK_INTERRUPTIBLE);
503 		if (!ap_pending_requests()) {
504 			schedule();
505 			try_to_freeze();
506 		}
507 		set_current_state(TASK_RUNNING);
508 		remove_wait_queue(&ap_poll_wait, &wait);
509 		if (need_resched()) {
510 			schedule();
511 			try_to_freeze();
512 			continue;
513 		}
514 		ap_tasklet_fn(0);
515 	}
516 
517 	return 0;
518 }
519 
520 static int ap_poll_thread_start(void)
521 {
522 	int rc;
523 
524 	if (ap_irq_flag || ap_poll_kthread)
525 		return 0;
526 	mutex_lock(&ap_poll_thread_mutex);
527 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
528 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
529 	if (rc)
530 		ap_poll_kthread = NULL;
531 	mutex_unlock(&ap_poll_thread_mutex);
532 	return rc;
533 }
534 
535 static void ap_poll_thread_stop(void)
536 {
537 	if (!ap_poll_kthread)
538 		return;
539 	mutex_lock(&ap_poll_thread_mutex);
540 	kthread_stop(ap_poll_kthread);
541 	ap_poll_kthread = NULL;
542 	mutex_unlock(&ap_poll_thread_mutex);
543 }
544 
545 #define is_card_dev(x) ((x)->parent == ap_root_device)
546 #define is_queue_dev(x) ((x)->parent != ap_root_device)
547 
548 /**
549  * ap_bus_match()
550  * @dev: Pointer to device
551  * @drv: Pointer to device_driver
552  *
553  * AP bus driver registration/unregistration.
554  */
555 static int ap_bus_match(struct device *dev, struct device_driver *drv)
556 {
557 	struct ap_driver *ap_drv = to_ap_drv(drv);
558 	struct ap_device_id *id;
559 
560 	/*
561 	 * Compare device type of the device with the list of
562 	 * supported types of the device_driver.
563 	 */
564 	for (id = ap_drv->ids; id->match_flags; id++) {
565 		if (is_card_dev(dev) &&
566 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
567 		    id->dev_type == to_ap_dev(dev)->device_type)
568 			return 1;
569 		if (is_queue_dev(dev) &&
570 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
571 		    id->dev_type == to_ap_dev(dev)->device_type)
572 			return 1;
573 	}
574 	return 0;
575 }
576 
577 /**
578  * ap_uevent(): Uevent function for AP devices.
579  * @dev: Pointer to device
580  * @env: Pointer to kobj_uevent_env
581  *
582  * It sets up a single environment variable DEV_TYPE which contains the
583  * hardware device type.
584  */
585 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
586 {
587 	int rc = 0;
588 	const struct ap_device *ap_dev = to_ap_dev(dev);
589 
590 	/* Uevents from ap bus core don't need extensions to the env */
591 	if (dev == ap_root_device)
592 		return 0;
593 
594 	if (is_card_dev(dev)) {
595 		struct ap_card *ac = to_ap_card(&ap_dev->device);
596 
597 		/* Set up DEV_TYPE environment variable. */
598 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
599 		if (rc)
600 			return rc;
601 		/* Add MODALIAS= */
602 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
603 		if (rc)
604 			return rc;
605 
606 		/* Add MODE=<accel|cca|ep11> */
607 		if (ac->hwinfo.accel)
608 			rc = add_uevent_var(env, "MODE=accel");
609 		else if (ac->hwinfo.cca)
610 			rc = add_uevent_var(env, "MODE=cca");
611 		else if (ac->hwinfo.ep11)
612 			rc = add_uevent_var(env, "MODE=ep11");
613 		if (rc)
614 			return rc;
615 	} else {
616 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
617 
618 		/* Add MODE=<accel|cca|ep11> */
619 		if (aq->card->hwinfo.accel)
620 			rc = add_uevent_var(env, "MODE=accel");
621 		else if (aq->card->hwinfo.cca)
622 			rc = add_uevent_var(env, "MODE=cca");
623 		else if (aq->card->hwinfo.ep11)
624 			rc = add_uevent_var(env, "MODE=ep11");
625 		if (rc)
626 			return rc;
627 	}
628 
629 	return 0;
630 }
631 
632 static void ap_send_init_scan_done_uevent(void)
633 {
634 	char *envp[] = { "INITSCAN=done", NULL };
635 
636 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
637 }
638 
639 static void ap_send_bindings_complete_uevent(void)
640 {
641 	char buf[32];
642 	char *envp[] = { "BINDINGS=complete", buf, NULL };
643 
644 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
645 		 atomic64_inc_return(&ap_bindings_complete_count));
646 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
647 }
648 
649 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
650 {
651 	char buf[16];
652 	char *envp[] = { buf, NULL };
653 
654 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
655 
656 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
657 }
658 EXPORT_SYMBOL(ap_send_config_uevent);
659 
660 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
661 {
662 	char buf[16];
663 	char *envp[] = { buf, NULL };
664 
665 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
666 
667 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
668 }
669 EXPORT_SYMBOL(ap_send_online_uevent);
670 
671 static void ap_send_mask_changed_uevent(unsigned long *newapm,
672 					unsigned long *newaqm)
673 {
674 	char buf[100];
675 	char *envp[] = { buf, NULL };
676 
677 	if (newapm)
678 		snprintf(buf, sizeof(buf),
679 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
680 			 newapm[0], newapm[1], newapm[2], newapm[3]);
681 	else
682 		snprintf(buf, sizeof(buf),
683 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
684 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
685 
686 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
687 }
688 
689 /*
690  * calc # of bound APQNs
691  */
692 
693 struct __ap_calc_ctrs {
694 	unsigned int apqns;
695 	unsigned int bound;
696 };
697 
698 static int __ap_calc_helper(struct device *dev, void *arg)
699 {
700 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
701 
702 	if (is_queue_dev(dev)) {
703 		pctrs->apqns++;
704 		if (dev->driver)
705 			pctrs->bound++;
706 	}
707 
708 	return 0;
709 }
710 
711 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
712 {
713 	struct __ap_calc_ctrs ctrs;
714 
715 	memset(&ctrs, 0, sizeof(ctrs));
716 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
717 
718 	*apqns = ctrs.apqns;
719 	*bound = ctrs.bound;
720 }
721 
722 /*
723  * After ap bus scan do check if all existing APQNs are
724  * bound to device drivers.
725  */
726 static void ap_check_bindings_complete(void)
727 {
728 	unsigned int apqns, bound;
729 
730 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
731 		ap_calc_bound_apqns(&apqns, &bound);
732 		if (bound == apqns) {
733 			if (!completion_done(&ap_apqn_bindings_complete)) {
734 				complete_all(&ap_apqn_bindings_complete);
735 				pr_debug("%s all apqn bindings complete\n", __func__);
736 			}
737 			ap_send_bindings_complete_uevent();
738 		}
739 	}
740 }
741 
742 /*
743  * Interface to wait for the AP bus to have done one initial ap bus
744  * scan and all detected APQNs have been bound to device drivers.
745  * If these both conditions are not fulfilled, this function blocks
746  * on a condition with wait_for_completion_interruptible_timeout().
747  * If these both conditions are fulfilled (before the timeout hits)
748  * the return value is 0. If the timeout (in jiffies) hits instead
749  * -ETIME is returned. On failures negative return values are
750  * returned to the caller.
751  */
752 int ap_wait_apqn_bindings_complete(unsigned long timeout)
753 {
754 	int rc = 0;
755 	long l;
756 
757 	if (completion_done(&ap_apqn_bindings_complete))
758 		return 0;
759 
760 	if (timeout)
761 		l = wait_for_completion_interruptible_timeout(
762 			&ap_apqn_bindings_complete, timeout);
763 	else
764 		l = wait_for_completion_interruptible(
765 			&ap_apqn_bindings_complete);
766 	if (l < 0)
767 		rc = l == -ERESTARTSYS ? -EINTR : l;
768 	else if (l == 0 && timeout)
769 		rc = -ETIME;
770 
771 	pr_debug("%s rc=%d\n", __func__, rc);
772 	return rc;
773 }
774 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
775 
776 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
777 {
778 	if (is_queue_dev(dev) &&
779 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
780 		device_unregister(dev);
781 	return 0;
782 }
783 
784 static int __ap_revise_reserved(struct device *dev, void *dummy)
785 {
786 	int rc, card, queue, devres, drvres;
787 
788 	if (is_queue_dev(dev)) {
789 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
790 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
791 		mutex_lock(&ap_perms_mutex);
792 		devres = test_bit_inv(card, ap_perms.apm) &&
793 			test_bit_inv(queue, ap_perms.aqm);
794 		mutex_unlock(&ap_perms_mutex);
795 		drvres = to_ap_drv(dev->driver)->flags
796 			& AP_DRIVER_FLAG_DEFAULT;
797 		if (!!devres != !!drvres) {
798 			pr_debug("%s reprobing queue=%02x.%04x\n",
799 				 __func__, card, queue);
800 			rc = device_reprobe(dev);
801 			if (rc)
802 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
803 					    __func__, card, queue);
804 		}
805 	}
806 
807 	return 0;
808 }
809 
810 static void ap_bus_revise_bindings(void)
811 {
812 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
813 }
814 
815 /**
816  * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
817  *			default host driver or not.
818  * @card: the APID of the adapter card to check
819  * @queue: the APQI of the queue to check
820  *
821  * Note: the ap_perms_mutex must be locked by the caller of this function.
822  *
823  * Return: an int specifying whether the AP adapter is reserved for the host (1)
824  *	   or not (0).
825  */
826 int ap_owned_by_def_drv(int card, int queue)
827 {
828 	int rc = 0;
829 
830 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
831 		return -EINVAL;
832 
833 	if (test_bit_inv(card, ap_perms.apm) &&
834 	    test_bit_inv(queue, ap_perms.aqm))
835 		rc = 1;
836 
837 	return rc;
838 }
839 EXPORT_SYMBOL(ap_owned_by_def_drv);
840 
841 /**
842  * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
843  *				       a set is reserved for the host drivers
844  *				       or not.
845  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
846  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
847  *
848  * Note: the ap_perms_mutex must be locked by the caller of this function.
849  *
850  * Return: an int specifying whether each APQN is reserved for the host (1) or
851  *	   not (0)
852  */
853 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
854 				       unsigned long *aqm)
855 {
856 	int card, queue, rc = 0;
857 
858 	for (card = 0; !rc && card < AP_DEVICES; card++)
859 		if (test_bit_inv(card, apm) &&
860 		    test_bit_inv(card, ap_perms.apm))
861 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
862 				if (test_bit_inv(queue, aqm) &&
863 				    test_bit_inv(queue, ap_perms.aqm))
864 					rc = 1;
865 
866 	return rc;
867 }
868 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
869 
870 static int ap_device_probe(struct device *dev)
871 {
872 	struct ap_device *ap_dev = to_ap_dev(dev);
873 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
874 	int card, queue, devres, drvres, rc = -ENODEV;
875 
876 	if (!get_device(dev))
877 		return rc;
878 
879 	if (is_queue_dev(dev)) {
880 		/*
881 		 * If the apqn is marked as reserved/used by ap bus and
882 		 * default drivers, only probe with drivers with the default
883 		 * flag set. If it is not marked, only probe with drivers
884 		 * with the default flag not set.
885 		 */
886 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
887 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
888 		mutex_lock(&ap_perms_mutex);
889 		devres = test_bit_inv(card, ap_perms.apm) &&
890 			test_bit_inv(queue, ap_perms.aqm);
891 		mutex_unlock(&ap_perms_mutex);
892 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
893 		if (!!devres != !!drvres)
894 			goto out;
895 	}
896 
897 	/* Add queue/card to list of active queues/cards */
898 	spin_lock_bh(&ap_queues_lock);
899 	if (is_queue_dev(dev))
900 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
901 			 to_ap_queue(dev)->qid);
902 	spin_unlock_bh(&ap_queues_lock);
903 
904 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
905 
906 	if (rc) {
907 		spin_lock_bh(&ap_queues_lock);
908 		if (is_queue_dev(dev))
909 			hash_del(&to_ap_queue(dev)->hnode);
910 		spin_unlock_bh(&ap_queues_lock);
911 	}
912 
913 out:
914 	if (rc)
915 		put_device(dev);
916 	return rc;
917 }
918 
919 static void ap_device_remove(struct device *dev)
920 {
921 	struct ap_device *ap_dev = to_ap_dev(dev);
922 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
923 
924 	/* prepare ap queue device removal */
925 	if (is_queue_dev(dev))
926 		ap_queue_prepare_remove(to_ap_queue(dev));
927 
928 	/* driver's chance to clean up gracefully */
929 	if (ap_drv->remove)
930 		ap_drv->remove(ap_dev);
931 
932 	/* now do the ap queue device remove */
933 	if (is_queue_dev(dev))
934 		ap_queue_remove(to_ap_queue(dev));
935 
936 	/* Remove queue/card from list of active queues/cards */
937 	spin_lock_bh(&ap_queues_lock);
938 	if (is_queue_dev(dev))
939 		hash_del(&to_ap_queue(dev)->hnode);
940 	spin_unlock_bh(&ap_queues_lock);
941 
942 	put_device(dev);
943 }
944 
945 struct ap_queue *ap_get_qdev(ap_qid_t qid)
946 {
947 	int bkt;
948 	struct ap_queue *aq;
949 
950 	spin_lock_bh(&ap_queues_lock);
951 	hash_for_each(ap_queues, bkt, aq, hnode) {
952 		if (aq->qid == qid) {
953 			get_device(&aq->ap_dev.device);
954 			spin_unlock_bh(&ap_queues_lock);
955 			return aq;
956 		}
957 	}
958 	spin_unlock_bh(&ap_queues_lock);
959 
960 	return NULL;
961 }
962 EXPORT_SYMBOL(ap_get_qdev);
963 
964 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
965 		       char *name)
966 {
967 	struct device_driver *drv = &ap_drv->driver;
968 
969 	drv->bus = &ap_bus_type;
970 	drv->owner = owner;
971 	drv->name = name;
972 	return driver_register(drv);
973 }
974 EXPORT_SYMBOL(ap_driver_register);
975 
976 void ap_driver_unregister(struct ap_driver *ap_drv)
977 {
978 	driver_unregister(&ap_drv->driver);
979 }
980 EXPORT_SYMBOL(ap_driver_unregister);
981 
982 /*
983  * Enforce a synchronous AP bus rescan.
984  * Returns true if the bus scan finds a change in the AP configuration
985  * and AP devices have been added or deleted when this function returns.
986  */
987 bool ap_bus_force_rescan(void)
988 {
989 	unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
990 	bool rc = false;
991 
992 	pr_debug(">%s scan counter=%lu\n", __func__, scan_counter);
993 
994 	/* Only trigger AP bus scans after the initial scan is done */
995 	if (scan_counter <= 0)
996 		goto out;
997 
998 	/* Try to acquire the AP scan bus mutex */
999 	if (mutex_trylock(&ap_scan_bus_mutex)) {
1000 		/* mutex acquired, run the AP bus scan */
1001 		ap_scan_bus_result = ap_scan_bus();
1002 		rc = ap_scan_bus_result;
1003 		mutex_unlock(&ap_scan_bus_mutex);
1004 		goto out;
1005 	}
1006 
1007 	/*
1008 	 * Mutex acquire failed. So there is currently another task
1009 	 * already running the AP bus scan. Then let's simple wait
1010 	 * for the lock which means the other task has finished and
1011 	 * stored the result in ap_scan_bus_result.
1012 	 */
1013 	if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1014 		/* some error occurred, ignore and go out */
1015 		goto out;
1016 	}
1017 	rc = ap_scan_bus_result;
1018 	mutex_unlock(&ap_scan_bus_mutex);
1019 
1020 out:
1021 	pr_debug("%s rc=%d\n", __func__, rc);
1022 	return rc;
1023 }
1024 EXPORT_SYMBOL(ap_bus_force_rescan);
1025 
1026 /*
1027  * A config change has happened, force an ap bus rescan.
1028  */
1029 static int ap_bus_cfg_chg(struct notifier_block *nb,
1030 			  unsigned long action, void *data)
1031 {
1032 	if (action != CHSC_NOTIFY_AP_CFG)
1033 		return NOTIFY_DONE;
1034 
1035 	pr_debug("%s config change, forcing bus rescan\n", __func__);
1036 
1037 	ap_bus_force_rescan();
1038 
1039 	return NOTIFY_OK;
1040 }
1041 
1042 static struct notifier_block ap_bus_nb = {
1043 	.notifier_call = ap_bus_cfg_chg,
1044 };
1045 
1046 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1047 {
1048 	int i, n, b;
1049 
1050 	/* bits needs to be a multiple of 8 */
1051 	if (bits & 0x07)
1052 		return -EINVAL;
1053 
1054 	if (str[0] == '0' && str[1] == 'x')
1055 		str++;
1056 	if (*str == 'x')
1057 		str++;
1058 
1059 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1060 		b = hex_to_bin(*str);
1061 		for (n = 0; n < 4; n++)
1062 			if (b & (0x08 >> n))
1063 				set_bit_inv(i + n, bitmap);
1064 		i += 4;
1065 	}
1066 
1067 	if (*str == '\n')
1068 		str++;
1069 	if (*str)
1070 		return -EINVAL;
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL(ap_hex2bitmap);
1074 
1075 /*
1076  * modify_bitmap() - parse bitmask argument and modify an existing
1077  * bit mask accordingly. A concatenation (done with ',') of these
1078  * terms is recognized:
1079  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1080  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1081  * 0...bits-1; the leading + or - is required. Here are some examples:
1082  *   +0-15,+32,-128,-0xFF
1083  *   -0-255,+1-16,+0x128
1084  *   +1,+2,+3,+4,-5,-7-10
1085  * Returns the new bitmap after all changes have been applied. Every
1086  * positive value in the string will set a bit and every negative value
1087  * in the string will clear a bit. As a bit may be touched more than once,
1088  * the last 'operation' wins:
1089  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1090  * cleared again. All other bits are unmodified.
1091  */
1092 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1093 {
1094 	int a, i, z;
1095 	char *np, sign;
1096 
1097 	/* bits needs to be a multiple of 8 */
1098 	if (bits & 0x07)
1099 		return -EINVAL;
1100 
1101 	while (*str) {
1102 		sign = *str++;
1103 		if (sign != '+' && sign != '-')
1104 			return -EINVAL;
1105 		a = z = simple_strtoul(str, &np, 0);
1106 		if (str == np || a >= bits)
1107 			return -EINVAL;
1108 		str = np;
1109 		if (*str == '-') {
1110 			z = simple_strtoul(++str, &np, 0);
1111 			if (str == np || a > z || z >= bits)
1112 				return -EINVAL;
1113 			str = np;
1114 		}
1115 		for (i = a; i <= z; i++)
1116 			if (sign == '+')
1117 				set_bit_inv(i, bitmap);
1118 			else
1119 				clear_bit_inv(i, bitmap);
1120 		while (*str == ',' || *str == '\n')
1121 			str++;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1128 			       unsigned long *newmap)
1129 {
1130 	unsigned long size;
1131 	int rc;
1132 
1133 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1134 	if (*str == '+' || *str == '-') {
1135 		memcpy(newmap, bitmap, size);
1136 		rc = modify_bitmap(str, newmap, bits);
1137 	} else {
1138 		memset(newmap, 0, size);
1139 		rc = ap_hex2bitmap(str, newmap, bits);
1140 	}
1141 	return rc;
1142 }
1143 
1144 int ap_parse_mask_str(const char *str,
1145 		      unsigned long *bitmap, int bits,
1146 		      struct mutex *lock)
1147 {
1148 	unsigned long *newmap, size;
1149 	int rc;
1150 
1151 	/* bits needs to be a multiple of 8 */
1152 	if (bits & 0x07)
1153 		return -EINVAL;
1154 
1155 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1156 	newmap = kmalloc(size, GFP_KERNEL);
1157 	if (!newmap)
1158 		return -ENOMEM;
1159 	if (mutex_lock_interruptible(lock)) {
1160 		kfree(newmap);
1161 		return -ERESTARTSYS;
1162 	}
1163 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1164 	if (rc == 0)
1165 		memcpy(bitmap, newmap, size);
1166 	mutex_unlock(lock);
1167 	kfree(newmap);
1168 	return rc;
1169 }
1170 EXPORT_SYMBOL(ap_parse_mask_str);
1171 
1172 /*
1173  * AP bus attributes.
1174  */
1175 
1176 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1177 {
1178 	return sysfs_emit(buf, "%d\n", ap_domain_index);
1179 }
1180 
1181 static ssize_t ap_domain_store(const struct bus_type *bus,
1182 			       const char *buf, size_t count)
1183 {
1184 	int domain;
1185 
1186 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1187 	    domain < 0 || domain > ap_max_domain_id ||
1188 	    !test_bit_inv(domain, ap_perms.aqm))
1189 		return -EINVAL;
1190 
1191 	spin_lock_bh(&ap_domain_lock);
1192 	ap_domain_index = domain;
1193 	spin_unlock_bh(&ap_domain_lock);
1194 
1195 	AP_DBF_INFO("%s stored new default domain=%d\n",
1196 		    __func__, domain);
1197 
1198 	return count;
1199 }
1200 
1201 static BUS_ATTR_RW(ap_domain);
1202 
1203 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1204 {
1205 	if (!ap_qci_info->flags)	/* QCI not supported */
1206 		return sysfs_emit(buf, "not supported\n");
1207 
1208 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1209 			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1210 			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1211 			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1212 			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1213 }
1214 
1215 static BUS_ATTR_RO(ap_control_domain_mask);
1216 
1217 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1218 {
1219 	if (!ap_qci_info->flags)	/* QCI not supported */
1220 		return sysfs_emit(buf, "not supported\n");
1221 
1222 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1223 			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1224 			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1225 			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1226 			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1227 }
1228 
1229 static BUS_ATTR_RO(ap_usage_domain_mask);
1230 
1231 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1232 {
1233 	if (!ap_qci_info->flags)	/* QCI not supported */
1234 		return sysfs_emit(buf, "not supported\n");
1235 
1236 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1237 			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1238 			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1239 			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1240 			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1241 }
1242 
1243 static BUS_ATTR_RO(ap_adapter_mask);
1244 
1245 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1246 {
1247 	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1248 }
1249 
1250 static BUS_ATTR_RO(ap_interrupts);
1251 
1252 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1253 {
1254 	return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1255 }
1256 
1257 static ssize_t config_time_store(const struct bus_type *bus,
1258 				 const char *buf, size_t count)
1259 {
1260 	int time;
1261 
1262 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1263 		return -EINVAL;
1264 	ap_scan_bus_time = time;
1265 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1266 	return count;
1267 }
1268 
1269 static BUS_ATTR_RW(config_time);
1270 
1271 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1272 {
1273 	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1274 }
1275 
1276 static ssize_t poll_thread_store(const struct bus_type *bus,
1277 				 const char *buf, size_t count)
1278 {
1279 	bool value;
1280 	int rc;
1281 
1282 	rc = kstrtobool(buf, &value);
1283 	if (rc)
1284 		return rc;
1285 
1286 	if (value) {
1287 		rc = ap_poll_thread_start();
1288 		if (rc)
1289 			count = rc;
1290 	} else {
1291 		ap_poll_thread_stop();
1292 	}
1293 	return count;
1294 }
1295 
1296 static BUS_ATTR_RW(poll_thread);
1297 
1298 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1299 {
1300 	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1301 }
1302 
1303 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1304 				  size_t count)
1305 {
1306 	unsigned long value;
1307 	ktime_t hr_time;
1308 	int rc;
1309 
1310 	rc = kstrtoul(buf, 0, &value);
1311 	if (rc)
1312 		return rc;
1313 
1314 	/* 120 seconds = maximum poll interval */
1315 	if (value > 120000000000UL)
1316 		return -EINVAL;
1317 	poll_high_timeout = value;
1318 	hr_time = poll_high_timeout;
1319 
1320 	spin_lock_bh(&ap_poll_timer_lock);
1321 	hrtimer_cancel(&ap_poll_timer);
1322 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1323 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1324 	spin_unlock_bh(&ap_poll_timer_lock);
1325 
1326 	return count;
1327 }
1328 
1329 static BUS_ATTR_RW(poll_timeout);
1330 
1331 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1332 {
1333 	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1334 }
1335 
1336 static BUS_ATTR_RO(ap_max_domain_id);
1337 
1338 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1339 {
1340 	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1341 }
1342 
1343 static BUS_ATTR_RO(ap_max_adapter_id);
1344 
1345 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1346 {
1347 	int rc;
1348 
1349 	if (mutex_lock_interruptible(&ap_perms_mutex))
1350 		return -ERESTARTSYS;
1351 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1352 			ap_perms.apm[0], ap_perms.apm[1],
1353 			ap_perms.apm[2], ap_perms.apm[3]);
1354 	mutex_unlock(&ap_perms_mutex);
1355 
1356 	return rc;
1357 }
1358 
1359 static int __verify_card_reservations(struct device_driver *drv, void *data)
1360 {
1361 	int rc = 0;
1362 	struct ap_driver *ap_drv = to_ap_drv(drv);
1363 	unsigned long *newapm = (unsigned long *)data;
1364 
1365 	/*
1366 	 * increase the driver's module refcounter to be sure it is not
1367 	 * going away when we invoke the callback function.
1368 	 */
1369 	if (!try_module_get(drv->owner))
1370 		return 0;
1371 
1372 	if (ap_drv->in_use) {
1373 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1374 		if (rc)
1375 			rc = -EBUSY;
1376 	}
1377 
1378 	/* release the driver's module */
1379 	module_put(drv->owner);
1380 
1381 	return rc;
1382 }
1383 
1384 static int apmask_commit(unsigned long *newapm)
1385 {
1386 	int rc;
1387 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1388 
1389 	/*
1390 	 * Check if any bits in the apmask have been set which will
1391 	 * result in queues being removed from non-default drivers
1392 	 */
1393 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1394 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1395 				      __verify_card_reservations);
1396 		if (rc)
1397 			return rc;
1398 	}
1399 
1400 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1401 
1402 	return 0;
1403 }
1404 
1405 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1406 			    size_t count)
1407 {
1408 	int rc, changes = 0;
1409 	DECLARE_BITMAP(newapm, AP_DEVICES);
1410 
1411 	if (mutex_lock_interruptible(&ap_perms_mutex))
1412 		return -ERESTARTSYS;
1413 
1414 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1415 	if (rc)
1416 		goto done;
1417 
1418 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1419 	if (changes)
1420 		rc = apmask_commit(newapm);
1421 
1422 done:
1423 	mutex_unlock(&ap_perms_mutex);
1424 	if (rc)
1425 		return rc;
1426 
1427 	if (changes) {
1428 		ap_bus_revise_bindings();
1429 		ap_send_mask_changed_uevent(newapm, NULL);
1430 	}
1431 
1432 	return count;
1433 }
1434 
1435 static BUS_ATTR_RW(apmask);
1436 
1437 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1438 {
1439 	int rc;
1440 
1441 	if (mutex_lock_interruptible(&ap_perms_mutex))
1442 		return -ERESTARTSYS;
1443 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1444 			ap_perms.aqm[0], ap_perms.aqm[1],
1445 			ap_perms.aqm[2], ap_perms.aqm[3]);
1446 	mutex_unlock(&ap_perms_mutex);
1447 
1448 	return rc;
1449 }
1450 
1451 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1452 {
1453 	int rc = 0;
1454 	struct ap_driver *ap_drv = to_ap_drv(drv);
1455 	unsigned long *newaqm = (unsigned long *)data;
1456 
1457 	/*
1458 	 * increase the driver's module refcounter to be sure it is not
1459 	 * going away when we invoke the callback function.
1460 	 */
1461 	if (!try_module_get(drv->owner))
1462 		return 0;
1463 
1464 	if (ap_drv->in_use) {
1465 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1466 		if (rc)
1467 			rc = -EBUSY;
1468 	}
1469 
1470 	/* release the driver's module */
1471 	module_put(drv->owner);
1472 
1473 	return rc;
1474 }
1475 
1476 static int aqmask_commit(unsigned long *newaqm)
1477 {
1478 	int rc;
1479 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1480 
1481 	/*
1482 	 * Check if any bits in the aqmask have been set which will
1483 	 * result in queues being removed from non-default drivers
1484 	 */
1485 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1486 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1487 				      __verify_queue_reservations);
1488 		if (rc)
1489 			return rc;
1490 	}
1491 
1492 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1493 
1494 	return 0;
1495 }
1496 
1497 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1498 			    size_t count)
1499 {
1500 	int rc, changes = 0;
1501 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1502 
1503 	if (mutex_lock_interruptible(&ap_perms_mutex))
1504 		return -ERESTARTSYS;
1505 
1506 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1507 	if (rc)
1508 		goto done;
1509 
1510 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1511 	if (changes)
1512 		rc = aqmask_commit(newaqm);
1513 
1514 done:
1515 	mutex_unlock(&ap_perms_mutex);
1516 	if (rc)
1517 		return rc;
1518 
1519 	if (changes) {
1520 		ap_bus_revise_bindings();
1521 		ap_send_mask_changed_uevent(NULL, newaqm);
1522 	}
1523 
1524 	return count;
1525 }
1526 
1527 static BUS_ATTR_RW(aqmask);
1528 
1529 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1530 {
1531 	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1532 }
1533 
1534 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1535 			   size_t count)
1536 {
1537 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1538 
1539 	ap_bus_force_rescan();
1540 
1541 	return count;
1542 }
1543 
1544 static BUS_ATTR_RW(scans);
1545 
1546 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1547 {
1548 	int rc;
1549 	unsigned int apqns, n;
1550 
1551 	ap_calc_bound_apqns(&apqns, &n);
1552 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1553 		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1554 	else
1555 		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1556 
1557 	return rc;
1558 }
1559 
1560 static BUS_ATTR_RO(bindings);
1561 
1562 static ssize_t features_show(const struct bus_type *bus, char *buf)
1563 {
1564 	int n = 0;
1565 
1566 	if (!ap_qci_info->flags)	/* QCI not supported */
1567 		return sysfs_emit(buf, "-\n");
1568 
1569 	if (ap_qci_info->apsc)
1570 		n += sysfs_emit_at(buf, n, "APSC ");
1571 	if (ap_qci_info->apxa)
1572 		n += sysfs_emit_at(buf, n, "APXA ");
1573 	if (ap_qci_info->qact)
1574 		n += sysfs_emit_at(buf, n, "QACT ");
1575 	if (ap_qci_info->rc8a)
1576 		n += sysfs_emit_at(buf, n, "RC8A ");
1577 	if (ap_qci_info->apsb)
1578 		n += sysfs_emit_at(buf, n, "APSB ");
1579 
1580 	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1581 
1582 	return n;
1583 }
1584 
1585 static BUS_ATTR_RO(features);
1586 
1587 static struct attribute *ap_bus_attrs[] = {
1588 	&bus_attr_ap_domain.attr,
1589 	&bus_attr_ap_control_domain_mask.attr,
1590 	&bus_attr_ap_usage_domain_mask.attr,
1591 	&bus_attr_ap_adapter_mask.attr,
1592 	&bus_attr_config_time.attr,
1593 	&bus_attr_poll_thread.attr,
1594 	&bus_attr_ap_interrupts.attr,
1595 	&bus_attr_poll_timeout.attr,
1596 	&bus_attr_ap_max_domain_id.attr,
1597 	&bus_attr_ap_max_adapter_id.attr,
1598 	&bus_attr_apmask.attr,
1599 	&bus_attr_aqmask.attr,
1600 	&bus_attr_scans.attr,
1601 	&bus_attr_bindings.attr,
1602 	&bus_attr_features.attr,
1603 	NULL,
1604 };
1605 ATTRIBUTE_GROUPS(ap_bus);
1606 
1607 static const struct bus_type ap_bus_type = {
1608 	.name = "ap",
1609 	.bus_groups = ap_bus_groups,
1610 	.match = &ap_bus_match,
1611 	.uevent = &ap_uevent,
1612 	.probe = ap_device_probe,
1613 	.remove = ap_device_remove,
1614 };
1615 
1616 /**
1617  * ap_select_domain(): Select an AP domain if possible and we haven't
1618  * already done so before.
1619  */
1620 static void ap_select_domain(void)
1621 {
1622 	struct ap_queue_status status;
1623 	int card, dom;
1624 
1625 	/*
1626 	 * Choose the default domain. Either the one specified with
1627 	 * the "domain=" parameter or the first domain with at least
1628 	 * one valid APQN.
1629 	 */
1630 	spin_lock_bh(&ap_domain_lock);
1631 	if (ap_domain_index >= 0) {
1632 		/* Domain has already been selected. */
1633 		goto out;
1634 	}
1635 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1636 		if (!ap_test_config_usage_domain(dom) ||
1637 		    !test_bit_inv(dom, ap_perms.aqm))
1638 			continue;
1639 		for (card = 0; card <= ap_max_adapter_id; card++) {
1640 			if (!ap_test_config_card_id(card) ||
1641 			    !test_bit_inv(card, ap_perms.apm))
1642 				continue;
1643 			status = ap_test_queue(AP_MKQID(card, dom),
1644 					       ap_apft_available(),
1645 					       NULL);
1646 			if (status.response_code == AP_RESPONSE_NORMAL)
1647 				break;
1648 		}
1649 		if (card <= ap_max_adapter_id)
1650 			break;
1651 	}
1652 	if (dom <= ap_max_domain_id) {
1653 		ap_domain_index = dom;
1654 		AP_DBF_INFO("%s new default domain is %d\n",
1655 			    __func__, ap_domain_index);
1656 	}
1657 out:
1658 	spin_unlock_bh(&ap_domain_lock);
1659 }
1660 
1661 /*
1662  * This function checks the type and returns either 0 for not
1663  * supported or the highest compatible type value (which may
1664  * include the input type value).
1665  */
1666 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1667 {
1668 	int comp_type = 0;
1669 
1670 	/* < CEX4 is not supported */
1671 	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1672 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1673 			    __func__, AP_QID_CARD(qid),
1674 			    AP_QID_QUEUE(qid), rawtype);
1675 		return 0;
1676 	}
1677 	/* up to CEX8 known and fully supported */
1678 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1679 		return rawtype;
1680 	/*
1681 	 * unknown new type > CEX8, check for compatibility
1682 	 * to the highest known and supported type which is
1683 	 * currently CEX8 with the help of the QACT function.
1684 	 */
1685 	if (ap_qact_available()) {
1686 		struct ap_queue_status status;
1687 		union ap_qact_ap_info apinfo = {0};
1688 
1689 		apinfo.mode = (func >> 26) & 0x07;
1690 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1691 		status = ap_qact(qid, 0, &apinfo);
1692 		if (status.response_code == AP_RESPONSE_NORMAL &&
1693 		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1694 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1695 			comp_type = apinfo.cat;
1696 	}
1697 	if (!comp_type)
1698 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1699 			    __func__, AP_QID_CARD(qid),
1700 			    AP_QID_QUEUE(qid), rawtype);
1701 	else if (comp_type != rawtype)
1702 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1703 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1704 			    rawtype, comp_type);
1705 	return comp_type;
1706 }
1707 
1708 /*
1709  * Helper function to be used with bus_find_dev
1710  * matches for the card device with the given id
1711  */
1712 static int __match_card_device_with_id(struct device *dev, const void *data)
1713 {
1714 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1715 }
1716 
1717 /*
1718  * Helper function to be used with bus_find_dev
1719  * matches for the queue device with a given qid
1720  */
1721 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1722 {
1723 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1724 }
1725 
1726 /*
1727  * Helper function to be used with bus_find_dev
1728  * matches any queue device with given queue id
1729  */
1730 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1731 {
1732 	return is_queue_dev(dev) &&
1733 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1734 }
1735 
1736 /* Helper function for notify_config_changed */
1737 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1738 {
1739 	struct ap_driver *ap_drv = to_ap_drv(drv);
1740 
1741 	if (try_module_get(drv->owner)) {
1742 		if (ap_drv->on_config_changed)
1743 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1744 		module_put(drv->owner);
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 /* Notify all drivers about an qci config change */
1751 static inline void notify_config_changed(void)
1752 {
1753 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1754 			 __drv_notify_config_changed);
1755 }
1756 
1757 /* Helper function for notify_scan_complete */
1758 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1759 {
1760 	struct ap_driver *ap_drv = to_ap_drv(drv);
1761 
1762 	if (try_module_get(drv->owner)) {
1763 		if (ap_drv->on_scan_complete)
1764 			ap_drv->on_scan_complete(ap_qci_info,
1765 						 ap_qci_info_old);
1766 		module_put(drv->owner);
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 /* Notify all drivers about bus scan complete */
1773 static inline void notify_scan_complete(void)
1774 {
1775 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1776 			 __drv_notify_scan_complete);
1777 }
1778 
1779 /*
1780  * Helper function for ap_scan_bus().
1781  * Remove card device and associated queue devices.
1782  */
1783 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1784 {
1785 	bus_for_each_dev(&ap_bus_type, NULL,
1786 			 (void *)(long)ac->id,
1787 			 __ap_queue_devices_with_id_unregister);
1788 	device_unregister(&ac->ap_dev.device);
1789 }
1790 
1791 /*
1792  * Helper function for ap_scan_bus().
1793  * Does the scan bus job for all the domains within
1794  * a valid adapter given by an ap_card ptr.
1795  */
1796 static inline void ap_scan_domains(struct ap_card *ac)
1797 {
1798 	struct ap_tapq_hwinfo hwinfo;
1799 	bool decfg, chkstop;
1800 	struct ap_queue *aq;
1801 	struct device *dev;
1802 	ap_qid_t qid;
1803 	int rc, dom;
1804 
1805 	/*
1806 	 * Go through the configuration for the domains and compare them
1807 	 * to the existing queue devices. Also take care of the config
1808 	 * and error state for the queue devices.
1809 	 */
1810 
1811 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1812 		qid = AP_MKQID(ac->id, dom);
1813 		dev = bus_find_device(&ap_bus_type, NULL,
1814 				      (void *)(long)qid,
1815 				      __match_queue_device_with_qid);
1816 		aq = dev ? to_ap_queue(dev) : NULL;
1817 		if (!ap_test_config_usage_domain(dom)) {
1818 			if (dev) {
1819 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1820 					    __func__, ac->id, dom);
1821 				device_unregister(dev);
1822 			}
1823 			goto put_dev_and_continue;
1824 		}
1825 		/* domain is valid, get info from this APQN */
1826 		rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1827 		switch (rc) {
1828 		case -1:
1829 			if (dev) {
1830 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1831 					    __func__, ac->id, dom);
1832 				device_unregister(dev);
1833 			}
1834 			fallthrough;
1835 		case 0:
1836 			goto put_dev_and_continue;
1837 		default:
1838 			break;
1839 		}
1840 		/* if no queue device exists, create a new one */
1841 		if (!aq) {
1842 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1843 			if (!aq) {
1844 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1845 					    __func__, ac->id, dom);
1846 				continue;
1847 			}
1848 			aq->card = ac;
1849 			aq->config = !decfg;
1850 			aq->chkstop = chkstop;
1851 			aq->se_bstate = hwinfo.bs;
1852 			dev = &aq->ap_dev.device;
1853 			dev->bus = &ap_bus_type;
1854 			dev->parent = &ac->ap_dev.device;
1855 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1856 			/* register queue device */
1857 			rc = device_register(dev);
1858 			if (rc) {
1859 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1860 					    __func__, ac->id, dom);
1861 				goto put_dev_and_continue;
1862 			}
1863 			/* get it and thus adjust reference counter */
1864 			get_device(dev);
1865 			if (decfg) {
1866 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1867 					    __func__, ac->id, dom);
1868 			} else if (chkstop) {
1869 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1870 					    __func__, ac->id, dom);
1871 			} else {
1872 				/* nudge the queue's state machine */
1873 				ap_queue_init_state(aq);
1874 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1875 					    __func__, ac->id, dom);
1876 			}
1877 			goto put_dev_and_continue;
1878 		}
1879 		/* handle state changes on already existing queue device */
1880 		spin_lock_bh(&aq->lock);
1881 		/* SE bind state */
1882 		aq->se_bstate = hwinfo.bs;
1883 		/* checkstop state */
1884 		if (chkstop && !aq->chkstop) {
1885 			/* checkstop on */
1886 			aq->chkstop = true;
1887 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1888 				aq->dev_state = AP_DEV_STATE_ERROR;
1889 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1890 			}
1891 			spin_unlock_bh(&aq->lock);
1892 			pr_debug("%s(%d,%d) queue dev checkstop on\n",
1893 				 __func__, ac->id, dom);
1894 			/* 'receive' pending messages with -EAGAIN */
1895 			ap_flush_queue(aq);
1896 			goto put_dev_and_continue;
1897 		} else if (!chkstop && aq->chkstop) {
1898 			/* checkstop off */
1899 			aq->chkstop = false;
1900 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1901 				_ap_queue_init_state(aq);
1902 			spin_unlock_bh(&aq->lock);
1903 			pr_debug("%s(%d,%d) queue dev checkstop off\n",
1904 				 __func__, ac->id, dom);
1905 			goto put_dev_and_continue;
1906 		}
1907 		/* config state change */
1908 		if (decfg && aq->config) {
1909 			/* config off this queue device */
1910 			aq->config = false;
1911 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1912 				aq->dev_state = AP_DEV_STATE_ERROR;
1913 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1914 			}
1915 			spin_unlock_bh(&aq->lock);
1916 			pr_debug("%s(%d,%d) queue dev config off\n",
1917 				 __func__, ac->id, dom);
1918 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1919 			/* 'receive' pending messages with -EAGAIN */
1920 			ap_flush_queue(aq);
1921 			goto put_dev_and_continue;
1922 		} else if (!decfg && !aq->config) {
1923 			/* config on this queue device */
1924 			aq->config = true;
1925 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1926 				_ap_queue_init_state(aq);
1927 			spin_unlock_bh(&aq->lock);
1928 			pr_debug("%s(%d,%d) queue dev config on\n",
1929 				 __func__, ac->id, dom);
1930 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1931 			goto put_dev_and_continue;
1932 		}
1933 		/* handle other error states */
1934 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1935 			spin_unlock_bh(&aq->lock);
1936 			/* 'receive' pending messages with -EAGAIN */
1937 			ap_flush_queue(aq);
1938 			/* re-init (with reset) the queue device */
1939 			ap_queue_init_state(aq);
1940 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1941 				    __func__, ac->id, dom);
1942 			goto put_dev_and_continue;
1943 		}
1944 		spin_unlock_bh(&aq->lock);
1945 put_dev_and_continue:
1946 		put_device(dev);
1947 	}
1948 }
1949 
1950 /*
1951  * Helper function for ap_scan_bus().
1952  * Does the scan bus job for the given adapter id.
1953  */
1954 static inline void ap_scan_adapter(int ap)
1955 {
1956 	struct ap_tapq_hwinfo hwinfo;
1957 	int rc, dom, comp_type;
1958 	bool decfg, chkstop;
1959 	struct ap_card *ac;
1960 	struct device *dev;
1961 	ap_qid_t qid;
1962 
1963 	/* Is there currently a card device for this adapter ? */
1964 	dev = bus_find_device(&ap_bus_type, NULL,
1965 			      (void *)(long)ap,
1966 			      __match_card_device_with_id);
1967 	ac = dev ? to_ap_card(dev) : NULL;
1968 
1969 	/* Adapter not in configuration ? */
1970 	if (!ap_test_config_card_id(ap)) {
1971 		if (ac) {
1972 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1973 				    __func__, ap);
1974 			ap_scan_rm_card_dev_and_queue_devs(ac);
1975 			put_device(dev);
1976 		}
1977 		return;
1978 	}
1979 
1980 	/*
1981 	 * Adapter ap is valid in the current configuration. So do some checks:
1982 	 * If no card device exists, build one. If a card device exists, check
1983 	 * for type and functions changed. For all this we need to find a valid
1984 	 * APQN first.
1985 	 */
1986 
1987 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1988 		if (ap_test_config_usage_domain(dom)) {
1989 			qid = AP_MKQID(ap, dom);
1990 			if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
1991 				break;
1992 		}
1993 	if (dom > ap_max_domain_id) {
1994 		/* Could not find one valid APQN for this adapter */
1995 		if (ac) {
1996 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1997 				    __func__, ap);
1998 			ap_scan_rm_card_dev_and_queue_devs(ac);
1999 			put_device(dev);
2000 		} else {
2001 			pr_debug("%s(%d) no type info (no APQN found), ignored\n",
2002 				 __func__, ap);
2003 		}
2004 		return;
2005 	}
2006 	if (!hwinfo.at) {
2007 		/* No apdater type info available, an unusable adapter */
2008 		if (ac) {
2009 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2010 				    __func__, ap);
2011 			ap_scan_rm_card_dev_and_queue_devs(ac);
2012 			put_device(dev);
2013 		} else {
2014 			pr_debug("%s(%d) no valid type (0) info, ignored\n",
2015 				 __func__, ap);
2016 		}
2017 		return;
2018 	}
2019 	hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2020 	if (ac) {
2021 		/* Check APQN against existing card device for changes */
2022 		if (ac->hwinfo.at != hwinfo.at) {
2023 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2024 				    __func__, ap, hwinfo.at);
2025 			ap_scan_rm_card_dev_and_queue_devs(ac);
2026 			put_device(dev);
2027 			ac = NULL;
2028 		} else if (ac->hwinfo.fac != hwinfo.fac) {
2029 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2030 				    __func__, ap, hwinfo.fac);
2031 			ap_scan_rm_card_dev_and_queue_devs(ac);
2032 			put_device(dev);
2033 			ac = NULL;
2034 		} else {
2035 			/* handle checkstop state change */
2036 			if (chkstop && !ac->chkstop) {
2037 				/* checkstop on */
2038 				ac->chkstop = true;
2039 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2040 					    __func__, ap);
2041 			} else if (!chkstop && ac->chkstop) {
2042 				/* checkstop off */
2043 				ac->chkstop = false;
2044 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2045 					    __func__, ap);
2046 			}
2047 			/* handle config state change */
2048 			if (decfg && ac->config) {
2049 				ac->config = false;
2050 				AP_DBF_INFO("%s(%d) card dev config off\n",
2051 					    __func__, ap);
2052 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2053 			} else if (!decfg && !ac->config) {
2054 				ac->config = true;
2055 				AP_DBF_INFO("%s(%d) card dev config on\n",
2056 					    __func__, ap);
2057 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2058 			}
2059 		}
2060 	}
2061 
2062 	if (!ac) {
2063 		/* Build a new card device */
2064 		comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2065 		if (!comp_type) {
2066 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2067 				    __func__, ap, hwinfo.at);
2068 			return;
2069 		}
2070 		ac = ap_card_create(ap, hwinfo, comp_type);
2071 		if (!ac) {
2072 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2073 				    __func__, ap);
2074 			return;
2075 		}
2076 		ac->config = !decfg;
2077 		ac->chkstop = chkstop;
2078 		dev = &ac->ap_dev.device;
2079 		dev->bus = &ap_bus_type;
2080 		dev->parent = ap_root_device;
2081 		dev_set_name(dev, "card%02x", ap);
2082 		/* maybe enlarge ap_max_msg_size to support this card */
2083 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2084 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2085 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2086 				    __func__, ap,
2087 				    atomic_read(&ap_max_msg_size));
2088 		}
2089 		/* Register the new card device with AP bus */
2090 		rc = device_register(dev);
2091 		if (rc) {
2092 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2093 				    __func__, ap);
2094 			put_device(dev);
2095 			return;
2096 		}
2097 		/* get it and thus adjust reference counter */
2098 		get_device(dev);
2099 		if (decfg)
2100 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2101 				    __func__, ap, hwinfo.at, hwinfo.fac);
2102 		else if (chkstop)
2103 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2104 				    __func__, ap, hwinfo.at, hwinfo.fac);
2105 		else
2106 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2107 				    __func__, ap, hwinfo.at, hwinfo.fac);
2108 	}
2109 
2110 	/* Verify the domains and the queue devices for this card */
2111 	ap_scan_domains(ac);
2112 
2113 	/* release the card device */
2114 	put_device(&ac->ap_dev.device);
2115 }
2116 
2117 /**
2118  * ap_get_configuration - get the host AP configuration
2119  *
2120  * Stores the host AP configuration information returned from the previous call
2121  * to Query Configuration Information (QCI), then retrieves and stores the
2122  * current AP configuration returned from QCI.
2123  *
2124  * Return: true if the host AP configuration changed between calls to QCI;
2125  * otherwise, return false.
2126  */
2127 static bool ap_get_configuration(void)
2128 {
2129 	if (!ap_qci_info->flags)	/* QCI not supported */
2130 		return false;
2131 
2132 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2133 	ap_qci(ap_qci_info);
2134 
2135 	return memcmp(ap_qci_info, ap_qci_info_old,
2136 		      sizeof(struct ap_config_info)) != 0;
2137 }
2138 
2139 /*
2140  * ap_config_has_new_aps - Check current against old qci info if
2141  * new adapters have appeared. Returns true if at least one new
2142  * adapter in the apm mask is showing up. Existing adapters or
2143  * receding adapters are not counted.
2144  */
2145 static bool ap_config_has_new_aps(void)
2146 {
2147 
2148 	unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2149 
2150 	if (!ap_qci_info->flags)
2151 		return false;
2152 
2153 	bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2154 		      (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2155 	if (!bitmap_empty(m, AP_DEVICES))
2156 		return true;
2157 
2158 	return false;
2159 }
2160 
2161 /*
2162  * ap_config_has_new_doms - Check current against old qci info if
2163  * new (usage) domains have appeared. Returns true if at least one
2164  * new domain in the aqm mask is showing up. Existing domains or
2165  * receding domains are not counted.
2166  */
2167 static bool ap_config_has_new_doms(void)
2168 {
2169 	unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2170 
2171 	if (!ap_qci_info->flags)
2172 		return false;
2173 
2174 	bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2175 		      (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2176 	if (!bitmap_empty(m, AP_DOMAINS))
2177 		return true;
2178 
2179 	return false;
2180 }
2181 
2182 /**
2183  * ap_scan_bus(): Scan the AP bus for new devices
2184  * Always run under mutex ap_scan_bus_mutex protection
2185  * which needs to get locked/unlocked by the caller!
2186  * Returns true if any config change has been detected
2187  * during the scan, otherwise false.
2188  */
2189 static bool ap_scan_bus(void)
2190 {
2191 	bool config_changed;
2192 	int ap;
2193 
2194 	pr_debug(">%s\n", __func__);
2195 
2196 	/* (re-)fetch configuration via QCI */
2197 	config_changed = ap_get_configuration();
2198 	if (config_changed) {
2199 		if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2200 			/*
2201 			 * Appearance of new adapters and/or domains need to
2202 			 * build new ap devices which need to get bound to an
2203 			 * device driver. Thus reset the APQN bindings complete
2204 			 * completion.
2205 			 */
2206 			reinit_completion(&ap_apqn_bindings_complete);
2207 		}
2208 		/* post a config change notify */
2209 		notify_config_changed();
2210 	}
2211 	ap_select_domain();
2212 
2213 	/* loop over all possible adapters */
2214 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2215 		ap_scan_adapter(ap);
2216 
2217 	/* scan complete notify */
2218 	if (config_changed)
2219 		notify_scan_complete();
2220 
2221 	/* check if there is at least one queue available with default domain */
2222 	if (ap_domain_index >= 0) {
2223 		struct device *dev =
2224 			bus_find_device(&ap_bus_type, NULL,
2225 					(void *)(long)ap_domain_index,
2226 					__match_queue_device_with_queue_id);
2227 		if (dev)
2228 			put_device(dev);
2229 		else
2230 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2231 				    __func__, ap_domain_index);
2232 	}
2233 
2234 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2235 		pr_debug("%s init scan complete\n", __func__);
2236 		ap_send_init_scan_done_uevent();
2237 	}
2238 
2239 	ap_check_bindings_complete();
2240 
2241 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2242 
2243 	pr_debug("<%s config_changed=%d\n", __func__, config_changed);
2244 
2245 	return config_changed;
2246 }
2247 
2248 /*
2249  * Callback for the ap_scan_bus_timer
2250  * Runs periodically, workqueue timer (ap_scan_bus_time)
2251  */
2252 static void ap_scan_bus_timer_callback(struct timer_list *unused)
2253 {
2254 	/*
2255 	 * schedule work into the system long wq which when
2256 	 * the work is finally executed, calls the AP bus scan.
2257 	 */
2258 	queue_work(system_long_wq, &ap_scan_bus_work);
2259 }
2260 
2261 /*
2262  * Callback for the ap_scan_bus_work
2263  */
2264 static void ap_scan_bus_wq_callback(struct work_struct *unused)
2265 {
2266 	/*
2267 	 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2268 	 * fails there is currently another task already running the
2269 	 * AP scan bus and there is no need to wait and re-trigger the
2270 	 * scan again. Please note at the end of the scan bus function
2271 	 * the AP scan bus timer is re-armed which triggers then the
2272 	 * ap_scan_bus_timer_callback which enqueues a work into the
2273 	 * system_long_wq which invokes this function here again.
2274 	 */
2275 	if (mutex_trylock(&ap_scan_bus_mutex)) {
2276 		ap_scan_bus_result = ap_scan_bus();
2277 		mutex_unlock(&ap_scan_bus_mutex);
2278 	}
2279 }
2280 
2281 static inline void __exit ap_async_exit(void)
2282 {
2283 	if (ap_thread_flag)
2284 		ap_poll_thread_stop();
2285 	chsc_notifier_unregister(&ap_bus_nb);
2286 	cancel_work(&ap_scan_bus_work);
2287 	hrtimer_cancel(&ap_poll_timer);
2288 	timer_delete(&ap_scan_bus_timer);
2289 }
2290 
2291 static inline int __init ap_async_init(void)
2292 {
2293 	int rc;
2294 
2295 	/* Setup the AP bus rescan timer. */
2296 	timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2297 
2298 	/*
2299 	 * Setup the high resolution poll timer.
2300 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2301 	 */
2302 	if (MACHINE_IS_VM)
2303 		poll_high_timeout = 1500000;
2304 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2305 	ap_poll_timer.function = ap_poll_timeout;
2306 
2307 	queue_work(system_long_wq, &ap_scan_bus_work);
2308 
2309 	rc = chsc_notifier_register(&ap_bus_nb);
2310 	if (rc)
2311 		goto out;
2312 
2313 	/* Start the low priority AP bus poll thread. */
2314 	if (!ap_thread_flag)
2315 		return 0;
2316 
2317 	rc = ap_poll_thread_start();
2318 	if (rc)
2319 		goto out_notifier;
2320 
2321 	return 0;
2322 
2323 out_notifier:
2324 	chsc_notifier_unregister(&ap_bus_nb);
2325 out:
2326 	cancel_work(&ap_scan_bus_work);
2327 	hrtimer_cancel(&ap_poll_timer);
2328 	timer_delete(&ap_scan_bus_timer);
2329 	return rc;
2330 }
2331 
2332 static inline void ap_irq_exit(void)
2333 {
2334 	if (ap_irq_flag)
2335 		unregister_adapter_interrupt(&ap_airq);
2336 }
2337 
2338 static inline int __init ap_irq_init(void)
2339 {
2340 	int rc;
2341 
2342 	if (!ap_interrupts_available() || !ap_useirq)
2343 		return 0;
2344 
2345 	rc = register_adapter_interrupt(&ap_airq);
2346 	ap_irq_flag = (rc == 0);
2347 
2348 	return rc;
2349 }
2350 
2351 static inline void ap_debug_exit(void)
2352 {
2353 	debug_unregister(ap_dbf_info);
2354 }
2355 
2356 static inline int __init ap_debug_init(void)
2357 {
2358 	ap_dbf_info = debug_register("ap", 2, 1,
2359 				     AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2360 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2361 	debug_set_level(ap_dbf_info, DBF_ERR);
2362 
2363 	return 0;
2364 }
2365 
2366 static void __init ap_perms_init(void)
2367 {
2368 	/* all resources usable if no kernel parameter string given */
2369 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2370 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2371 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2372 
2373 	/* apm kernel parameter string */
2374 	if (apm_str) {
2375 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2376 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2377 				  &ap_perms_mutex);
2378 	}
2379 
2380 	/* aqm kernel parameter string */
2381 	if (aqm_str) {
2382 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2383 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2384 				  &ap_perms_mutex);
2385 	}
2386 }
2387 
2388 /**
2389  * ap_module_init(): The module initialization code.
2390  *
2391  * Initializes the module.
2392  */
2393 static int __init ap_module_init(void)
2394 {
2395 	int rc;
2396 
2397 	rc = ap_debug_init();
2398 	if (rc)
2399 		return rc;
2400 
2401 	if (!ap_instructions_available()) {
2402 		pr_warn("The hardware system does not support AP instructions\n");
2403 		return -ENODEV;
2404 	}
2405 
2406 	/* init ap_queue hashtable */
2407 	hash_init(ap_queues);
2408 
2409 	/* set up the AP permissions (ioctls, ap and aq masks) */
2410 	ap_perms_init();
2411 
2412 	/* Get AP configuration data if available */
2413 	ap_init_qci_info();
2414 
2415 	/* check default domain setting */
2416 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2417 	    (ap_domain_index >= 0 &&
2418 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2419 		pr_warn("%d is not a valid cryptographic domain\n",
2420 			ap_domain_index);
2421 		ap_domain_index = -1;
2422 	}
2423 
2424 	/* Create /sys/bus/ap. */
2425 	rc = bus_register(&ap_bus_type);
2426 	if (rc)
2427 		goto out;
2428 
2429 	/* Create /sys/devices/ap. */
2430 	ap_root_device = root_device_register("ap");
2431 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2432 	if (rc)
2433 		goto out_bus;
2434 	ap_root_device->bus = &ap_bus_type;
2435 
2436 	/* enable interrupts if available */
2437 	rc = ap_irq_init();
2438 	if (rc)
2439 		goto out_device;
2440 
2441 	/* Setup asynchronous work (timers, workqueue, etc). */
2442 	rc = ap_async_init();
2443 	if (rc)
2444 		goto out_irq;
2445 
2446 	return 0;
2447 
2448 out_irq:
2449 	ap_irq_exit();
2450 out_device:
2451 	root_device_unregister(ap_root_device);
2452 out_bus:
2453 	bus_unregister(&ap_bus_type);
2454 out:
2455 	ap_debug_exit();
2456 	return rc;
2457 }
2458 
2459 static void __exit ap_module_exit(void)
2460 {
2461 	ap_async_exit();
2462 	ap_irq_exit();
2463 	root_device_unregister(ap_root_device);
2464 	bus_unregister(&ap_bus_type);
2465 	ap_debug_exit();
2466 }
2467 
2468 module_init(ap_module_init);
2469 module_exit(ap_module_exit);
2470