xref: /linux/drivers/s390/crypto/ap_bus.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2021
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <linux/atomic.h>
31 #include <asm/isc.h>
32 #include <linux/hrtimer.h>
33 #include <linux/ktime.h>
34 #include <asm/facility.h>
35 #include <linux/crypto.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/debugfs.h>
38 #include <linux/ctype.h>
39 
40 #include "ap_bus.h"
41 #include "ap_debug.h"
42 
43 /*
44  * Module parameters; note though this file itself isn't modular.
45  */
46 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
47 static DEFINE_SPINLOCK(ap_domain_lock);
48 module_param_named(domain, ap_domain_index, int, 0440);
49 MODULE_PARM_DESC(domain, "domain index for ap devices");
50 EXPORT_SYMBOL(ap_domain_index);
51 
52 static int ap_thread_flag;
53 module_param_named(poll_thread, ap_thread_flag, int, 0440);
54 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
55 
56 static char *apm_str;
57 module_param_named(apmask, apm_str, charp, 0440);
58 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
59 
60 static char *aqm_str;
61 module_param_named(aqmask, aqm_str, charp, 0440);
62 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
63 
64 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
65 EXPORT_SYMBOL(ap_max_msg_size);
66 
67 static struct device *ap_root_device;
68 
69 /* Hashtable of all queue devices on the AP bus */
70 DEFINE_HASHTABLE(ap_queues, 8);
71 /* lock used for the ap_queues hashtable */
72 DEFINE_SPINLOCK(ap_queues_lock);
73 
74 /* Default permissions (ioctl, card and domain masking) */
75 struct ap_perms ap_perms;
76 EXPORT_SYMBOL(ap_perms);
77 DEFINE_MUTEX(ap_perms_mutex);
78 EXPORT_SYMBOL(ap_perms_mutex);
79 
80 /* # of bus scans since init */
81 static atomic64_t ap_scan_bus_count;
82 
83 /* # of bindings complete since init */
84 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
85 
86 /* completion for initial APQN bindings complete */
87 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
88 
89 static struct ap_config_info *ap_qci_info;
90 
91 /*
92  * AP bus related debug feature things.
93  */
94 debug_info_t *ap_dbf_info;
95 
96 /*
97  * Workqueue timer for bus rescan.
98  */
99 static struct timer_list ap_config_timer;
100 static int ap_config_time = AP_CONFIG_TIME;
101 static void ap_scan_bus(struct work_struct *);
102 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
103 
104 /*
105  * Tasklet & timer for AP request polling and interrupts
106  */
107 static void ap_tasklet_fn(unsigned long);
108 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
109 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
110 static struct task_struct *ap_poll_kthread;
111 static DEFINE_MUTEX(ap_poll_thread_mutex);
112 static DEFINE_SPINLOCK(ap_poll_timer_lock);
113 static struct hrtimer ap_poll_timer;
114 /*
115  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
116  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
117  */
118 static unsigned long long poll_timeout = 250000;
119 
120 /* Maximum domain id, if not given via qci */
121 static int ap_max_domain_id = 15;
122 /* Maximum adapter id, if not given via qci */
123 static int ap_max_adapter_id = 63;
124 
125 static struct bus_type ap_bus_type;
126 
127 /* Adapter interrupt definitions */
128 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
129 
130 static int ap_airq_flag;
131 
132 static struct airq_struct ap_airq = {
133 	.handler = ap_interrupt_handler,
134 	.isc = AP_ISC,
135 };
136 
137 /**
138  * ap_using_interrupts() - Returns non-zero if interrupt support is
139  * available.
140  */
141 static inline int ap_using_interrupts(void)
142 {
143 	return ap_airq_flag;
144 }
145 
146 /**
147  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
148  *
149  * Returns the address of the local-summary-indicator of the adapter
150  * interrupt handler for AP, or NULL if adapter interrupts are not
151  * available.
152  */
153 void *ap_airq_ptr(void)
154 {
155 	if (ap_using_interrupts())
156 		return ap_airq.lsi_ptr;
157 	return NULL;
158 }
159 
160 /**
161  * ap_interrupts_available(): Test if AP interrupts are available.
162  *
163  * Returns 1 if AP interrupts are available.
164  */
165 static int ap_interrupts_available(void)
166 {
167 	return test_facility(65);
168 }
169 
170 /**
171  * ap_qci_available(): Test if AP configuration
172  * information can be queried via QCI subfunction.
173  *
174  * Returns 1 if subfunction PQAP(QCI) is available.
175  */
176 static int ap_qci_available(void)
177 {
178 	return test_facility(12);
179 }
180 
181 /**
182  * ap_apft_available(): Test if AP facilities test (APFT)
183  * facility is available.
184  *
185  * Returns 1 if APFT is is available.
186  */
187 static int ap_apft_available(void)
188 {
189 	return test_facility(15);
190 }
191 
192 /*
193  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
194  *
195  * Returns 1 if the QACT subfunction is available.
196  */
197 static inline int ap_qact_available(void)
198 {
199 	if (ap_qci_info)
200 		return ap_qci_info->qact;
201 	return 0;
202 }
203 
204 /*
205  * ap_fetch_qci_info(): Fetch cryptographic config info
206  *
207  * Returns the ap configuration info fetched via PQAP(QCI).
208  * On success 0 is returned, on failure a negative errno
209  * is returned, e.g. if the PQAP(QCI) instruction is not
210  * available, the return value will be -EOPNOTSUPP.
211  */
212 static inline int ap_fetch_qci_info(struct ap_config_info *info)
213 {
214 	if (!ap_qci_available())
215 		return -EOPNOTSUPP;
216 	if (!info)
217 		return -EINVAL;
218 	return ap_qci(info);
219 }
220 
221 /**
222  * ap_init_qci_info(): Allocate and query qci config info.
223  * Does also update the static variables ap_max_domain_id
224  * and ap_max_adapter_id if this info is available.
225 
226  */
227 static void __init ap_init_qci_info(void)
228 {
229 	if (!ap_qci_available()) {
230 		AP_DBF_INFO("%s QCI not supported\n", __func__);
231 		return;
232 	}
233 
234 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
235 	if (!ap_qci_info)
236 		return;
237 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
238 		kfree(ap_qci_info);
239 		ap_qci_info = NULL;
240 		return;
241 	}
242 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
243 
244 	if (ap_qci_info->apxa) {
245 		if (ap_qci_info->Na) {
246 			ap_max_adapter_id = ap_qci_info->Na;
247 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
248 				    __func__, ap_max_adapter_id);
249 		}
250 		if (ap_qci_info->Nd) {
251 			ap_max_domain_id = ap_qci_info->Nd;
252 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
253 				    __func__, ap_max_domain_id);
254 		}
255 	}
256 }
257 
258 /*
259  * ap_test_config(): helper function to extract the nrth bit
260  *		     within the unsigned int array field.
261  */
262 static inline int ap_test_config(unsigned int *field, unsigned int nr)
263 {
264 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
265 }
266 
267 /*
268  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
269  *
270  * Returns 0 if the card is not configured
271  *	   1 if the card is configured or
272  *	     if the configuration information is not available
273  */
274 static inline int ap_test_config_card_id(unsigned int id)
275 {
276 	if (id > ap_max_adapter_id)
277 		return 0;
278 	if (ap_qci_info)
279 		return ap_test_config(ap_qci_info->apm, id);
280 	return 1;
281 }
282 
283 /*
284  * ap_test_config_usage_domain(): Test, whether an AP usage domain
285  * is configured.
286  *
287  * Returns 0 if the usage domain is not configured
288  *	   1 if the usage domain is configured or
289  *	     if the configuration information is not available
290  */
291 int ap_test_config_usage_domain(unsigned int domain)
292 {
293 	if (domain > ap_max_domain_id)
294 		return 0;
295 	if (ap_qci_info)
296 		return ap_test_config(ap_qci_info->aqm, domain);
297 	return 1;
298 }
299 EXPORT_SYMBOL(ap_test_config_usage_domain);
300 
301 /*
302  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
303  * is configured.
304  * @domain AP control domain ID
305  *
306  * Returns 1 if the control domain is configured
307  *	   0 in all other cases
308  */
309 int ap_test_config_ctrl_domain(unsigned int domain)
310 {
311 	if (!ap_qci_info || domain > ap_max_domain_id)
312 		return 0;
313 	return ap_test_config(ap_qci_info->adm, domain);
314 }
315 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
316 
317 /*
318  * ap_queue_info(): Check and get AP queue info.
319  * Returns true if TAPQ succeeded and the info is filled or
320  * false otherwise.
321  */
322 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
323 			  int *q_depth, int *q_ml, bool *q_decfg)
324 {
325 	struct ap_queue_status status;
326 	union {
327 		unsigned long value;
328 		struct {
329 			unsigned int fac   : 32; /* facility bits */
330 			unsigned int at	   :  8; /* ap type */
331 			unsigned int _res1 :  8;
332 			unsigned int _res2 :  4;
333 			unsigned int ml	   :  4; /* apxl ml */
334 			unsigned int _res3 :  4;
335 			unsigned int qd	   :  4; /* queue depth */
336 		} tapq_gr2;
337 	} tapq_info;
338 
339 	tapq_info.value = 0;
340 
341 	/* make sure we don't run into a specifiation exception */
342 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
343 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
344 		return false;
345 
346 	/* call TAPQ on this APQN */
347 	status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
348 	switch (status.response_code) {
349 	case AP_RESPONSE_NORMAL:
350 	case AP_RESPONSE_RESET_IN_PROGRESS:
351 	case AP_RESPONSE_DECONFIGURED:
352 	case AP_RESPONSE_CHECKSTOPPED:
353 	case AP_RESPONSE_BUSY:
354 		/*
355 		 * According to the architecture in all these cases the
356 		 * info should be filled. All bits 0 is not possible as
357 		 * there is at least one of the mode bits set.
358 		 */
359 		if (WARN_ON_ONCE(!tapq_info.value))
360 			return false;
361 		*q_type = tapq_info.tapq_gr2.at;
362 		*q_fac = tapq_info.tapq_gr2.fac;
363 		*q_depth = tapq_info.tapq_gr2.qd;
364 		*q_ml = tapq_info.tapq_gr2.ml;
365 		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
366 		switch (*q_type) {
367 			/* For CEX2 and CEX3 the available functions
368 			 * are not reflected by the facilities bits.
369 			 * Instead it is coded into the type. So here
370 			 * modify the function bits based on the type.
371 			 */
372 		case AP_DEVICE_TYPE_CEX2A:
373 		case AP_DEVICE_TYPE_CEX3A:
374 			*q_fac |= 0x08000000;
375 			break;
376 		case AP_DEVICE_TYPE_CEX2C:
377 		case AP_DEVICE_TYPE_CEX3C:
378 			*q_fac |= 0x10000000;
379 			break;
380 		default:
381 			break;
382 		}
383 		return true;
384 	default:
385 		/*
386 		 * A response code which indicates, there is no info available.
387 		 */
388 		return false;
389 	}
390 }
391 
392 void ap_wait(enum ap_sm_wait wait)
393 {
394 	ktime_t hr_time;
395 
396 	switch (wait) {
397 	case AP_SM_WAIT_AGAIN:
398 	case AP_SM_WAIT_INTERRUPT:
399 		if (ap_using_interrupts())
400 			break;
401 		if (ap_poll_kthread) {
402 			wake_up(&ap_poll_wait);
403 			break;
404 		}
405 		fallthrough;
406 	case AP_SM_WAIT_TIMEOUT:
407 		spin_lock_bh(&ap_poll_timer_lock);
408 		if (!hrtimer_is_queued(&ap_poll_timer)) {
409 			hr_time = poll_timeout;
410 			hrtimer_forward_now(&ap_poll_timer, hr_time);
411 			hrtimer_restart(&ap_poll_timer);
412 		}
413 		spin_unlock_bh(&ap_poll_timer_lock);
414 		break;
415 	case AP_SM_WAIT_NONE:
416 	default:
417 		break;
418 	}
419 }
420 
421 /**
422  * ap_request_timeout(): Handling of request timeouts
423  * @t: timer making this callback
424  *
425  * Handles request timeouts.
426  */
427 void ap_request_timeout(struct timer_list *t)
428 {
429 	struct ap_queue *aq = from_timer(aq, t, timeout);
430 
431 	spin_lock_bh(&aq->lock);
432 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
433 	spin_unlock_bh(&aq->lock);
434 }
435 
436 /**
437  * ap_poll_timeout(): AP receive polling for finished AP requests.
438  * @unused: Unused pointer.
439  *
440  * Schedules the AP tasklet using a high resolution timer.
441  */
442 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
443 {
444 	tasklet_schedule(&ap_tasklet);
445 	return HRTIMER_NORESTART;
446 }
447 
448 /**
449  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
450  * @airq: pointer to adapter interrupt descriptor
451  */
452 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
453 {
454 	inc_irq_stat(IRQIO_APB);
455 	tasklet_schedule(&ap_tasklet);
456 }
457 
458 /**
459  * ap_tasklet_fn(): Tasklet to poll all AP devices.
460  * @dummy: Unused variable
461  *
462  * Poll all AP devices on the bus.
463  */
464 static void ap_tasklet_fn(unsigned long dummy)
465 {
466 	int bkt;
467 	struct ap_queue *aq;
468 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
469 
470 	/* Reset the indicator if interrupts are used. Thus new interrupts can
471 	 * be received. Doing it in the beginning of the tasklet is therefor
472 	 * important that no requests on any AP get lost.
473 	 */
474 	if (ap_using_interrupts())
475 		xchg(ap_airq.lsi_ptr, 0);
476 
477 	spin_lock_bh(&ap_queues_lock);
478 	hash_for_each(ap_queues, bkt, aq, hnode) {
479 		spin_lock_bh(&aq->lock);
480 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
481 		spin_unlock_bh(&aq->lock);
482 	}
483 	spin_unlock_bh(&ap_queues_lock);
484 
485 	ap_wait(wait);
486 }
487 
488 static int ap_pending_requests(void)
489 {
490 	int bkt;
491 	struct ap_queue *aq;
492 
493 	spin_lock_bh(&ap_queues_lock);
494 	hash_for_each(ap_queues, bkt, aq, hnode) {
495 		if (aq->queue_count == 0)
496 			continue;
497 		spin_unlock_bh(&ap_queues_lock);
498 		return 1;
499 	}
500 	spin_unlock_bh(&ap_queues_lock);
501 	return 0;
502 }
503 
504 /**
505  * ap_poll_thread(): Thread that polls for finished requests.
506  * @data: Unused pointer
507  *
508  * AP bus poll thread. The purpose of this thread is to poll for
509  * finished requests in a loop if there is a "free" cpu - that is
510  * a cpu that doesn't have anything better to do. The polling stops
511  * as soon as there is another task or if all messages have been
512  * delivered.
513  */
514 static int ap_poll_thread(void *data)
515 {
516 	DECLARE_WAITQUEUE(wait, current);
517 
518 	set_user_nice(current, MAX_NICE);
519 	set_freezable();
520 	while (!kthread_should_stop()) {
521 		add_wait_queue(&ap_poll_wait, &wait);
522 		set_current_state(TASK_INTERRUPTIBLE);
523 		if (!ap_pending_requests()) {
524 			schedule();
525 			try_to_freeze();
526 		}
527 		set_current_state(TASK_RUNNING);
528 		remove_wait_queue(&ap_poll_wait, &wait);
529 		if (need_resched()) {
530 			schedule();
531 			try_to_freeze();
532 			continue;
533 		}
534 		ap_tasklet_fn(0);
535 	}
536 
537 	return 0;
538 }
539 
540 static int ap_poll_thread_start(void)
541 {
542 	int rc;
543 
544 	if (ap_using_interrupts() || ap_poll_kthread)
545 		return 0;
546 	mutex_lock(&ap_poll_thread_mutex);
547 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
548 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
549 	if (rc)
550 		ap_poll_kthread = NULL;
551 	mutex_unlock(&ap_poll_thread_mutex);
552 	return rc;
553 }
554 
555 static void ap_poll_thread_stop(void)
556 {
557 	if (!ap_poll_kthread)
558 		return;
559 	mutex_lock(&ap_poll_thread_mutex);
560 	kthread_stop(ap_poll_kthread);
561 	ap_poll_kthread = NULL;
562 	mutex_unlock(&ap_poll_thread_mutex);
563 }
564 
565 #define is_card_dev(x) ((x)->parent == ap_root_device)
566 #define is_queue_dev(x) ((x)->parent != ap_root_device)
567 
568 /**
569  * ap_bus_match()
570  * @dev: Pointer to device
571  * @drv: Pointer to device_driver
572  *
573  * AP bus driver registration/unregistration.
574  */
575 static int ap_bus_match(struct device *dev, struct device_driver *drv)
576 {
577 	struct ap_driver *ap_drv = to_ap_drv(drv);
578 	struct ap_device_id *id;
579 
580 	/*
581 	 * Compare device type of the device with the list of
582 	 * supported types of the device_driver.
583 	 */
584 	for (id = ap_drv->ids; id->match_flags; id++) {
585 		if (is_card_dev(dev) &&
586 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
587 		    id->dev_type == to_ap_dev(dev)->device_type)
588 			return 1;
589 		if (is_queue_dev(dev) &&
590 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
591 		    id->dev_type == to_ap_dev(dev)->device_type)
592 			return 1;
593 	}
594 	return 0;
595 }
596 
597 /**
598  * ap_uevent(): Uevent function for AP devices.
599  * @dev: Pointer to device
600  * @env: Pointer to kobj_uevent_env
601  *
602  * It sets up a single environment variable DEV_TYPE which contains the
603  * hardware device type.
604  */
605 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
606 {
607 	int rc = 0;
608 	struct ap_device *ap_dev = to_ap_dev(dev);
609 
610 	/* Uevents from ap bus core don't need extensions to the env */
611 	if (dev == ap_root_device)
612 		return 0;
613 
614 	if (is_card_dev(dev)) {
615 		struct ap_card *ac = to_ap_card(&ap_dev->device);
616 
617 		/* Set up DEV_TYPE environment variable. */
618 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
619 		if (rc)
620 			return rc;
621 		/* Add MODALIAS= */
622 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
623 		if (rc)
624 			return rc;
625 
626 		/* Add MODE=<accel|cca|ep11> */
627 		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
628 			rc = add_uevent_var(env, "MODE=accel");
629 		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
630 			rc = add_uevent_var(env, "MODE=cca");
631 		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
632 			rc = add_uevent_var(env, "MODE=ep11");
633 		if (rc)
634 			return rc;
635 	} else {
636 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
637 
638 		/* Add MODE=<accel|cca|ep11> */
639 		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
640 			rc = add_uevent_var(env, "MODE=accel");
641 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
642 			rc = add_uevent_var(env, "MODE=cca");
643 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
644 			rc = add_uevent_var(env, "MODE=ep11");
645 		if (rc)
646 			return rc;
647 	}
648 
649 	return 0;
650 }
651 
652 static void ap_send_init_scan_done_uevent(void)
653 {
654 	char *envp[] = { "INITSCAN=done", NULL };
655 
656 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
657 }
658 
659 static void ap_send_bindings_complete_uevent(void)
660 {
661 	char buf[32];
662 	char *envp[] = { "BINDINGS=complete", buf, NULL };
663 
664 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
665 		 atomic64_inc_return(&ap_bindings_complete_count));
666 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
667 }
668 
669 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
670 {
671 	char buf[16];
672 	char *envp[] = { buf, NULL };
673 
674 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
675 
676 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
677 }
678 EXPORT_SYMBOL(ap_send_config_uevent);
679 
680 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
681 {
682 	char buf[16];
683 	char *envp[] = { buf, NULL };
684 
685 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
686 
687 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
688 }
689 EXPORT_SYMBOL(ap_send_online_uevent);
690 
691 /*
692  * calc # of bound APQNs
693  */
694 
695 struct __ap_calc_ctrs {
696 	unsigned int apqns;
697 	unsigned int bound;
698 };
699 
700 static int __ap_calc_helper(struct device *dev, void *arg)
701 {
702 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg;
703 
704 	if (is_queue_dev(dev)) {
705 		pctrs->apqns++;
706 		if ((to_ap_dev(dev))->drv)
707 			pctrs->bound++;
708 	}
709 
710 	return 0;
711 }
712 
713 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
714 {
715 	struct __ap_calc_ctrs ctrs;
716 
717 	memset(&ctrs, 0, sizeof(ctrs));
718 	bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper);
719 
720 	*apqns = ctrs.apqns;
721 	*bound = ctrs.bound;
722 }
723 
724 /*
725  * After initial ap bus scan do check if all existing APQNs are
726  * bound to device drivers.
727  */
728 static void ap_check_bindings_complete(void)
729 {
730 	unsigned int apqns, bound;
731 
732 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
733 		ap_calc_bound_apqns(&apqns, &bound);
734 		if (bound == apqns) {
735 			if (!completion_done(&ap_init_apqn_bindings_complete)) {
736 				complete_all(&ap_init_apqn_bindings_complete);
737 				AP_DBF(DBF_INFO, "%s complete\n", __func__);
738 			}
739 			ap_send_bindings_complete_uevent();
740 		}
741 	}
742 }
743 
744 /*
745  * Interface to wait for the AP bus to have done one initial ap bus
746  * scan and all detected APQNs have been bound to device drivers.
747  * If these both conditions are not fulfilled, this function blocks
748  * on a condition with wait_for_completion_interruptible_timeout().
749  * If these both conditions are fulfilled (before the timeout hits)
750  * the return value is 0. If the timeout (in jiffies) hits instead
751  * -ETIME is returned. On failures negative return values are
752  * returned to the caller.
753  */
754 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
755 {
756 	long l;
757 
758 	if (completion_done(&ap_init_apqn_bindings_complete))
759 		return 0;
760 
761 	if (timeout)
762 		l = wait_for_completion_interruptible_timeout(
763 			&ap_init_apqn_bindings_complete, timeout);
764 	else
765 		l = wait_for_completion_interruptible(
766 			&ap_init_apqn_bindings_complete);
767 	if (l < 0)
768 		return l == -ERESTARTSYS ? -EINTR : l;
769 	else if (l == 0 && timeout)
770 		return -ETIME;
771 
772 	return 0;
773 }
774 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
775 
776 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
777 {
778 	if (is_queue_dev(dev) &&
779 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
780 		device_unregister(dev);
781 	return 0;
782 }
783 
784 static int __ap_revise_reserved(struct device *dev, void *dummy)
785 {
786 	int rc, card, queue, devres, drvres;
787 
788 	if (is_queue_dev(dev)) {
789 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
790 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
791 		mutex_lock(&ap_perms_mutex);
792 		devres = test_bit_inv(card, ap_perms.apm)
793 			&& test_bit_inv(queue, ap_perms.aqm);
794 		mutex_unlock(&ap_perms_mutex);
795 		drvres = to_ap_drv(dev->driver)->flags
796 			& AP_DRIVER_FLAG_DEFAULT;
797 		if (!!devres != !!drvres) {
798 			AP_DBF_DBG("reprobing queue=%02x.%04x\n",
799 				   card, queue);
800 			rc = device_reprobe(dev);
801 		}
802 	}
803 
804 	return 0;
805 }
806 
807 static void ap_bus_revise_bindings(void)
808 {
809 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
810 }
811 
812 int ap_owned_by_def_drv(int card, int queue)
813 {
814 	int rc = 0;
815 
816 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
817 		return -EINVAL;
818 
819 	mutex_lock(&ap_perms_mutex);
820 
821 	if (test_bit_inv(card, ap_perms.apm)
822 	    && test_bit_inv(queue, ap_perms.aqm))
823 		rc = 1;
824 
825 	mutex_unlock(&ap_perms_mutex);
826 
827 	return rc;
828 }
829 EXPORT_SYMBOL(ap_owned_by_def_drv);
830 
831 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
832 				       unsigned long *aqm)
833 {
834 	int card, queue, rc = 0;
835 
836 	mutex_lock(&ap_perms_mutex);
837 
838 	for (card = 0; !rc && card < AP_DEVICES; card++)
839 		if (test_bit_inv(card, apm) &&
840 		    test_bit_inv(card, ap_perms.apm))
841 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
842 				if (test_bit_inv(queue, aqm) &&
843 				    test_bit_inv(queue, ap_perms.aqm))
844 					rc = 1;
845 
846 	mutex_unlock(&ap_perms_mutex);
847 
848 	return rc;
849 }
850 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
851 
852 static int ap_device_probe(struct device *dev)
853 {
854 	struct ap_device *ap_dev = to_ap_dev(dev);
855 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
856 	int card, queue, devres, drvres, rc = -ENODEV;
857 
858 	if (!get_device(dev))
859 		return rc;
860 
861 	if (is_queue_dev(dev)) {
862 		/*
863 		 * If the apqn is marked as reserved/used by ap bus and
864 		 * default drivers, only probe with drivers with the default
865 		 * flag set. If it is not marked, only probe with drivers
866 		 * with the default flag not set.
867 		 */
868 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
869 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
870 		mutex_lock(&ap_perms_mutex);
871 		devres = test_bit_inv(card, ap_perms.apm)
872 			&& test_bit_inv(queue, ap_perms.aqm);
873 		mutex_unlock(&ap_perms_mutex);
874 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
875 		if (!!devres != !!drvres)
876 			goto out;
877 	}
878 
879 	/* Add queue/card to list of active queues/cards */
880 	spin_lock_bh(&ap_queues_lock);
881 	if (is_queue_dev(dev))
882 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
883 			 to_ap_queue(dev)->qid);
884 	spin_unlock_bh(&ap_queues_lock);
885 
886 	ap_dev->drv = ap_drv;
887 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
888 
889 	if (rc) {
890 		spin_lock_bh(&ap_queues_lock);
891 		if (is_queue_dev(dev))
892 			hash_del(&to_ap_queue(dev)->hnode);
893 		spin_unlock_bh(&ap_queues_lock);
894 		ap_dev->drv = NULL;
895 	} else
896 		ap_check_bindings_complete();
897 
898 out:
899 	if (rc)
900 		put_device(dev);
901 	return rc;
902 }
903 
904 static void ap_device_remove(struct device *dev)
905 {
906 	struct ap_device *ap_dev = to_ap_dev(dev);
907 	struct ap_driver *ap_drv = ap_dev->drv;
908 
909 	/* prepare ap queue device removal */
910 	if (is_queue_dev(dev))
911 		ap_queue_prepare_remove(to_ap_queue(dev));
912 
913 	/* driver's chance to clean up gracefully */
914 	if (ap_drv->remove)
915 		ap_drv->remove(ap_dev);
916 
917 	/* now do the ap queue device remove */
918 	if (is_queue_dev(dev))
919 		ap_queue_remove(to_ap_queue(dev));
920 
921 	/* Remove queue/card from list of active queues/cards */
922 	spin_lock_bh(&ap_queues_lock);
923 	if (is_queue_dev(dev))
924 		hash_del(&to_ap_queue(dev)->hnode);
925 	spin_unlock_bh(&ap_queues_lock);
926 	ap_dev->drv = NULL;
927 
928 	put_device(dev);
929 }
930 
931 struct ap_queue *ap_get_qdev(ap_qid_t qid)
932 {
933 	int bkt;
934 	struct ap_queue *aq;
935 
936 	spin_lock_bh(&ap_queues_lock);
937 	hash_for_each(ap_queues, bkt, aq, hnode) {
938 		if (aq->qid == qid) {
939 			get_device(&aq->ap_dev.device);
940 			spin_unlock_bh(&ap_queues_lock);
941 			return aq;
942 		}
943 	}
944 	spin_unlock_bh(&ap_queues_lock);
945 
946 	return NULL;
947 }
948 EXPORT_SYMBOL(ap_get_qdev);
949 
950 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
951 		       char *name)
952 {
953 	struct device_driver *drv = &ap_drv->driver;
954 
955 	drv->bus = &ap_bus_type;
956 	drv->owner = owner;
957 	drv->name = name;
958 	return driver_register(drv);
959 }
960 EXPORT_SYMBOL(ap_driver_register);
961 
962 void ap_driver_unregister(struct ap_driver *ap_drv)
963 {
964 	driver_unregister(&ap_drv->driver);
965 }
966 EXPORT_SYMBOL(ap_driver_unregister);
967 
968 void ap_bus_force_rescan(void)
969 {
970 	/* processing a asynchronous bus rescan */
971 	del_timer(&ap_config_timer);
972 	queue_work(system_long_wq, &ap_scan_work);
973 	flush_work(&ap_scan_work);
974 }
975 EXPORT_SYMBOL(ap_bus_force_rescan);
976 
977 /*
978 * A config change has happened, force an ap bus rescan.
979 */
980 void ap_bus_cfg_chg(void)
981 {
982 	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
983 
984 	ap_bus_force_rescan();
985 }
986 
987 /*
988  * hex2bitmap() - parse hex mask string and set bitmap.
989  * Valid strings are "0x012345678" with at least one valid hex number.
990  * Rest of the bitmap to the right is padded with 0. No spaces allowed
991  * within the string, the leading 0x may be omitted.
992  * Returns the bitmask with exactly the bits set as given by the hex
993  * string (both in big endian order).
994  */
995 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
996 {
997 	int i, n, b;
998 
999 	/* bits needs to be a multiple of 8 */
1000 	if (bits & 0x07)
1001 		return -EINVAL;
1002 
1003 	if (str[0] == '0' && str[1] == 'x')
1004 		str++;
1005 	if (*str == 'x')
1006 		str++;
1007 
1008 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1009 		b = hex_to_bin(*str);
1010 		for (n = 0; n < 4; n++)
1011 			if (b & (0x08 >> n))
1012 				set_bit_inv(i + n, bitmap);
1013 		i += 4;
1014 	}
1015 
1016 	if (*str == '\n')
1017 		str++;
1018 	if (*str)
1019 		return -EINVAL;
1020 	return 0;
1021 }
1022 
1023 /*
1024  * modify_bitmap() - parse bitmask argument and modify an existing
1025  * bit mask accordingly. A concatenation (done with ',') of these
1026  * terms is recognized:
1027  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1028  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1029  * 0...bits-1; the leading + or - is required. Here are some examples:
1030  *   +0-15,+32,-128,-0xFF
1031  *   -0-255,+1-16,+0x128
1032  *   +1,+2,+3,+4,-5,-7-10
1033  * Returns the new bitmap after all changes have been applied. Every
1034  * positive value in the string will set a bit and every negative value
1035  * in the string will clear a bit. As a bit may be touched more than once,
1036  * the last 'operation' wins:
1037  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1038  * cleared again. All other bits are unmodified.
1039  */
1040 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1041 {
1042 	int a, i, z;
1043 	char *np, sign;
1044 
1045 	/* bits needs to be a multiple of 8 */
1046 	if (bits & 0x07)
1047 		return -EINVAL;
1048 
1049 	while (*str) {
1050 		sign = *str++;
1051 		if (sign != '+' && sign != '-')
1052 			return -EINVAL;
1053 		a = z = simple_strtoul(str, &np, 0);
1054 		if (str == np || a >= bits)
1055 			return -EINVAL;
1056 		str = np;
1057 		if (*str == '-') {
1058 			z = simple_strtoul(++str, &np, 0);
1059 			if (str == np || a > z || z >= bits)
1060 				return -EINVAL;
1061 			str = np;
1062 		}
1063 		for (i = a; i <= z; i++)
1064 			if (sign == '+')
1065 				set_bit_inv(i, bitmap);
1066 			else
1067 				clear_bit_inv(i, bitmap);
1068 		while (*str == ',' || *str == '\n')
1069 			str++;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 int ap_parse_mask_str(const char *str,
1076 		      unsigned long *bitmap, int bits,
1077 		      struct mutex *lock)
1078 {
1079 	unsigned long *newmap, size;
1080 	int rc;
1081 
1082 	/* bits needs to be a multiple of 8 */
1083 	if (bits & 0x07)
1084 		return -EINVAL;
1085 
1086 	size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
1087 	newmap = kmalloc(size, GFP_KERNEL);
1088 	if (!newmap)
1089 		return -ENOMEM;
1090 	if (mutex_lock_interruptible(lock)) {
1091 		kfree(newmap);
1092 		return -ERESTARTSYS;
1093 	}
1094 
1095 	if (*str == '+' || *str == '-') {
1096 		memcpy(newmap, bitmap, size);
1097 		rc = modify_bitmap(str, newmap, bits);
1098 	} else {
1099 		memset(newmap, 0, size);
1100 		rc = hex2bitmap(str, newmap, bits);
1101 	}
1102 	if (rc == 0)
1103 		memcpy(bitmap, newmap, size);
1104 	mutex_unlock(lock);
1105 	kfree(newmap);
1106 	return rc;
1107 }
1108 EXPORT_SYMBOL(ap_parse_mask_str);
1109 
1110 /*
1111  * AP bus attributes.
1112  */
1113 
1114 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1115 {
1116 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1117 }
1118 
1119 static ssize_t ap_domain_store(struct bus_type *bus,
1120 			       const char *buf, size_t count)
1121 {
1122 	int domain;
1123 
1124 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1125 	    domain < 0 || domain > ap_max_domain_id ||
1126 	    !test_bit_inv(domain, ap_perms.aqm))
1127 		return -EINVAL;
1128 
1129 	spin_lock_bh(&ap_domain_lock);
1130 	ap_domain_index = domain;
1131 	spin_unlock_bh(&ap_domain_lock);
1132 
1133 	AP_DBF_INFO("stored new default domain=%d\n", domain);
1134 
1135 	return count;
1136 }
1137 
1138 static BUS_ATTR_RW(ap_domain);
1139 
1140 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1141 {
1142 	if (!ap_qci_info)	/* QCI not supported */
1143 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1144 
1145 	return scnprintf(buf, PAGE_SIZE,
1146 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1147 			 ap_qci_info->adm[0], ap_qci_info->adm[1],
1148 			 ap_qci_info->adm[2], ap_qci_info->adm[3],
1149 			 ap_qci_info->adm[4], ap_qci_info->adm[5],
1150 			 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1151 }
1152 
1153 static BUS_ATTR_RO(ap_control_domain_mask);
1154 
1155 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1156 {
1157 	if (!ap_qci_info)	/* QCI not supported */
1158 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1159 
1160 	return scnprintf(buf, PAGE_SIZE,
1161 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1162 			 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1163 			 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1164 			 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1165 			 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1166 }
1167 
1168 static BUS_ATTR_RO(ap_usage_domain_mask);
1169 
1170 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1171 {
1172 	if (!ap_qci_info)	/* QCI not supported */
1173 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1174 
1175 	return scnprintf(buf, PAGE_SIZE,
1176 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1177 			 ap_qci_info->apm[0], ap_qci_info->apm[1],
1178 			 ap_qci_info->apm[2], ap_qci_info->apm[3],
1179 			 ap_qci_info->apm[4], ap_qci_info->apm[5],
1180 			 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1181 }
1182 
1183 static BUS_ATTR_RO(ap_adapter_mask);
1184 
1185 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1186 {
1187 	return scnprintf(buf, PAGE_SIZE, "%d\n",
1188 			 ap_using_interrupts() ? 1 : 0);
1189 }
1190 
1191 static BUS_ATTR_RO(ap_interrupts);
1192 
1193 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1194 {
1195 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1196 }
1197 
1198 static ssize_t config_time_store(struct bus_type *bus,
1199 				 const char *buf, size_t count)
1200 {
1201 	int time;
1202 
1203 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1204 		return -EINVAL;
1205 	ap_config_time = time;
1206 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1207 	return count;
1208 }
1209 
1210 static BUS_ATTR_RW(config_time);
1211 
1212 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1213 {
1214 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1215 }
1216 
1217 static ssize_t poll_thread_store(struct bus_type *bus,
1218 				 const char *buf, size_t count)
1219 {
1220 	int flag, rc;
1221 
1222 	if (sscanf(buf, "%d\n", &flag) != 1)
1223 		return -EINVAL;
1224 	if (flag) {
1225 		rc = ap_poll_thread_start();
1226 		if (rc)
1227 			count = rc;
1228 	} else
1229 		ap_poll_thread_stop();
1230 	return count;
1231 }
1232 
1233 static BUS_ATTR_RW(poll_thread);
1234 
1235 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1236 {
1237 	return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1238 }
1239 
1240 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1241 				  size_t count)
1242 {
1243 	unsigned long long time;
1244 	ktime_t hr_time;
1245 
1246 	/* 120 seconds = maximum poll interval */
1247 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1248 	    time > 120000000000ULL)
1249 		return -EINVAL;
1250 	poll_timeout = time;
1251 	hr_time = poll_timeout;
1252 
1253 	spin_lock_bh(&ap_poll_timer_lock);
1254 	hrtimer_cancel(&ap_poll_timer);
1255 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1256 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1257 	spin_unlock_bh(&ap_poll_timer_lock);
1258 
1259 	return count;
1260 }
1261 
1262 static BUS_ATTR_RW(poll_timeout);
1263 
1264 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1265 {
1266 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1267 }
1268 
1269 static BUS_ATTR_RO(ap_max_domain_id);
1270 
1271 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1272 {
1273 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1274 }
1275 
1276 static BUS_ATTR_RO(ap_max_adapter_id);
1277 
1278 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1279 {
1280 	int rc;
1281 
1282 	if (mutex_lock_interruptible(&ap_perms_mutex))
1283 		return -ERESTARTSYS;
1284 	rc = scnprintf(buf, PAGE_SIZE,
1285 		       "0x%016lx%016lx%016lx%016lx\n",
1286 		       ap_perms.apm[0], ap_perms.apm[1],
1287 		       ap_perms.apm[2], ap_perms.apm[3]);
1288 	mutex_unlock(&ap_perms_mutex);
1289 
1290 	return rc;
1291 }
1292 
1293 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1294 			    size_t count)
1295 {
1296 	int rc;
1297 
1298 	rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1299 	if (rc)
1300 		return rc;
1301 
1302 	ap_bus_revise_bindings();
1303 
1304 	return count;
1305 }
1306 
1307 static BUS_ATTR_RW(apmask);
1308 
1309 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1310 {
1311 	int rc;
1312 
1313 	if (mutex_lock_interruptible(&ap_perms_mutex))
1314 		return -ERESTARTSYS;
1315 	rc = scnprintf(buf, PAGE_SIZE,
1316 		       "0x%016lx%016lx%016lx%016lx\n",
1317 		       ap_perms.aqm[0], ap_perms.aqm[1],
1318 		       ap_perms.aqm[2], ap_perms.aqm[3]);
1319 	mutex_unlock(&ap_perms_mutex);
1320 
1321 	return rc;
1322 }
1323 
1324 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1325 			    size_t count)
1326 {
1327 	int rc;
1328 
1329 	rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1330 	if (rc)
1331 		return rc;
1332 
1333 	ap_bus_revise_bindings();
1334 
1335 	return count;
1336 }
1337 
1338 static BUS_ATTR_RW(aqmask);
1339 
1340 static ssize_t scans_show(struct bus_type *bus, char *buf)
1341 {
1342 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
1343 			 atomic64_read(&ap_scan_bus_count));
1344 }
1345 
1346 static BUS_ATTR_RO(scans);
1347 
1348 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1349 {
1350 	int rc;
1351 	unsigned int apqns, n;
1352 
1353 	ap_calc_bound_apqns(&apqns, &n);
1354 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1355 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1356 	else
1357 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1358 
1359 	return rc;
1360 }
1361 
1362 static BUS_ATTR_RO(bindings);
1363 
1364 static struct attribute *ap_bus_attrs[] = {
1365 	&bus_attr_ap_domain.attr,
1366 	&bus_attr_ap_control_domain_mask.attr,
1367 	&bus_attr_ap_usage_domain_mask.attr,
1368 	&bus_attr_ap_adapter_mask.attr,
1369 	&bus_attr_config_time.attr,
1370 	&bus_attr_poll_thread.attr,
1371 	&bus_attr_ap_interrupts.attr,
1372 	&bus_attr_poll_timeout.attr,
1373 	&bus_attr_ap_max_domain_id.attr,
1374 	&bus_attr_ap_max_adapter_id.attr,
1375 	&bus_attr_apmask.attr,
1376 	&bus_attr_aqmask.attr,
1377 	&bus_attr_scans.attr,
1378 	&bus_attr_bindings.attr,
1379 	NULL,
1380 };
1381 ATTRIBUTE_GROUPS(ap_bus);
1382 
1383 static struct bus_type ap_bus_type = {
1384 	.name = "ap",
1385 	.bus_groups = ap_bus_groups,
1386 	.match = &ap_bus_match,
1387 	.uevent = &ap_uevent,
1388 	.probe = ap_device_probe,
1389 	.remove = ap_device_remove,
1390 };
1391 
1392 /**
1393  * ap_select_domain(): Select an AP domain if possible and we haven't
1394  * already done so before.
1395  */
1396 static void ap_select_domain(void)
1397 {
1398 	struct ap_queue_status status;
1399 	int card, dom;
1400 
1401 	/*
1402 	 * Choose the default domain. Either the one specified with
1403 	 * the "domain=" parameter or the first domain with at least
1404 	 * one valid APQN.
1405 	 */
1406 	spin_lock_bh(&ap_domain_lock);
1407 	if (ap_domain_index >= 0) {
1408 		/* Domain has already been selected. */
1409 		goto out;
1410 	}
1411 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1412 		if (!ap_test_config_usage_domain(dom) ||
1413 		    !test_bit_inv(dom, ap_perms.aqm))
1414 			continue;
1415 		for (card = 0; card <= ap_max_adapter_id; card++) {
1416 			if (!ap_test_config_card_id(card) ||
1417 			    !test_bit_inv(card, ap_perms.apm))
1418 				continue;
1419 			status = ap_test_queue(AP_MKQID(card, dom),
1420 					       ap_apft_available(),
1421 					       NULL);
1422 			if (status.response_code == AP_RESPONSE_NORMAL)
1423 				break;
1424 		}
1425 		if (card <= ap_max_adapter_id)
1426 			break;
1427 	}
1428 	if (dom <= ap_max_domain_id) {
1429 		ap_domain_index = dom;
1430 		AP_DBF_INFO("%s new default domain is %d\n",
1431 			    __func__, ap_domain_index);
1432 	}
1433 out:
1434 	spin_unlock_bh(&ap_domain_lock);
1435 }
1436 
1437 /*
1438  * This function checks the type and returns either 0 for not
1439  * supported or the highest compatible type value (which may
1440  * include the input type value).
1441  */
1442 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1443 {
1444 	int comp_type = 0;
1445 
1446 	/* < CEX2A is not supported */
1447 	if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1448 		AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n",
1449 			    AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1450 		return 0;
1451 	}
1452 	/* up to CEX7 known and fully supported */
1453 	if (rawtype <= AP_DEVICE_TYPE_CEX7)
1454 		return rawtype;
1455 	/*
1456 	 * unknown new type > CEX7, check for compatibility
1457 	 * to the highest known and supported type which is
1458 	 * currently CEX7 with the help of the QACT function.
1459 	 */
1460 	if (ap_qact_available()) {
1461 		struct ap_queue_status status;
1462 		union ap_qact_ap_info apinfo = {0};
1463 
1464 		apinfo.mode = (func >> 26) & 0x07;
1465 		apinfo.cat = AP_DEVICE_TYPE_CEX7;
1466 		status = ap_qact(qid, 0, &apinfo);
1467 		if (status.response_code == AP_RESPONSE_NORMAL
1468 		    && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1469 		    && apinfo.cat <= AP_DEVICE_TYPE_CEX7)
1470 			comp_type = apinfo.cat;
1471 	}
1472 	if (!comp_type)
1473 		AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n",
1474 			    AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1475 	else if (comp_type != rawtype)
1476 		AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n",
1477 			    AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1478 			    rawtype, comp_type);
1479 	return comp_type;
1480 }
1481 
1482 /*
1483  * Helper function to be used with bus_find_dev
1484  * matches for the card device with the given id
1485  */
1486 static int __match_card_device_with_id(struct device *dev, const void *data)
1487 {
1488 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1489 }
1490 
1491 /*
1492  * Helper function to be used with bus_find_dev
1493  * matches for the queue device with a given qid
1494  */
1495 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1496 {
1497 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1498 }
1499 
1500 /*
1501  * Helper function to be used with bus_find_dev
1502  * matches any queue device with given queue id
1503  */
1504 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1505 {
1506 	return is_queue_dev(dev)
1507 		&& AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1508 }
1509 
1510 /*
1511  * Helper function for ap_scan_bus().
1512  * Remove card device and associated queue devices.
1513  */
1514 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1515 {
1516 	bus_for_each_dev(&ap_bus_type, NULL,
1517 			 (void *)(long) ac->id,
1518 			 __ap_queue_devices_with_id_unregister);
1519 	device_unregister(&ac->ap_dev.device);
1520 }
1521 
1522 /*
1523  * Helper function for ap_scan_bus().
1524  * Does the scan bus job for all the domains within
1525  * a valid adapter given by an ap_card ptr.
1526  */
1527 static inline void ap_scan_domains(struct ap_card *ac)
1528 {
1529 	bool decfg;
1530 	ap_qid_t qid;
1531 	unsigned int func;
1532 	struct device *dev;
1533 	struct ap_queue *aq;
1534 	int rc, dom, depth, type, ml;
1535 
1536 	/*
1537 	 * Go through the configuration for the domains and compare them
1538 	 * to the existing queue devices. Also take care of the config
1539 	 * and error state for the queue devices.
1540 	 */
1541 
1542 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1543 		qid = AP_MKQID(ac->id, dom);
1544 		dev = bus_find_device(&ap_bus_type, NULL,
1545 				      (void *)(long) qid,
1546 				      __match_queue_device_with_qid);
1547 		aq = dev ? to_ap_queue(dev) : NULL;
1548 		if (!ap_test_config_usage_domain(dom)) {
1549 			if (dev) {
1550 				AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n",
1551 					    __func__, ac->id, dom);
1552 				device_unregister(dev);
1553 				put_device(dev);
1554 			}
1555 			continue;
1556 		}
1557 		/* domain is valid, get info from this APQN */
1558 		if (!ap_queue_info(qid, &type, &func, &depth, &ml, &decfg)) {
1559 			if (aq) {
1560 				AP_DBF_INFO(
1561 					"%s(%d,%d) ap_queue_info() not successful, rm queue device\n",
1562 					__func__, ac->id, dom);
1563 				device_unregister(dev);
1564 				put_device(dev);
1565 			}
1566 			continue;
1567 		}
1568 		/* if no queue device exists, create a new one */
1569 		if (!aq) {
1570 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1571 			if (!aq) {
1572 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1573 					    __func__, ac->id, dom);
1574 				continue;
1575 			}
1576 			aq->card = ac;
1577 			aq->config = !decfg;
1578 			dev = &aq->ap_dev.device;
1579 			dev->bus = &ap_bus_type;
1580 			dev->parent = &ac->ap_dev.device;
1581 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1582 			/* register queue device */
1583 			rc = device_register(dev);
1584 			if (rc) {
1585 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1586 					    __func__, ac->id, dom);
1587 				goto put_dev_and_continue;
1588 			}
1589 			/* get it and thus adjust reference counter */
1590 			get_device(dev);
1591 			if (decfg)
1592 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n",
1593 					    __func__, ac->id, dom);
1594 			else
1595 				AP_DBF_INFO("%s(%d,%d) new queue device created\n",
1596 					    __func__, ac->id, dom);
1597 			goto put_dev_and_continue;
1598 		}
1599 		/* Check config state on the already existing queue device */
1600 		spin_lock_bh(&aq->lock);
1601 		if (decfg && aq->config) {
1602 			/* config off this queue device */
1603 			aq->config = false;
1604 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1605 				aq->dev_state = AP_DEV_STATE_ERROR;
1606 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1607 			}
1608 			spin_unlock_bh(&aq->lock);
1609 			AP_DBF_INFO("%s(%d,%d) queue device config off\n",
1610 				    __func__, ac->id, dom);
1611 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1612 			/* 'receive' pending messages with -EAGAIN */
1613 			ap_flush_queue(aq);
1614 			goto put_dev_and_continue;
1615 		}
1616 		if (!decfg && !aq->config) {
1617 			/* config on this queue device */
1618 			aq->config = true;
1619 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1620 				aq->dev_state = AP_DEV_STATE_OPERATING;
1621 				aq->sm_state = AP_SM_STATE_RESET_START;
1622 			}
1623 			spin_unlock_bh(&aq->lock);
1624 			AP_DBF_INFO("%s(%d,%d) queue device config on\n",
1625 				    __func__, ac->id, dom);
1626 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1627 			goto put_dev_and_continue;
1628 		}
1629 		/* handle other error states */
1630 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1631 			spin_unlock_bh(&aq->lock);
1632 			/* 'receive' pending messages with -EAGAIN */
1633 			ap_flush_queue(aq);
1634 			/* re-init (with reset) the queue device */
1635 			ap_queue_init_state(aq);
1636 			AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n",
1637 				    __func__, ac->id, dom);
1638 			goto put_dev_and_continue;
1639 		}
1640 		spin_unlock_bh(&aq->lock);
1641 put_dev_and_continue:
1642 		put_device(dev);
1643 	}
1644 }
1645 
1646 /*
1647  * Helper function for ap_scan_bus().
1648  * Does the scan bus job for the given adapter id.
1649  */
1650 static inline void ap_scan_adapter(int ap)
1651 {
1652 	bool decfg;
1653 	ap_qid_t qid;
1654 	unsigned int func;
1655 	struct device *dev;
1656 	struct ap_card *ac;
1657 	int rc, dom, depth, type, comp_type, ml;
1658 
1659 	/* Is there currently a card device for this adapter ? */
1660 	dev = bus_find_device(&ap_bus_type, NULL,
1661 			      (void *)(long) ap,
1662 			      __match_card_device_with_id);
1663 	ac = dev ? to_ap_card(dev) : NULL;
1664 
1665 	/* Adapter not in configuration ? */
1666 	if (!ap_test_config_card_id(ap)) {
1667 		if (ac) {
1668 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n",
1669 				    __func__, ap);
1670 			ap_scan_rm_card_dev_and_queue_devs(ac);
1671 			put_device(dev);
1672 		}
1673 		return;
1674 	}
1675 
1676 	/*
1677 	 * Adapter ap is valid in the current configuration. So do some checks:
1678 	 * If no card device exists, build one. If a card device exists, check
1679 	 * for type and functions changed. For all this we need to find a valid
1680 	 * APQN first.
1681 	 */
1682 
1683 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1684 		if (ap_test_config_usage_domain(dom)) {
1685 			qid = AP_MKQID(ap, dom);
1686 			if (ap_queue_info(qid, &type, &func,
1687 					  &depth, &ml, &decfg))
1688 				break;
1689 		}
1690 	if (dom > ap_max_domain_id) {
1691 		/* Could not find a valid APQN for this adapter */
1692 		if (ac) {
1693 			AP_DBF_INFO(
1694 				"%s(%d) no type info (no APQN found), rm card and queue devices\n",
1695 				__func__, ap);
1696 			ap_scan_rm_card_dev_and_queue_devs(ac);
1697 			put_device(dev);
1698 		} else {
1699 			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1700 				   __func__, ap);
1701 		}
1702 		return;
1703 	}
1704 	if (!type) {
1705 		/* No apdater type info available, an unusable adapter */
1706 		if (ac) {
1707 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n",
1708 				    __func__, ap);
1709 			ap_scan_rm_card_dev_and_queue_devs(ac);
1710 			put_device(dev);
1711 		} else {
1712 			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1713 				   __func__, ap);
1714 		}
1715 		return;
1716 	}
1717 
1718 	if (ac) {
1719 		/* Check APQN against existing card device for changes */
1720 		if (ac->raw_hwtype != type) {
1721 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n",
1722 				    __func__, ap, type);
1723 			ap_scan_rm_card_dev_and_queue_devs(ac);
1724 			put_device(dev);
1725 			ac = NULL;
1726 		} else if (ac->functions != func) {
1727 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n",
1728 				    __func__, ap, type);
1729 			ap_scan_rm_card_dev_and_queue_devs(ac);
1730 			put_device(dev);
1731 			ac = NULL;
1732 		} else {
1733 			if (decfg && ac->config) {
1734 				ac->config = false;
1735 				AP_DBF_INFO("%s(%d) card device config off\n",
1736 					    __func__, ap);
1737 				ap_send_config_uevent(&ac->ap_dev, ac->config);
1738 			}
1739 			if (!decfg && !ac->config) {
1740 				ac->config = true;
1741 				AP_DBF_INFO("%s(%d) card device config on\n",
1742 					    __func__, ap);
1743 				ap_send_config_uevent(&ac->ap_dev, ac->config);
1744 			}
1745 		}
1746 	}
1747 
1748 	if (!ac) {
1749 		/* Build a new card device */
1750 		comp_type = ap_get_compatible_type(qid, type, func);
1751 		if (!comp_type) {
1752 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
1753 				    __func__, ap, type);
1754 			return;
1755 		}
1756 		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
1757 		if (!ac) {
1758 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
1759 				    __func__, ap);
1760 			return;
1761 		}
1762 		ac->config = !decfg;
1763 		dev = &ac->ap_dev.device;
1764 		dev->bus = &ap_bus_type;
1765 		dev->parent = ap_root_device;
1766 		dev_set_name(dev, "card%02x", ap);
1767 		/* maybe enlarge ap_max_msg_size to support this card */
1768 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
1769 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
1770 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
1771 				    __func__, ap, atomic_read(&ap_max_msg_size));
1772 		}
1773 		/* Register the new card device with AP bus */
1774 		rc = device_register(dev);
1775 		if (rc) {
1776 			AP_DBF_WARN("%s(%d) device_register() failed\n",
1777 				    __func__, ap);
1778 			put_device(dev);
1779 			return;
1780 		}
1781 		/* get it and thus adjust reference counter */
1782 		get_device(dev);
1783 		if (decfg)
1784 			AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n",
1785 				    __func__, ap, type, func);
1786 		else
1787 			AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n",
1788 				    __func__, ap, type, func);
1789 	}
1790 
1791 	/* Verify the domains and the queue devices for this card */
1792 	ap_scan_domains(ac);
1793 
1794 	/* release the card device */
1795 	put_device(&ac->ap_dev.device);
1796 }
1797 
1798 /**
1799  * ap_scan_bus(): Scan the AP bus for new devices
1800  * Runs periodically, workqueue timer (ap_config_time)
1801  */
1802 static void ap_scan_bus(struct work_struct *unused)
1803 {
1804 	int ap;
1805 
1806 	ap_fetch_qci_info(ap_qci_info);
1807 	ap_select_domain();
1808 
1809 	AP_DBF_DBG("%s running\n", __func__);
1810 
1811 	/* loop over all possible adapters */
1812 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
1813 		ap_scan_adapter(ap);
1814 
1815 	/* check if there is at least one queue available with default domain */
1816 	if (ap_domain_index >= 0) {
1817 		struct device *dev =
1818 			bus_find_device(&ap_bus_type, NULL,
1819 					(void *)(long) ap_domain_index,
1820 					__match_queue_device_with_queue_id);
1821 		if (dev)
1822 			put_device(dev);
1823 		else
1824 			AP_DBF_INFO("no queue device with default domain %d available\n",
1825 				    ap_domain_index);
1826 	}
1827 
1828 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
1829 		AP_DBF(DBF_DEBUG, "%s init scan complete\n", __func__);
1830 		ap_send_init_scan_done_uevent();
1831 		ap_check_bindings_complete();
1832 	}
1833 
1834 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1835 }
1836 
1837 static void ap_config_timeout(struct timer_list *unused)
1838 {
1839 	queue_work(system_long_wq, &ap_scan_work);
1840 }
1841 
1842 static int __init ap_debug_init(void)
1843 {
1844 	ap_dbf_info = debug_register("ap", 1, 1,
1845 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
1846 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
1847 	debug_set_level(ap_dbf_info, DBF_ERR);
1848 
1849 	return 0;
1850 }
1851 
1852 static void __init ap_perms_init(void)
1853 {
1854 	/* all resources useable if no kernel parameter string given */
1855 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1856 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1857 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1858 
1859 	/* apm kernel parameter string */
1860 	if (apm_str) {
1861 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1862 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1863 				  &ap_perms_mutex);
1864 	}
1865 
1866 	/* aqm kernel parameter string */
1867 	if (aqm_str) {
1868 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1869 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1870 				  &ap_perms_mutex);
1871 	}
1872 }
1873 
1874 /**
1875  * ap_module_init(): The module initialization code.
1876  *
1877  * Initializes the module.
1878  */
1879 static int __init ap_module_init(void)
1880 {
1881 	int rc;
1882 
1883 	rc = ap_debug_init();
1884 	if (rc)
1885 		return rc;
1886 
1887 	if (!ap_instructions_available()) {
1888 		pr_warn("The hardware system does not support AP instructions\n");
1889 		return -ENODEV;
1890 	}
1891 
1892 	/* init ap_queue hashtable */
1893 	hash_init(ap_queues);
1894 
1895 	/* set up the AP permissions (ioctls, ap and aq masks) */
1896 	ap_perms_init();
1897 
1898 	/* Get AP configuration data if available */
1899 	ap_init_qci_info();
1900 
1901 	/* check default domain setting */
1902 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
1903 	    (ap_domain_index >= 0 &&
1904 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1905 		pr_warn("%d is not a valid cryptographic domain\n",
1906 			ap_domain_index);
1907 		ap_domain_index = -1;
1908 	}
1909 
1910 	/* enable interrupts if available */
1911 	if (ap_interrupts_available()) {
1912 		rc = register_adapter_interrupt(&ap_airq);
1913 		ap_airq_flag = (rc == 0);
1914 	}
1915 
1916 	/* Create /sys/bus/ap. */
1917 	rc = bus_register(&ap_bus_type);
1918 	if (rc)
1919 		goto out;
1920 
1921 	/* Create /sys/devices/ap. */
1922 	ap_root_device = root_device_register("ap");
1923 	rc = PTR_ERR_OR_ZERO(ap_root_device);
1924 	if (rc)
1925 		goto out_bus;
1926 	ap_root_device->bus = &ap_bus_type;
1927 
1928 	/* Setup the AP bus rescan timer. */
1929 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
1930 
1931 	/*
1932 	 * Setup the high resultion poll timer.
1933 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1934 	 */
1935 	if (MACHINE_IS_VM)
1936 		poll_timeout = 1500000;
1937 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1938 	ap_poll_timer.function = ap_poll_timeout;
1939 
1940 	/* Start the low priority AP bus poll thread. */
1941 	if (ap_thread_flag) {
1942 		rc = ap_poll_thread_start();
1943 		if (rc)
1944 			goto out_work;
1945 	}
1946 
1947 	queue_work(system_long_wq, &ap_scan_work);
1948 
1949 	return 0;
1950 
1951 out_work:
1952 	hrtimer_cancel(&ap_poll_timer);
1953 	root_device_unregister(ap_root_device);
1954 out_bus:
1955 	bus_unregister(&ap_bus_type);
1956 out:
1957 	if (ap_using_interrupts())
1958 		unregister_adapter_interrupt(&ap_airq);
1959 	kfree(ap_qci_info);
1960 	return rc;
1961 }
1962 device_initcall(ap_module_init);
1963