xref: /linux/drivers/s390/crypto/ap_bus.c (revision dc14036fb3240a1bc2677cf8de33fbcb3af77826)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2021
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <linux/atomic.h>
31 #include <asm/isc.h>
32 #include <linux/hrtimer.h>
33 #include <linux/ktime.h>
34 #include <asm/facility.h>
35 #include <linux/crypto.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/debugfs.h>
38 #include <linux/ctype.h>
39 #include <linux/module.h>
40 
41 #include "ap_bus.h"
42 #include "ap_debug.h"
43 
44 /*
45  * Module parameters; note though this file itself isn't modular.
46  */
47 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
48 static DEFINE_SPINLOCK(ap_domain_lock);
49 module_param_named(domain, ap_domain_index, int, 0440);
50 MODULE_PARM_DESC(domain, "domain index for ap devices");
51 EXPORT_SYMBOL(ap_domain_index);
52 
53 static int ap_thread_flag;
54 module_param_named(poll_thread, ap_thread_flag, int, 0440);
55 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
56 
57 static char *apm_str;
58 module_param_named(apmask, apm_str, charp, 0440);
59 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
60 
61 static char *aqm_str;
62 module_param_named(aqmask, aqm_str, charp, 0440);
63 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
64 
65 static int ap_useirq = 1;
66 module_param_named(useirq, ap_useirq, int, 0440);
67 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
68 
69 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
70 EXPORT_SYMBOL(ap_max_msg_size);
71 
72 static struct device *ap_root_device;
73 
74 /* Hashtable of all queue devices on the AP bus */
75 DEFINE_HASHTABLE(ap_queues, 8);
76 /* lock used for the ap_queues hashtable */
77 DEFINE_SPINLOCK(ap_queues_lock);
78 
79 /* Default permissions (ioctl, card and domain masking) */
80 struct ap_perms ap_perms;
81 EXPORT_SYMBOL(ap_perms);
82 DEFINE_MUTEX(ap_perms_mutex);
83 EXPORT_SYMBOL(ap_perms_mutex);
84 
85 /* # of bus scans since init */
86 static atomic64_t ap_scan_bus_count;
87 
88 /* # of bindings complete since init */
89 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
90 
91 /* completion for initial APQN bindings complete */
92 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
93 
94 static struct ap_config_info *ap_qci_info;
95 static struct ap_config_info *ap_qci_info_old;
96 
97 /*
98  * AP bus related debug feature things.
99  */
100 debug_info_t *ap_dbf_info;
101 
102 /*
103  * Workqueue timer for bus rescan.
104  */
105 static struct timer_list ap_config_timer;
106 static int ap_config_time = AP_CONFIG_TIME;
107 static void ap_scan_bus(struct work_struct *);
108 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
109 
110 /*
111  * Tasklet & timer for AP request polling and interrupts
112  */
113 static void ap_tasklet_fn(unsigned long);
114 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
115 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
116 static struct task_struct *ap_poll_kthread;
117 static DEFINE_MUTEX(ap_poll_thread_mutex);
118 static DEFINE_SPINLOCK(ap_poll_timer_lock);
119 static struct hrtimer ap_poll_timer;
120 /*
121  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
122  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
123  */
124 static unsigned long long poll_timeout = 250000;
125 
126 /* Maximum domain id, if not given via qci */
127 static int ap_max_domain_id = 15;
128 /* Maximum adapter id, if not given via qci */
129 static int ap_max_adapter_id = 63;
130 
131 static struct bus_type ap_bus_type;
132 
133 /* Adapter interrupt definitions */
134 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
135 
136 static bool ap_irq_flag;
137 
138 static struct airq_struct ap_airq = {
139 	.handler = ap_interrupt_handler,
140 	.isc = AP_ISC,
141 };
142 
143 /**
144  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
145  *
146  * Returns the address of the local-summary-indicator of the adapter
147  * interrupt handler for AP, or NULL if adapter interrupts are not
148  * available.
149  */
150 void *ap_airq_ptr(void)
151 {
152 	if (ap_irq_flag)
153 		return ap_airq.lsi_ptr;
154 	return NULL;
155 }
156 
157 /**
158  * ap_interrupts_available(): Test if AP interrupts are available.
159  *
160  * Returns 1 if AP interrupts are available.
161  */
162 static int ap_interrupts_available(void)
163 {
164 	return test_facility(65);
165 }
166 
167 /**
168  * ap_qci_available(): Test if AP configuration
169  * information can be queried via QCI subfunction.
170  *
171  * Returns 1 if subfunction PQAP(QCI) is available.
172  */
173 static int ap_qci_available(void)
174 {
175 	return test_facility(12);
176 }
177 
178 /**
179  * ap_apft_available(): Test if AP facilities test (APFT)
180  * facility is available.
181  *
182  * Returns 1 if APFT is available.
183  */
184 static int ap_apft_available(void)
185 {
186 	return test_facility(15);
187 }
188 
189 /*
190  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
191  *
192  * Returns 1 if the QACT subfunction is available.
193  */
194 static inline int ap_qact_available(void)
195 {
196 	if (ap_qci_info)
197 		return ap_qci_info->qact;
198 	return 0;
199 }
200 
201 /*
202  * ap_fetch_qci_info(): Fetch cryptographic config info
203  *
204  * Returns the ap configuration info fetched via PQAP(QCI).
205  * On success 0 is returned, on failure a negative errno
206  * is returned, e.g. if the PQAP(QCI) instruction is not
207  * available, the return value will be -EOPNOTSUPP.
208  */
209 static inline int ap_fetch_qci_info(struct ap_config_info *info)
210 {
211 	if (!ap_qci_available())
212 		return -EOPNOTSUPP;
213 	if (!info)
214 		return -EINVAL;
215 	return ap_qci(info);
216 }
217 
218 /**
219  * ap_init_qci_info(): Allocate and query qci config info.
220  * Does also update the static variables ap_max_domain_id
221  * and ap_max_adapter_id if this info is available.
222  */
223 static void __init ap_init_qci_info(void)
224 {
225 	if (!ap_qci_available()) {
226 		AP_DBF_INFO("%s QCI not supported\n", __func__);
227 		return;
228 	}
229 
230 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
231 	if (!ap_qci_info)
232 		return;
233 	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
234 	if (!ap_qci_info_old)
235 		return;
236 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
237 		kfree(ap_qci_info);
238 		kfree(ap_qci_info_old);
239 		ap_qci_info = NULL;
240 		ap_qci_info_old = NULL;
241 		return;
242 	}
243 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
244 
245 	if (ap_qci_info->apxa) {
246 		if (ap_qci_info->Na) {
247 			ap_max_adapter_id = ap_qci_info->Na;
248 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
249 				    __func__, ap_max_adapter_id);
250 		}
251 		if (ap_qci_info->Nd) {
252 			ap_max_domain_id = ap_qci_info->Nd;
253 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
254 				    __func__, ap_max_domain_id);
255 		}
256 	}
257 
258 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
259 }
260 
261 /*
262  * ap_test_config(): helper function to extract the nrth bit
263  *		     within the unsigned int array field.
264  */
265 static inline int ap_test_config(unsigned int *field, unsigned int nr)
266 {
267 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
268 }
269 
270 /*
271  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
272  *
273  * Returns 0 if the card is not configured
274  *	   1 if the card is configured or
275  *	     if the configuration information is not available
276  */
277 static inline int ap_test_config_card_id(unsigned int id)
278 {
279 	if (id > ap_max_adapter_id)
280 		return 0;
281 	if (ap_qci_info)
282 		return ap_test_config(ap_qci_info->apm, id);
283 	return 1;
284 }
285 
286 /*
287  * ap_test_config_usage_domain(): Test, whether an AP usage domain
288  * is configured.
289  *
290  * Returns 0 if the usage domain is not configured
291  *	   1 if the usage domain is configured or
292  *	     if the configuration information is not available
293  */
294 int ap_test_config_usage_domain(unsigned int domain)
295 {
296 	if (domain > ap_max_domain_id)
297 		return 0;
298 	if (ap_qci_info)
299 		return ap_test_config(ap_qci_info->aqm, domain);
300 	return 1;
301 }
302 EXPORT_SYMBOL(ap_test_config_usage_domain);
303 
304 /*
305  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
306  * is configured.
307  * @domain AP control domain ID
308  *
309  * Returns 1 if the control domain is configured
310  *	   0 in all other cases
311  */
312 int ap_test_config_ctrl_domain(unsigned int domain)
313 {
314 	if (!ap_qci_info || domain > ap_max_domain_id)
315 		return 0;
316 	return ap_test_config(ap_qci_info->adm, domain);
317 }
318 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
319 
320 /*
321  * ap_queue_info(): Check and get AP queue info.
322  * Returns true if TAPQ succeeded and the info is filled or
323  * false otherwise.
324  */
325 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
326 			  int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
327 {
328 	struct ap_queue_status status;
329 	union {
330 		unsigned long value;
331 		struct {
332 			unsigned int fac   : 32; /* facility bits */
333 			unsigned int at	   :  8; /* ap type */
334 			unsigned int _res1 :  8;
335 			unsigned int _res2 :  4;
336 			unsigned int ml	   :  4; /* apxl ml */
337 			unsigned int _res3 :  4;
338 			unsigned int qd	   :  4; /* queue depth */
339 		} tapq_gr2;
340 	} tapq_info;
341 
342 	tapq_info.value = 0;
343 
344 	/* make sure we don't run into a specifiation exception */
345 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
346 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
347 		return false;
348 
349 	/* call TAPQ on this APQN */
350 	status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
351 	switch (status.response_code) {
352 	case AP_RESPONSE_NORMAL:
353 	case AP_RESPONSE_RESET_IN_PROGRESS:
354 	case AP_RESPONSE_DECONFIGURED:
355 	case AP_RESPONSE_CHECKSTOPPED:
356 	case AP_RESPONSE_BUSY:
357 		/*
358 		 * According to the architecture in all these cases the
359 		 * info should be filled. All bits 0 is not possible as
360 		 * there is at least one of the mode bits set.
361 		 */
362 		if (WARN_ON_ONCE(!tapq_info.value))
363 			return false;
364 		*q_type = tapq_info.tapq_gr2.at;
365 		*q_fac = tapq_info.tapq_gr2.fac;
366 		*q_depth = tapq_info.tapq_gr2.qd;
367 		*q_ml = tapq_info.tapq_gr2.ml;
368 		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
369 		*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
370 		switch (*q_type) {
371 			/* For CEX2 and CEX3 the available functions
372 			 * are not reflected by the facilities bits.
373 			 * Instead it is coded into the type. So here
374 			 * modify the function bits based on the type.
375 			 */
376 		case AP_DEVICE_TYPE_CEX2A:
377 		case AP_DEVICE_TYPE_CEX3A:
378 			*q_fac |= 0x08000000;
379 			break;
380 		case AP_DEVICE_TYPE_CEX2C:
381 		case AP_DEVICE_TYPE_CEX3C:
382 			*q_fac |= 0x10000000;
383 			break;
384 		default:
385 			break;
386 		}
387 		return true;
388 	default:
389 		/*
390 		 * A response code which indicates, there is no info available.
391 		 */
392 		return false;
393 	}
394 }
395 
396 void ap_wait(enum ap_sm_wait wait)
397 {
398 	ktime_t hr_time;
399 
400 	switch (wait) {
401 	case AP_SM_WAIT_AGAIN:
402 	case AP_SM_WAIT_INTERRUPT:
403 		if (ap_irq_flag)
404 			break;
405 		if (ap_poll_kthread) {
406 			wake_up(&ap_poll_wait);
407 			break;
408 		}
409 		fallthrough;
410 	case AP_SM_WAIT_TIMEOUT:
411 		spin_lock_bh(&ap_poll_timer_lock);
412 		if (!hrtimer_is_queued(&ap_poll_timer)) {
413 			hr_time = poll_timeout;
414 			hrtimer_forward_now(&ap_poll_timer, hr_time);
415 			hrtimer_restart(&ap_poll_timer);
416 		}
417 		spin_unlock_bh(&ap_poll_timer_lock);
418 		break;
419 	case AP_SM_WAIT_NONE:
420 	default:
421 		break;
422 	}
423 }
424 
425 /**
426  * ap_request_timeout(): Handling of request timeouts
427  * @t: timer making this callback
428  *
429  * Handles request timeouts.
430  */
431 void ap_request_timeout(struct timer_list *t)
432 {
433 	struct ap_queue *aq = from_timer(aq, t, timeout);
434 
435 	spin_lock_bh(&aq->lock);
436 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
437 	spin_unlock_bh(&aq->lock);
438 }
439 
440 /**
441  * ap_poll_timeout(): AP receive polling for finished AP requests.
442  * @unused: Unused pointer.
443  *
444  * Schedules the AP tasklet using a high resolution timer.
445  */
446 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
447 {
448 	tasklet_schedule(&ap_tasklet);
449 	return HRTIMER_NORESTART;
450 }
451 
452 /**
453  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
454  * @airq: pointer to adapter interrupt descriptor
455  * @floating: ignored
456  */
457 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
458 {
459 	inc_irq_stat(IRQIO_APB);
460 	tasklet_schedule(&ap_tasklet);
461 }
462 
463 /**
464  * ap_tasklet_fn(): Tasklet to poll all AP devices.
465  * @dummy: Unused variable
466  *
467  * Poll all AP devices on the bus.
468  */
469 static void ap_tasklet_fn(unsigned long dummy)
470 {
471 	int bkt;
472 	struct ap_queue *aq;
473 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
474 
475 	/* Reset the indicator if interrupts are used. Thus new interrupts can
476 	 * be received. Doing it in the beginning of the tasklet is therefor
477 	 * important that no requests on any AP get lost.
478 	 */
479 	if (ap_irq_flag)
480 		xchg(ap_airq.lsi_ptr, 0);
481 
482 	spin_lock_bh(&ap_queues_lock);
483 	hash_for_each(ap_queues, bkt, aq, hnode) {
484 		spin_lock_bh(&aq->lock);
485 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
486 		spin_unlock_bh(&aq->lock);
487 	}
488 	spin_unlock_bh(&ap_queues_lock);
489 
490 	ap_wait(wait);
491 }
492 
493 static int ap_pending_requests(void)
494 {
495 	int bkt;
496 	struct ap_queue *aq;
497 
498 	spin_lock_bh(&ap_queues_lock);
499 	hash_for_each(ap_queues, bkt, aq, hnode) {
500 		if (aq->queue_count == 0)
501 			continue;
502 		spin_unlock_bh(&ap_queues_lock);
503 		return 1;
504 	}
505 	spin_unlock_bh(&ap_queues_lock);
506 	return 0;
507 }
508 
509 /**
510  * ap_poll_thread(): Thread that polls for finished requests.
511  * @data: Unused pointer
512  *
513  * AP bus poll thread. The purpose of this thread is to poll for
514  * finished requests in a loop if there is a "free" cpu - that is
515  * a cpu that doesn't have anything better to do. The polling stops
516  * as soon as there is another task or if all messages have been
517  * delivered.
518  */
519 static int ap_poll_thread(void *data)
520 {
521 	DECLARE_WAITQUEUE(wait, current);
522 
523 	set_user_nice(current, MAX_NICE);
524 	set_freezable();
525 	while (!kthread_should_stop()) {
526 		add_wait_queue(&ap_poll_wait, &wait);
527 		set_current_state(TASK_INTERRUPTIBLE);
528 		if (!ap_pending_requests()) {
529 			schedule();
530 			try_to_freeze();
531 		}
532 		set_current_state(TASK_RUNNING);
533 		remove_wait_queue(&ap_poll_wait, &wait);
534 		if (need_resched()) {
535 			schedule();
536 			try_to_freeze();
537 			continue;
538 		}
539 		ap_tasklet_fn(0);
540 	}
541 
542 	return 0;
543 }
544 
545 static int ap_poll_thread_start(void)
546 {
547 	int rc;
548 
549 	if (ap_irq_flag || ap_poll_kthread)
550 		return 0;
551 	mutex_lock(&ap_poll_thread_mutex);
552 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
553 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
554 	if (rc)
555 		ap_poll_kthread = NULL;
556 	mutex_unlock(&ap_poll_thread_mutex);
557 	return rc;
558 }
559 
560 static void ap_poll_thread_stop(void)
561 {
562 	if (!ap_poll_kthread)
563 		return;
564 	mutex_lock(&ap_poll_thread_mutex);
565 	kthread_stop(ap_poll_kthread);
566 	ap_poll_kthread = NULL;
567 	mutex_unlock(&ap_poll_thread_mutex);
568 }
569 
570 #define is_card_dev(x) ((x)->parent == ap_root_device)
571 #define is_queue_dev(x) ((x)->parent != ap_root_device)
572 
573 /**
574  * ap_bus_match()
575  * @dev: Pointer to device
576  * @drv: Pointer to device_driver
577  *
578  * AP bus driver registration/unregistration.
579  */
580 static int ap_bus_match(struct device *dev, struct device_driver *drv)
581 {
582 	struct ap_driver *ap_drv = to_ap_drv(drv);
583 	struct ap_device_id *id;
584 
585 	/*
586 	 * Compare device type of the device with the list of
587 	 * supported types of the device_driver.
588 	 */
589 	for (id = ap_drv->ids; id->match_flags; id++) {
590 		if (is_card_dev(dev) &&
591 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
592 		    id->dev_type == to_ap_dev(dev)->device_type)
593 			return 1;
594 		if (is_queue_dev(dev) &&
595 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
596 		    id->dev_type == to_ap_dev(dev)->device_type)
597 			return 1;
598 	}
599 	return 0;
600 }
601 
602 /**
603  * ap_uevent(): Uevent function for AP devices.
604  * @dev: Pointer to device
605  * @env: Pointer to kobj_uevent_env
606  *
607  * It sets up a single environment variable DEV_TYPE which contains the
608  * hardware device type.
609  */
610 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
611 {
612 	int rc = 0;
613 	struct ap_device *ap_dev = to_ap_dev(dev);
614 
615 	/* Uevents from ap bus core don't need extensions to the env */
616 	if (dev == ap_root_device)
617 		return 0;
618 
619 	if (is_card_dev(dev)) {
620 		struct ap_card *ac = to_ap_card(&ap_dev->device);
621 
622 		/* Set up DEV_TYPE environment variable. */
623 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
624 		if (rc)
625 			return rc;
626 		/* Add MODALIAS= */
627 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
628 		if (rc)
629 			return rc;
630 
631 		/* Add MODE=<accel|cca|ep11> */
632 		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
633 			rc = add_uevent_var(env, "MODE=accel");
634 		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
635 			rc = add_uevent_var(env, "MODE=cca");
636 		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
637 			rc = add_uevent_var(env, "MODE=ep11");
638 		if (rc)
639 			return rc;
640 	} else {
641 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
642 
643 		/* Add MODE=<accel|cca|ep11> */
644 		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
645 			rc = add_uevent_var(env, "MODE=accel");
646 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
647 			rc = add_uevent_var(env, "MODE=cca");
648 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
649 			rc = add_uevent_var(env, "MODE=ep11");
650 		if (rc)
651 			return rc;
652 	}
653 
654 	return 0;
655 }
656 
657 static void ap_send_init_scan_done_uevent(void)
658 {
659 	char *envp[] = { "INITSCAN=done", NULL };
660 
661 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
662 }
663 
664 static void ap_send_bindings_complete_uevent(void)
665 {
666 	char buf[32];
667 	char *envp[] = { "BINDINGS=complete", buf, NULL };
668 
669 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
670 		 atomic64_inc_return(&ap_bindings_complete_count));
671 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
672 }
673 
674 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
675 {
676 	char buf[16];
677 	char *envp[] = { buf, NULL };
678 
679 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
680 
681 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
682 }
683 EXPORT_SYMBOL(ap_send_config_uevent);
684 
685 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
686 {
687 	char buf[16];
688 	char *envp[] = { buf, NULL };
689 
690 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
691 
692 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
693 }
694 EXPORT_SYMBOL(ap_send_online_uevent);
695 
696 static void ap_send_mask_changed_uevent(unsigned long *newapm,
697 					unsigned long *newaqm)
698 {
699 	char buf[100];
700 	char *envp[] = { buf, NULL };
701 
702 	if (newapm)
703 		snprintf(buf, sizeof(buf),
704 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
705 			 newapm[0], newapm[1], newapm[2], newapm[3]);
706 	else
707 		snprintf(buf, sizeof(buf),
708 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
709 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
710 
711 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
712 }
713 
714 /*
715  * calc # of bound APQNs
716  */
717 
718 struct __ap_calc_ctrs {
719 	unsigned int apqns;
720 	unsigned int bound;
721 };
722 
723 static int __ap_calc_helper(struct device *dev, void *arg)
724 {
725 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
726 
727 	if (is_queue_dev(dev)) {
728 		pctrs->apqns++;
729 		if (dev->driver)
730 			pctrs->bound++;
731 	}
732 
733 	return 0;
734 }
735 
736 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
737 {
738 	struct __ap_calc_ctrs ctrs;
739 
740 	memset(&ctrs, 0, sizeof(ctrs));
741 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
742 
743 	*apqns = ctrs.apqns;
744 	*bound = ctrs.bound;
745 }
746 
747 /*
748  * After initial ap bus scan do check if all existing APQNs are
749  * bound to device drivers.
750  */
751 static void ap_check_bindings_complete(void)
752 {
753 	unsigned int apqns, bound;
754 
755 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
756 		ap_calc_bound_apqns(&apqns, &bound);
757 		if (bound == apqns) {
758 			if (!completion_done(&ap_init_apqn_bindings_complete)) {
759 				complete_all(&ap_init_apqn_bindings_complete);
760 				AP_DBF_INFO("%s complete\n", __func__);
761 			}
762 			ap_send_bindings_complete_uevent();
763 		}
764 	}
765 }
766 
767 /*
768  * Interface to wait for the AP bus to have done one initial ap bus
769  * scan and all detected APQNs have been bound to device drivers.
770  * If these both conditions are not fulfilled, this function blocks
771  * on a condition with wait_for_completion_interruptible_timeout().
772  * If these both conditions are fulfilled (before the timeout hits)
773  * the return value is 0. If the timeout (in jiffies) hits instead
774  * -ETIME is returned. On failures negative return values are
775  * returned to the caller.
776  */
777 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
778 {
779 	long l;
780 
781 	if (completion_done(&ap_init_apqn_bindings_complete))
782 		return 0;
783 
784 	if (timeout)
785 		l = wait_for_completion_interruptible_timeout(
786 			&ap_init_apqn_bindings_complete, timeout);
787 	else
788 		l = wait_for_completion_interruptible(
789 			&ap_init_apqn_bindings_complete);
790 	if (l < 0)
791 		return l == -ERESTARTSYS ? -EINTR : l;
792 	else if (l == 0 && timeout)
793 		return -ETIME;
794 
795 	return 0;
796 }
797 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
798 
799 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
800 {
801 	if (is_queue_dev(dev) &&
802 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
803 		device_unregister(dev);
804 	return 0;
805 }
806 
807 static int __ap_revise_reserved(struct device *dev, void *dummy)
808 {
809 	int rc, card, queue, devres, drvres;
810 
811 	if (is_queue_dev(dev)) {
812 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
813 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
814 		mutex_lock(&ap_perms_mutex);
815 		devres = test_bit_inv(card, ap_perms.apm) &&
816 			test_bit_inv(queue, ap_perms.aqm);
817 		mutex_unlock(&ap_perms_mutex);
818 		drvres = to_ap_drv(dev->driver)->flags
819 			& AP_DRIVER_FLAG_DEFAULT;
820 		if (!!devres != !!drvres) {
821 			AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
822 				   __func__, card, queue);
823 			rc = device_reprobe(dev);
824 			if (rc)
825 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
826 					    __func__, card, queue);
827 		}
828 	}
829 
830 	return 0;
831 }
832 
833 static void ap_bus_revise_bindings(void)
834 {
835 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
836 }
837 
838 int ap_owned_by_def_drv(int card, int queue)
839 {
840 	int rc = 0;
841 
842 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
843 		return -EINVAL;
844 
845 	mutex_lock(&ap_perms_mutex);
846 
847 	if (test_bit_inv(card, ap_perms.apm) &&
848 	    test_bit_inv(queue, ap_perms.aqm))
849 		rc = 1;
850 
851 	mutex_unlock(&ap_perms_mutex);
852 
853 	return rc;
854 }
855 EXPORT_SYMBOL(ap_owned_by_def_drv);
856 
857 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
858 				       unsigned long *aqm)
859 {
860 	int card, queue, rc = 0;
861 
862 	mutex_lock(&ap_perms_mutex);
863 
864 	for (card = 0; !rc && card < AP_DEVICES; card++)
865 		if (test_bit_inv(card, apm) &&
866 		    test_bit_inv(card, ap_perms.apm))
867 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
868 				if (test_bit_inv(queue, aqm) &&
869 				    test_bit_inv(queue, ap_perms.aqm))
870 					rc = 1;
871 
872 	mutex_unlock(&ap_perms_mutex);
873 
874 	return rc;
875 }
876 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
877 
878 static int ap_device_probe(struct device *dev)
879 {
880 	struct ap_device *ap_dev = to_ap_dev(dev);
881 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
882 	int card, queue, devres, drvres, rc = -ENODEV;
883 
884 	if (!get_device(dev))
885 		return rc;
886 
887 	if (is_queue_dev(dev)) {
888 		/*
889 		 * If the apqn is marked as reserved/used by ap bus and
890 		 * default drivers, only probe with drivers with the default
891 		 * flag set. If it is not marked, only probe with drivers
892 		 * with the default flag not set.
893 		 */
894 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
895 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
896 		mutex_lock(&ap_perms_mutex);
897 		devres = test_bit_inv(card, ap_perms.apm) &&
898 			test_bit_inv(queue, ap_perms.aqm);
899 		mutex_unlock(&ap_perms_mutex);
900 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
901 		if (!!devres != !!drvres)
902 			goto out;
903 	}
904 
905 	/* Add queue/card to list of active queues/cards */
906 	spin_lock_bh(&ap_queues_lock);
907 	if (is_queue_dev(dev))
908 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
909 			 to_ap_queue(dev)->qid);
910 	spin_unlock_bh(&ap_queues_lock);
911 
912 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
913 
914 	if (rc) {
915 		spin_lock_bh(&ap_queues_lock);
916 		if (is_queue_dev(dev))
917 			hash_del(&to_ap_queue(dev)->hnode);
918 		spin_unlock_bh(&ap_queues_lock);
919 	} else {
920 		ap_check_bindings_complete();
921 	}
922 
923 out:
924 	if (rc)
925 		put_device(dev);
926 	return rc;
927 }
928 
929 static void ap_device_remove(struct device *dev)
930 {
931 	struct ap_device *ap_dev = to_ap_dev(dev);
932 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
933 
934 	/* prepare ap queue device removal */
935 	if (is_queue_dev(dev))
936 		ap_queue_prepare_remove(to_ap_queue(dev));
937 
938 	/* driver's chance to clean up gracefully */
939 	if (ap_drv->remove)
940 		ap_drv->remove(ap_dev);
941 
942 	/* now do the ap queue device remove */
943 	if (is_queue_dev(dev))
944 		ap_queue_remove(to_ap_queue(dev));
945 
946 	/* Remove queue/card from list of active queues/cards */
947 	spin_lock_bh(&ap_queues_lock);
948 	if (is_queue_dev(dev))
949 		hash_del(&to_ap_queue(dev)->hnode);
950 	spin_unlock_bh(&ap_queues_lock);
951 
952 	put_device(dev);
953 }
954 
955 struct ap_queue *ap_get_qdev(ap_qid_t qid)
956 {
957 	int bkt;
958 	struct ap_queue *aq;
959 
960 	spin_lock_bh(&ap_queues_lock);
961 	hash_for_each(ap_queues, bkt, aq, hnode) {
962 		if (aq->qid == qid) {
963 			get_device(&aq->ap_dev.device);
964 			spin_unlock_bh(&ap_queues_lock);
965 			return aq;
966 		}
967 	}
968 	spin_unlock_bh(&ap_queues_lock);
969 
970 	return NULL;
971 }
972 EXPORT_SYMBOL(ap_get_qdev);
973 
974 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
975 		       char *name)
976 {
977 	struct device_driver *drv = &ap_drv->driver;
978 
979 	drv->bus = &ap_bus_type;
980 	drv->owner = owner;
981 	drv->name = name;
982 	return driver_register(drv);
983 }
984 EXPORT_SYMBOL(ap_driver_register);
985 
986 void ap_driver_unregister(struct ap_driver *ap_drv)
987 {
988 	driver_unregister(&ap_drv->driver);
989 }
990 EXPORT_SYMBOL(ap_driver_unregister);
991 
992 void ap_bus_force_rescan(void)
993 {
994 	/* processing a asynchronous bus rescan */
995 	del_timer(&ap_config_timer);
996 	queue_work(system_long_wq, &ap_scan_work);
997 	flush_work(&ap_scan_work);
998 }
999 EXPORT_SYMBOL(ap_bus_force_rescan);
1000 
1001 /*
1002  * A config change has happened, force an ap bus rescan.
1003  */
1004 void ap_bus_cfg_chg(void)
1005 {
1006 	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1007 
1008 	ap_bus_force_rescan();
1009 }
1010 
1011 /*
1012  * hex2bitmap() - parse hex mask string and set bitmap.
1013  * Valid strings are "0x012345678" with at least one valid hex number.
1014  * Rest of the bitmap to the right is padded with 0. No spaces allowed
1015  * within the string, the leading 0x may be omitted.
1016  * Returns the bitmask with exactly the bits set as given by the hex
1017  * string (both in big endian order).
1018  */
1019 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1020 {
1021 	int i, n, b;
1022 
1023 	/* bits needs to be a multiple of 8 */
1024 	if (bits & 0x07)
1025 		return -EINVAL;
1026 
1027 	if (str[0] == '0' && str[1] == 'x')
1028 		str++;
1029 	if (*str == 'x')
1030 		str++;
1031 
1032 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1033 		b = hex_to_bin(*str);
1034 		for (n = 0; n < 4; n++)
1035 			if (b & (0x08 >> n))
1036 				set_bit_inv(i + n, bitmap);
1037 		i += 4;
1038 	}
1039 
1040 	if (*str == '\n')
1041 		str++;
1042 	if (*str)
1043 		return -EINVAL;
1044 	return 0;
1045 }
1046 
1047 /*
1048  * modify_bitmap() - parse bitmask argument and modify an existing
1049  * bit mask accordingly. A concatenation (done with ',') of these
1050  * terms is recognized:
1051  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1052  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1053  * 0...bits-1; the leading + or - is required. Here are some examples:
1054  *   +0-15,+32,-128,-0xFF
1055  *   -0-255,+1-16,+0x128
1056  *   +1,+2,+3,+4,-5,-7-10
1057  * Returns the new bitmap after all changes have been applied. Every
1058  * positive value in the string will set a bit and every negative value
1059  * in the string will clear a bit. As a bit may be touched more than once,
1060  * the last 'operation' wins:
1061  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1062  * cleared again. All other bits are unmodified.
1063  */
1064 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1065 {
1066 	int a, i, z;
1067 	char *np, sign;
1068 
1069 	/* bits needs to be a multiple of 8 */
1070 	if (bits & 0x07)
1071 		return -EINVAL;
1072 
1073 	while (*str) {
1074 		sign = *str++;
1075 		if (sign != '+' && sign != '-')
1076 			return -EINVAL;
1077 		a = z = simple_strtoul(str, &np, 0);
1078 		if (str == np || a >= bits)
1079 			return -EINVAL;
1080 		str = np;
1081 		if (*str == '-') {
1082 			z = simple_strtoul(++str, &np, 0);
1083 			if (str == np || a > z || z >= bits)
1084 				return -EINVAL;
1085 			str = np;
1086 		}
1087 		for (i = a; i <= z; i++)
1088 			if (sign == '+')
1089 				set_bit_inv(i, bitmap);
1090 			else
1091 				clear_bit_inv(i, bitmap);
1092 		while (*str == ',' || *str == '\n')
1093 			str++;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1100 			       unsigned long *newmap)
1101 {
1102 	unsigned long size;
1103 	int rc;
1104 
1105 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1106 	if (*str == '+' || *str == '-') {
1107 		memcpy(newmap, bitmap, size);
1108 		rc = modify_bitmap(str, newmap, bits);
1109 	} else {
1110 		memset(newmap, 0, size);
1111 		rc = hex2bitmap(str, newmap, bits);
1112 	}
1113 	return rc;
1114 }
1115 
1116 int ap_parse_mask_str(const char *str,
1117 		      unsigned long *bitmap, int bits,
1118 		      struct mutex *lock)
1119 {
1120 	unsigned long *newmap, size;
1121 	int rc;
1122 
1123 	/* bits needs to be a multiple of 8 */
1124 	if (bits & 0x07)
1125 		return -EINVAL;
1126 
1127 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1128 	newmap = kmalloc(size, GFP_KERNEL);
1129 	if (!newmap)
1130 		return -ENOMEM;
1131 	if (mutex_lock_interruptible(lock)) {
1132 		kfree(newmap);
1133 		return -ERESTARTSYS;
1134 	}
1135 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1136 	if (rc == 0)
1137 		memcpy(bitmap, newmap, size);
1138 	mutex_unlock(lock);
1139 	kfree(newmap);
1140 	return rc;
1141 }
1142 EXPORT_SYMBOL(ap_parse_mask_str);
1143 
1144 /*
1145  * AP bus attributes.
1146  */
1147 
1148 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1149 {
1150 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1151 }
1152 
1153 static ssize_t ap_domain_store(struct bus_type *bus,
1154 			       const char *buf, size_t count)
1155 {
1156 	int domain;
1157 
1158 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1159 	    domain < 0 || domain > ap_max_domain_id ||
1160 	    !test_bit_inv(domain, ap_perms.aqm))
1161 		return -EINVAL;
1162 
1163 	spin_lock_bh(&ap_domain_lock);
1164 	ap_domain_index = domain;
1165 	spin_unlock_bh(&ap_domain_lock);
1166 
1167 	AP_DBF_INFO("%s stored new default domain=%d\n",
1168 		    __func__, domain);
1169 
1170 	return count;
1171 }
1172 
1173 static BUS_ATTR_RW(ap_domain);
1174 
1175 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1176 {
1177 	if (!ap_qci_info)	/* QCI not supported */
1178 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1179 
1180 	return scnprintf(buf, PAGE_SIZE,
1181 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1182 			 ap_qci_info->adm[0], ap_qci_info->adm[1],
1183 			 ap_qci_info->adm[2], ap_qci_info->adm[3],
1184 			 ap_qci_info->adm[4], ap_qci_info->adm[5],
1185 			 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1186 }
1187 
1188 static BUS_ATTR_RO(ap_control_domain_mask);
1189 
1190 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1191 {
1192 	if (!ap_qci_info)	/* QCI not supported */
1193 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1194 
1195 	return scnprintf(buf, PAGE_SIZE,
1196 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1197 			 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1198 			 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1199 			 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1200 			 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1201 }
1202 
1203 static BUS_ATTR_RO(ap_usage_domain_mask);
1204 
1205 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1206 {
1207 	if (!ap_qci_info)	/* QCI not supported */
1208 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1209 
1210 	return scnprintf(buf, PAGE_SIZE,
1211 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1212 			 ap_qci_info->apm[0], ap_qci_info->apm[1],
1213 			 ap_qci_info->apm[2], ap_qci_info->apm[3],
1214 			 ap_qci_info->apm[4], ap_qci_info->apm[5],
1215 			 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1216 }
1217 
1218 static BUS_ATTR_RO(ap_adapter_mask);
1219 
1220 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1221 {
1222 	return scnprintf(buf, PAGE_SIZE, "%d\n",
1223 			 ap_irq_flag ? 1 : 0);
1224 }
1225 
1226 static BUS_ATTR_RO(ap_interrupts);
1227 
1228 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1229 {
1230 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1231 }
1232 
1233 static ssize_t config_time_store(struct bus_type *bus,
1234 				 const char *buf, size_t count)
1235 {
1236 	int time;
1237 
1238 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1239 		return -EINVAL;
1240 	ap_config_time = time;
1241 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1242 	return count;
1243 }
1244 
1245 static BUS_ATTR_RW(config_time);
1246 
1247 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1248 {
1249 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1250 }
1251 
1252 static ssize_t poll_thread_store(struct bus_type *bus,
1253 				 const char *buf, size_t count)
1254 {
1255 	int flag, rc;
1256 
1257 	if (sscanf(buf, "%d\n", &flag) != 1)
1258 		return -EINVAL;
1259 	if (flag) {
1260 		rc = ap_poll_thread_start();
1261 		if (rc)
1262 			count = rc;
1263 	} else {
1264 		ap_poll_thread_stop();
1265 	}
1266 	return count;
1267 }
1268 
1269 static BUS_ATTR_RW(poll_thread);
1270 
1271 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1272 {
1273 	return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1274 }
1275 
1276 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1277 				  size_t count)
1278 {
1279 	unsigned long long time;
1280 	ktime_t hr_time;
1281 
1282 	/* 120 seconds = maximum poll interval */
1283 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1284 	    time > 120000000000ULL)
1285 		return -EINVAL;
1286 	poll_timeout = time;
1287 	hr_time = poll_timeout;
1288 
1289 	spin_lock_bh(&ap_poll_timer_lock);
1290 	hrtimer_cancel(&ap_poll_timer);
1291 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1292 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1293 	spin_unlock_bh(&ap_poll_timer_lock);
1294 
1295 	return count;
1296 }
1297 
1298 static BUS_ATTR_RW(poll_timeout);
1299 
1300 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1301 {
1302 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1303 }
1304 
1305 static BUS_ATTR_RO(ap_max_domain_id);
1306 
1307 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1308 {
1309 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1310 }
1311 
1312 static BUS_ATTR_RO(ap_max_adapter_id);
1313 
1314 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1315 {
1316 	int rc;
1317 
1318 	if (mutex_lock_interruptible(&ap_perms_mutex))
1319 		return -ERESTARTSYS;
1320 	rc = scnprintf(buf, PAGE_SIZE,
1321 		       "0x%016lx%016lx%016lx%016lx\n",
1322 		       ap_perms.apm[0], ap_perms.apm[1],
1323 		       ap_perms.apm[2], ap_perms.apm[3]);
1324 	mutex_unlock(&ap_perms_mutex);
1325 
1326 	return rc;
1327 }
1328 
1329 static int __verify_card_reservations(struct device_driver *drv, void *data)
1330 {
1331 	int rc = 0;
1332 	struct ap_driver *ap_drv = to_ap_drv(drv);
1333 	unsigned long *newapm = (unsigned long *)data;
1334 
1335 	/*
1336 	 * increase the driver's module refcounter to be sure it is not
1337 	 * going away when we invoke the callback function.
1338 	 */
1339 	if (!try_module_get(drv->owner))
1340 		return 0;
1341 
1342 	if (ap_drv->in_use) {
1343 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1344 		if (rc)
1345 			rc = -EBUSY;
1346 	}
1347 
1348 	/* release the driver's module */
1349 	module_put(drv->owner);
1350 
1351 	return rc;
1352 }
1353 
1354 static int apmask_commit(unsigned long *newapm)
1355 {
1356 	int rc;
1357 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1358 
1359 	/*
1360 	 * Check if any bits in the apmask have been set which will
1361 	 * result in queues being removed from non-default drivers
1362 	 */
1363 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1364 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1365 				      __verify_card_reservations);
1366 		if (rc)
1367 			return rc;
1368 	}
1369 
1370 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1371 
1372 	return 0;
1373 }
1374 
1375 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1376 			    size_t count)
1377 {
1378 	int rc, changes = 0;
1379 	DECLARE_BITMAP(newapm, AP_DEVICES);
1380 
1381 	if (mutex_lock_interruptible(&ap_perms_mutex))
1382 		return -ERESTARTSYS;
1383 
1384 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1385 	if (rc)
1386 		goto done;
1387 
1388 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1389 	if (changes)
1390 		rc = apmask_commit(newapm);
1391 
1392 done:
1393 	mutex_unlock(&ap_perms_mutex);
1394 	if (rc)
1395 		return rc;
1396 
1397 	if (changes) {
1398 		ap_bus_revise_bindings();
1399 		ap_send_mask_changed_uevent(newapm, NULL);
1400 	}
1401 
1402 	return count;
1403 }
1404 
1405 static BUS_ATTR_RW(apmask);
1406 
1407 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1408 {
1409 	int rc;
1410 
1411 	if (mutex_lock_interruptible(&ap_perms_mutex))
1412 		return -ERESTARTSYS;
1413 	rc = scnprintf(buf, PAGE_SIZE,
1414 		       "0x%016lx%016lx%016lx%016lx\n",
1415 		       ap_perms.aqm[0], ap_perms.aqm[1],
1416 		       ap_perms.aqm[2], ap_perms.aqm[3]);
1417 	mutex_unlock(&ap_perms_mutex);
1418 
1419 	return rc;
1420 }
1421 
1422 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1423 {
1424 	int rc = 0;
1425 	struct ap_driver *ap_drv = to_ap_drv(drv);
1426 	unsigned long *newaqm = (unsigned long *)data;
1427 
1428 	/*
1429 	 * increase the driver's module refcounter to be sure it is not
1430 	 * going away when we invoke the callback function.
1431 	 */
1432 	if (!try_module_get(drv->owner))
1433 		return 0;
1434 
1435 	if (ap_drv->in_use) {
1436 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1437 		if (rc)
1438 			rc = -EBUSY;
1439 	}
1440 
1441 	/* release the driver's module */
1442 	module_put(drv->owner);
1443 
1444 	return rc;
1445 }
1446 
1447 static int aqmask_commit(unsigned long *newaqm)
1448 {
1449 	int rc;
1450 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1451 
1452 	/*
1453 	 * Check if any bits in the aqmask have been set which will
1454 	 * result in queues being removed from non-default drivers
1455 	 */
1456 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1457 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1458 				      __verify_queue_reservations);
1459 		if (rc)
1460 			return rc;
1461 	}
1462 
1463 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1464 
1465 	return 0;
1466 }
1467 
1468 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1469 			    size_t count)
1470 {
1471 	int rc, changes = 0;
1472 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1473 
1474 	if (mutex_lock_interruptible(&ap_perms_mutex))
1475 		return -ERESTARTSYS;
1476 
1477 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1478 	if (rc)
1479 		goto done;
1480 
1481 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1482 	if (changes)
1483 		rc = aqmask_commit(newaqm);
1484 
1485 done:
1486 	mutex_unlock(&ap_perms_mutex);
1487 	if (rc)
1488 		return rc;
1489 
1490 	if (changes) {
1491 		ap_bus_revise_bindings();
1492 		ap_send_mask_changed_uevent(NULL, newaqm);
1493 	}
1494 
1495 	return count;
1496 }
1497 
1498 static BUS_ATTR_RW(aqmask);
1499 
1500 static ssize_t scans_show(struct bus_type *bus, char *buf)
1501 {
1502 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
1503 			 atomic64_read(&ap_scan_bus_count));
1504 }
1505 
1506 static ssize_t scans_store(struct bus_type *bus, const char *buf,
1507 			   size_t count)
1508 {
1509 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1510 
1511 	ap_bus_force_rescan();
1512 
1513 	return count;
1514 }
1515 
1516 static BUS_ATTR_RW(scans);
1517 
1518 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1519 {
1520 	int rc;
1521 	unsigned int apqns, n;
1522 
1523 	ap_calc_bound_apqns(&apqns, &n);
1524 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1525 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1526 	else
1527 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1528 
1529 	return rc;
1530 }
1531 
1532 static BUS_ATTR_RO(bindings);
1533 
1534 static struct attribute *ap_bus_attrs[] = {
1535 	&bus_attr_ap_domain.attr,
1536 	&bus_attr_ap_control_domain_mask.attr,
1537 	&bus_attr_ap_usage_domain_mask.attr,
1538 	&bus_attr_ap_adapter_mask.attr,
1539 	&bus_attr_config_time.attr,
1540 	&bus_attr_poll_thread.attr,
1541 	&bus_attr_ap_interrupts.attr,
1542 	&bus_attr_poll_timeout.attr,
1543 	&bus_attr_ap_max_domain_id.attr,
1544 	&bus_attr_ap_max_adapter_id.attr,
1545 	&bus_attr_apmask.attr,
1546 	&bus_attr_aqmask.attr,
1547 	&bus_attr_scans.attr,
1548 	&bus_attr_bindings.attr,
1549 	NULL,
1550 };
1551 ATTRIBUTE_GROUPS(ap_bus);
1552 
1553 static struct bus_type ap_bus_type = {
1554 	.name = "ap",
1555 	.bus_groups = ap_bus_groups,
1556 	.match = &ap_bus_match,
1557 	.uevent = &ap_uevent,
1558 	.probe = ap_device_probe,
1559 	.remove = ap_device_remove,
1560 };
1561 
1562 /**
1563  * ap_select_domain(): Select an AP domain if possible and we haven't
1564  * already done so before.
1565  */
1566 static void ap_select_domain(void)
1567 {
1568 	struct ap_queue_status status;
1569 	int card, dom;
1570 
1571 	/*
1572 	 * Choose the default domain. Either the one specified with
1573 	 * the "domain=" parameter or the first domain with at least
1574 	 * one valid APQN.
1575 	 */
1576 	spin_lock_bh(&ap_domain_lock);
1577 	if (ap_domain_index >= 0) {
1578 		/* Domain has already been selected. */
1579 		goto out;
1580 	}
1581 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1582 		if (!ap_test_config_usage_domain(dom) ||
1583 		    !test_bit_inv(dom, ap_perms.aqm))
1584 			continue;
1585 		for (card = 0; card <= ap_max_adapter_id; card++) {
1586 			if (!ap_test_config_card_id(card) ||
1587 			    !test_bit_inv(card, ap_perms.apm))
1588 				continue;
1589 			status = ap_test_queue(AP_MKQID(card, dom),
1590 					       ap_apft_available(),
1591 					       NULL);
1592 			if (status.response_code == AP_RESPONSE_NORMAL)
1593 				break;
1594 		}
1595 		if (card <= ap_max_adapter_id)
1596 			break;
1597 	}
1598 	if (dom <= ap_max_domain_id) {
1599 		ap_domain_index = dom;
1600 		AP_DBF_INFO("%s new default domain is %d\n",
1601 			    __func__, ap_domain_index);
1602 	}
1603 out:
1604 	spin_unlock_bh(&ap_domain_lock);
1605 }
1606 
1607 /*
1608  * This function checks the type and returns either 0 for not
1609  * supported or the highest compatible type value (which may
1610  * include the input type value).
1611  */
1612 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1613 {
1614 	int comp_type = 0;
1615 
1616 	/* < CEX2A is not supported */
1617 	if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1618 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1619 			    __func__, AP_QID_CARD(qid),
1620 			    AP_QID_QUEUE(qid), rawtype);
1621 		return 0;
1622 	}
1623 	/* up to CEX8 known and fully supported */
1624 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1625 		return rawtype;
1626 	/*
1627 	 * unknown new type > CEX8, check for compatibility
1628 	 * to the highest known and supported type which is
1629 	 * currently CEX8 with the help of the QACT function.
1630 	 */
1631 	if (ap_qact_available()) {
1632 		struct ap_queue_status status;
1633 		union ap_qact_ap_info apinfo = {0};
1634 
1635 		apinfo.mode = (func >> 26) & 0x07;
1636 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1637 		status = ap_qact(qid, 0, &apinfo);
1638 		if (status.response_code == AP_RESPONSE_NORMAL &&
1639 		    apinfo.cat >= AP_DEVICE_TYPE_CEX2A &&
1640 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1641 			comp_type = apinfo.cat;
1642 	}
1643 	if (!comp_type)
1644 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1645 			    __func__, AP_QID_CARD(qid),
1646 			    AP_QID_QUEUE(qid), rawtype);
1647 	else if (comp_type != rawtype)
1648 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1649 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1650 			    rawtype, comp_type);
1651 	return comp_type;
1652 }
1653 
1654 /*
1655  * Helper function to be used with bus_find_dev
1656  * matches for the card device with the given id
1657  */
1658 static int __match_card_device_with_id(struct device *dev, const void *data)
1659 {
1660 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1661 }
1662 
1663 /*
1664  * Helper function to be used with bus_find_dev
1665  * matches for the queue device with a given qid
1666  */
1667 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1668 {
1669 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1670 }
1671 
1672 /*
1673  * Helper function to be used with bus_find_dev
1674  * matches any queue device with given queue id
1675  */
1676 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1677 {
1678 	return is_queue_dev(dev) &&
1679 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1680 }
1681 
1682 /* Helper function for notify_config_changed */
1683 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1684 {
1685 	struct ap_driver *ap_drv = to_ap_drv(drv);
1686 
1687 	if (try_module_get(drv->owner)) {
1688 		if (ap_drv->on_config_changed)
1689 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1690 		module_put(drv->owner);
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 /* Notify all drivers about an qci config change */
1697 static inline void notify_config_changed(void)
1698 {
1699 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1700 			 __drv_notify_config_changed);
1701 }
1702 
1703 /* Helper function for notify_scan_complete */
1704 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1705 {
1706 	struct ap_driver *ap_drv = to_ap_drv(drv);
1707 
1708 	if (try_module_get(drv->owner)) {
1709 		if (ap_drv->on_scan_complete)
1710 			ap_drv->on_scan_complete(ap_qci_info,
1711 						 ap_qci_info_old);
1712 		module_put(drv->owner);
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 /* Notify all drivers about bus scan complete */
1719 static inline void notify_scan_complete(void)
1720 {
1721 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1722 			 __drv_notify_scan_complete);
1723 }
1724 
1725 /*
1726  * Helper function for ap_scan_bus().
1727  * Remove card device and associated queue devices.
1728  */
1729 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1730 {
1731 	bus_for_each_dev(&ap_bus_type, NULL,
1732 			 (void *)(long)ac->id,
1733 			 __ap_queue_devices_with_id_unregister);
1734 	device_unregister(&ac->ap_dev.device);
1735 }
1736 
1737 /*
1738  * Helper function for ap_scan_bus().
1739  * Does the scan bus job for all the domains within
1740  * a valid adapter given by an ap_card ptr.
1741  */
1742 static inline void ap_scan_domains(struct ap_card *ac)
1743 {
1744 	bool decfg, chkstop;
1745 	ap_qid_t qid;
1746 	unsigned int func;
1747 	struct device *dev;
1748 	struct ap_queue *aq;
1749 	int rc, dom, depth, type, ml;
1750 
1751 	/*
1752 	 * Go through the configuration for the domains and compare them
1753 	 * to the existing queue devices. Also take care of the config
1754 	 * and error state for the queue devices.
1755 	 */
1756 
1757 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1758 		qid = AP_MKQID(ac->id, dom);
1759 		dev = bus_find_device(&ap_bus_type, NULL,
1760 				      (void *)(long)qid,
1761 				      __match_queue_device_with_qid);
1762 		aq = dev ? to_ap_queue(dev) : NULL;
1763 		if (!ap_test_config_usage_domain(dom)) {
1764 			if (dev) {
1765 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1766 					    __func__, ac->id, dom);
1767 				device_unregister(dev);
1768 				put_device(dev);
1769 			}
1770 			continue;
1771 		}
1772 		/* domain is valid, get info from this APQN */
1773 		if (!ap_queue_info(qid, &type, &func, &depth,
1774 				   &ml, &decfg, &chkstop)) {
1775 			if (aq) {
1776 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1777 					    __func__, ac->id, dom);
1778 				device_unregister(dev);
1779 				put_device(dev);
1780 			}
1781 			continue;
1782 		}
1783 		/* if no queue device exists, create a new one */
1784 		if (!aq) {
1785 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1786 			if (!aq) {
1787 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1788 					    __func__, ac->id, dom);
1789 				continue;
1790 			}
1791 			aq->card = ac;
1792 			aq->config = !decfg;
1793 			aq->chkstop = chkstop;
1794 			dev = &aq->ap_dev.device;
1795 			dev->bus = &ap_bus_type;
1796 			dev->parent = &ac->ap_dev.device;
1797 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1798 			/* register queue device */
1799 			rc = device_register(dev);
1800 			if (rc) {
1801 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1802 					    __func__, ac->id, dom);
1803 				goto put_dev_and_continue;
1804 			}
1805 			/* get it and thus adjust reference counter */
1806 			get_device(dev);
1807 			if (decfg)
1808 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1809 					    __func__, ac->id, dom);
1810 			else if (chkstop)
1811 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1812 					    __func__, ac->id, dom);
1813 			else
1814 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1815 					    __func__, ac->id, dom);
1816 			goto put_dev_and_continue;
1817 		}
1818 		/* handle state changes on already existing queue device */
1819 		spin_lock_bh(&aq->lock);
1820 		/* checkstop state */
1821 		if (chkstop && !aq->chkstop) {
1822 			/* checkstop on */
1823 			aq->chkstop = true;
1824 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1825 				aq->dev_state = AP_DEV_STATE_ERROR;
1826 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1827 			}
1828 			spin_unlock_bh(&aq->lock);
1829 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1830 				   __func__, ac->id, dom);
1831 			/* 'receive' pending messages with -EAGAIN */
1832 			ap_flush_queue(aq);
1833 			goto put_dev_and_continue;
1834 		} else if (!chkstop && aq->chkstop) {
1835 			/* checkstop off */
1836 			aq->chkstop = false;
1837 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1838 				aq->dev_state = AP_DEV_STATE_OPERATING;
1839 				aq->sm_state = AP_SM_STATE_RESET_START;
1840 			}
1841 			spin_unlock_bh(&aq->lock);
1842 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1843 				   __func__, ac->id, dom);
1844 			goto put_dev_and_continue;
1845 		}
1846 		/* config state change */
1847 		if (decfg && aq->config) {
1848 			/* config off this queue device */
1849 			aq->config = false;
1850 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1851 				aq->dev_state = AP_DEV_STATE_ERROR;
1852 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1853 			}
1854 			spin_unlock_bh(&aq->lock);
1855 			AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1856 				   __func__, ac->id, dom);
1857 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1858 			/* 'receive' pending messages with -EAGAIN */
1859 			ap_flush_queue(aq);
1860 			goto put_dev_and_continue;
1861 		} else if (!decfg && !aq->config) {
1862 			/* config on this queue device */
1863 			aq->config = true;
1864 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1865 				aq->dev_state = AP_DEV_STATE_OPERATING;
1866 				aq->sm_state = AP_SM_STATE_RESET_START;
1867 			}
1868 			spin_unlock_bh(&aq->lock);
1869 			AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1870 				   __func__, ac->id, dom);
1871 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1872 			goto put_dev_and_continue;
1873 		}
1874 		/* handle other error states */
1875 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1876 			spin_unlock_bh(&aq->lock);
1877 			/* 'receive' pending messages with -EAGAIN */
1878 			ap_flush_queue(aq);
1879 			/* re-init (with reset) the queue device */
1880 			ap_queue_init_state(aq);
1881 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1882 				    __func__, ac->id, dom);
1883 			goto put_dev_and_continue;
1884 		}
1885 		spin_unlock_bh(&aq->lock);
1886 put_dev_and_continue:
1887 		put_device(dev);
1888 	}
1889 }
1890 
1891 /*
1892  * Helper function for ap_scan_bus().
1893  * Does the scan bus job for the given adapter id.
1894  */
1895 static inline void ap_scan_adapter(int ap)
1896 {
1897 	bool decfg, chkstop;
1898 	ap_qid_t qid;
1899 	unsigned int func;
1900 	struct device *dev;
1901 	struct ap_card *ac;
1902 	int rc, dom, depth, type, comp_type, ml;
1903 
1904 	/* Is there currently a card device for this adapter ? */
1905 	dev = bus_find_device(&ap_bus_type, NULL,
1906 			      (void *)(long)ap,
1907 			      __match_card_device_with_id);
1908 	ac = dev ? to_ap_card(dev) : NULL;
1909 
1910 	/* Adapter not in configuration ? */
1911 	if (!ap_test_config_card_id(ap)) {
1912 		if (ac) {
1913 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1914 				    __func__, ap);
1915 			ap_scan_rm_card_dev_and_queue_devs(ac);
1916 			put_device(dev);
1917 		}
1918 		return;
1919 	}
1920 
1921 	/*
1922 	 * Adapter ap is valid in the current configuration. So do some checks:
1923 	 * If no card device exists, build one. If a card device exists, check
1924 	 * for type and functions changed. For all this we need to find a valid
1925 	 * APQN first.
1926 	 */
1927 
1928 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1929 		if (ap_test_config_usage_domain(dom)) {
1930 			qid = AP_MKQID(ap, dom);
1931 			if (ap_queue_info(qid, &type, &func, &depth,
1932 					  &ml, &decfg, &chkstop))
1933 				break;
1934 		}
1935 	if (dom > ap_max_domain_id) {
1936 		/* Could not find a valid APQN for this adapter */
1937 		if (ac) {
1938 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1939 				    __func__, ap);
1940 			ap_scan_rm_card_dev_and_queue_devs(ac);
1941 			put_device(dev);
1942 		} else {
1943 			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1944 				   __func__, ap);
1945 		}
1946 		return;
1947 	}
1948 	if (!type) {
1949 		/* No apdater type info available, an unusable adapter */
1950 		if (ac) {
1951 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
1952 				    __func__, ap);
1953 			ap_scan_rm_card_dev_and_queue_devs(ac);
1954 			put_device(dev);
1955 		} else {
1956 			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1957 				   __func__, ap);
1958 		}
1959 		return;
1960 	}
1961 
1962 	if (ac) {
1963 		/* Check APQN against existing card device for changes */
1964 		if (ac->raw_hwtype != type) {
1965 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
1966 				    __func__, ap, type);
1967 			ap_scan_rm_card_dev_and_queue_devs(ac);
1968 			put_device(dev);
1969 			ac = NULL;
1970 		} else if (ac->functions != func) {
1971 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
1972 				    __func__, ap, type);
1973 			ap_scan_rm_card_dev_and_queue_devs(ac);
1974 			put_device(dev);
1975 			ac = NULL;
1976 		} else {
1977 			/* handle checkstop state change */
1978 			if (chkstop && !ac->chkstop) {
1979 				/* checkstop on */
1980 				ac->chkstop = true;
1981 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
1982 					    __func__, ap);
1983 			} else if (!chkstop && ac->chkstop) {
1984 				/* checkstop off */
1985 				ac->chkstop = false;
1986 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
1987 					    __func__, ap);
1988 			}
1989 			/* handle config state change */
1990 			if (decfg && ac->config) {
1991 				ac->config = false;
1992 				AP_DBF_INFO("%s(%d) card dev config off\n",
1993 					    __func__, ap);
1994 				ap_send_config_uevent(&ac->ap_dev, ac->config);
1995 			} else if (!decfg && !ac->config) {
1996 				ac->config = true;
1997 				AP_DBF_INFO("%s(%d) card dev config on\n",
1998 					    __func__, ap);
1999 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2000 			}
2001 		}
2002 	}
2003 
2004 	if (!ac) {
2005 		/* Build a new card device */
2006 		comp_type = ap_get_compatible_type(qid, type, func);
2007 		if (!comp_type) {
2008 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2009 				    __func__, ap, type);
2010 			return;
2011 		}
2012 		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2013 		if (!ac) {
2014 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2015 				    __func__, ap);
2016 			return;
2017 		}
2018 		ac->config = !decfg;
2019 		ac->chkstop = chkstop;
2020 		dev = &ac->ap_dev.device;
2021 		dev->bus = &ap_bus_type;
2022 		dev->parent = ap_root_device;
2023 		dev_set_name(dev, "card%02x", ap);
2024 		/* maybe enlarge ap_max_msg_size to support this card */
2025 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2026 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2027 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2028 				    __func__, ap,
2029 				    atomic_read(&ap_max_msg_size));
2030 		}
2031 		/* Register the new card device with AP bus */
2032 		rc = device_register(dev);
2033 		if (rc) {
2034 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2035 				    __func__, ap);
2036 			put_device(dev);
2037 			return;
2038 		}
2039 		/* get it and thus adjust reference counter */
2040 		get_device(dev);
2041 		if (decfg)
2042 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2043 				    __func__, ap, type, func);
2044 		else if (chkstop)
2045 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2046 				    __func__, ap, type, func);
2047 		else
2048 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2049 				    __func__, ap, type, func);
2050 	}
2051 
2052 	/* Verify the domains and the queue devices for this card */
2053 	ap_scan_domains(ac);
2054 
2055 	/* release the card device */
2056 	put_device(&ac->ap_dev.device);
2057 }
2058 
2059 /**
2060  * ap_get_configuration - get the host AP configuration
2061  *
2062  * Stores the host AP configuration information returned from the previous call
2063  * to Query Configuration Information (QCI), then retrieves and stores the
2064  * current AP configuration returned from QCI.
2065  *
2066  * Return: true if the host AP configuration changed between calls to QCI;
2067  * otherwise, return false.
2068  */
2069 static bool ap_get_configuration(void)
2070 {
2071 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2072 	ap_fetch_qci_info(ap_qci_info);
2073 
2074 	return memcmp(ap_qci_info, ap_qci_info_old,
2075 		      sizeof(struct ap_config_info)) != 0;
2076 }
2077 
2078 /**
2079  * ap_scan_bus(): Scan the AP bus for new devices
2080  * Runs periodically, workqueue timer (ap_config_time)
2081  * @unused: Unused pointer.
2082  */
2083 static void ap_scan_bus(struct work_struct *unused)
2084 {
2085 	int ap, config_changed = 0;
2086 
2087 	/* config change notify */
2088 	config_changed = ap_get_configuration();
2089 	if (config_changed)
2090 		notify_config_changed();
2091 	ap_select_domain();
2092 
2093 	AP_DBF_DBG("%s running\n", __func__);
2094 
2095 	/* loop over all possible adapters */
2096 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2097 		ap_scan_adapter(ap);
2098 
2099 	/* scan complete notify */
2100 	if (config_changed)
2101 		notify_scan_complete();
2102 
2103 	/* check if there is at least one queue available with default domain */
2104 	if (ap_domain_index >= 0) {
2105 		struct device *dev =
2106 			bus_find_device(&ap_bus_type, NULL,
2107 					(void *)(long)ap_domain_index,
2108 					__match_queue_device_with_queue_id);
2109 		if (dev)
2110 			put_device(dev);
2111 		else
2112 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2113 				    __func__, ap_domain_index);
2114 	}
2115 
2116 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2117 		AP_DBF_DBG("%s init scan complete\n", __func__);
2118 		ap_send_init_scan_done_uevent();
2119 		ap_check_bindings_complete();
2120 	}
2121 
2122 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2123 }
2124 
2125 static void ap_config_timeout(struct timer_list *unused)
2126 {
2127 	queue_work(system_long_wq, &ap_scan_work);
2128 }
2129 
2130 static int __init ap_debug_init(void)
2131 {
2132 	ap_dbf_info = debug_register("ap", 2, 1,
2133 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
2134 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2135 	debug_set_level(ap_dbf_info, DBF_ERR);
2136 
2137 	return 0;
2138 }
2139 
2140 static void __init ap_perms_init(void)
2141 {
2142 	/* all resources usable if no kernel parameter string given */
2143 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2144 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2145 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2146 
2147 	/* apm kernel parameter string */
2148 	if (apm_str) {
2149 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2150 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2151 				  &ap_perms_mutex);
2152 	}
2153 
2154 	/* aqm kernel parameter string */
2155 	if (aqm_str) {
2156 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2157 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2158 				  &ap_perms_mutex);
2159 	}
2160 }
2161 
2162 /**
2163  * ap_module_init(): The module initialization code.
2164  *
2165  * Initializes the module.
2166  */
2167 static int __init ap_module_init(void)
2168 {
2169 	int rc;
2170 
2171 	rc = ap_debug_init();
2172 	if (rc)
2173 		return rc;
2174 
2175 	if (!ap_instructions_available()) {
2176 		pr_warn("The hardware system does not support AP instructions\n");
2177 		return -ENODEV;
2178 	}
2179 
2180 	/* init ap_queue hashtable */
2181 	hash_init(ap_queues);
2182 
2183 	/* set up the AP permissions (ioctls, ap and aq masks) */
2184 	ap_perms_init();
2185 
2186 	/* Get AP configuration data if available */
2187 	ap_init_qci_info();
2188 
2189 	/* check default domain setting */
2190 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2191 	    (ap_domain_index >= 0 &&
2192 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2193 		pr_warn("%d is not a valid cryptographic domain\n",
2194 			ap_domain_index);
2195 		ap_domain_index = -1;
2196 	}
2197 
2198 	/* enable interrupts if available */
2199 	if (ap_interrupts_available() && ap_useirq) {
2200 		rc = register_adapter_interrupt(&ap_airq);
2201 		ap_irq_flag = (rc == 0);
2202 	}
2203 
2204 	/* Create /sys/bus/ap. */
2205 	rc = bus_register(&ap_bus_type);
2206 	if (rc)
2207 		goto out;
2208 
2209 	/* Create /sys/devices/ap. */
2210 	ap_root_device = root_device_register("ap");
2211 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2212 	if (rc)
2213 		goto out_bus;
2214 	ap_root_device->bus = &ap_bus_type;
2215 
2216 	/* Setup the AP bus rescan timer. */
2217 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
2218 
2219 	/*
2220 	 * Setup the high resultion poll timer.
2221 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2222 	 */
2223 	if (MACHINE_IS_VM)
2224 		poll_timeout = 1500000;
2225 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2226 	ap_poll_timer.function = ap_poll_timeout;
2227 
2228 	/* Start the low priority AP bus poll thread. */
2229 	if (ap_thread_flag) {
2230 		rc = ap_poll_thread_start();
2231 		if (rc)
2232 			goto out_work;
2233 	}
2234 
2235 	queue_work(system_long_wq, &ap_scan_work);
2236 
2237 	return 0;
2238 
2239 out_work:
2240 	hrtimer_cancel(&ap_poll_timer);
2241 	root_device_unregister(ap_root_device);
2242 out_bus:
2243 	bus_unregister(&ap_bus_type);
2244 out:
2245 	if (ap_irq_flag)
2246 		unregister_adapter_interrupt(&ap_airq);
2247 	kfree(ap_qci_info);
2248 	return rc;
2249 }
2250 device_initcall(ap_module_init);
2251