1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2021 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <linux/atomic.h> 31 #include <asm/isc.h> 32 #include <linux/hrtimer.h> 33 #include <linux/ktime.h> 34 #include <asm/facility.h> 35 #include <linux/crypto.h> 36 #include <linux/mod_devicetable.h> 37 #include <linux/debugfs.h> 38 #include <linux/ctype.h> 39 #include <linux/module.h> 40 41 #include "ap_bus.h" 42 #include "ap_debug.h" 43 44 /* 45 * Module parameters; note though this file itself isn't modular. 46 */ 47 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 48 static DEFINE_SPINLOCK(ap_domain_lock); 49 module_param_named(domain, ap_domain_index, int, 0440); 50 MODULE_PARM_DESC(domain, "domain index for ap devices"); 51 EXPORT_SYMBOL(ap_domain_index); 52 53 static int ap_thread_flag; 54 module_param_named(poll_thread, ap_thread_flag, int, 0440); 55 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 56 57 static char *apm_str; 58 module_param_named(apmask, apm_str, charp, 0440); 59 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 60 61 static char *aqm_str; 62 module_param_named(aqmask, aqm_str, charp, 0440); 63 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 64 65 static int ap_useirq = 1; 66 module_param_named(useirq, ap_useirq, int, 0440); 67 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 68 69 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 70 EXPORT_SYMBOL(ap_max_msg_size); 71 72 static struct device *ap_root_device; 73 74 /* Hashtable of all queue devices on the AP bus */ 75 DEFINE_HASHTABLE(ap_queues, 8); 76 /* lock used for the ap_queues hashtable */ 77 DEFINE_SPINLOCK(ap_queues_lock); 78 79 /* Default permissions (ioctl, card and domain masking) */ 80 struct ap_perms ap_perms; 81 EXPORT_SYMBOL(ap_perms); 82 DEFINE_MUTEX(ap_perms_mutex); 83 EXPORT_SYMBOL(ap_perms_mutex); 84 85 /* # of bus scans since init */ 86 static atomic64_t ap_scan_bus_count; 87 88 /* # of bindings complete since init */ 89 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 90 91 /* completion for initial APQN bindings complete */ 92 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 93 94 static struct ap_config_info *ap_qci_info; 95 static struct ap_config_info *ap_qci_info_old; 96 97 /* 98 * AP bus related debug feature things. 99 */ 100 debug_info_t *ap_dbf_info; 101 102 /* 103 * Workqueue timer for bus rescan. 104 */ 105 static struct timer_list ap_config_timer; 106 static int ap_config_time = AP_CONFIG_TIME; 107 static void ap_scan_bus(struct work_struct *); 108 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 109 110 /* 111 * Tasklet & timer for AP request polling and interrupts 112 */ 113 static void ap_tasklet_fn(unsigned long); 114 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 115 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 116 static struct task_struct *ap_poll_kthread; 117 static DEFINE_MUTEX(ap_poll_thread_mutex); 118 static DEFINE_SPINLOCK(ap_poll_timer_lock); 119 static struct hrtimer ap_poll_timer; 120 /* 121 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 122 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 123 */ 124 static unsigned long long poll_timeout = 250000; 125 126 /* Maximum domain id, if not given via qci */ 127 static int ap_max_domain_id = 15; 128 /* Maximum adapter id, if not given via qci */ 129 static int ap_max_adapter_id = 63; 130 131 static struct bus_type ap_bus_type; 132 133 /* Adapter interrupt definitions */ 134 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 135 136 static bool ap_irq_flag; 137 138 static struct airq_struct ap_airq = { 139 .handler = ap_interrupt_handler, 140 .isc = AP_ISC, 141 }; 142 143 /** 144 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 145 * 146 * Returns the address of the local-summary-indicator of the adapter 147 * interrupt handler for AP, or NULL if adapter interrupts are not 148 * available. 149 */ 150 void *ap_airq_ptr(void) 151 { 152 if (ap_irq_flag) 153 return ap_airq.lsi_ptr; 154 return NULL; 155 } 156 157 /** 158 * ap_interrupts_available(): Test if AP interrupts are available. 159 * 160 * Returns 1 if AP interrupts are available. 161 */ 162 static int ap_interrupts_available(void) 163 { 164 return test_facility(65); 165 } 166 167 /** 168 * ap_qci_available(): Test if AP configuration 169 * information can be queried via QCI subfunction. 170 * 171 * Returns 1 if subfunction PQAP(QCI) is available. 172 */ 173 static int ap_qci_available(void) 174 { 175 return test_facility(12); 176 } 177 178 /** 179 * ap_apft_available(): Test if AP facilities test (APFT) 180 * facility is available. 181 * 182 * Returns 1 if APFT is available. 183 */ 184 static int ap_apft_available(void) 185 { 186 return test_facility(15); 187 } 188 189 /* 190 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 191 * 192 * Returns 1 if the QACT subfunction is available. 193 */ 194 static inline int ap_qact_available(void) 195 { 196 if (ap_qci_info) 197 return ap_qci_info->qact; 198 return 0; 199 } 200 201 /* 202 * ap_fetch_qci_info(): Fetch cryptographic config info 203 * 204 * Returns the ap configuration info fetched via PQAP(QCI). 205 * On success 0 is returned, on failure a negative errno 206 * is returned, e.g. if the PQAP(QCI) instruction is not 207 * available, the return value will be -EOPNOTSUPP. 208 */ 209 static inline int ap_fetch_qci_info(struct ap_config_info *info) 210 { 211 if (!ap_qci_available()) 212 return -EOPNOTSUPP; 213 if (!info) 214 return -EINVAL; 215 return ap_qci(info); 216 } 217 218 /** 219 * ap_init_qci_info(): Allocate and query qci config info. 220 * Does also update the static variables ap_max_domain_id 221 * and ap_max_adapter_id if this info is available. 222 */ 223 static void __init ap_init_qci_info(void) 224 { 225 if (!ap_qci_available()) { 226 AP_DBF_INFO("%s QCI not supported\n", __func__); 227 return; 228 } 229 230 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 231 if (!ap_qci_info) 232 return; 233 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL); 234 if (!ap_qci_info_old) 235 return; 236 if (ap_fetch_qci_info(ap_qci_info) != 0) { 237 kfree(ap_qci_info); 238 kfree(ap_qci_info_old); 239 ap_qci_info = NULL; 240 ap_qci_info_old = NULL; 241 return; 242 } 243 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 244 245 if (ap_qci_info->apxa) { 246 if (ap_qci_info->Na) { 247 ap_max_adapter_id = ap_qci_info->Na; 248 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 249 __func__, ap_max_adapter_id); 250 } 251 if (ap_qci_info->Nd) { 252 ap_max_domain_id = ap_qci_info->Nd; 253 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 254 __func__, ap_max_domain_id); 255 } 256 } 257 258 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 259 } 260 261 /* 262 * ap_test_config(): helper function to extract the nrth bit 263 * within the unsigned int array field. 264 */ 265 static inline int ap_test_config(unsigned int *field, unsigned int nr) 266 { 267 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 268 } 269 270 /* 271 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 272 * 273 * Returns 0 if the card is not configured 274 * 1 if the card is configured or 275 * if the configuration information is not available 276 */ 277 static inline int ap_test_config_card_id(unsigned int id) 278 { 279 if (id > ap_max_adapter_id) 280 return 0; 281 if (ap_qci_info) 282 return ap_test_config(ap_qci_info->apm, id); 283 return 1; 284 } 285 286 /* 287 * ap_test_config_usage_domain(): Test, whether an AP usage domain 288 * is configured. 289 * 290 * Returns 0 if the usage domain is not configured 291 * 1 if the usage domain is configured or 292 * if the configuration information is not available 293 */ 294 int ap_test_config_usage_domain(unsigned int domain) 295 { 296 if (domain > ap_max_domain_id) 297 return 0; 298 if (ap_qci_info) 299 return ap_test_config(ap_qci_info->aqm, domain); 300 return 1; 301 } 302 EXPORT_SYMBOL(ap_test_config_usage_domain); 303 304 /* 305 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 306 * is configured. 307 * @domain AP control domain ID 308 * 309 * Returns 1 if the control domain is configured 310 * 0 in all other cases 311 */ 312 int ap_test_config_ctrl_domain(unsigned int domain) 313 { 314 if (!ap_qci_info || domain > ap_max_domain_id) 315 return 0; 316 return ap_test_config(ap_qci_info->adm, domain); 317 } 318 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 319 320 /* 321 * ap_queue_info(): Check and get AP queue info. 322 * Returns true if TAPQ succeeded and the info is filled or 323 * false otherwise. 324 */ 325 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, 326 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop) 327 { 328 struct ap_queue_status status; 329 union { 330 unsigned long value; 331 struct { 332 unsigned int fac : 32; /* facility bits */ 333 unsigned int at : 8; /* ap type */ 334 unsigned int _res1 : 8; 335 unsigned int _res2 : 4; 336 unsigned int ml : 4; /* apxl ml */ 337 unsigned int _res3 : 4; 338 unsigned int qd : 4; /* queue depth */ 339 } tapq_gr2; 340 } tapq_info; 341 342 tapq_info.value = 0; 343 344 /* make sure we don't run into a specifiation exception */ 345 if (AP_QID_CARD(qid) > ap_max_adapter_id || 346 AP_QID_QUEUE(qid) > ap_max_domain_id) 347 return false; 348 349 /* call TAPQ on this APQN */ 350 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value); 351 switch (status.response_code) { 352 case AP_RESPONSE_NORMAL: 353 case AP_RESPONSE_RESET_IN_PROGRESS: 354 case AP_RESPONSE_DECONFIGURED: 355 case AP_RESPONSE_CHECKSTOPPED: 356 case AP_RESPONSE_BUSY: 357 /* 358 * According to the architecture in all these cases the 359 * info should be filled. All bits 0 is not possible as 360 * there is at least one of the mode bits set. 361 */ 362 if (WARN_ON_ONCE(!tapq_info.value)) 363 return false; 364 *q_type = tapq_info.tapq_gr2.at; 365 *q_fac = tapq_info.tapq_gr2.fac; 366 *q_depth = tapq_info.tapq_gr2.qd; 367 *q_ml = tapq_info.tapq_gr2.ml; 368 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 369 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 370 switch (*q_type) { 371 /* For CEX2 and CEX3 the available functions 372 * are not reflected by the facilities bits. 373 * Instead it is coded into the type. So here 374 * modify the function bits based on the type. 375 */ 376 case AP_DEVICE_TYPE_CEX2A: 377 case AP_DEVICE_TYPE_CEX3A: 378 *q_fac |= 0x08000000; 379 break; 380 case AP_DEVICE_TYPE_CEX2C: 381 case AP_DEVICE_TYPE_CEX3C: 382 *q_fac |= 0x10000000; 383 break; 384 default: 385 break; 386 } 387 return true; 388 default: 389 /* 390 * A response code which indicates, there is no info available. 391 */ 392 return false; 393 } 394 } 395 396 void ap_wait(enum ap_sm_wait wait) 397 { 398 ktime_t hr_time; 399 400 switch (wait) { 401 case AP_SM_WAIT_AGAIN: 402 case AP_SM_WAIT_INTERRUPT: 403 if (ap_irq_flag) 404 break; 405 if (ap_poll_kthread) { 406 wake_up(&ap_poll_wait); 407 break; 408 } 409 fallthrough; 410 case AP_SM_WAIT_TIMEOUT: 411 spin_lock_bh(&ap_poll_timer_lock); 412 if (!hrtimer_is_queued(&ap_poll_timer)) { 413 hr_time = poll_timeout; 414 hrtimer_forward_now(&ap_poll_timer, hr_time); 415 hrtimer_restart(&ap_poll_timer); 416 } 417 spin_unlock_bh(&ap_poll_timer_lock); 418 break; 419 case AP_SM_WAIT_NONE: 420 default: 421 break; 422 } 423 } 424 425 /** 426 * ap_request_timeout(): Handling of request timeouts 427 * @t: timer making this callback 428 * 429 * Handles request timeouts. 430 */ 431 void ap_request_timeout(struct timer_list *t) 432 { 433 struct ap_queue *aq = from_timer(aq, t, timeout); 434 435 spin_lock_bh(&aq->lock); 436 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 437 spin_unlock_bh(&aq->lock); 438 } 439 440 /** 441 * ap_poll_timeout(): AP receive polling for finished AP requests. 442 * @unused: Unused pointer. 443 * 444 * Schedules the AP tasklet using a high resolution timer. 445 */ 446 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 447 { 448 tasklet_schedule(&ap_tasklet); 449 return HRTIMER_NORESTART; 450 } 451 452 /** 453 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 454 * @airq: pointer to adapter interrupt descriptor 455 * @floating: ignored 456 */ 457 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 458 { 459 inc_irq_stat(IRQIO_APB); 460 tasklet_schedule(&ap_tasklet); 461 } 462 463 /** 464 * ap_tasklet_fn(): Tasklet to poll all AP devices. 465 * @dummy: Unused variable 466 * 467 * Poll all AP devices on the bus. 468 */ 469 static void ap_tasklet_fn(unsigned long dummy) 470 { 471 int bkt; 472 struct ap_queue *aq; 473 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 474 475 /* Reset the indicator if interrupts are used. Thus new interrupts can 476 * be received. Doing it in the beginning of the tasklet is therefor 477 * important that no requests on any AP get lost. 478 */ 479 if (ap_irq_flag) 480 xchg(ap_airq.lsi_ptr, 0); 481 482 spin_lock_bh(&ap_queues_lock); 483 hash_for_each(ap_queues, bkt, aq, hnode) { 484 spin_lock_bh(&aq->lock); 485 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 486 spin_unlock_bh(&aq->lock); 487 } 488 spin_unlock_bh(&ap_queues_lock); 489 490 ap_wait(wait); 491 } 492 493 static int ap_pending_requests(void) 494 { 495 int bkt; 496 struct ap_queue *aq; 497 498 spin_lock_bh(&ap_queues_lock); 499 hash_for_each(ap_queues, bkt, aq, hnode) { 500 if (aq->queue_count == 0) 501 continue; 502 spin_unlock_bh(&ap_queues_lock); 503 return 1; 504 } 505 spin_unlock_bh(&ap_queues_lock); 506 return 0; 507 } 508 509 /** 510 * ap_poll_thread(): Thread that polls for finished requests. 511 * @data: Unused pointer 512 * 513 * AP bus poll thread. The purpose of this thread is to poll for 514 * finished requests in a loop if there is a "free" cpu - that is 515 * a cpu that doesn't have anything better to do. The polling stops 516 * as soon as there is another task or if all messages have been 517 * delivered. 518 */ 519 static int ap_poll_thread(void *data) 520 { 521 DECLARE_WAITQUEUE(wait, current); 522 523 set_user_nice(current, MAX_NICE); 524 set_freezable(); 525 while (!kthread_should_stop()) { 526 add_wait_queue(&ap_poll_wait, &wait); 527 set_current_state(TASK_INTERRUPTIBLE); 528 if (!ap_pending_requests()) { 529 schedule(); 530 try_to_freeze(); 531 } 532 set_current_state(TASK_RUNNING); 533 remove_wait_queue(&ap_poll_wait, &wait); 534 if (need_resched()) { 535 schedule(); 536 try_to_freeze(); 537 continue; 538 } 539 ap_tasklet_fn(0); 540 } 541 542 return 0; 543 } 544 545 static int ap_poll_thread_start(void) 546 { 547 int rc; 548 549 if (ap_irq_flag || ap_poll_kthread) 550 return 0; 551 mutex_lock(&ap_poll_thread_mutex); 552 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 553 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 554 if (rc) 555 ap_poll_kthread = NULL; 556 mutex_unlock(&ap_poll_thread_mutex); 557 return rc; 558 } 559 560 static void ap_poll_thread_stop(void) 561 { 562 if (!ap_poll_kthread) 563 return; 564 mutex_lock(&ap_poll_thread_mutex); 565 kthread_stop(ap_poll_kthread); 566 ap_poll_kthread = NULL; 567 mutex_unlock(&ap_poll_thread_mutex); 568 } 569 570 #define is_card_dev(x) ((x)->parent == ap_root_device) 571 #define is_queue_dev(x) ((x)->parent != ap_root_device) 572 573 /** 574 * ap_bus_match() 575 * @dev: Pointer to device 576 * @drv: Pointer to device_driver 577 * 578 * AP bus driver registration/unregistration. 579 */ 580 static int ap_bus_match(struct device *dev, struct device_driver *drv) 581 { 582 struct ap_driver *ap_drv = to_ap_drv(drv); 583 struct ap_device_id *id; 584 585 /* 586 * Compare device type of the device with the list of 587 * supported types of the device_driver. 588 */ 589 for (id = ap_drv->ids; id->match_flags; id++) { 590 if (is_card_dev(dev) && 591 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 592 id->dev_type == to_ap_dev(dev)->device_type) 593 return 1; 594 if (is_queue_dev(dev) && 595 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 596 id->dev_type == to_ap_dev(dev)->device_type) 597 return 1; 598 } 599 return 0; 600 } 601 602 /** 603 * ap_uevent(): Uevent function for AP devices. 604 * @dev: Pointer to device 605 * @env: Pointer to kobj_uevent_env 606 * 607 * It sets up a single environment variable DEV_TYPE which contains the 608 * hardware device type. 609 */ 610 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 611 { 612 int rc = 0; 613 struct ap_device *ap_dev = to_ap_dev(dev); 614 615 /* Uevents from ap bus core don't need extensions to the env */ 616 if (dev == ap_root_device) 617 return 0; 618 619 if (is_card_dev(dev)) { 620 struct ap_card *ac = to_ap_card(&ap_dev->device); 621 622 /* Set up DEV_TYPE environment variable. */ 623 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 624 if (rc) 625 return rc; 626 /* Add MODALIAS= */ 627 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 628 if (rc) 629 return rc; 630 631 /* Add MODE=<accel|cca|ep11> */ 632 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL)) 633 rc = add_uevent_var(env, "MODE=accel"); 634 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) 635 rc = add_uevent_var(env, "MODE=cca"); 636 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) 637 rc = add_uevent_var(env, "MODE=ep11"); 638 if (rc) 639 return rc; 640 } else { 641 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 642 643 /* Add MODE=<accel|cca|ep11> */ 644 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL)) 645 rc = add_uevent_var(env, "MODE=accel"); 646 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) 647 rc = add_uevent_var(env, "MODE=cca"); 648 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) 649 rc = add_uevent_var(env, "MODE=ep11"); 650 if (rc) 651 return rc; 652 } 653 654 return 0; 655 } 656 657 static void ap_send_init_scan_done_uevent(void) 658 { 659 char *envp[] = { "INITSCAN=done", NULL }; 660 661 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 662 } 663 664 static void ap_send_bindings_complete_uevent(void) 665 { 666 char buf[32]; 667 char *envp[] = { "BINDINGS=complete", buf, NULL }; 668 669 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 670 atomic64_inc_return(&ap_bindings_complete_count)); 671 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 672 } 673 674 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 675 { 676 char buf[16]; 677 char *envp[] = { buf, NULL }; 678 679 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 680 681 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 682 } 683 EXPORT_SYMBOL(ap_send_config_uevent); 684 685 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 686 { 687 char buf[16]; 688 char *envp[] = { buf, NULL }; 689 690 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 691 692 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 693 } 694 EXPORT_SYMBOL(ap_send_online_uevent); 695 696 static void ap_send_mask_changed_uevent(unsigned long *newapm, 697 unsigned long *newaqm) 698 { 699 char buf[100]; 700 char *envp[] = { buf, NULL }; 701 702 if (newapm) 703 snprintf(buf, sizeof(buf), 704 "APMASK=0x%016lx%016lx%016lx%016lx\n", 705 newapm[0], newapm[1], newapm[2], newapm[3]); 706 else 707 snprintf(buf, sizeof(buf), 708 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 709 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 710 711 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 712 } 713 714 /* 715 * calc # of bound APQNs 716 */ 717 718 struct __ap_calc_ctrs { 719 unsigned int apqns; 720 unsigned int bound; 721 }; 722 723 static int __ap_calc_helper(struct device *dev, void *arg) 724 { 725 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 726 727 if (is_queue_dev(dev)) { 728 pctrs->apqns++; 729 if (dev->driver) 730 pctrs->bound++; 731 } 732 733 return 0; 734 } 735 736 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 737 { 738 struct __ap_calc_ctrs ctrs; 739 740 memset(&ctrs, 0, sizeof(ctrs)); 741 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 742 743 *apqns = ctrs.apqns; 744 *bound = ctrs.bound; 745 } 746 747 /* 748 * After initial ap bus scan do check if all existing APQNs are 749 * bound to device drivers. 750 */ 751 static void ap_check_bindings_complete(void) 752 { 753 unsigned int apqns, bound; 754 755 if (atomic64_read(&ap_scan_bus_count) >= 1) { 756 ap_calc_bound_apqns(&apqns, &bound); 757 if (bound == apqns) { 758 if (!completion_done(&ap_init_apqn_bindings_complete)) { 759 complete_all(&ap_init_apqn_bindings_complete); 760 AP_DBF_INFO("%s complete\n", __func__); 761 } 762 ap_send_bindings_complete_uevent(); 763 } 764 } 765 } 766 767 /* 768 * Interface to wait for the AP bus to have done one initial ap bus 769 * scan and all detected APQNs have been bound to device drivers. 770 * If these both conditions are not fulfilled, this function blocks 771 * on a condition with wait_for_completion_interruptible_timeout(). 772 * If these both conditions are fulfilled (before the timeout hits) 773 * the return value is 0. If the timeout (in jiffies) hits instead 774 * -ETIME is returned. On failures negative return values are 775 * returned to the caller. 776 */ 777 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 778 { 779 long l; 780 781 if (completion_done(&ap_init_apqn_bindings_complete)) 782 return 0; 783 784 if (timeout) 785 l = wait_for_completion_interruptible_timeout( 786 &ap_init_apqn_bindings_complete, timeout); 787 else 788 l = wait_for_completion_interruptible( 789 &ap_init_apqn_bindings_complete); 790 if (l < 0) 791 return l == -ERESTARTSYS ? -EINTR : l; 792 else if (l == 0 && timeout) 793 return -ETIME; 794 795 return 0; 796 } 797 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 798 799 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 800 { 801 if (is_queue_dev(dev) && 802 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 803 device_unregister(dev); 804 return 0; 805 } 806 807 static int __ap_revise_reserved(struct device *dev, void *dummy) 808 { 809 int rc, card, queue, devres, drvres; 810 811 if (is_queue_dev(dev)) { 812 card = AP_QID_CARD(to_ap_queue(dev)->qid); 813 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 814 mutex_lock(&ap_perms_mutex); 815 devres = test_bit_inv(card, ap_perms.apm) && 816 test_bit_inv(queue, ap_perms.aqm); 817 mutex_unlock(&ap_perms_mutex); 818 drvres = to_ap_drv(dev->driver)->flags 819 & AP_DRIVER_FLAG_DEFAULT; 820 if (!!devres != !!drvres) { 821 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n", 822 __func__, card, queue); 823 rc = device_reprobe(dev); 824 if (rc) 825 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 826 __func__, card, queue); 827 } 828 } 829 830 return 0; 831 } 832 833 static void ap_bus_revise_bindings(void) 834 { 835 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 836 } 837 838 int ap_owned_by_def_drv(int card, int queue) 839 { 840 int rc = 0; 841 842 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 843 return -EINVAL; 844 845 mutex_lock(&ap_perms_mutex); 846 847 if (test_bit_inv(card, ap_perms.apm) && 848 test_bit_inv(queue, ap_perms.aqm)) 849 rc = 1; 850 851 mutex_unlock(&ap_perms_mutex); 852 853 return rc; 854 } 855 EXPORT_SYMBOL(ap_owned_by_def_drv); 856 857 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 858 unsigned long *aqm) 859 { 860 int card, queue, rc = 0; 861 862 mutex_lock(&ap_perms_mutex); 863 864 for (card = 0; !rc && card < AP_DEVICES; card++) 865 if (test_bit_inv(card, apm) && 866 test_bit_inv(card, ap_perms.apm)) 867 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 868 if (test_bit_inv(queue, aqm) && 869 test_bit_inv(queue, ap_perms.aqm)) 870 rc = 1; 871 872 mutex_unlock(&ap_perms_mutex); 873 874 return rc; 875 } 876 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 877 878 static int ap_device_probe(struct device *dev) 879 { 880 struct ap_device *ap_dev = to_ap_dev(dev); 881 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 882 int card, queue, devres, drvres, rc = -ENODEV; 883 884 if (!get_device(dev)) 885 return rc; 886 887 if (is_queue_dev(dev)) { 888 /* 889 * If the apqn is marked as reserved/used by ap bus and 890 * default drivers, only probe with drivers with the default 891 * flag set. If it is not marked, only probe with drivers 892 * with the default flag not set. 893 */ 894 card = AP_QID_CARD(to_ap_queue(dev)->qid); 895 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 896 mutex_lock(&ap_perms_mutex); 897 devres = test_bit_inv(card, ap_perms.apm) && 898 test_bit_inv(queue, ap_perms.aqm); 899 mutex_unlock(&ap_perms_mutex); 900 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 901 if (!!devres != !!drvres) 902 goto out; 903 } 904 905 /* Add queue/card to list of active queues/cards */ 906 spin_lock_bh(&ap_queues_lock); 907 if (is_queue_dev(dev)) 908 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 909 to_ap_queue(dev)->qid); 910 spin_unlock_bh(&ap_queues_lock); 911 912 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 913 914 if (rc) { 915 spin_lock_bh(&ap_queues_lock); 916 if (is_queue_dev(dev)) 917 hash_del(&to_ap_queue(dev)->hnode); 918 spin_unlock_bh(&ap_queues_lock); 919 } else { 920 ap_check_bindings_complete(); 921 } 922 923 out: 924 if (rc) 925 put_device(dev); 926 return rc; 927 } 928 929 static void ap_device_remove(struct device *dev) 930 { 931 struct ap_device *ap_dev = to_ap_dev(dev); 932 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 933 934 /* prepare ap queue device removal */ 935 if (is_queue_dev(dev)) 936 ap_queue_prepare_remove(to_ap_queue(dev)); 937 938 /* driver's chance to clean up gracefully */ 939 if (ap_drv->remove) 940 ap_drv->remove(ap_dev); 941 942 /* now do the ap queue device remove */ 943 if (is_queue_dev(dev)) 944 ap_queue_remove(to_ap_queue(dev)); 945 946 /* Remove queue/card from list of active queues/cards */ 947 spin_lock_bh(&ap_queues_lock); 948 if (is_queue_dev(dev)) 949 hash_del(&to_ap_queue(dev)->hnode); 950 spin_unlock_bh(&ap_queues_lock); 951 952 put_device(dev); 953 } 954 955 struct ap_queue *ap_get_qdev(ap_qid_t qid) 956 { 957 int bkt; 958 struct ap_queue *aq; 959 960 spin_lock_bh(&ap_queues_lock); 961 hash_for_each(ap_queues, bkt, aq, hnode) { 962 if (aq->qid == qid) { 963 get_device(&aq->ap_dev.device); 964 spin_unlock_bh(&ap_queues_lock); 965 return aq; 966 } 967 } 968 spin_unlock_bh(&ap_queues_lock); 969 970 return NULL; 971 } 972 EXPORT_SYMBOL(ap_get_qdev); 973 974 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 975 char *name) 976 { 977 struct device_driver *drv = &ap_drv->driver; 978 979 drv->bus = &ap_bus_type; 980 drv->owner = owner; 981 drv->name = name; 982 return driver_register(drv); 983 } 984 EXPORT_SYMBOL(ap_driver_register); 985 986 void ap_driver_unregister(struct ap_driver *ap_drv) 987 { 988 driver_unregister(&ap_drv->driver); 989 } 990 EXPORT_SYMBOL(ap_driver_unregister); 991 992 void ap_bus_force_rescan(void) 993 { 994 /* processing a asynchronous bus rescan */ 995 del_timer(&ap_config_timer); 996 queue_work(system_long_wq, &ap_scan_work); 997 flush_work(&ap_scan_work); 998 } 999 EXPORT_SYMBOL(ap_bus_force_rescan); 1000 1001 /* 1002 * A config change has happened, force an ap bus rescan. 1003 */ 1004 void ap_bus_cfg_chg(void) 1005 { 1006 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 1007 1008 ap_bus_force_rescan(); 1009 } 1010 1011 /* 1012 * hex2bitmap() - parse hex mask string and set bitmap. 1013 * Valid strings are "0x012345678" with at least one valid hex number. 1014 * Rest of the bitmap to the right is padded with 0. No spaces allowed 1015 * within the string, the leading 0x may be omitted. 1016 * Returns the bitmask with exactly the bits set as given by the hex 1017 * string (both in big endian order). 1018 */ 1019 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1020 { 1021 int i, n, b; 1022 1023 /* bits needs to be a multiple of 8 */ 1024 if (bits & 0x07) 1025 return -EINVAL; 1026 1027 if (str[0] == '0' && str[1] == 'x') 1028 str++; 1029 if (*str == 'x') 1030 str++; 1031 1032 for (i = 0; isxdigit(*str) && i < bits; str++) { 1033 b = hex_to_bin(*str); 1034 for (n = 0; n < 4; n++) 1035 if (b & (0x08 >> n)) 1036 set_bit_inv(i + n, bitmap); 1037 i += 4; 1038 } 1039 1040 if (*str == '\n') 1041 str++; 1042 if (*str) 1043 return -EINVAL; 1044 return 0; 1045 } 1046 1047 /* 1048 * modify_bitmap() - parse bitmask argument and modify an existing 1049 * bit mask accordingly. A concatenation (done with ',') of these 1050 * terms is recognized: 1051 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1052 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1053 * 0...bits-1; the leading + or - is required. Here are some examples: 1054 * +0-15,+32,-128,-0xFF 1055 * -0-255,+1-16,+0x128 1056 * +1,+2,+3,+4,-5,-7-10 1057 * Returns the new bitmap after all changes have been applied. Every 1058 * positive value in the string will set a bit and every negative value 1059 * in the string will clear a bit. As a bit may be touched more than once, 1060 * the last 'operation' wins: 1061 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1062 * cleared again. All other bits are unmodified. 1063 */ 1064 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1065 { 1066 int a, i, z; 1067 char *np, sign; 1068 1069 /* bits needs to be a multiple of 8 */ 1070 if (bits & 0x07) 1071 return -EINVAL; 1072 1073 while (*str) { 1074 sign = *str++; 1075 if (sign != '+' && sign != '-') 1076 return -EINVAL; 1077 a = z = simple_strtoul(str, &np, 0); 1078 if (str == np || a >= bits) 1079 return -EINVAL; 1080 str = np; 1081 if (*str == '-') { 1082 z = simple_strtoul(++str, &np, 0); 1083 if (str == np || a > z || z >= bits) 1084 return -EINVAL; 1085 str = np; 1086 } 1087 for (i = a; i <= z; i++) 1088 if (sign == '+') 1089 set_bit_inv(i, bitmap); 1090 else 1091 clear_bit_inv(i, bitmap); 1092 while (*str == ',' || *str == '\n') 1093 str++; 1094 } 1095 1096 return 0; 1097 } 1098 1099 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1100 unsigned long *newmap) 1101 { 1102 unsigned long size; 1103 int rc; 1104 1105 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1106 if (*str == '+' || *str == '-') { 1107 memcpy(newmap, bitmap, size); 1108 rc = modify_bitmap(str, newmap, bits); 1109 } else { 1110 memset(newmap, 0, size); 1111 rc = hex2bitmap(str, newmap, bits); 1112 } 1113 return rc; 1114 } 1115 1116 int ap_parse_mask_str(const char *str, 1117 unsigned long *bitmap, int bits, 1118 struct mutex *lock) 1119 { 1120 unsigned long *newmap, size; 1121 int rc; 1122 1123 /* bits needs to be a multiple of 8 */ 1124 if (bits & 0x07) 1125 return -EINVAL; 1126 1127 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1128 newmap = kmalloc(size, GFP_KERNEL); 1129 if (!newmap) 1130 return -ENOMEM; 1131 if (mutex_lock_interruptible(lock)) { 1132 kfree(newmap); 1133 return -ERESTARTSYS; 1134 } 1135 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1136 if (rc == 0) 1137 memcpy(bitmap, newmap, size); 1138 mutex_unlock(lock); 1139 kfree(newmap); 1140 return rc; 1141 } 1142 EXPORT_SYMBOL(ap_parse_mask_str); 1143 1144 /* 1145 * AP bus attributes. 1146 */ 1147 1148 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1149 { 1150 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1151 } 1152 1153 static ssize_t ap_domain_store(struct bus_type *bus, 1154 const char *buf, size_t count) 1155 { 1156 int domain; 1157 1158 if (sscanf(buf, "%i\n", &domain) != 1 || 1159 domain < 0 || domain > ap_max_domain_id || 1160 !test_bit_inv(domain, ap_perms.aqm)) 1161 return -EINVAL; 1162 1163 spin_lock_bh(&ap_domain_lock); 1164 ap_domain_index = domain; 1165 spin_unlock_bh(&ap_domain_lock); 1166 1167 AP_DBF_INFO("%s stored new default domain=%d\n", 1168 __func__, domain); 1169 1170 return count; 1171 } 1172 1173 static BUS_ATTR_RW(ap_domain); 1174 1175 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1176 { 1177 if (!ap_qci_info) /* QCI not supported */ 1178 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1179 1180 return scnprintf(buf, PAGE_SIZE, 1181 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1182 ap_qci_info->adm[0], ap_qci_info->adm[1], 1183 ap_qci_info->adm[2], ap_qci_info->adm[3], 1184 ap_qci_info->adm[4], ap_qci_info->adm[5], 1185 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1186 } 1187 1188 static BUS_ATTR_RO(ap_control_domain_mask); 1189 1190 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1191 { 1192 if (!ap_qci_info) /* QCI not supported */ 1193 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1194 1195 return scnprintf(buf, PAGE_SIZE, 1196 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1197 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1198 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1199 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1200 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1201 } 1202 1203 static BUS_ATTR_RO(ap_usage_domain_mask); 1204 1205 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1206 { 1207 if (!ap_qci_info) /* QCI not supported */ 1208 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1209 1210 return scnprintf(buf, PAGE_SIZE, 1211 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1212 ap_qci_info->apm[0], ap_qci_info->apm[1], 1213 ap_qci_info->apm[2], ap_qci_info->apm[3], 1214 ap_qci_info->apm[4], ap_qci_info->apm[5], 1215 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1216 } 1217 1218 static BUS_ATTR_RO(ap_adapter_mask); 1219 1220 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1221 { 1222 return scnprintf(buf, PAGE_SIZE, "%d\n", 1223 ap_irq_flag ? 1 : 0); 1224 } 1225 1226 static BUS_ATTR_RO(ap_interrupts); 1227 1228 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1229 { 1230 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1231 } 1232 1233 static ssize_t config_time_store(struct bus_type *bus, 1234 const char *buf, size_t count) 1235 { 1236 int time; 1237 1238 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1239 return -EINVAL; 1240 ap_config_time = time; 1241 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1242 return count; 1243 } 1244 1245 static BUS_ATTR_RW(config_time); 1246 1247 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1248 { 1249 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1250 } 1251 1252 static ssize_t poll_thread_store(struct bus_type *bus, 1253 const char *buf, size_t count) 1254 { 1255 int flag, rc; 1256 1257 if (sscanf(buf, "%d\n", &flag) != 1) 1258 return -EINVAL; 1259 if (flag) { 1260 rc = ap_poll_thread_start(); 1261 if (rc) 1262 count = rc; 1263 } else { 1264 ap_poll_thread_stop(); 1265 } 1266 return count; 1267 } 1268 1269 static BUS_ATTR_RW(poll_thread); 1270 1271 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1272 { 1273 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1274 } 1275 1276 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1277 size_t count) 1278 { 1279 unsigned long long time; 1280 ktime_t hr_time; 1281 1282 /* 120 seconds = maximum poll interval */ 1283 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1284 time > 120000000000ULL) 1285 return -EINVAL; 1286 poll_timeout = time; 1287 hr_time = poll_timeout; 1288 1289 spin_lock_bh(&ap_poll_timer_lock); 1290 hrtimer_cancel(&ap_poll_timer); 1291 hrtimer_set_expires(&ap_poll_timer, hr_time); 1292 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1293 spin_unlock_bh(&ap_poll_timer_lock); 1294 1295 return count; 1296 } 1297 1298 static BUS_ATTR_RW(poll_timeout); 1299 1300 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1301 { 1302 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1303 } 1304 1305 static BUS_ATTR_RO(ap_max_domain_id); 1306 1307 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1308 { 1309 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1310 } 1311 1312 static BUS_ATTR_RO(ap_max_adapter_id); 1313 1314 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1315 { 1316 int rc; 1317 1318 if (mutex_lock_interruptible(&ap_perms_mutex)) 1319 return -ERESTARTSYS; 1320 rc = scnprintf(buf, PAGE_SIZE, 1321 "0x%016lx%016lx%016lx%016lx\n", 1322 ap_perms.apm[0], ap_perms.apm[1], 1323 ap_perms.apm[2], ap_perms.apm[3]); 1324 mutex_unlock(&ap_perms_mutex); 1325 1326 return rc; 1327 } 1328 1329 static int __verify_card_reservations(struct device_driver *drv, void *data) 1330 { 1331 int rc = 0; 1332 struct ap_driver *ap_drv = to_ap_drv(drv); 1333 unsigned long *newapm = (unsigned long *)data; 1334 1335 /* 1336 * increase the driver's module refcounter to be sure it is not 1337 * going away when we invoke the callback function. 1338 */ 1339 if (!try_module_get(drv->owner)) 1340 return 0; 1341 1342 if (ap_drv->in_use) { 1343 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1344 if (rc) 1345 rc = -EBUSY; 1346 } 1347 1348 /* release the driver's module */ 1349 module_put(drv->owner); 1350 1351 return rc; 1352 } 1353 1354 static int apmask_commit(unsigned long *newapm) 1355 { 1356 int rc; 1357 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1358 1359 /* 1360 * Check if any bits in the apmask have been set which will 1361 * result in queues being removed from non-default drivers 1362 */ 1363 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1364 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1365 __verify_card_reservations); 1366 if (rc) 1367 return rc; 1368 } 1369 1370 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1371 1372 return 0; 1373 } 1374 1375 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1376 size_t count) 1377 { 1378 int rc, changes = 0; 1379 DECLARE_BITMAP(newapm, AP_DEVICES); 1380 1381 if (mutex_lock_interruptible(&ap_perms_mutex)) 1382 return -ERESTARTSYS; 1383 1384 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1385 if (rc) 1386 goto done; 1387 1388 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1389 if (changes) 1390 rc = apmask_commit(newapm); 1391 1392 done: 1393 mutex_unlock(&ap_perms_mutex); 1394 if (rc) 1395 return rc; 1396 1397 if (changes) { 1398 ap_bus_revise_bindings(); 1399 ap_send_mask_changed_uevent(newapm, NULL); 1400 } 1401 1402 return count; 1403 } 1404 1405 static BUS_ATTR_RW(apmask); 1406 1407 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1408 { 1409 int rc; 1410 1411 if (mutex_lock_interruptible(&ap_perms_mutex)) 1412 return -ERESTARTSYS; 1413 rc = scnprintf(buf, PAGE_SIZE, 1414 "0x%016lx%016lx%016lx%016lx\n", 1415 ap_perms.aqm[0], ap_perms.aqm[1], 1416 ap_perms.aqm[2], ap_perms.aqm[3]); 1417 mutex_unlock(&ap_perms_mutex); 1418 1419 return rc; 1420 } 1421 1422 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1423 { 1424 int rc = 0; 1425 struct ap_driver *ap_drv = to_ap_drv(drv); 1426 unsigned long *newaqm = (unsigned long *)data; 1427 1428 /* 1429 * increase the driver's module refcounter to be sure it is not 1430 * going away when we invoke the callback function. 1431 */ 1432 if (!try_module_get(drv->owner)) 1433 return 0; 1434 1435 if (ap_drv->in_use) { 1436 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1437 if (rc) 1438 rc = -EBUSY; 1439 } 1440 1441 /* release the driver's module */ 1442 module_put(drv->owner); 1443 1444 return rc; 1445 } 1446 1447 static int aqmask_commit(unsigned long *newaqm) 1448 { 1449 int rc; 1450 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1451 1452 /* 1453 * Check if any bits in the aqmask have been set which will 1454 * result in queues being removed from non-default drivers 1455 */ 1456 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1457 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1458 __verify_queue_reservations); 1459 if (rc) 1460 return rc; 1461 } 1462 1463 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1464 1465 return 0; 1466 } 1467 1468 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1469 size_t count) 1470 { 1471 int rc, changes = 0; 1472 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1473 1474 if (mutex_lock_interruptible(&ap_perms_mutex)) 1475 return -ERESTARTSYS; 1476 1477 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1478 if (rc) 1479 goto done; 1480 1481 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1482 if (changes) 1483 rc = aqmask_commit(newaqm); 1484 1485 done: 1486 mutex_unlock(&ap_perms_mutex); 1487 if (rc) 1488 return rc; 1489 1490 if (changes) { 1491 ap_bus_revise_bindings(); 1492 ap_send_mask_changed_uevent(NULL, newaqm); 1493 } 1494 1495 return count; 1496 } 1497 1498 static BUS_ATTR_RW(aqmask); 1499 1500 static ssize_t scans_show(struct bus_type *bus, char *buf) 1501 { 1502 return scnprintf(buf, PAGE_SIZE, "%llu\n", 1503 atomic64_read(&ap_scan_bus_count)); 1504 } 1505 1506 static ssize_t scans_store(struct bus_type *bus, const char *buf, 1507 size_t count) 1508 { 1509 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1510 1511 ap_bus_force_rescan(); 1512 1513 return count; 1514 } 1515 1516 static BUS_ATTR_RW(scans); 1517 1518 static ssize_t bindings_show(struct bus_type *bus, char *buf) 1519 { 1520 int rc; 1521 unsigned int apqns, n; 1522 1523 ap_calc_bound_apqns(&apqns, &n); 1524 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1525 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns); 1526 else 1527 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns); 1528 1529 return rc; 1530 } 1531 1532 static BUS_ATTR_RO(bindings); 1533 1534 static struct attribute *ap_bus_attrs[] = { 1535 &bus_attr_ap_domain.attr, 1536 &bus_attr_ap_control_domain_mask.attr, 1537 &bus_attr_ap_usage_domain_mask.attr, 1538 &bus_attr_ap_adapter_mask.attr, 1539 &bus_attr_config_time.attr, 1540 &bus_attr_poll_thread.attr, 1541 &bus_attr_ap_interrupts.attr, 1542 &bus_attr_poll_timeout.attr, 1543 &bus_attr_ap_max_domain_id.attr, 1544 &bus_attr_ap_max_adapter_id.attr, 1545 &bus_attr_apmask.attr, 1546 &bus_attr_aqmask.attr, 1547 &bus_attr_scans.attr, 1548 &bus_attr_bindings.attr, 1549 NULL, 1550 }; 1551 ATTRIBUTE_GROUPS(ap_bus); 1552 1553 static struct bus_type ap_bus_type = { 1554 .name = "ap", 1555 .bus_groups = ap_bus_groups, 1556 .match = &ap_bus_match, 1557 .uevent = &ap_uevent, 1558 .probe = ap_device_probe, 1559 .remove = ap_device_remove, 1560 }; 1561 1562 /** 1563 * ap_select_domain(): Select an AP domain if possible and we haven't 1564 * already done so before. 1565 */ 1566 static void ap_select_domain(void) 1567 { 1568 struct ap_queue_status status; 1569 int card, dom; 1570 1571 /* 1572 * Choose the default domain. Either the one specified with 1573 * the "domain=" parameter or the first domain with at least 1574 * one valid APQN. 1575 */ 1576 spin_lock_bh(&ap_domain_lock); 1577 if (ap_domain_index >= 0) { 1578 /* Domain has already been selected. */ 1579 goto out; 1580 } 1581 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1582 if (!ap_test_config_usage_domain(dom) || 1583 !test_bit_inv(dom, ap_perms.aqm)) 1584 continue; 1585 for (card = 0; card <= ap_max_adapter_id; card++) { 1586 if (!ap_test_config_card_id(card) || 1587 !test_bit_inv(card, ap_perms.apm)) 1588 continue; 1589 status = ap_test_queue(AP_MKQID(card, dom), 1590 ap_apft_available(), 1591 NULL); 1592 if (status.response_code == AP_RESPONSE_NORMAL) 1593 break; 1594 } 1595 if (card <= ap_max_adapter_id) 1596 break; 1597 } 1598 if (dom <= ap_max_domain_id) { 1599 ap_domain_index = dom; 1600 AP_DBF_INFO("%s new default domain is %d\n", 1601 __func__, ap_domain_index); 1602 } 1603 out: 1604 spin_unlock_bh(&ap_domain_lock); 1605 } 1606 1607 /* 1608 * This function checks the type and returns either 0 for not 1609 * supported or the highest compatible type value (which may 1610 * include the input type value). 1611 */ 1612 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1613 { 1614 int comp_type = 0; 1615 1616 /* < CEX2A is not supported */ 1617 if (rawtype < AP_DEVICE_TYPE_CEX2A) { 1618 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1619 __func__, AP_QID_CARD(qid), 1620 AP_QID_QUEUE(qid), rawtype); 1621 return 0; 1622 } 1623 /* up to CEX8 known and fully supported */ 1624 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1625 return rawtype; 1626 /* 1627 * unknown new type > CEX8, check for compatibility 1628 * to the highest known and supported type which is 1629 * currently CEX8 with the help of the QACT function. 1630 */ 1631 if (ap_qact_available()) { 1632 struct ap_queue_status status; 1633 union ap_qact_ap_info apinfo = {0}; 1634 1635 apinfo.mode = (func >> 26) & 0x07; 1636 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1637 status = ap_qact(qid, 0, &apinfo); 1638 if (status.response_code == AP_RESPONSE_NORMAL && 1639 apinfo.cat >= AP_DEVICE_TYPE_CEX2A && 1640 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1641 comp_type = apinfo.cat; 1642 } 1643 if (!comp_type) 1644 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1645 __func__, AP_QID_CARD(qid), 1646 AP_QID_QUEUE(qid), rawtype); 1647 else if (comp_type != rawtype) 1648 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1649 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1650 rawtype, comp_type); 1651 return comp_type; 1652 } 1653 1654 /* 1655 * Helper function to be used with bus_find_dev 1656 * matches for the card device with the given id 1657 */ 1658 static int __match_card_device_with_id(struct device *dev, const void *data) 1659 { 1660 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1661 } 1662 1663 /* 1664 * Helper function to be used with bus_find_dev 1665 * matches for the queue device with a given qid 1666 */ 1667 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1668 { 1669 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1670 } 1671 1672 /* 1673 * Helper function to be used with bus_find_dev 1674 * matches any queue device with given queue id 1675 */ 1676 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1677 { 1678 return is_queue_dev(dev) && 1679 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1680 } 1681 1682 /* Helper function for notify_config_changed */ 1683 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1684 { 1685 struct ap_driver *ap_drv = to_ap_drv(drv); 1686 1687 if (try_module_get(drv->owner)) { 1688 if (ap_drv->on_config_changed) 1689 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1690 module_put(drv->owner); 1691 } 1692 1693 return 0; 1694 } 1695 1696 /* Notify all drivers about an qci config change */ 1697 static inline void notify_config_changed(void) 1698 { 1699 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1700 __drv_notify_config_changed); 1701 } 1702 1703 /* Helper function for notify_scan_complete */ 1704 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1705 { 1706 struct ap_driver *ap_drv = to_ap_drv(drv); 1707 1708 if (try_module_get(drv->owner)) { 1709 if (ap_drv->on_scan_complete) 1710 ap_drv->on_scan_complete(ap_qci_info, 1711 ap_qci_info_old); 1712 module_put(drv->owner); 1713 } 1714 1715 return 0; 1716 } 1717 1718 /* Notify all drivers about bus scan complete */ 1719 static inline void notify_scan_complete(void) 1720 { 1721 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1722 __drv_notify_scan_complete); 1723 } 1724 1725 /* 1726 * Helper function for ap_scan_bus(). 1727 * Remove card device and associated queue devices. 1728 */ 1729 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1730 { 1731 bus_for_each_dev(&ap_bus_type, NULL, 1732 (void *)(long)ac->id, 1733 __ap_queue_devices_with_id_unregister); 1734 device_unregister(&ac->ap_dev.device); 1735 } 1736 1737 /* 1738 * Helper function for ap_scan_bus(). 1739 * Does the scan bus job for all the domains within 1740 * a valid adapter given by an ap_card ptr. 1741 */ 1742 static inline void ap_scan_domains(struct ap_card *ac) 1743 { 1744 bool decfg, chkstop; 1745 ap_qid_t qid; 1746 unsigned int func; 1747 struct device *dev; 1748 struct ap_queue *aq; 1749 int rc, dom, depth, type, ml; 1750 1751 /* 1752 * Go through the configuration for the domains and compare them 1753 * to the existing queue devices. Also take care of the config 1754 * and error state for the queue devices. 1755 */ 1756 1757 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1758 qid = AP_MKQID(ac->id, dom); 1759 dev = bus_find_device(&ap_bus_type, NULL, 1760 (void *)(long)qid, 1761 __match_queue_device_with_qid); 1762 aq = dev ? to_ap_queue(dev) : NULL; 1763 if (!ap_test_config_usage_domain(dom)) { 1764 if (dev) { 1765 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1766 __func__, ac->id, dom); 1767 device_unregister(dev); 1768 put_device(dev); 1769 } 1770 continue; 1771 } 1772 /* domain is valid, get info from this APQN */ 1773 if (!ap_queue_info(qid, &type, &func, &depth, 1774 &ml, &decfg, &chkstop)) { 1775 if (aq) { 1776 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1777 __func__, ac->id, dom); 1778 device_unregister(dev); 1779 put_device(dev); 1780 } 1781 continue; 1782 } 1783 /* if no queue device exists, create a new one */ 1784 if (!aq) { 1785 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1786 if (!aq) { 1787 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1788 __func__, ac->id, dom); 1789 continue; 1790 } 1791 aq->card = ac; 1792 aq->config = !decfg; 1793 aq->chkstop = chkstop; 1794 dev = &aq->ap_dev.device; 1795 dev->bus = &ap_bus_type; 1796 dev->parent = &ac->ap_dev.device; 1797 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1798 /* register queue device */ 1799 rc = device_register(dev); 1800 if (rc) { 1801 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1802 __func__, ac->id, dom); 1803 goto put_dev_and_continue; 1804 } 1805 /* get it and thus adjust reference counter */ 1806 get_device(dev); 1807 if (decfg) 1808 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1809 __func__, ac->id, dom); 1810 else if (chkstop) 1811 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1812 __func__, ac->id, dom); 1813 else 1814 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1815 __func__, ac->id, dom); 1816 goto put_dev_and_continue; 1817 } 1818 /* handle state changes on already existing queue device */ 1819 spin_lock_bh(&aq->lock); 1820 /* checkstop state */ 1821 if (chkstop && !aq->chkstop) { 1822 /* checkstop on */ 1823 aq->chkstop = true; 1824 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1825 aq->dev_state = AP_DEV_STATE_ERROR; 1826 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1827 } 1828 spin_unlock_bh(&aq->lock); 1829 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n", 1830 __func__, ac->id, dom); 1831 /* 'receive' pending messages with -EAGAIN */ 1832 ap_flush_queue(aq); 1833 goto put_dev_and_continue; 1834 } else if (!chkstop && aq->chkstop) { 1835 /* checkstop off */ 1836 aq->chkstop = false; 1837 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1838 aq->dev_state = AP_DEV_STATE_OPERATING; 1839 aq->sm_state = AP_SM_STATE_RESET_START; 1840 } 1841 spin_unlock_bh(&aq->lock); 1842 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n", 1843 __func__, ac->id, dom); 1844 goto put_dev_and_continue; 1845 } 1846 /* config state change */ 1847 if (decfg && aq->config) { 1848 /* config off this queue device */ 1849 aq->config = false; 1850 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1851 aq->dev_state = AP_DEV_STATE_ERROR; 1852 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1853 } 1854 spin_unlock_bh(&aq->lock); 1855 AP_DBF_DBG("%s(%d,%d) queue dev config off\n", 1856 __func__, ac->id, dom); 1857 ap_send_config_uevent(&aq->ap_dev, aq->config); 1858 /* 'receive' pending messages with -EAGAIN */ 1859 ap_flush_queue(aq); 1860 goto put_dev_and_continue; 1861 } else if (!decfg && !aq->config) { 1862 /* config on this queue device */ 1863 aq->config = true; 1864 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1865 aq->dev_state = AP_DEV_STATE_OPERATING; 1866 aq->sm_state = AP_SM_STATE_RESET_START; 1867 } 1868 spin_unlock_bh(&aq->lock); 1869 AP_DBF_DBG("%s(%d,%d) queue dev config on\n", 1870 __func__, ac->id, dom); 1871 ap_send_config_uevent(&aq->ap_dev, aq->config); 1872 goto put_dev_and_continue; 1873 } 1874 /* handle other error states */ 1875 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1876 spin_unlock_bh(&aq->lock); 1877 /* 'receive' pending messages with -EAGAIN */ 1878 ap_flush_queue(aq); 1879 /* re-init (with reset) the queue device */ 1880 ap_queue_init_state(aq); 1881 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1882 __func__, ac->id, dom); 1883 goto put_dev_and_continue; 1884 } 1885 spin_unlock_bh(&aq->lock); 1886 put_dev_and_continue: 1887 put_device(dev); 1888 } 1889 } 1890 1891 /* 1892 * Helper function for ap_scan_bus(). 1893 * Does the scan bus job for the given adapter id. 1894 */ 1895 static inline void ap_scan_adapter(int ap) 1896 { 1897 bool decfg, chkstop; 1898 ap_qid_t qid; 1899 unsigned int func; 1900 struct device *dev; 1901 struct ap_card *ac; 1902 int rc, dom, depth, type, comp_type, ml; 1903 1904 /* Is there currently a card device for this adapter ? */ 1905 dev = bus_find_device(&ap_bus_type, NULL, 1906 (void *)(long)ap, 1907 __match_card_device_with_id); 1908 ac = dev ? to_ap_card(dev) : NULL; 1909 1910 /* Adapter not in configuration ? */ 1911 if (!ap_test_config_card_id(ap)) { 1912 if (ac) { 1913 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 1914 __func__, ap); 1915 ap_scan_rm_card_dev_and_queue_devs(ac); 1916 put_device(dev); 1917 } 1918 return; 1919 } 1920 1921 /* 1922 * Adapter ap is valid in the current configuration. So do some checks: 1923 * If no card device exists, build one. If a card device exists, check 1924 * for type and functions changed. For all this we need to find a valid 1925 * APQN first. 1926 */ 1927 1928 for (dom = 0; dom <= ap_max_domain_id; dom++) 1929 if (ap_test_config_usage_domain(dom)) { 1930 qid = AP_MKQID(ap, dom); 1931 if (ap_queue_info(qid, &type, &func, &depth, 1932 &ml, &decfg, &chkstop)) 1933 break; 1934 } 1935 if (dom > ap_max_domain_id) { 1936 /* Could not find a valid APQN for this adapter */ 1937 if (ac) { 1938 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 1939 __func__, ap); 1940 ap_scan_rm_card_dev_and_queue_devs(ac); 1941 put_device(dev); 1942 } else { 1943 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 1944 __func__, ap); 1945 } 1946 return; 1947 } 1948 if (!type) { 1949 /* No apdater type info available, an unusable adapter */ 1950 if (ac) { 1951 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 1952 __func__, ap); 1953 ap_scan_rm_card_dev_and_queue_devs(ac); 1954 put_device(dev); 1955 } else { 1956 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 1957 __func__, ap); 1958 } 1959 return; 1960 } 1961 1962 if (ac) { 1963 /* Check APQN against existing card device for changes */ 1964 if (ac->raw_hwtype != type) { 1965 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 1966 __func__, ap, type); 1967 ap_scan_rm_card_dev_and_queue_devs(ac); 1968 put_device(dev); 1969 ac = NULL; 1970 } else if (ac->functions != func) { 1971 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 1972 __func__, ap, type); 1973 ap_scan_rm_card_dev_and_queue_devs(ac); 1974 put_device(dev); 1975 ac = NULL; 1976 } else { 1977 /* handle checkstop state change */ 1978 if (chkstop && !ac->chkstop) { 1979 /* checkstop on */ 1980 ac->chkstop = true; 1981 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 1982 __func__, ap); 1983 } else if (!chkstop && ac->chkstop) { 1984 /* checkstop off */ 1985 ac->chkstop = false; 1986 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 1987 __func__, ap); 1988 } 1989 /* handle config state change */ 1990 if (decfg && ac->config) { 1991 ac->config = false; 1992 AP_DBF_INFO("%s(%d) card dev config off\n", 1993 __func__, ap); 1994 ap_send_config_uevent(&ac->ap_dev, ac->config); 1995 } else if (!decfg && !ac->config) { 1996 ac->config = true; 1997 AP_DBF_INFO("%s(%d) card dev config on\n", 1998 __func__, ap); 1999 ap_send_config_uevent(&ac->ap_dev, ac->config); 2000 } 2001 } 2002 } 2003 2004 if (!ac) { 2005 /* Build a new card device */ 2006 comp_type = ap_get_compatible_type(qid, type, func); 2007 if (!comp_type) { 2008 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2009 __func__, ap, type); 2010 return; 2011 } 2012 ac = ap_card_create(ap, depth, type, comp_type, func, ml); 2013 if (!ac) { 2014 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2015 __func__, ap); 2016 return; 2017 } 2018 ac->config = !decfg; 2019 ac->chkstop = chkstop; 2020 dev = &ac->ap_dev.device; 2021 dev->bus = &ap_bus_type; 2022 dev->parent = ap_root_device; 2023 dev_set_name(dev, "card%02x", ap); 2024 /* maybe enlarge ap_max_msg_size to support this card */ 2025 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2026 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2027 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2028 __func__, ap, 2029 atomic_read(&ap_max_msg_size)); 2030 } 2031 /* Register the new card device with AP bus */ 2032 rc = device_register(dev); 2033 if (rc) { 2034 AP_DBF_WARN("%s(%d) device_register() failed\n", 2035 __func__, ap); 2036 put_device(dev); 2037 return; 2038 } 2039 /* get it and thus adjust reference counter */ 2040 get_device(dev); 2041 if (decfg) 2042 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2043 __func__, ap, type, func); 2044 else if (chkstop) 2045 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2046 __func__, ap, type, func); 2047 else 2048 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2049 __func__, ap, type, func); 2050 } 2051 2052 /* Verify the domains and the queue devices for this card */ 2053 ap_scan_domains(ac); 2054 2055 /* release the card device */ 2056 put_device(&ac->ap_dev.device); 2057 } 2058 2059 /** 2060 * ap_get_configuration - get the host AP configuration 2061 * 2062 * Stores the host AP configuration information returned from the previous call 2063 * to Query Configuration Information (QCI), then retrieves and stores the 2064 * current AP configuration returned from QCI. 2065 * 2066 * Return: true if the host AP configuration changed between calls to QCI; 2067 * otherwise, return false. 2068 */ 2069 static bool ap_get_configuration(void) 2070 { 2071 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2072 ap_fetch_qci_info(ap_qci_info); 2073 2074 return memcmp(ap_qci_info, ap_qci_info_old, 2075 sizeof(struct ap_config_info)) != 0; 2076 } 2077 2078 /** 2079 * ap_scan_bus(): Scan the AP bus for new devices 2080 * Runs periodically, workqueue timer (ap_config_time) 2081 * @unused: Unused pointer. 2082 */ 2083 static void ap_scan_bus(struct work_struct *unused) 2084 { 2085 int ap, config_changed = 0; 2086 2087 /* config change notify */ 2088 config_changed = ap_get_configuration(); 2089 if (config_changed) 2090 notify_config_changed(); 2091 ap_select_domain(); 2092 2093 AP_DBF_DBG("%s running\n", __func__); 2094 2095 /* loop over all possible adapters */ 2096 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2097 ap_scan_adapter(ap); 2098 2099 /* scan complete notify */ 2100 if (config_changed) 2101 notify_scan_complete(); 2102 2103 /* check if there is at least one queue available with default domain */ 2104 if (ap_domain_index >= 0) { 2105 struct device *dev = 2106 bus_find_device(&ap_bus_type, NULL, 2107 (void *)(long)ap_domain_index, 2108 __match_queue_device_with_queue_id); 2109 if (dev) 2110 put_device(dev); 2111 else 2112 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2113 __func__, ap_domain_index); 2114 } 2115 2116 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2117 AP_DBF_DBG("%s init scan complete\n", __func__); 2118 ap_send_init_scan_done_uevent(); 2119 ap_check_bindings_complete(); 2120 } 2121 2122 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 2123 } 2124 2125 static void ap_config_timeout(struct timer_list *unused) 2126 { 2127 queue_work(system_long_wq, &ap_scan_work); 2128 } 2129 2130 static int __init ap_debug_init(void) 2131 { 2132 ap_dbf_info = debug_register("ap", 2, 1, 2133 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2134 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2135 debug_set_level(ap_dbf_info, DBF_ERR); 2136 2137 return 0; 2138 } 2139 2140 static void __init ap_perms_init(void) 2141 { 2142 /* all resources usable if no kernel parameter string given */ 2143 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2144 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2145 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2146 2147 /* apm kernel parameter string */ 2148 if (apm_str) { 2149 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2150 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2151 &ap_perms_mutex); 2152 } 2153 2154 /* aqm kernel parameter string */ 2155 if (aqm_str) { 2156 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2157 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2158 &ap_perms_mutex); 2159 } 2160 } 2161 2162 /** 2163 * ap_module_init(): The module initialization code. 2164 * 2165 * Initializes the module. 2166 */ 2167 static int __init ap_module_init(void) 2168 { 2169 int rc; 2170 2171 rc = ap_debug_init(); 2172 if (rc) 2173 return rc; 2174 2175 if (!ap_instructions_available()) { 2176 pr_warn("The hardware system does not support AP instructions\n"); 2177 return -ENODEV; 2178 } 2179 2180 /* init ap_queue hashtable */ 2181 hash_init(ap_queues); 2182 2183 /* set up the AP permissions (ioctls, ap and aq masks) */ 2184 ap_perms_init(); 2185 2186 /* Get AP configuration data if available */ 2187 ap_init_qci_info(); 2188 2189 /* check default domain setting */ 2190 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2191 (ap_domain_index >= 0 && 2192 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2193 pr_warn("%d is not a valid cryptographic domain\n", 2194 ap_domain_index); 2195 ap_domain_index = -1; 2196 } 2197 2198 /* enable interrupts if available */ 2199 if (ap_interrupts_available() && ap_useirq) { 2200 rc = register_adapter_interrupt(&ap_airq); 2201 ap_irq_flag = (rc == 0); 2202 } 2203 2204 /* Create /sys/bus/ap. */ 2205 rc = bus_register(&ap_bus_type); 2206 if (rc) 2207 goto out; 2208 2209 /* Create /sys/devices/ap. */ 2210 ap_root_device = root_device_register("ap"); 2211 rc = PTR_ERR_OR_ZERO(ap_root_device); 2212 if (rc) 2213 goto out_bus; 2214 ap_root_device->bus = &ap_bus_type; 2215 2216 /* Setup the AP bus rescan timer. */ 2217 timer_setup(&ap_config_timer, ap_config_timeout, 0); 2218 2219 /* 2220 * Setup the high resultion poll timer. 2221 * If we are running under z/VM adjust polling to z/VM polling rate. 2222 */ 2223 if (MACHINE_IS_VM) 2224 poll_timeout = 1500000; 2225 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2226 ap_poll_timer.function = ap_poll_timeout; 2227 2228 /* Start the low priority AP bus poll thread. */ 2229 if (ap_thread_flag) { 2230 rc = ap_poll_thread_start(); 2231 if (rc) 2232 goto out_work; 2233 } 2234 2235 queue_work(system_long_wq, &ap_scan_work); 2236 2237 return 0; 2238 2239 out_work: 2240 hrtimer_cancel(&ap_poll_timer); 2241 root_device_unregister(ap_root_device); 2242 out_bus: 2243 bus_unregister(&ap_bus_type); 2244 out: 2245 if (ap_irq_flag) 2246 unregister_adapter_interrupt(&ap_airq); 2247 kfree(ap_qci_info); 2248 return rc; 2249 } 2250 device_initcall(ap_module_init); 2251