1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2021 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <linux/atomic.h> 31 #include <asm/isc.h> 32 #include <linux/hrtimer.h> 33 #include <linux/ktime.h> 34 #include <asm/facility.h> 35 #include <linux/crypto.h> 36 #include <linux/mod_devicetable.h> 37 #include <linux/debugfs.h> 38 #include <linux/ctype.h> 39 40 #include "ap_bus.h" 41 #include "ap_debug.h" 42 43 /* 44 * Module parameters; note though this file itself isn't modular. 45 */ 46 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 47 static DEFINE_SPINLOCK(ap_domain_lock); 48 module_param_named(domain, ap_domain_index, int, 0440); 49 MODULE_PARM_DESC(domain, "domain index for ap devices"); 50 EXPORT_SYMBOL(ap_domain_index); 51 52 static int ap_thread_flag; 53 module_param_named(poll_thread, ap_thread_flag, int, 0440); 54 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 55 56 static char *apm_str; 57 module_param_named(apmask, apm_str, charp, 0440); 58 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 59 60 static char *aqm_str; 61 module_param_named(aqmask, aqm_str, charp, 0440); 62 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 63 64 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 65 EXPORT_SYMBOL(ap_max_msg_size); 66 67 static struct device *ap_root_device; 68 69 /* Hashtable of all queue devices on the AP bus */ 70 DEFINE_HASHTABLE(ap_queues, 8); 71 /* lock used for the ap_queues hashtable */ 72 DEFINE_SPINLOCK(ap_queues_lock); 73 74 /* Default permissions (ioctl, card and domain masking) */ 75 struct ap_perms ap_perms; 76 EXPORT_SYMBOL(ap_perms); 77 DEFINE_MUTEX(ap_perms_mutex); 78 EXPORT_SYMBOL(ap_perms_mutex); 79 80 /* # of bus scans since init */ 81 static atomic64_t ap_scan_bus_count; 82 83 /* # of bindings complete since init */ 84 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 85 86 /* completion for initial APQN bindings complete */ 87 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 88 89 static struct ap_config_info *ap_qci_info; 90 91 /* 92 * AP bus related debug feature things. 93 */ 94 debug_info_t *ap_dbf_info; 95 96 /* 97 * Workqueue timer for bus rescan. 98 */ 99 static struct timer_list ap_config_timer; 100 static int ap_config_time = AP_CONFIG_TIME; 101 static void ap_scan_bus(struct work_struct *); 102 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 103 104 /* 105 * Tasklet & timer for AP request polling and interrupts 106 */ 107 static void ap_tasklet_fn(unsigned long); 108 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 109 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 110 static struct task_struct *ap_poll_kthread; 111 static DEFINE_MUTEX(ap_poll_thread_mutex); 112 static DEFINE_SPINLOCK(ap_poll_timer_lock); 113 static struct hrtimer ap_poll_timer; 114 /* 115 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 116 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 117 */ 118 static unsigned long long poll_timeout = 250000; 119 120 /* Maximum domain id, if not given via qci */ 121 static int ap_max_domain_id = 15; 122 /* Maximum adapter id, if not given via qci */ 123 static int ap_max_adapter_id = 63; 124 125 static struct bus_type ap_bus_type; 126 127 /* Adapter interrupt definitions */ 128 static void ap_interrupt_handler(struct airq_struct *airq, bool floating); 129 130 static bool ap_irq_flag; 131 132 static struct airq_struct ap_airq = { 133 .handler = ap_interrupt_handler, 134 .isc = AP_ISC, 135 }; 136 137 /** 138 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 139 * 140 * Returns the address of the local-summary-indicator of the adapter 141 * interrupt handler for AP, or NULL if adapter interrupts are not 142 * available. 143 */ 144 void *ap_airq_ptr(void) 145 { 146 if (ap_irq_flag) 147 return ap_airq.lsi_ptr; 148 return NULL; 149 } 150 151 /** 152 * ap_interrupts_available(): Test if AP interrupts are available. 153 * 154 * Returns 1 if AP interrupts are available. 155 */ 156 static int ap_interrupts_available(void) 157 { 158 return test_facility(65); 159 } 160 161 /** 162 * ap_qci_available(): Test if AP configuration 163 * information can be queried via QCI subfunction. 164 * 165 * Returns 1 if subfunction PQAP(QCI) is available. 166 */ 167 static int ap_qci_available(void) 168 { 169 return test_facility(12); 170 } 171 172 /** 173 * ap_apft_available(): Test if AP facilities test (APFT) 174 * facility is available. 175 * 176 * Returns 1 if APFT is is available. 177 */ 178 static int ap_apft_available(void) 179 { 180 return test_facility(15); 181 } 182 183 /* 184 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 185 * 186 * Returns 1 if the QACT subfunction is available. 187 */ 188 static inline int ap_qact_available(void) 189 { 190 if (ap_qci_info) 191 return ap_qci_info->qact; 192 return 0; 193 } 194 195 /* 196 * ap_fetch_qci_info(): Fetch cryptographic config info 197 * 198 * Returns the ap configuration info fetched via PQAP(QCI). 199 * On success 0 is returned, on failure a negative errno 200 * is returned, e.g. if the PQAP(QCI) instruction is not 201 * available, the return value will be -EOPNOTSUPP. 202 */ 203 static inline int ap_fetch_qci_info(struct ap_config_info *info) 204 { 205 if (!ap_qci_available()) 206 return -EOPNOTSUPP; 207 if (!info) 208 return -EINVAL; 209 return ap_qci(info); 210 } 211 212 /** 213 * ap_init_qci_info(): Allocate and query qci config info. 214 * Does also update the static variables ap_max_domain_id 215 * and ap_max_adapter_id if this info is available. 216 217 */ 218 static void __init ap_init_qci_info(void) 219 { 220 if (!ap_qci_available()) { 221 AP_DBF_INFO("%s QCI not supported\n", __func__); 222 return; 223 } 224 225 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 226 if (!ap_qci_info) 227 return; 228 if (ap_fetch_qci_info(ap_qci_info) != 0) { 229 kfree(ap_qci_info); 230 ap_qci_info = NULL; 231 return; 232 } 233 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 234 235 if (ap_qci_info->apxa) { 236 if (ap_qci_info->Na) { 237 ap_max_adapter_id = ap_qci_info->Na; 238 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 239 __func__, ap_max_adapter_id); 240 } 241 if (ap_qci_info->Nd) { 242 ap_max_domain_id = ap_qci_info->Nd; 243 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 244 __func__, ap_max_domain_id); 245 } 246 } 247 } 248 249 /* 250 * ap_test_config(): helper function to extract the nrth bit 251 * within the unsigned int array field. 252 */ 253 static inline int ap_test_config(unsigned int *field, unsigned int nr) 254 { 255 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 256 } 257 258 /* 259 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 260 * 261 * Returns 0 if the card is not configured 262 * 1 if the card is configured or 263 * if the configuration information is not available 264 */ 265 static inline int ap_test_config_card_id(unsigned int id) 266 { 267 if (id > ap_max_adapter_id) 268 return 0; 269 if (ap_qci_info) 270 return ap_test_config(ap_qci_info->apm, id); 271 return 1; 272 } 273 274 /* 275 * ap_test_config_usage_domain(): Test, whether an AP usage domain 276 * is configured. 277 * 278 * Returns 0 if the usage domain is not configured 279 * 1 if the usage domain is configured or 280 * if the configuration information is not available 281 */ 282 int ap_test_config_usage_domain(unsigned int domain) 283 { 284 if (domain > ap_max_domain_id) 285 return 0; 286 if (ap_qci_info) 287 return ap_test_config(ap_qci_info->aqm, domain); 288 return 1; 289 } 290 EXPORT_SYMBOL(ap_test_config_usage_domain); 291 292 /* 293 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 294 * is configured. 295 * @domain AP control domain ID 296 * 297 * Returns 1 if the control domain is configured 298 * 0 in all other cases 299 */ 300 int ap_test_config_ctrl_domain(unsigned int domain) 301 { 302 if (!ap_qci_info || domain > ap_max_domain_id) 303 return 0; 304 return ap_test_config(ap_qci_info->adm, domain); 305 } 306 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 307 308 /* 309 * ap_queue_info(): Check and get AP queue info. 310 * Returns true if TAPQ succeeded and the info is filled or 311 * false otherwise. 312 */ 313 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, 314 int *q_depth, int *q_ml, bool *q_decfg) 315 { 316 struct ap_queue_status status; 317 union { 318 unsigned long value; 319 struct { 320 unsigned int fac : 32; /* facility bits */ 321 unsigned int at : 8; /* ap type */ 322 unsigned int _res1 : 8; 323 unsigned int _res2 : 4; 324 unsigned int ml : 4; /* apxl ml */ 325 unsigned int _res3 : 4; 326 unsigned int qd : 4; /* queue depth */ 327 } tapq_gr2; 328 } tapq_info; 329 330 tapq_info.value = 0; 331 332 /* make sure we don't run into a specifiation exception */ 333 if (AP_QID_CARD(qid) > ap_max_adapter_id || 334 AP_QID_QUEUE(qid) > ap_max_domain_id) 335 return false; 336 337 /* call TAPQ on this APQN */ 338 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value); 339 switch (status.response_code) { 340 case AP_RESPONSE_NORMAL: 341 case AP_RESPONSE_RESET_IN_PROGRESS: 342 case AP_RESPONSE_DECONFIGURED: 343 case AP_RESPONSE_CHECKSTOPPED: 344 case AP_RESPONSE_BUSY: 345 /* 346 * According to the architecture in all these cases the 347 * info should be filled. All bits 0 is not possible as 348 * there is at least one of the mode bits set. 349 */ 350 if (WARN_ON_ONCE(!tapq_info.value)) 351 return false; 352 *q_type = tapq_info.tapq_gr2.at; 353 *q_fac = tapq_info.tapq_gr2.fac; 354 *q_depth = tapq_info.tapq_gr2.qd; 355 *q_ml = tapq_info.tapq_gr2.ml; 356 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 357 switch (*q_type) { 358 /* For CEX2 and CEX3 the available functions 359 * are not reflected by the facilities bits. 360 * Instead it is coded into the type. So here 361 * modify the function bits based on the type. 362 */ 363 case AP_DEVICE_TYPE_CEX2A: 364 case AP_DEVICE_TYPE_CEX3A: 365 *q_fac |= 0x08000000; 366 break; 367 case AP_DEVICE_TYPE_CEX2C: 368 case AP_DEVICE_TYPE_CEX3C: 369 *q_fac |= 0x10000000; 370 break; 371 default: 372 break; 373 } 374 return true; 375 default: 376 /* 377 * A response code which indicates, there is no info available. 378 */ 379 return false; 380 } 381 } 382 383 void ap_wait(enum ap_sm_wait wait) 384 { 385 ktime_t hr_time; 386 387 switch (wait) { 388 case AP_SM_WAIT_AGAIN: 389 case AP_SM_WAIT_INTERRUPT: 390 if (ap_irq_flag) 391 break; 392 if (ap_poll_kthread) { 393 wake_up(&ap_poll_wait); 394 break; 395 } 396 fallthrough; 397 case AP_SM_WAIT_TIMEOUT: 398 spin_lock_bh(&ap_poll_timer_lock); 399 if (!hrtimer_is_queued(&ap_poll_timer)) { 400 hr_time = poll_timeout; 401 hrtimer_forward_now(&ap_poll_timer, hr_time); 402 hrtimer_restart(&ap_poll_timer); 403 } 404 spin_unlock_bh(&ap_poll_timer_lock); 405 break; 406 case AP_SM_WAIT_NONE: 407 default: 408 break; 409 } 410 } 411 412 /** 413 * ap_request_timeout(): Handling of request timeouts 414 * @t: timer making this callback 415 * 416 * Handles request timeouts. 417 */ 418 void ap_request_timeout(struct timer_list *t) 419 { 420 struct ap_queue *aq = from_timer(aq, t, timeout); 421 422 spin_lock_bh(&aq->lock); 423 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 424 spin_unlock_bh(&aq->lock); 425 } 426 427 /** 428 * ap_poll_timeout(): AP receive polling for finished AP requests. 429 * @unused: Unused pointer. 430 * 431 * Schedules the AP tasklet using a high resolution timer. 432 */ 433 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 434 { 435 tasklet_schedule(&ap_tasklet); 436 return HRTIMER_NORESTART; 437 } 438 439 /** 440 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 441 * @airq: pointer to adapter interrupt descriptor 442 */ 443 static void ap_interrupt_handler(struct airq_struct *airq, bool floating) 444 { 445 inc_irq_stat(IRQIO_APB); 446 tasklet_schedule(&ap_tasklet); 447 } 448 449 /** 450 * ap_tasklet_fn(): Tasklet to poll all AP devices. 451 * @dummy: Unused variable 452 * 453 * Poll all AP devices on the bus. 454 */ 455 static void ap_tasklet_fn(unsigned long dummy) 456 { 457 int bkt; 458 struct ap_queue *aq; 459 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 460 461 /* Reset the indicator if interrupts are used. Thus new interrupts can 462 * be received. Doing it in the beginning of the tasklet is therefor 463 * important that no requests on any AP get lost. 464 */ 465 if (ap_irq_flag) 466 xchg(ap_airq.lsi_ptr, 0); 467 468 spin_lock_bh(&ap_queues_lock); 469 hash_for_each(ap_queues, bkt, aq, hnode) { 470 spin_lock_bh(&aq->lock); 471 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 472 spin_unlock_bh(&aq->lock); 473 } 474 spin_unlock_bh(&ap_queues_lock); 475 476 ap_wait(wait); 477 } 478 479 static int ap_pending_requests(void) 480 { 481 int bkt; 482 struct ap_queue *aq; 483 484 spin_lock_bh(&ap_queues_lock); 485 hash_for_each(ap_queues, bkt, aq, hnode) { 486 if (aq->queue_count == 0) 487 continue; 488 spin_unlock_bh(&ap_queues_lock); 489 return 1; 490 } 491 spin_unlock_bh(&ap_queues_lock); 492 return 0; 493 } 494 495 /** 496 * ap_poll_thread(): Thread that polls for finished requests. 497 * @data: Unused pointer 498 * 499 * AP bus poll thread. The purpose of this thread is to poll for 500 * finished requests in a loop if there is a "free" cpu - that is 501 * a cpu that doesn't have anything better to do. The polling stops 502 * as soon as there is another task or if all messages have been 503 * delivered. 504 */ 505 static int ap_poll_thread(void *data) 506 { 507 DECLARE_WAITQUEUE(wait, current); 508 509 set_user_nice(current, MAX_NICE); 510 set_freezable(); 511 while (!kthread_should_stop()) { 512 add_wait_queue(&ap_poll_wait, &wait); 513 set_current_state(TASK_INTERRUPTIBLE); 514 if (!ap_pending_requests()) { 515 schedule(); 516 try_to_freeze(); 517 } 518 set_current_state(TASK_RUNNING); 519 remove_wait_queue(&ap_poll_wait, &wait); 520 if (need_resched()) { 521 schedule(); 522 try_to_freeze(); 523 continue; 524 } 525 ap_tasklet_fn(0); 526 } 527 528 return 0; 529 } 530 531 static int ap_poll_thread_start(void) 532 { 533 int rc; 534 535 if (ap_irq_flag || ap_poll_kthread) 536 return 0; 537 mutex_lock(&ap_poll_thread_mutex); 538 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 539 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 540 if (rc) 541 ap_poll_kthread = NULL; 542 mutex_unlock(&ap_poll_thread_mutex); 543 return rc; 544 } 545 546 static void ap_poll_thread_stop(void) 547 { 548 if (!ap_poll_kthread) 549 return; 550 mutex_lock(&ap_poll_thread_mutex); 551 kthread_stop(ap_poll_kthread); 552 ap_poll_kthread = NULL; 553 mutex_unlock(&ap_poll_thread_mutex); 554 } 555 556 #define is_card_dev(x) ((x)->parent == ap_root_device) 557 #define is_queue_dev(x) ((x)->parent != ap_root_device) 558 559 /** 560 * ap_bus_match() 561 * @dev: Pointer to device 562 * @drv: Pointer to device_driver 563 * 564 * AP bus driver registration/unregistration. 565 */ 566 static int ap_bus_match(struct device *dev, struct device_driver *drv) 567 { 568 struct ap_driver *ap_drv = to_ap_drv(drv); 569 struct ap_device_id *id; 570 571 /* 572 * Compare device type of the device with the list of 573 * supported types of the device_driver. 574 */ 575 for (id = ap_drv->ids; id->match_flags; id++) { 576 if (is_card_dev(dev) && 577 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 578 id->dev_type == to_ap_dev(dev)->device_type) 579 return 1; 580 if (is_queue_dev(dev) && 581 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 582 id->dev_type == to_ap_dev(dev)->device_type) 583 return 1; 584 } 585 return 0; 586 } 587 588 /** 589 * ap_uevent(): Uevent function for AP devices. 590 * @dev: Pointer to device 591 * @env: Pointer to kobj_uevent_env 592 * 593 * It sets up a single environment variable DEV_TYPE which contains the 594 * hardware device type. 595 */ 596 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env) 597 { 598 int rc = 0; 599 struct ap_device *ap_dev = to_ap_dev(dev); 600 601 /* Uevents from ap bus core don't need extensions to the env */ 602 if (dev == ap_root_device) 603 return 0; 604 605 if (is_card_dev(dev)) { 606 struct ap_card *ac = to_ap_card(&ap_dev->device); 607 608 /* Set up DEV_TYPE environment variable. */ 609 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 610 if (rc) 611 return rc; 612 /* Add MODALIAS= */ 613 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 614 if (rc) 615 return rc; 616 617 /* Add MODE=<accel|cca|ep11> */ 618 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL)) 619 rc = add_uevent_var(env, "MODE=accel"); 620 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) 621 rc = add_uevent_var(env, "MODE=cca"); 622 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) 623 rc = add_uevent_var(env, "MODE=ep11"); 624 if (rc) 625 return rc; 626 } else { 627 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 628 629 /* Add MODE=<accel|cca|ep11> */ 630 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL)) 631 rc = add_uevent_var(env, "MODE=accel"); 632 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) 633 rc = add_uevent_var(env, "MODE=cca"); 634 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) 635 rc = add_uevent_var(env, "MODE=ep11"); 636 if (rc) 637 return rc; 638 } 639 640 return 0; 641 } 642 643 static void ap_send_init_scan_done_uevent(void) 644 { 645 char *envp[] = { "INITSCAN=done", NULL }; 646 647 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 648 } 649 650 static void ap_send_bindings_complete_uevent(void) 651 { 652 char buf[32]; 653 char *envp[] = { "BINDINGS=complete", buf, NULL }; 654 655 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 656 atomic64_inc_return(&ap_bindings_complete_count)); 657 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 658 } 659 660 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 661 { 662 char buf[16]; 663 char *envp[] = { buf, NULL }; 664 665 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 666 667 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 668 } 669 EXPORT_SYMBOL(ap_send_config_uevent); 670 671 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 672 { 673 char buf[16]; 674 char *envp[] = { buf, NULL }; 675 676 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 677 678 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 679 } 680 EXPORT_SYMBOL(ap_send_online_uevent); 681 682 /* 683 * calc # of bound APQNs 684 */ 685 686 struct __ap_calc_ctrs { 687 unsigned int apqns; 688 unsigned int bound; 689 }; 690 691 static int __ap_calc_helper(struct device *dev, void *arg) 692 { 693 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg; 694 695 if (is_queue_dev(dev)) { 696 pctrs->apqns++; 697 if (dev->driver) 698 pctrs->bound++; 699 } 700 701 return 0; 702 } 703 704 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 705 { 706 struct __ap_calc_ctrs ctrs; 707 708 memset(&ctrs, 0, sizeof(ctrs)); 709 bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper); 710 711 *apqns = ctrs.apqns; 712 *bound = ctrs.bound; 713 } 714 715 /* 716 * After initial ap bus scan do check if all existing APQNs are 717 * bound to device drivers. 718 */ 719 static void ap_check_bindings_complete(void) 720 { 721 unsigned int apqns, bound; 722 723 if (atomic64_read(&ap_scan_bus_count) >= 1) { 724 ap_calc_bound_apqns(&apqns, &bound); 725 if (bound == apqns) { 726 if (!completion_done(&ap_init_apqn_bindings_complete)) { 727 complete_all(&ap_init_apqn_bindings_complete); 728 AP_DBF(DBF_INFO, "%s complete\n", __func__); 729 } 730 ap_send_bindings_complete_uevent(); 731 } 732 } 733 } 734 735 /* 736 * Interface to wait for the AP bus to have done one initial ap bus 737 * scan and all detected APQNs have been bound to device drivers. 738 * If these both conditions are not fulfilled, this function blocks 739 * on a condition with wait_for_completion_interruptible_timeout(). 740 * If these both conditions are fulfilled (before the timeout hits) 741 * the return value is 0. If the timeout (in jiffies) hits instead 742 * -ETIME is returned. On failures negative return values are 743 * returned to the caller. 744 */ 745 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 746 { 747 long l; 748 749 if (completion_done(&ap_init_apqn_bindings_complete)) 750 return 0; 751 752 if (timeout) 753 l = wait_for_completion_interruptible_timeout( 754 &ap_init_apqn_bindings_complete, timeout); 755 else 756 l = wait_for_completion_interruptible( 757 &ap_init_apqn_bindings_complete); 758 if (l < 0) 759 return l == -ERESTARTSYS ? -EINTR : l; 760 else if (l == 0 && timeout) 761 return -ETIME; 762 763 return 0; 764 } 765 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 766 767 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 768 { 769 if (is_queue_dev(dev) && 770 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data) 771 device_unregister(dev); 772 return 0; 773 } 774 775 static int __ap_revise_reserved(struct device *dev, void *dummy) 776 { 777 int rc, card, queue, devres, drvres; 778 779 if (is_queue_dev(dev)) { 780 card = AP_QID_CARD(to_ap_queue(dev)->qid); 781 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 782 mutex_lock(&ap_perms_mutex); 783 devres = test_bit_inv(card, ap_perms.apm) 784 && test_bit_inv(queue, ap_perms.aqm); 785 mutex_unlock(&ap_perms_mutex); 786 drvres = to_ap_drv(dev->driver)->flags 787 & AP_DRIVER_FLAG_DEFAULT; 788 if (!!devres != !!drvres) { 789 AP_DBF_DBG("reprobing queue=%02x.%04x\n", 790 card, queue); 791 rc = device_reprobe(dev); 792 } 793 } 794 795 return 0; 796 } 797 798 static void ap_bus_revise_bindings(void) 799 { 800 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 801 } 802 803 int ap_owned_by_def_drv(int card, int queue) 804 { 805 int rc = 0; 806 807 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 808 return -EINVAL; 809 810 mutex_lock(&ap_perms_mutex); 811 812 if (test_bit_inv(card, ap_perms.apm) 813 && test_bit_inv(queue, ap_perms.aqm)) 814 rc = 1; 815 816 mutex_unlock(&ap_perms_mutex); 817 818 return rc; 819 } 820 EXPORT_SYMBOL(ap_owned_by_def_drv); 821 822 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 823 unsigned long *aqm) 824 { 825 int card, queue, rc = 0; 826 827 mutex_lock(&ap_perms_mutex); 828 829 for (card = 0; !rc && card < AP_DEVICES; card++) 830 if (test_bit_inv(card, apm) && 831 test_bit_inv(card, ap_perms.apm)) 832 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 833 if (test_bit_inv(queue, aqm) && 834 test_bit_inv(queue, ap_perms.aqm)) 835 rc = 1; 836 837 mutex_unlock(&ap_perms_mutex); 838 839 return rc; 840 } 841 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 842 843 static int ap_device_probe(struct device *dev) 844 { 845 struct ap_device *ap_dev = to_ap_dev(dev); 846 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 847 int card, queue, devres, drvres, rc = -ENODEV; 848 849 if (!get_device(dev)) 850 return rc; 851 852 if (is_queue_dev(dev)) { 853 /* 854 * If the apqn is marked as reserved/used by ap bus and 855 * default drivers, only probe with drivers with the default 856 * flag set. If it is not marked, only probe with drivers 857 * with the default flag not set. 858 */ 859 card = AP_QID_CARD(to_ap_queue(dev)->qid); 860 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 861 mutex_lock(&ap_perms_mutex); 862 devres = test_bit_inv(card, ap_perms.apm) 863 && test_bit_inv(queue, ap_perms.aqm); 864 mutex_unlock(&ap_perms_mutex); 865 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 866 if (!!devres != !!drvres) 867 goto out; 868 } 869 870 /* Add queue/card to list of active queues/cards */ 871 spin_lock_bh(&ap_queues_lock); 872 if (is_queue_dev(dev)) 873 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 874 to_ap_queue(dev)->qid); 875 spin_unlock_bh(&ap_queues_lock); 876 877 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 878 879 if (rc) { 880 spin_lock_bh(&ap_queues_lock); 881 if (is_queue_dev(dev)) 882 hash_del(&to_ap_queue(dev)->hnode); 883 spin_unlock_bh(&ap_queues_lock); 884 } else 885 ap_check_bindings_complete(); 886 887 out: 888 if (rc) 889 put_device(dev); 890 return rc; 891 } 892 893 static int ap_device_remove(struct device *dev) 894 { 895 struct ap_device *ap_dev = to_ap_dev(dev); 896 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 897 898 /* prepare ap queue device removal */ 899 if (is_queue_dev(dev)) 900 ap_queue_prepare_remove(to_ap_queue(dev)); 901 902 /* driver's chance to clean up gracefully */ 903 if (ap_drv->remove) 904 ap_drv->remove(ap_dev); 905 906 /* now do the ap queue device remove */ 907 if (is_queue_dev(dev)) 908 ap_queue_remove(to_ap_queue(dev)); 909 910 /* Remove queue/card from list of active queues/cards */ 911 spin_lock_bh(&ap_queues_lock); 912 if (is_queue_dev(dev)) 913 hash_del(&to_ap_queue(dev)->hnode); 914 spin_unlock_bh(&ap_queues_lock); 915 916 put_device(dev); 917 918 return 0; 919 } 920 921 struct ap_queue *ap_get_qdev(ap_qid_t qid) 922 { 923 int bkt; 924 struct ap_queue *aq; 925 926 spin_lock_bh(&ap_queues_lock); 927 hash_for_each(ap_queues, bkt, aq, hnode) { 928 if (aq->qid == qid) { 929 get_device(&aq->ap_dev.device); 930 spin_unlock_bh(&ap_queues_lock); 931 return aq; 932 } 933 } 934 spin_unlock_bh(&ap_queues_lock); 935 936 return NULL; 937 } 938 EXPORT_SYMBOL(ap_get_qdev); 939 940 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 941 char *name) 942 { 943 struct device_driver *drv = &ap_drv->driver; 944 945 drv->bus = &ap_bus_type; 946 drv->owner = owner; 947 drv->name = name; 948 return driver_register(drv); 949 } 950 EXPORT_SYMBOL(ap_driver_register); 951 952 void ap_driver_unregister(struct ap_driver *ap_drv) 953 { 954 driver_unregister(&ap_drv->driver); 955 } 956 EXPORT_SYMBOL(ap_driver_unregister); 957 958 void ap_bus_force_rescan(void) 959 { 960 /* processing a asynchronous bus rescan */ 961 del_timer(&ap_config_timer); 962 queue_work(system_long_wq, &ap_scan_work); 963 flush_work(&ap_scan_work); 964 } 965 EXPORT_SYMBOL(ap_bus_force_rescan); 966 967 /* 968 * A config change has happened, force an ap bus rescan. 969 */ 970 void ap_bus_cfg_chg(void) 971 { 972 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 973 974 ap_bus_force_rescan(); 975 } 976 977 /* 978 * hex2bitmap() - parse hex mask string and set bitmap. 979 * Valid strings are "0x012345678" with at least one valid hex number. 980 * Rest of the bitmap to the right is padded with 0. No spaces allowed 981 * within the string, the leading 0x may be omitted. 982 * Returns the bitmask with exactly the bits set as given by the hex 983 * string (both in big endian order). 984 */ 985 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 986 { 987 int i, n, b; 988 989 /* bits needs to be a multiple of 8 */ 990 if (bits & 0x07) 991 return -EINVAL; 992 993 if (str[0] == '0' && str[1] == 'x') 994 str++; 995 if (*str == 'x') 996 str++; 997 998 for (i = 0; isxdigit(*str) && i < bits; str++) { 999 b = hex_to_bin(*str); 1000 for (n = 0; n < 4; n++) 1001 if (b & (0x08 >> n)) 1002 set_bit_inv(i + n, bitmap); 1003 i += 4; 1004 } 1005 1006 if (*str == '\n') 1007 str++; 1008 if (*str) 1009 return -EINVAL; 1010 return 0; 1011 } 1012 1013 /* 1014 * modify_bitmap() - parse bitmask argument and modify an existing 1015 * bit mask accordingly. A concatenation (done with ',') of these 1016 * terms is recognized: 1017 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1018 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1019 * 0...bits-1; the leading + or - is required. Here are some examples: 1020 * +0-15,+32,-128,-0xFF 1021 * -0-255,+1-16,+0x128 1022 * +1,+2,+3,+4,-5,-7-10 1023 * Returns the new bitmap after all changes have been applied. Every 1024 * positive value in the string will set a bit and every negative value 1025 * in the string will clear a bit. As a bit may be touched more than once, 1026 * the last 'operation' wins: 1027 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1028 * cleared again. All other bits are unmodified. 1029 */ 1030 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1031 { 1032 int a, i, z; 1033 char *np, sign; 1034 1035 /* bits needs to be a multiple of 8 */ 1036 if (bits & 0x07) 1037 return -EINVAL; 1038 1039 while (*str) { 1040 sign = *str++; 1041 if (sign != '+' && sign != '-') 1042 return -EINVAL; 1043 a = z = simple_strtoul(str, &np, 0); 1044 if (str == np || a >= bits) 1045 return -EINVAL; 1046 str = np; 1047 if (*str == '-') { 1048 z = simple_strtoul(++str, &np, 0); 1049 if (str == np || a > z || z >= bits) 1050 return -EINVAL; 1051 str = np; 1052 } 1053 for (i = a; i <= z; i++) 1054 if (sign == '+') 1055 set_bit_inv(i, bitmap); 1056 else 1057 clear_bit_inv(i, bitmap); 1058 while (*str == ',' || *str == '\n') 1059 str++; 1060 } 1061 1062 return 0; 1063 } 1064 1065 int ap_parse_mask_str(const char *str, 1066 unsigned long *bitmap, int bits, 1067 struct mutex *lock) 1068 { 1069 unsigned long *newmap, size; 1070 int rc; 1071 1072 /* bits needs to be a multiple of 8 */ 1073 if (bits & 0x07) 1074 return -EINVAL; 1075 1076 size = BITS_TO_LONGS(bits)*sizeof(unsigned long); 1077 newmap = kmalloc(size, GFP_KERNEL); 1078 if (!newmap) 1079 return -ENOMEM; 1080 if (mutex_lock_interruptible(lock)) { 1081 kfree(newmap); 1082 return -ERESTARTSYS; 1083 } 1084 1085 if (*str == '+' || *str == '-') { 1086 memcpy(newmap, bitmap, size); 1087 rc = modify_bitmap(str, newmap, bits); 1088 } else { 1089 memset(newmap, 0, size); 1090 rc = hex2bitmap(str, newmap, bits); 1091 } 1092 if (rc == 0) 1093 memcpy(bitmap, newmap, size); 1094 mutex_unlock(lock); 1095 kfree(newmap); 1096 return rc; 1097 } 1098 EXPORT_SYMBOL(ap_parse_mask_str); 1099 1100 /* 1101 * AP bus attributes. 1102 */ 1103 1104 static ssize_t ap_domain_show(struct bus_type *bus, char *buf) 1105 { 1106 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index); 1107 } 1108 1109 static ssize_t ap_domain_store(struct bus_type *bus, 1110 const char *buf, size_t count) 1111 { 1112 int domain; 1113 1114 if (sscanf(buf, "%i\n", &domain) != 1 || 1115 domain < 0 || domain > ap_max_domain_id || 1116 !test_bit_inv(domain, ap_perms.aqm)) 1117 return -EINVAL; 1118 1119 spin_lock_bh(&ap_domain_lock); 1120 ap_domain_index = domain; 1121 spin_unlock_bh(&ap_domain_lock); 1122 1123 AP_DBF_INFO("stored new default domain=%d\n", domain); 1124 1125 return count; 1126 } 1127 1128 static BUS_ATTR_RW(ap_domain); 1129 1130 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf) 1131 { 1132 if (!ap_qci_info) /* QCI not supported */ 1133 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1134 1135 return scnprintf(buf, PAGE_SIZE, 1136 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1137 ap_qci_info->adm[0], ap_qci_info->adm[1], 1138 ap_qci_info->adm[2], ap_qci_info->adm[3], 1139 ap_qci_info->adm[4], ap_qci_info->adm[5], 1140 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1141 } 1142 1143 static BUS_ATTR_RO(ap_control_domain_mask); 1144 1145 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf) 1146 { 1147 if (!ap_qci_info) /* QCI not supported */ 1148 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1149 1150 return scnprintf(buf, PAGE_SIZE, 1151 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1152 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1153 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1154 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1155 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1156 } 1157 1158 static BUS_ATTR_RO(ap_usage_domain_mask); 1159 1160 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf) 1161 { 1162 if (!ap_qci_info) /* QCI not supported */ 1163 return scnprintf(buf, PAGE_SIZE, "not supported\n"); 1164 1165 return scnprintf(buf, PAGE_SIZE, 1166 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1167 ap_qci_info->apm[0], ap_qci_info->apm[1], 1168 ap_qci_info->apm[2], ap_qci_info->apm[3], 1169 ap_qci_info->apm[4], ap_qci_info->apm[5], 1170 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1171 } 1172 1173 static BUS_ATTR_RO(ap_adapter_mask); 1174 1175 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf) 1176 { 1177 return scnprintf(buf, PAGE_SIZE, "%d\n", 1178 ap_irq_flag ? 1 : 0); 1179 } 1180 1181 static BUS_ATTR_RO(ap_interrupts); 1182 1183 static ssize_t config_time_show(struct bus_type *bus, char *buf) 1184 { 1185 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time); 1186 } 1187 1188 static ssize_t config_time_store(struct bus_type *bus, 1189 const char *buf, size_t count) 1190 { 1191 int time; 1192 1193 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1194 return -EINVAL; 1195 ap_config_time = time; 1196 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1197 return count; 1198 } 1199 1200 static BUS_ATTR_RW(config_time); 1201 1202 static ssize_t poll_thread_show(struct bus_type *bus, char *buf) 1203 { 1204 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0); 1205 } 1206 1207 static ssize_t poll_thread_store(struct bus_type *bus, 1208 const char *buf, size_t count) 1209 { 1210 int flag, rc; 1211 1212 if (sscanf(buf, "%d\n", &flag) != 1) 1213 return -EINVAL; 1214 if (flag) { 1215 rc = ap_poll_thread_start(); 1216 if (rc) 1217 count = rc; 1218 } else 1219 ap_poll_thread_stop(); 1220 return count; 1221 } 1222 1223 static BUS_ATTR_RW(poll_thread); 1224 1225 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf) 1226 { 1227 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout); 1228 } 1229 1230 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf, 1231 size_t count) 1232 { 1233 unsigned long long time; 1234 ktime_t hr_time; 1235 1236 /* 120 seconds = maximum poll interval */ 1237 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 || 1238 time > 120000000000ULL) 1239 return -EINVAL; 1240 poll_timeout = time; 1241 hr_time = poll_timeout; 1242 1243 spin_lock_bh(&ap_poll_timer_lock); 1244 hrtimer_cancel(&ap_poll_timer); 1245 hrtimer_set_expires(&ap_poll_timer, hr_time); 1246 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1247 spin_unlock_bh(&ap_poll_timer_lock); 1248 1249 return count; 1250 } 1251 1252 static BUS_ATTR_RW(poll_timeout); 1253 1254 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf) 1255 { 1256 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id); 1257 } 1258 1259 static BUS_ATTR_RO(ap_max_domain_id); 1260 1261 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf) 1262 { 1263 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id); 1264 } 1265 1266 static BUS_ATTR_RO(ap_max_adapter_id); 1267 1268 static ssize_t apmask_show(struct bus_type *bus, char *buf) 1269 { 1270 int rc; 1271 1272 if (mutex_lock_interruptible(&ap_perms_mutex)) 1273 return -ERESTARTSYS; 1274 rc = scnprintf(buf, PAGE_SIZE, 1275 "0x%016lx%016lx%016lx%016lx\n", 1276 ap_perms.apm[0], ap_perms.apm[1], 1277 ap_perms.apm[2], ap_perms.apm[3]); 1278 mutex_unlock(&ap_perms_mutex); 1279 1280 return rc; 1281 } 1282 1283 static ssize_t apmask_store(struct bus_type *bus, const char *buf, 1284 size_t count) 1285 { 1286 int rc; 1287 1288 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex); 1289 if (rc) 1290 return rc; 1291 1292 ap_bus_revise_bindings(); 1293 1294 return count; 1295 } 1296 1297 static BUS_ATTR_RW(apmask); 1298 1299 static ssize_t aqmask_show(struct bus_type *bus, char *buf) 1300 { 1301 int rc; 1302 1303 if (mutex_lock_interruptible(&ap_perms_mutex)) 1304 return -ERESTARTSYS; 1305 rc = scnprintf(buf, PAGE_SIZE, 1306 "0x%016lx%016lx%016lx%016lx\n", 1307 ap_perms.aqm[0], ap_perms.aqm[1], 1308 ap_perms.aqm[2], ap_perms.aqm[3]); 1309 mutex_unlock(&ap_perms_mutex); 1310 1311 return rc; 1312 } 1313 1314 static ssize_t aqmask_store(struct bus_type *bus, const char *buf, 1315 size_t count) 1316 { 1317 int rc; 1318 1319 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex); 1320 if (rc) 1321 return rc; 1322 1323 ap_bus_revise_bindings(); 1324 1325 return count; 1326 } 1327 1328 static BUS_ATTR_RW(aqmask); 1329 1330 static ssize_t scans_show(struct bus_type *bus, char *buf) 1331 { 1332 return scnprintf(buf, PAGE_SIZE, "%llu\n", 1333 atomic64_read(&ap_scan_bus_count)); 1334 } 1335 1336 static BUS_ATTR_RO(scans); 1337 1338 static ssize_t bindings_show(struct bus_type *bus, char *buf) 1339 { 1340 int rc; 1341 unsigned int apqns, n; 1342 1343 ap_calc_bound_apqns(&apqns, &n); 1344 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1345 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns); 1346 else 1347 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns); 1348 1349 return rc; 1350 } 1351 1352 static BUS_ATTR_RO(bindings); 1353 1354 static struct attribute *ap_bus_attrs[] = { 1355 &bus_attr_ap_domain.attr, 1356 &bus_attr_ap_control_domain_mask.attr, 1357 &bus_attr_ap_usage_domain_mask.attr, 1358 &bus_attr_ap_adapter_mask.attr, 1359 &bus_attr_config_time.attr, 1360 &bus_attr_poll_thread.attr, 1361 &bus_attr_ap_interrupts.attr, 1362 &bus_attr_poll_timeout.attr, 1363 &bus_attr_ap_max_domain_id.attr, 1364 &bus_attr_ap_max_adapter_id.attr, 1365 &bus_attr_apmask.attr, 1366 &bus_attr_aqmask.attr, 1367 &bus_attr_scans.attr, 1368 &bus_attr_bindings.attr, 1369 NULL, 1370 }; 1371 ATTRIBUTE_GROUPS(ap_bus); 1372 1373 static struct bus_type ap_bus_type = { 1374 .name = "ap", 1375 .bus_groups = ap_bus_groups, 1376 .match = &ap_bus_match, 1377 .uevent = &ap_uevent, 1378 .probe = ap_device_probe, 1379 .remove = ap_device_remove, 1380 }; 1381 1382 /** 1383 * ap_select_domain(): Select an AP domain if possible and we haven't 1384 * already done so before. 1385 */ 1386 static void ap_select_domain(void) 1387 { 1388 struct ap_queue_status status; 1389 int card, dom; 1390 1391 /* 1392 * Choose the default domain. Either the one specified with 1393 * the "domain=" parameter or the first domain with at least 1394 * one valid APQN. 1395 */ 1396 spin_lock_bh(&ap_domain_lock); 1397 if (ap_domain_index >= 0) { 1398 /* Domain has already been selected. */ 1399 goto out; 1400 } 1401 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1402 if (!ap_test_config_usage_domain(dom) || 1403 !test_bit_inv(dom, ap_perms.aqm)) 1404 continue; 1405 for (card = 0; card <= ap_max_adapter_id; card++) { 1406 if (!ap_test_config_card_id(card) || 1407 !test_bit_inv(card, ap_perms.apm)) 1408 continue; 1409 status = ap_test_queue(AP_MKQID(card, dom), 1410 ap_apft_available(), 1411 NULL); 1412 if (status.response_code == AP_RESPONSE_NORMAL) 1413 break; 1414 } 1415 if (card <= ap_max_adapter_id) 1416 break; 1417 } 1418 if (dom <= ap_max_domain_id) { 1419 ap_domain_index = dom; 1420 AP_DBF_INFO("%s new default domain is %d\n", 1421 __func__, ap_domain_index); 1422 } 1423 out: 1424 spin_unlock_bh(&ap_domain_lock); 1425 } 1426 1427 /* 1428 * This function checks the type and returns either 0 for not 1429 * supported or the highest compatible type value (which may 1430 * include the input type value). 1431 */ 1432 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1433 { 1434 int comp_type = 0; 1435 1436 /* < CEX2A is not supported */ 1437 if (rawtype < AP_DEVICE_TYPE_CEX2A) { 1438 AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n", 1439 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1440 return 0; 1441 } 1442 /* up to CEX7 known and fully supported */ 1443 if (rawtype <= AP_DEVICE_TYPE_CEX7) 1444 return rawtype; 1445 /* 1446 * unknown new type > CEX7, check for compatibility 1447 * to the highest known and supported type which is 1448 * currently CEX7 with the help of the QACT function. 1449 */ 1450 if (ap_qact_available()) { 1451 struct ap_queue_status status; 1452 union ap_qact_ap_info apinfo = {0}; 1453 1454 apinfo.mode = (func >> 26) & 0x07; 1455 apinfo.cat = AP_DEVICE_TYPE_CEX7; 1456 status = ap_qact(qid, 0, &apinfo); 1457 if (status.response_code == AP_RESPONSE_NORMAL 1458 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A 1459 && apinfo.cat <= AP_DEVICE_TYPE_CEX7) 1460 comp_type = apinfo.cat; 1461 } 1462 if (!comp_type) 1463 AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n", 1464 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype); 1465 else if (comp_type != rawtype) 1466 AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n", 1467 AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1468 rawtype, comp_type); 1469 return comp_type; 1470 } 1471 1472 /* 1473 * Helper function to be used with bus_find_dev 1474 * matches for the card device with the given id 1475 */ 1476 static int __match_card_device_with_id(struct device *dev, const void *data) 1477 { 1478 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data; 1479 } 1480 1481 /* 1482 * Helper function to be used with bus_find_dev 1483 * matches for the queue device with a given qid 1484 */ 1485 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1486 { 1487 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data; 1488 } 1489 1490 /* 1491 * Helper function to be used with bus_find_dev 1492 * matches any queue device with given queue id 1493 */ 1494 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1495 { 1496 return is_queue_dev(dev) 1497 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data; 1498 } 1499 1500 /* 1501 * Helper function for ap_scan_bus(). 1502 * Remove card device and associated queue devices. 1503 */ 1504 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1505 { 1506 bus_for_each_dev(&ap_bus_type, NULL, 1507 (void *)(long) ac->id, 1508 __ap_queue_devices_with_id_unregister); 1509 device_unregister(&ac->ap_dev.device); 1510 } 1511 1512 /* 1513 * Helper function for ap_scan_bus(). 1514 * Does the scan bus job for all the domains within 1515 * a valid adapter given by an ap_card ptr. 1516 */ 1517 static inline void ap_scan_domains(struct ap_card *ac) 1518 { 1519 bool decfg; 1520 ap_qid_t qid; 1521 unsigned int func; 1522 struct device *dev; 1523 struct ap_queue *aq; 1524 int rc, dom, depth, type, ml; 1525 1526 /* 1527 * Go through the configuration for the domains and compare them 1528 * to the existing queue devices. Also take care of the config 1529 * and error state for the queue devices. 1530 */ 1531 1532 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1533 qid = AP_MKQID(ac->id, dom); 1534 dev = bus_find_device(&ap_bus_type, NULL, 1535 (void *)(long) qid, 1536 __match_queue_device_with_qid); 1537 aq = dev ? to_ap_queue(dev) : NULL; 1538 if (!ap_test_config_usage_domain(dom)) { 1539 if (dev) { 1540 AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n", 1541 __func__, ac->id, dom); 1542 device_unregister(dev); 1543 put_device(dev); 1544 } 1545 continue; 1546 } 1547 /* domain is valid, get info from this APQN */ 1548 if (!ap_queue_info(qid, &type, &func, &depth, &ml, &decfg)) { 1549 if (aq) { 1550 AP_DBF_INFO( 1551 "%s(%d,%d) ap_queue_info() not successful, rm queue device\n", 1552 __func__, ac->id, dom); 1553 device_unregister(dev); 1554 put_device(dev); 1555 } 1556 continue; 1557 } 1558 /* if no queue device exists, create a new one */ 1559 if (!aq) { 1560 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1561 if (!aq) { 1562 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1563 __func__, ac->id, dom); 1564 continue; 1565 } 1566 aq->card = ac; 1567 aq->config = !decfg; 1568 dev = &aq->ap_dev.device; 1569 dev->bus = &ap_bus_type; 1570 dev->parent = &ac->ap_dev.device; 1571 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1572 /* register queue device */ 1573 rc = device_register(dev); 1574 if (rc) { 1575 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1576 __func__, ac->id, dom); 1577 goto put_dev_and_continue; 1578 } 1579 /* get it and thus adjust reference counter */ 1580 get_device(dev); 1581 if (decfg) 1582 AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n", 1583 __func__, ac->id, dom); 1584 else 1585 AP_DBF_INFO("%s(%d,%d) new queue device created\n", 1586 __func__, ac->id, dom); 1587 goto put_dev_and_continue; 1588 } 1589 /* Check config state on the already existing queue device */ 1590 spin_lock_bh(&aq->lock); 1591 if (decfg && aq->config) { 1592 /* config off this queue device */ 1593 aq->config = false; 1594 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1595 aq->dev_state = AP_DEV_STATE_ERROR; 1596 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1597 } 1598 spin_unlock_bh(&aq->lock); 1599 AP_DBF_INFO("%s(%d,%d) queue device config off\n", 1600 __func__, ac->id, dom); 1601 ap_send_config_uevent(&aq->ap_dev, aq->config); 1602 /* 'receive' pending messages with -EAGAIN */ 1603 ap_flush_queue(aq); 1604 goto put_dev_and_continue; 1605 } 1606 if (!decfg && !aq->config) { 1607 /* config on this queue device */ 1608 aq->config = true; 1609 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1610 aq->dev_state = AP_DEV_STATE_OPERATING; 1611 aq->sm_state = AP_SM_STATE_RESET_START; 1612 } 1613 spin_unlock_bh(&aq->lock); 1614 AP_DBF_INFO("%s(%d,%d) queue device config on\n", 1615 __func__, ac->id, dom); 1616 ap_send_config_uevent(&aq->ap_dev, aq->config); 1617 goto put_dev_and_continue; 1618 } 1619 /* handle other error states */ 1620 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1621 spin_unlock_bh(&aq->lock); 1622 /* 'receive' pending messages with -EAGAIN */ 1623 ap_flush_queue(aq); 1624 /* re-init (with reset) the queue device */ 1625 ap_queue_init_state(aq); 1626 AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n", 1627 __func__, ac->id, dom); 1628 goto put_dev_and_continue; 1629 } 1630 spin_unlock_bh(&aq->lock); 1631 put_dev_and_continue: 1632 put_device(dev); 1633 } 1634 } 1635 1636 /* 1637 * Helper function for ap_scan_bus(). 1638 * Does the scan bus job for the given adapter id. 1639 */ 1640 static inline void ap_scan_adapter(int ap) 1641 { 1642 bool decfg; 1643 ap_qid_t qid; 1644 unsigned int func; 1645 struct device *dev; 1646 struct ap_card *ac; 1647 int rc, dom, depth, type, comp_type, ml; 1648 1649 /* Is there currently a card device for this adapter ? */ 1650 dev = bus_find_device(&ap_bus_type, NULL, 1651 (void *)(long) ap, 1652 __match_card_device_with_id); 1653 ac = dev ? to_ap_card(dev) : NULL; 1654 1655 /* Adapter not in configuration ? */ 1656 if (!ap_test_config_card_id(ap)) { 1657 if (ac) { 1658 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n", 1659 __func__, ap); 1660 ap_scan_rm_card_dev_and_queue_devs(ac); 1661 put_device(dev); 1662 } 1663 return; 1664 } 1665 1666 /* 1667 * Adapter ap is valid in the current configuration. So do some checks: 1668 * If no card device exists, build one. If a card device exists, check 1669 * for type and functions changed. For all this we need to find a valid 1670 * APQN first. 1671 */ 1672 1673 for (dom = 0; dom <= ap_max_domain_id; dom++) 1674 if (ap_test_config_usage_domain(dom)) { 1675 qid = AP_MKQID(ap, dom); 1676 if (ap_queue_info(qid, &type, &func, 1677 &depth, &ml, &decfg)) 1678 break; 1679 } 1680 if (dom > ap_max_domain_id) { 1681 /* Could not find a valid APQN for this adapter */ 1682 if (ac) { 1683 AP_DBF_INFO( 1684 "%s(%d) no type info (no APQN found), rm card and queue devices\n", 1685 __func__, ap); 1686 ap_scan_rm_card_dev_and_queue_devs(ac); 1687 put_device(dev); 1688 } else { 1689 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 1690 __func__, ap); 1691 } 1692 return; 1693 } 1694 if (!type) { 1695 /* No apdater type info available, an unusable adapter */ 1696 if (ac) { 1697 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n", 1698 __func__, ap); 1699 ap_scan_rm_card_dev_and_queue_devs(ac); 1700 put_device(dev); 1701 } else { 1702 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 1703 __func__, ap); 1704 } 1705 return; 1706 } 1707 1708 if (ac) { 1709 /* Check APQN against existing card device for changes */ 1710 if (ac->raw_hwtype != type) { 1711 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n", 1712 __func__, ap, type); 1713 ap_scan_rm_card_dev_and_queue_devs(ac); 1714 put_device(dev); 1715 ac = NULL; 1716 } else if (ac->functions != func) { 1717 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n", 1718 __func__, ap, type); 1719 ap_scan_rm_card_dev_and_queue_devs(ac); 1720 put_device(dev); 1721 ac = NULL; 1722 } else { 1723 if (decfg && ac->config) { 1724 ac->config = false; 1725 AP_DBF_INFO("%s(%d) card device config off\n", 1726 __func__, ap); 1727 ap_send_config_uevent(&ac->ap_dev, ac->config); 1728 } 1729 if (!decfg && !ac->config) { 1730 ac->config = true; 1731 AP_DBF_INFO("%s(%d) card device config on\n", 1732 __func__, ap); 1733 ap_send_config_uevent(&ac->ap_dev, ac->config); 1734 } 1735 } 1736 } 1737 1738 if (!ac) { 1739 /* Build a new card device */ 1740 comp_type = ap_get_compatible_type(qid, type, func); 1741 if (!comp_type) { 1742 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 1743 __func__, ap, type); 1744 return; 1745 } 1746 ac = ap_card_create(ap, depth, type, comp_type, func, ml); 1747 if (!ac) { 1748 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 1749 __func__, ap); 1750 return; 1751 } 1752 ac->config = !decfg; 1753 dev = &ac->ap_dev.device; 1754 dev->bus = &ap_bus_type; 1755 dev->parent = ap_root_device; 1756 dev_set_name(dev, "card%02x", ap); 1757 /* maybe enlarge ap_max_msg_size to support this card */ 1758 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 1759 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 1760 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 1761 __func__, ap, atomic_read(&ap_max_msg_size)); 1762 } 1763 /* Register the new card device with AP bus */ 1764 rc = device_register(dev); 1765 if (rc) { 1766 AP_DBF_WARN("%s(%d) device_register() failed\n", 1767 __func__, ap); 1768 put_device(dev); 1769 return; 1770 } 1771 /* get it and thus adjust reference counter */ 1772 get_device(dev); 1773 if (decfg) 1774 AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n", 1775 __func__, ap, type, func); 1776 else 1777 AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n", 1778 __func__, ap, type, func); 1779 } 1780 1781 /* Verify the domains and the queue devices for this card */ 1782 ap_scan_domains(ac); 1783 1784 /* release the card device */ 1785 put_device(&ac->ap_dev.device); 1786 } 1787 1788 /** 1789 * ap_scan_bus(): Scan the AP bus for new devices 1790 * Runs periodically, workqueue timer (ap_config_time) 1791 */ 1792 static void ap_scan_bus(struct work_struct *unused) 1793 { 1794 int ap; 1795 1796 ap_fetch_qci_info(ap_qci_info); 1797 ap_select_domain(); 1798 1799 AP_DBF_DBG("%s running\n", __func__); 1800 1801 /* loop over all possible adapters */ 1802 for (ap = 0; ap <= ap_max_adapter_id; ap++) 1803 ap_scan_adapter(ap); 1804 1805 /* check if there is at least one queue available with default domain */ 1806 if (ap_domain_index >= 0) { 1807 struct device *dev = 1808 bus_find_device(&ap_bus_type, NULL, 1809 (void *)(long) ap_domain_index, 1810 __match_queue_device_with_queue_id); 1811 if (dev) 1812 put_device(dev); 1813 else 1814 AP_DBF_INFO("no queue device with default domain %d available\n", 1815 ap_domain_index); 1816 } 1817 1818 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 1819 AP_DBF(DBF_DEBUG, "%s init scan complete\n", __func__); 1820 ap_send_init_scan_done_uevent(); 1821 ap_check_bindings_complete(); 1822 } 1823 1824 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1825 } 1826 1827 static void ap_config_timeout(struct timer_list *unused) 1828 { 1829 queue_work(system_long_wq, &ap_scan_work); 1830 } 1831 1832 static int __init ap_debug_init(void) 1833 { 1834 ap_dbf_info = debug_register("ap", 1, 1, 1835 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 1836 debug_register_view(ap_dbf_info, &debug_sprintf_view); 1837 debug_set_level(ap_dbf_info, DBF_ERR); 1838 1839 return 0; 1840 } 1841 1842 static void __init ap_perms_init(void) 1843 { 1844 /* all resources useable if no kernel parameter string given */ 1845 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 1846 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 1847 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 1848 1849 /* apm kernel parameter string */ 1850 if (apm_str) { 1851 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 1852 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 1853 &ap_perms_mutex); 1854 } 1855 1856 /* aqm kernel parameter string */ 1857 if (aqm_str) { 1858 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 1859 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 1860 &ap_perms_mutex); 1861 } 1862 } 1863 1864 /** 1865 * ap_module_init(): The module initialization code. 1866 * 1867 * Initializes the module. 1868 */ 1869 static int __init ap_module_init(void) 1870 { 1871 int rc; 1872 1873 rc = ap_debug_init(); 1874 if (rc) 1875 return rc; 1876 1877 if (!ap_instructions_available()) { 1878 pr_warn("The hardware system does not support AP instructions\n"); 1879 return -ENODEV; 1880 } 1881 1882 /* init ap_queue hashtable */ 1883 hash_init(ap_queues); 1884 1885 /* set up the AP permissions (ioctls, ap and aq masks) */ 1886 ap_perms_init(); 1887 1888 /* Get AP configuration data if available */ 1889 ap_init_qci_info(); 1890 1891 /* check default domain setting */ 1892 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 1893 (ap_domain_index >= 0 && 1894 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 1895 pr_warn("%d is not a valid cryptographic domain\n", 1896 ap_domain_index); 1897 ap_domain_index = -1; 1898 } 1899 1900 /* enable interrupts if available */ 1901 if (ap_interrupts_available()) { 1902 rc = register_adapter_interrupt(&ap_airq); 1903 ap_irq_flag = (rc == 0); 1904 } 1905 1906 /* Create /sys/bus/ap. */ 1907 rc = bus_register(&ap_bus_type); 1908 if (rc) 1909 goto out; 1910 1911 /* Create /sys/devices/ap. */ 1912 ap_root_device = root_device_register("ap"); 1913 rc = PTR_ERR_OR_ZERO(ap_root_device); 1914 if (rc) 1915 goto out_bus; 1916 ap_root_device->bus = &ap_bus_type; 1917 1918 /* Setup the AP bus rescan timer. */ 1919 timer_setup(&ap_config_timer, ap_config_timeout, 0); 1920 1921 /* 1922 * Setup the high resultion poll timer. 1923 * If we are running under z/VM adjust polling to z/VM polling rate. 1924 */ 1925 if (MACHINE_IS_VM) 1926 poll_timeout = 1500000; 1927 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 1928 ap_poll_timer.function = ap_poll_timeout; 1929 1930 /* Start the low priority AP bus poll thread. */ 1931 if (ap_thread_flag) { 1932 rc = ap_poll_thread_start(); 1933 if (rc) 1934 goto out_work; 1935 } 1936 1937 queue_work(system_long_wq, &ap_scan_work); 1938 1939 return 0; 1940 1941 out_work: 1942 hrtimer_cancel(&ap_poll_timer); 1943 root_device_unregister(ap_root_device); 1944 out_bus: 1945 bus_unregister(&ap_bus_type); 1946 out: 1947 if (ap_irq_flag) 1948 unregister_adapter_interrupt(&ap_airq); 1949 kfree(ap_qci_info); 1950 return rc; 1951 } 1952 device_initcall(ap_module_init); 1953