xref: /linux/drivers/s390/crypto/ap_bus.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright IBM Corp. 2006, 2012
3  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
5  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
6  *	      Felix Beck <felix.beck@de.ibm.com>
7  *	      Holger Dengler <hd@linux.vnet.ibm.com>
8  *
9  * Adjunct processor bus.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28 
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49 
50 #include "ap_bus.h"
51 
52 /*
53  * Module description.
54  */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 		   "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60 
61 /*
62  * Module parameter
63  */
64 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68 
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72 
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77 
78 /*
79  * Workqueue timer for bus rescan.
80  */
81 static struct timer_list ap_config_timer;
82 static int ap_config_time = AP_CONFIG_TIME;
83 static void ap_scan_bus(struct work_struct *);
84 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
85 
86 /*
87  * Tasklet & timer for AP request polling and interrupts
88  */
89 static void ap_tasklet_fn(unsigned long);
90 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
91 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
92 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
93 static struct task_struct *ap_poll_kthread = NULL;
94 static DEFINE_MUTEX(ap_poll_thread_mutex);
95 static DEFINE_SPINLOCK(ap_poll_timer_lock);
96 static struct hrtimer ap_poll_timer;
97 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
98  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
99 static unsigned long long poll_timeout = 250000;
100 
101 /* Suspend flag */
102 static int ap_suspend_flag;
103 /* Maximum domain id */
104 static int ap_max_domain_id;
105 /* Flag to check if domain was set through module parameter domain=. This is
106  * important when supsend and resume is done in a z/VM environment where the
107  * domain might change. */
108 static int user_set_domain = 0;
109 static struct bus_type ap_bus_type;
110 
111 /* Adapter interrupt definitions */
112 static void ap_interrupt_handler(struct airq_struct *airq);
113 
114 static int ap_airq_flag;
115 
116 static struct airq_struct ap_airq = {
117 	.handler = ap_interrupt_handler,
118 	.isc = AP_ISC,
119 };
120 
121 /**
122  * ap_using_interrupts() - Returns non-zero if interrupt support is
123  * available.
124  */
125 static inline int ap_using_interrupts(void)
126 {
127 	return ap_airq_flag;
128 }
129 
130 /**
131  * ap_intructions_available() - Test if AP instructions are available.
132  *
133  * Returns 0 if the AP instructions are installed.
134  */
135 static inline int ap_instructions_available(void)
136 {
137 	register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
138 	register unsigned long reg1 asm ("1") = -ENODEV;
139 	register unsigned long reg2 asm ("2") = 0UL;
140 
141 	asm volatile(
142 		"   .long 0xb2af0000\n"		/* PQAP(TAPQ) */
143 		"0: la    %1,0\n"
144 		"1:\n"
145 		EX_TABLE(0b, 1b)
146 		: "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
147 	return reg1;
148 }
149 
150 /**
151  * ap_interrupts_available(): Test if AP interrupts are available.
152  *
153  * Returns 1 if AP interrupts are available.
154  */
155 static int ap_interrupts_available(void)
156 {
157 	return test_facility(65);
158 }
159 
160 /**
161  * ap_configuration_available(): Test if AP configuration
162  * information is available.
163  *
164  * Returns 1 if AP configuration information is available.
165  */
166 static int ap_configuration_available(void)
167 {
168 	return test_facility(12);
169 }
170 
171 /**
172  * ap_test_queue(): Test adjunct processor queue.
173  * @qid: The AP queue number
174  * @info: Pointer to queue descriptor
175  *
176  * Returns AP queue status structure.
177  */
178 static inline struct ap_queue_status
179 ap_test_queue(ap_qid_t qid, unsigned long *info)
180 {
181 	register unsigned long reg0 asm ("0") = qid;
182 	register struct ap_queue_status reg1 asm ("1");
183 	register unsigned long reg2 asm ("2") = 0UL;
184 
185 	if (test_facility(15))
186 		reg0 |= 1UL << 23;		/* set APFT T bit*/
187 	asm volatile(".long 0xb2af0000"		/* PQAP(TAPQ) */
188 		     : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
189 	if (info)
190 		*info = reg2;
191 	return reg1;
192 }
193 
194 /**
195  * ap_reset_queue(): Reset adjunct processor queue.
196  * @qid: The AP queue number
197  *
198  * Returns AP queue status structure.
199  */
200 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
201 {
202 	register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
203 	register struct ap_queue_status reg1 asm ("1");
204 	register unsigned long reg2 asm ("2") = 0UL;
205 
206 	asm volatile(
207 		".long 0xb2af0000"		/* PQAP(RAPQ) */
208 		: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
209 	return reg1;
210 }
211 
212 /**
213  * ap_queue_interruption_control(): Enable interruption for a specific AP.
214  * @qid: The AP queue number
215  * @ind: The notification indicator byte
216  *
217  * Returns AP queue status.
218  */
219 static inline struct ap_queue_status
220 ap_queue_interruption_control(ap_qid_t qid, void *ind)
221 {
222 	register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
223 	register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
224 	register struct ap_queue_status reg1_out asm ("1");
225 	register void *reg2 asm ("2") = ind;
226 	asm volatile(
227 		".long 0xb2af0000"		/* PQAP(AQIC) */
228 		: "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
229 		:
230 		: "cc" );
231 	return reg1_out;
232 }
233 
234 /**
235  * ap_query_configuration(): Get AP configuration data
236  *
237  * Returns 0 on success, or -EOPNOTSUPP.
238  */
239 static inline int ap_query_configuration(void)
240 {
241 	register unsigned long reg0 asm ("0") = 0x04000000UL;
242 	register unsigned long reg1 asm ("1") = -EINVAL;
243 	register void *reg2 asm ("2") = (void *) ap_configuration;
244 
245 	if (!ap_configuration)
246 		return -EOPNOTSUPP;
247 	asm volatile(
248 		".long 0xb2af0000\n"		/* PQAP(QCI) */
249 		"0: la    %1,0\n"
250 		"1:\n"
251 		EX_TABLE(0b, 1b)
252 		: "+d" (reg0), "+d" (reg1), "+d" (reg2)
253 		:
254 		: "cc");
255 
256 	return reg1;
257 }
258 
259 /**
260  * ap_init_configuration(): Allocate and query configuration array.
261  */
262 static void ap_init_configuration(void)
263 {
264 	if (!ap_configuration_available())
265 		return;
266 
267 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
268 	if (!ap_configuration)
269 		return;
270 	if (ap_query_configuration() != 0) {
271 		kfree(ap_configuration);
272 		ap_configuration = NULL;
273 		return;
274 	}
275 }
276 
277 /*
278  * ap_test_config(): helper function to extract the nrth bit
279  *		     within the unsigned int array field.
280  */
281 static inline int ap_test_config(unsigned int *field, unsigned int nr)
282 {
283 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
284 }
285 
286 /*
287  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
288  * @id AP card ID
289  *
290  * Returns 0 if the card is not configured
291  *	   1 if the card is configured or
292  *	     if the configuration information is not available
293  */
294 static inline int ap_test_config_card_id(unsigned int id)
295 {
296 	if (!ap_configuration)	/* QCI not supported */
297 		return 1;
298 	return ap_test_config(ap_configuration->apm, id);
299 }
300 
301 /*
302  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
303  * @domain AP usage domain ID
304  *
305  * Returns 0 if the usage domain is not configured
306  *	   1 if the usage domain is configured or
307  *	     if the configuration information is not available
308  */
309 static inline int ap_test_config_domain(unsigned int domain)
310 {
311 	if (!ap_configuration)	/* QCI not supported */
312 		return domain < 16;
313 	return ap_test_config(ap_configuration->aqm, domain);
314 }
315 
316 /**
317  * ap_queue_enable_interruption(): Enable interruption on an AP.
318  * @qid: The AP queue number
319  * @ind: the notification indicator byte
320  *
321  * Enables interruption on AP queue via ap_queue_interruption_control(). Based
322  * on the return value it waits a while and tests the AP queue if interrupts
323  * have been switched on using ap_test_queue().
324  */
325 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
326 {
327 	struct ap_queue_status status;
328 
329 	status = ap_queue_interruption_control(ap_dev->qid, ind);
330 	switch (status.response_code) {
331 	case AP_RESPONSE_NORMAL:
332 	case AP_RESPONSE_OTHERWISE_CHANGED:
333 		return 0;
334 	case AP_RESPONSE_Q_NOT_AVAIL:
335 	case AP_RESPONSE_DECONFIGURED:
336 	case AP_RESPONSE_CHECKSTOPPED:
337 	case AP_RESPONSE_INVALID_ADDRESS:
338 		pr_err("Registering adapter interrupts for AP %d failed\n",
339 		       AP_QID_DEVICE(ap_dev->qid));
340 		return -EOPNOTSUPP;
341 	case AP_RESPONSE_RESET_IN_PROGRESS:
342 	case AP_RESPONSE_BUSY:
343 	default:
344 		return -EBUSY;
345 	}
346 }
347 
348 /**
349  * __ap_send(): Send message to adjunct processor queue.
350  * @qid: The AP queue number
351  * @psmid: The program supplied message identifier
352  * @msg: The message text
353  * @length: The message length
354  * @special: Special Bit
355  *
356  * Returns AP queue status structure.
357  * Condition code 1 on NQAP can't happen because the L bit is 1.
358  * Condition code 2 on NQAP also means the send is incomplete,
359  * because a segment boundary was reached. The NQAP is repeated.
360  */
361 static inline struct ap_queue_status
362 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
363 	  unsigned int special)
364 {
365 	typedef struct { char _[length]; } msgblock;
366 	register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
367 	register struct ap_queue_status reg1 asm ("1");
368 	register unsigned long reg2 asm ("2") = (unsigned long) msg;
369 	register unsigned long reg3 asm ("3") = (unsigned long) length;
370 	register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
371 	register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
372 
373 	if (special == 1)
374 		reg0 |= 0x400000UL;
375 
376 	asm volatile (
377 		"0: .long 0xb2ad0042\n"		/* NQAP */
378 		"   brc   2,0b"
379 		: "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
380 		: "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
381 		: "cc" );
382 	return reg1;
383 }
384 
385 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
386 {
387 	struct ap_queue_status status;
388 
389 	status = __ap_send(qid, psmid, msg, length, 0);
390 	switch (status.response_code) {
391 	case AP_RESPONSE_NORMAL:
392 		return 0;
393 	case AP_RESPONSE_Q_FULL:
394 	case AP_RESPONSE_RESET_IN_PROGRESS:
395 		return -EBUSY;
396 	case AP_RESPONSE_REQ_FAC_NOT_INST:
397 		return -EINVAL;
398 	default:	/* Device is gone. */
399 		return -ENODEV;
400 	}
401 }
402 EXPORT_SYMBOL(ap_send);
403 
404 /**
405  * __ap_recv(): Receive message from adjunct processor queue.
406  * @qid: The AP queue number
407  * @psmid: Pointer to program supplied message identifier
408  * @msg: The message text
409  * @length: The message length
410  *
411  * Returns AP queue status structure.
412  * Condition code 1 on DQAP means the receive has taken place
413  * but only partially.	The response is incomplete, hence the
414  * DQAP is repeated.
415  * Condition code 2 on DQAP also means the receive is incomplete,
416  * this time because a segment boundary was reached. Again, the
417  * DQAP is repeated.
418  * Note that gpr2 is used by the DQAP instruction to keep track of
419  * any 'residual' length, in case the instruction gets interrupted.
420  * Hence it gets zeroed before the instruction.
421  */
422 static inline struct ap_queue_status
423 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
424 {
425 	typedef struct { char _[length]; } msgblock;
426 	register unsigned long reg0 asm("0") = qid | 0x80000000UL;
427 	register struct ap_queue_status reg1 asm ("1");
428 	register unsigned long reg2 asm("2") = 0UL;
429 	register unsigned long reg4 asm("4") = (unsigned long) msg;
430 	register unsigned long reg5 asm("5") = (unsigned long) length;
431 	register unsigned long reg6 asm("6") = 0UL;
432 	register unsigned long reg7 asm("7") = 0UL;
433 
434 
435 	asm volatile(
436 		"0: .long 0xb2ae0064\n"		/* DQAP */
437 		"   brc   6,0b\n"
438 		: "+d" (reg0), "=d" (reg1), "+d" (reg2),
439 		"+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
440 		"=m" (*(msgblock *) msg) : : "cc" );
441 	*psmid = (((unsigned long long) reg6) << 32) + reg7;
442 	return reg1;
443 }
444 
445 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
446 {
447 	struct ap_queue_status status;
448 
449 	status = __ap_recv(qid, psmid, msg, length);
450 	switch (status.response_code) {
451 	case AP_RESPONSE_NORMAL:
452 		return 0;
453 	case AP_RESPONSE_NO_PENDING_REPLY:
454 		if (status.queue_empty)
455 			return -ENOENT;
456 		return -EBUSY;
457 	case AP_RESPONSE_RESET_IN_PROGRESS:
458 		return -EBUSY;
459 	default:
460 		return -ENODEV;
461 	}
462 }
463 EXPORT_SYMBOL(ap_recv);
464 
465 /**
466  * ap_query_queue(): Check if an AP queue is available.
467  * @qid: The AP queue number
468  * @queue_depth: Pointer to queue depth value
469  * @device_type: Pointer to device type value
470  * @facilities: Pointer to facility indicator
471  */
472 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
473 			  unsigned int *facilities)
474 {
475 	struct ap_queue_status status;
476 	unsigned long info;
477 	int nd;
478 
479 	if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
480 		return -ENODEV;
481 
482 	status = ap_test_queue(qid, &info);
483 	switch (status.response_code) {
484 	case AP_RESPONSE_NORMAL:
485 		*queue_depth = (int)(info & 0xff);
486 		*device_type = (int)((info >> 24) & 0xff);
487 		*facilities = (unsigned int)(info >> 32);
488 		/* Update maximum domain id */
489 		nd = (info >> 16) & 0xff;
490 		if ((info & (1UL << 57)) && nd > 0)
491 			ap_max_domain_id = nd;
492 		return 0;
493 	case AP_RESPONSE_Q_NOT_AVAIL:
494 	case AP_RESPONSE_DECONFIGURED:
495 	case AP_RESPONSE_CHECKSTOPPED:
496 	case AP_RESPONSE_INVALID_ADDRESS:
497 		return -ENODEV;
498 	case AP_RESPONSE_RESET_IN_PROGRESS:
499 	case AP_RESPONSE_OTHERWISE_CHANGED:
500 	case AP_RESPONSE_BUSY:
501 		return -EBUSY;
502 	default:
503 		BUG();
504 	}
505 }
506 
507 /* State machine definitions and helpers */
508 
509 static void ap_sm_wait(enum ap_wait wait)
510 {
511 	ktime_t hr_time;
512 
513 	switch (wait) {
514 	case AP_WAIT_AGAIN:
515 	case AP_WAIT_INTERRUPT:
516 		if (ap_using_interrupts())
517 			break;
518 		if (ap_poll_kthread) {
519 			wake_up(&ap_poll_wait);
520 			break;
521 		}
522 		/* Fall through */
523 	case AP_WAIT_TIMEOUT:
524 		spin_lock_bh(&ap_poll_timer_lock);
525 		if (!hrtimer_is_queued(&ap_poll_timer)) {
526 			hr_time = ktime_set(0, poll_timeout);
527 			hrtimer_forward_now(&ap_poll_timer, hr_time);
528 			hrtimer_restart(&ap_poll_timer);
529 		}
530 		spin_unlock_bh(&ap_poll_timer_lock);
531 		break;
532 	case AP_WAIT_NONE:
533 	default:
534 		break;
535 	}
536 }
537 
538 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
539 {
540 	return AP_WAIT_NONE;
541 }
542 
543 /**
544  * ap_sm_recv(): Receive pending reply messages from an AP device but do
545  *	not change the state of the device.
546  * @ap_dev: pointer to the AP device
547  *
548  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
549  */
550 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
551 {
552 	struct ap_queue_status status;
553 	struct ap_message *ap_msg;
554 
555 	status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
556 			   ap_dev->reply->message, ap_dev->reply->length);
557 	switch (status.response_code) {
558 	case AP_RESPONSE_NORMAL:
559 		atomic_dec(&ap_poll_requests);
560 		ap_dev->queue_count--;
561 		if (ap_dev->queue_count > 0)
562 			mod_timer(&ap_dev->timeout,
563 				  jiffies + ap_dev->drv->request_timeout);
564 		list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
565 			if (ap_msg->psmid != ap_dev->reply->psmid)
566 				continue;
567 			list_del_init(&ap_msg->list);
568 			ap_dev->pendingq_count--;
569 			ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
570 			break;
571 		}
572 	case AP_RESPONSE_NO_PENDING_REPLY:
573 		if (!status.queue_empty || ap_dev->queue_count <= 0)
574 			break;
575 		/* The card shouldn't forget requests but who knows. */
576 		atomic_sub(ap_dev->queue_count, &ap_poll_requests);
577 		ap_dev->queue_count = 0;
578 		list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
579 		ap_dev->requestq_count += ap_dev->pendingq_count;
580 		ap_dev->pendingq_count = 0;
581 		break;
582 	default:
583 		break;
584 	}
585 	return status;
586 }
587 
588 /**
589  * ap_sm_read(): Receive pending reply messages from an AP device.
590  * @ap_dev: pointer to the AP device
591  *
592  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
593  */
594 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
595 {
596 	struct ap_queue_status status;
597 
598 	status = ap_sm_recv(ap_dev);
599 	switch (status.response_code) {
600 	case AP_RESPONSE_NORMAL:
601 		if (ap_dev->queue_count > 0)
602 			return AP_WAIT_AGAIN;
603 		ap_dev->state = AP_STATE_IDLE;
604 		return AP_WAIT_NONE;
605 	case AP_RESPONSE_NO_PENDING_REPLY:
606 		if (ap_dev->queue_count > 0)
607 			return AP_WAIT_INTERRUPT;
608 		ap_dev->state = AP_STATE_IDLE;
609 		return AP_WAIT_NONE;
610 	default:
611 		ap_dev->state = AP_STATE_BORKED;
612 		return AP_WAIT_NONE;
613 	}
614 }
615 
616 /**
617  * ap_sm_write(): Send messages from the request queue to an AP device.
618  * @ap_dev: pointer to the AP device
619  *
620  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
621  */
622 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
623 {
624 	struct ap_queue_status status;
625 	struct ap_message *ap_msg;
626 
627 	if (ap_dev->requestq_count <= 0)
628 		return AP_WAIT_NONE;
629 	/* Start the next request on the queue. */
630 	ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
631 	status = __ap_send(ap_dev->qid, ap_msg->psmid,
632 			   ap_msg->message, ap_msg->length, ap_msg->special);
633 	switch (status.response_code) {
634 	case AP_RESPONSE_NORMAL:
635 		atomic_inc(&ap_poll_requests);
636 		ap_dev->queue_count++;
637 		if (ap_dev->queue_count == 1)
638 			mod_timer(&ap_dev->timeout,
639 				  jiffies + ap_dev->drv->request_timeout);
640 		list_move_tail(&ap_msg->list, &ap_dev->pendingq);
641 		ap_dev->requestq_count--;
642 		ap_dev->pendingq_count++;
643 		if (ap_dev->queue_count < ap_dev->queue_depth) {
644 			ap_dev->state = AP_STATE_WORKING;
645 			return AP_WAIT_AGAIN;
646 		}
647 		/* fall through */
648 	case AP_RESPONSE_Q_FULL:
649 		ap_dev->state = AP_STATE_QUEUE_FULL;
650 		return AP_WAIT_INTERRUPT;
651 	case AP_RESPONSE_RESET_IN_PROGRESS:
652 		ap_dev->state = AP_STATE_RESET_WAIT;
653 		return AP_WAIT_TIMEOUT;
654 	case AP_RESPONSE_MESSAGE_TOO_BIG:
655 	case AP_RESPONSE_REQ_FAC_NOT_INST:
656 		list_del_init(&ap_msg->list);
657 		ap_dev->requestq_count--;
658 		ap_msg->rc = -EINVAL;
659 		ap_msg->receive(ap_dev, ap_msg, NULL);
660 		return AP_WAIT_AGAIN;
661 	default:
662 		ap_dev->state = AP_STATE_BORKED;
663 		return AP_WAIT_NONE;
664 	}
665 }
666 
667 /**
668  * ap_sm_read_write(): Send and receive messages to/from an AP device.
669  * @ap_dev: pointer to the AP device
670  *
671  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
672  */
673 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
674 {
675 	return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
676 }
677 
678 /**
679  * ap_sm_reset(): Reset an AP queue.
680  * @qid: The AP queue number
681  *
682  * Submit the Reset command to an AP queue.
683  */
684 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
685 {
686 	struct ap_queue_status status;
687 
688 	status = ap_reset_queue(ap_dev->qid);
689 	switch (status.response_code) {
690 	case AP_RESPONSE_NORMAL:
691 	case AP_RESPONSE_RESET_IN_PROGRESS:
692 		ap_dev->state = AP_STATE_RESET_WAIT;
693 		ap_dev->interrupt = AP_INTR_DISABLED;
694 		return AP_WAIT_TIMEOUT;
695 	case AP_RESPONSE_BUSY:
696 		return AP_WAIT_TIMEOUT;
697 	case AP_RESPONSE_Q_NOT_AVAIL:
698 	case AP_RESPONSE_DECONFIGURED:
699 	case AP_RESPONSE_CHECKSTOPPED:
700 	default:
701 		ap_dev->state = AP_STATE_BORKED;
702 		return AP_WAIT_NONE;
703 	}
704 }
705 
706 /**
707  * ap_sm_reset_wait(): Test queue for completion of the reset operation
708  * @ap_dev: pointer to the AP device
709  *
710  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
711  */
712 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
713 {
714 	struct ap_queue_status status;
715 	unsigned long info;
716 
717 	if (ap_dev->queue_count > 0)
718 		/* Try to read a completed message and get the status */
719 		status = ap_sm_recv(ap_dev);
720 	else
721 		/* Get the status with TAPQ */
722 		status = ap_test_queue(ap_dev->qid, &info);
723 
724 	switch (status.response_code) {
725 	case AP_RESPONSE_NORMAL:
726 		if (ap_using_interrupts() &&
727 		    ap_queue_enable_interruption(ap_dev,
728 						 ap_airq.lsi_ptr) == 0)
729 			ap_dev->state = AP_STATE_SETIRQ_WAIT;
730 		else
731 			ap_dev->state = (ap_dev->queue_count > 0) ?
732 				AP_STATE_WORKING : AP_STATE_IDLE;
733 		return AP_WAIT_AGAIN;
734 	case AP_RESPONSE_BUSY:
735 	case AP_RESPONSE_RESET_IN_PROGRESS:
736 		return AP_WAIT_TIMEOUT;
737 	case AP_RESPONSE_Q_NOT_AVAIL:
738 	case AP_RESPONSE_DECONFIGURED:
739 	case AP_RESPONSE_CHECKSTOPPED:
740 	default:
741 		ap_dev->state = AP_STATE_BORKED;
742 		return AP_WAIT_NONE;
743 	}
744 }
745 
746 /**
747  * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
748  * @ap_dev: pointer to the AP device
749  *
750  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
751  */
752 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
753 {
754 	struct ap_queue_status status;
755 	unsigned long info;
756 
757 	if (ap_dev->queue_count > 0)
758 		/* Try to read a completed message and get the status */
759 		status = ap_sm_recv(ap_dev);
760 	else
761 		/* Get the status with TAPQ */
762 		status = ap_test_queue(ap_dev->qid, &info);
763 
764 	if (status.int_enabled == 1) {
765 		/* Irqs are now enabled */
766 		ap_dev->interrupt = AP_INTR_ENABLED;
767 		ap_dev->state = (ap_dev->queue_count > 0) ?
768 			AP_STATE_WORKING : AP_STATE_IDLE;
769 	}
770 
771 	switch (status.response_code) {
772 	case AP_RESPONSE_NORMAL:
773 		if (ap_dev->queue_count > 0)
774 			return AP_WAIT_AGAIN;
775 		/* fallthrough */
776 	case AP_RESPONSE_NO_PENDING_REPLY:
777 		return AP_WAIT_TIMEOUT;
778 	default:
779 		ap_dev->state = AP_STATE_BORKED;
780 		return AP_WAIT_NONE;
781 	}
782 }
783 
784 /*
785  * AP state machine jump table
786  */
787 ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
788 	[AP_STATE_RESET_START] = {
789 		[AP_EVENT_POLL] = ap_sm_reset,
790 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
791 	},
792 	[AP_STATE_RESET_WAIT] = {
793 		[AP_EVENT_POLL] = ap_sm_reset_wait,
794 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
795 	},
796 	[AP_STATE_SETIRQ_WAIT] = {
797 		[AP_EVENT_POLL] = ap_sm_setirq_wait,
798 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
799 	},
800 	[AP_STATE_IDLE] = {
801 		[AP_EVENT_POLL] = ap_sm_write,
802 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
803 	},
804 	[AP_STATE_WORKING] = {
805 		[AP_EVENT_POLL] = ap_sm_read_write,
806 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
807 	},
808 	[AP_STATE_QUEUE_FULL] = {
809 		[AP_EVENT_POLL] = ap_sm_read,
810 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
811 	},
812 	[AP_STATE_SUSPEND_WAIT] = {
813 		[AP_EVENT_POLL] = ap_sm_read,
814 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
815 	},
816 	[AP_STATE_BORKED] = {
817 		[AP_EVENT_POLL] = ap_sm_nop,
818 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
819 	},
820 };
821 
822 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
823 				       enum ap_event event)
824 {
825 	return ap_jumptable[ap_dev->state][event](ap_dev);
826 }
827 
828 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
829 					    enum ap_event event)
830 {
831 	enum ap_wait wait;
832 
833 	while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
834 		;
835 	return wait;
836 }
837 
838 /**
839  * ap_request_timeout(): Handling of request timeouts
840  * @data: Holds the AP device.
841  *
842  * Handles request timeouts.
843  */
844 static void ap_request_timeout(unsigned long data)
845 {
846 	struct ap_device *ap_dev = (struct ap_device *) data;
847 
848 	if (ap_suspend_flag)
849 		return;
850 	spin_lock_bh(&ap_dev->lock);
851 	ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
852 	spin_unlock_bh(&ap_dev->lock);
853 }
854 
855 /**
856  * ap_poll_timeout(): AP receive polling for finished AP requests.
857  * @unused: Unused pointer.
858  *
859  * Schedules the AP tasklet using a high resolution timer.
860  */
861 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
862 {
863 	if (!ap_suspend_flag)
864 		tasklet_schedule(&ap_tasklet);
865 	return HRTIMER_NORESTART;
866 }
867 
868 /**
869  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
870  * @airq: pointer to adapter interrupt descriptor
871  */
872 static void ap_interrupt_handler(struct airq_struct *airq)
873 {
874 	inc_irq_stat(IRQIO_APB);
875 	if (!ap_suspend_flag)
876 		tasklet_schedule(&ap_tasklet);
877 }
878 
879 /**
880  * ap_tasklet_fn(): Tasklet to poll all AP devices.
881  * @dummy: Unused variable
882  *
883  * Poll all AP devices on the bus.
884  */
885 static void ap_tasklet_fn(unsigned long dummy)
886 {
887 	struct ap_device *ap_dev;
888 	enum ap_wait wait = AP_WAIT_NONE;
889 
890 	/* Reset the indicator if interrupts are used. Thus new interrupts can
891 	 * be received. Doing it in the beginning of the tasklet is therefor
892 	 * important that no requests on any AP get lost.
893 	 */
894 	if (ap_using_interrupts())
895 		xchg(ap_airq.lsi_ptr, 0);
896 
897 	spin_lock(&ap_device_list_lock);
898 	list_for_each_entry(ap_dev, &ap_device_list, list) {
899 		spin_lock_bh(&ap_dev->lock);
900 		wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
901 		spin_unlock_bh(&ap_dev->lock);
902 	}
903 	spin_unlock(&ap_device_list_lock);
904 	ap_sm_wait(wait);
905 }
906 
907 /**
908  * ap_poll_thread(): Thread that polls for finished requests.
909  * @data: Unused pointer
910  *
911  * AP bus poll thread. The purpose of this thread is to poll for
912  * finished requests in a loop if there is a "free" cpu - that is
913  * a cpu that doesn't have anything better to do. The polling stops
914  * as soon as there is another task or if all messages have been
915  * delivered.
916  */
917 static int ap_poll_thread(void *data)
918 {
919 	DECLARE_WAITQUEUE(wait, current);
920 
921 	set_user_nice(current, MAX_NICE);
922 	set_freezable();
923 	while (!kthread_should_stop()) {
924 		add_wait_queue(&ap_poll_wait, &wait);
925 		set_current_state(TASK_INTERRUPTIBLE);
926 		if (ap_suspend_flag ||
927 		    atomic_read(&ap_poll_requests) <= 0) {
928 			schedule();
929 			try_to_freeze();
930 		}
931 		set_current_state(TASK_RUNNING);
932 		remove_wait_queue(&ap_poll_wait, &wait);
933 		if (need_resched()) {
934 			schedule();
935 			try_to_freeze();
936 			continue;
937 		}
938 		ap_tasklet_fn(0);
939 	} while (!kthread_should_stop());
940 	return 0;
941 }
942 
943 static int ap_poll_thread_start(void)
944 {
945 	int rc;
946 
947 	if (ap_using_interrupts() || ap_poll_kthread)
948 		return 0;
949 	mutex_lock(&ap_poll_thread_mutex);
950 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
951 	rc = PTR_RET(ap_poll_kthread);
952 	if (rc)
953 		ap_poll_kthread = NULL;
954 	mutex_unlock(&ap_poll_thread_mutex);
955 	return rc;
956 }
957 
958 static void ap_poll_thread_stop(void)
959 {
960 	if (!ap_poll_kthread)
961 		return;
962 	mutex_lock(&ap_poll_thread_mutex);
963 	kthread_stop(ap_poll_kthread);
964 	ap_poll_kthread = NULL;
965 	mutex_unlock(&ap_poll_thread_mutex);
966 }
967 
968 /**
969  * ap_queue_message(): Queue a request to an AP device.
970  * @ap_dev: The AP device to queue the message to
971  * @ap_msg: The message that is to be added
972  */
973 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
974 {
975 	/* For asynchronous message handling a valid receive-callback
976 	 * is required. */
977 	BUG_ON(!ap_msg->receive);
978 
979 	spin_lock_bh(&ap_dev->lock);
980 	/* Queue the message. */
981 	list_add_tail(&ap_msg->list, &ap_dev->requestq);
982 	ap_dev->requestq_count++;
983 	ap_dev->total_request_count++;
984 	/* Send/receive as many request from the queue as possible. */
985 	ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
986 	spin_unlock_bh(&ap_dev->lock);
987 }
988 EXPORT_SYMBOL(ap_queue_message);
989 
990 /**
991  * ap_cancel_message(): Cancel a crypto request.
992  * @ap_dev: The AP device that has the message queued
993  * @ap_msg: The message that is to be removed
994  *
995  * Cancel a crypto request. This is done by removing the request
996  * from the device pending or request queue. Note that the
997  * request stays on the AP queue. When it finishes the message
998  * reply will be discarded because the psmid can't be found.
999  */
1000 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1001 {
1002 	struct ap_message *tmp;
1003 
1004 	spin_lock_bh(&ap_dev->lock);
1005 	if (!list_empty(&ap_msg->list)) {
1006 		list_for_each_entry(tmp, &ap_dev->pendingq, list)
1007 			if (tmp->psmid == ap_msg->psmid) {
1008 				ap_dev->pendingq_count--;
1009 				goto found;
1010 			}
1011 		ap_dev->requestq_count--;
1012 found:
1013 		list_del_init(&ap_msg->list);
1014 	}
1015 	spin_unlock_bh(&ap_dev->lock);
1016 }
1017 EXPORT_SYMBOL(ap_cancel_message);
1018 
1019 /*
1020  * AP device related attributes.
1021  */
1022 static ssize_t ap_hwtype_show(struct device *dev,
1023 			      struct device_attribute *attr, char *buf)
1024 {
1025 	struct ap_device *ap_dev = to_ap_dev(dev);
1026 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1027 }
1028 
1029 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1030 
1031 static ssize_t ap_raw_hwtype_show(struct device *dev,
1032 			      struct device_attribute *attr, char *buf)
1033 {
1034 	struct ap_device *ap_dev = to_ap_dev(dev);
1035 
1036 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1037 }
1038 
1039 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1040 
1041 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1042 			     char *buf)
1043 {
1044 	struct ap_device *ap_dev = to_ap_dev(dev);
1045 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1046 }
1047 
1048 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1049 static ssize_t ap_request_count_show(struct device *dev,
1050 				     struct device_attribute *attr,
1051 				     char *buf)
1052 {
1053 	struct ap_device *ap_dev = to_ap_dev(dev);
1054 	int rc;
1055 
1056 	spin_lock_bh(&ap_dev->lock);
1057 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1058 	spin_unlock_bh(&ap_dev->lock);
1059 	return rc;
1060 }
1061 
1062 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1063 
1064 static ssize_t ap_requestq_count_show(struct device *dev,
1065 				      struct device_attribute *attr, char *buf)
1066 {
1067 	struct ap_device *ap_dev = to_ap_dev(dev);
1068 	int rc;
1069 
1070 	spin_lock_bh(&ap_dev->lock);
1071 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1072 	spin_unlock_bh(&ap_dev->lock);
1073 	return rc;
1074 }
1075 
1076 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1077 
1078 static ssize_t ap_pendingq_count_show(struct device *dev,
1079 				      struct device_attribute *attr, char *buf)
1080 {
1081 	struct ap_device *ap_dev = to_ap_dev(dev);
1082 	int rc;
1083 
1084 	spin_lock_bh(&ap_dev->lock);
1085 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1086 	spin_unlock_bh(&ap_dev->lock);
1087 	return rc;
1088 }
1089 
1090 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1091 
1092 static ssize_t ap_reset_show(struct device *dev,
1093 				      struct device_attribute *attr, char *buf)
1094 {
1095 	struct ap_device *ap_dev = to_ap_dev(dev);
1096 	int rc = 0;
1097 
1098 	spin_lock_bh(&ap_dev->lock);
1099 	switch (ap_dev->state) {
1100 	case AP_STATE_RESET_START:
1101 	case AP_STATE_RESET_WAIT:
1102 		rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1103 		break;
1104 	case AP_STATE_WORKING:
1105 	case AP_STATE_QUEUE_FULL:
1106 		rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1107 		break;
1108 	default:
1109 		rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1110 	}
1111 	spin_unlock_bh(&ap_dev->lock);
1112 	return rc;
1113 }
1114 
1115 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1116 
1117 static ssize_t ap_interrupt_show(struct device *dev,
1118 				      struct device_attribute *attr, char *buf)
1119 {
1120 	struct ap_device *ap_dev = to_ap_dev(dev);
1121 	int rc = 0;
1122 
1123 	spin_lock_bh(&ap_dev->lock);
1124 	if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1125 		rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1126 	else if (ap_dev->interrupt == AP_INTR_ENABLED)
1127 		rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1128 	else
1129 		rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1130 	spin_unlock_bh(&ap_dev->lock);
1131 	return rc;
1132 }
1133 
1134 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1135 
1136 static ssize_t ap_modalias_show(struct device *dev,
1137 				struct device_attribute *attr, char *buf)
1138 {
1139 	return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1140 }
1141 
1142 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1143 
1144 static ssize_t ap_functions_show(struct device *dev,
1145 				 struct device_attribute *attr, char *buf)
1146 {
1147 	struct ap_device *ap_dev = to_ap_dev(dev);
1148 	return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1149 }
1150 
1151 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1152 
1153 static struct attribute *ap_dev_attrs[] = {
1154 	&dev_attr_hwtype.attr,
1155 	&dev_attr_raw_hwtype.attr,
1156 	&dev_attr_depth.attr,
1157 	&dev_attr_request_count.attr,
1158 	&dev_attr_requestq_count.attr,
1159 	&dev_attr_pendingq_count.attr,
1160 	&dev_attr_reset.attr,
1161 	&dev_attr_interrupt.attr,
1162 	&dev_attr_modalias.attr,
1163 	&dev_attr_ap_functions.attr,
1164 	NULL
1165 };
1166 static struct attribute_group ap_dev_attr_group = {
1167 	.attrs = ap_dev_attrs
1168 };
1169 
1170 /**
1171  * ap_bus_match()
1172  * @dev: Pointer to device
1173  * @drv: Pointer to device_driver
1174  *
1175  * AP bus driver registration/unregistration.
1176  */
1177 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1178 {
1179 	struct ap_device *ap_dev = to_ap_dev(dev);
1180 	struct ap_driver *ap_drv = to_ap_drv(drv);
1181 	struct ap_device_id *id;
1182 
1183 	/*
1184 	 * Compare device type of the device with the list of
1185 	 * supported types of the device_driver.
1186 	 */
1187 	for (id = ap_drv->ids; id->match_flags; id++) {
1188 		if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1189 		    (id->dev_type != ap_dev->device_type))
1190 			continue;
1191 		return 1;
1192 	}
1193 	return 0;
1194 }
1195 
1196 /**
1197  * ap_uevent(): Uevent function for AP devices.
1198  * @dev: Pointer to device
1199  * @env: Pointer to kobj_uevent_env
1200  *
1201  * It sets up a single environment variable DEV_TYPE which contains the
1202  * hardware device type.
1203  */
1204 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1205 {
1206 	struct ap_device *ap_dev = to_ap_dev(dev);
1207 	int retval = 0;
1208 
1209 	if (!ap_dev)
1210 		return -ENODEV;
1211 
1212 	/* Set up DEV_TYPE environment variable. */
1213 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1214 	if (retval)
1215 		return retval;
1216 
1217 	/* Add MODALIAS= */
1218 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1219 
1220 	return retval;
1221 }
1222 
1223 static int ap_dev_suspend(struct device *dev, pm_message_t state)
1224 {
1225 	struct ap_device *ap_dev = to_ap_dev(dev);
1226 
1227 	/* Poll on the device until all requests are finished. */
1228 	spin_lock_bh(&ap_dev->lock);
1229 	ap_dev->state = AP_STATE_SUSPEND_WAIT;
1230 	while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1231 		;
1232 	ap_dev->state = AP_STATE_BORKED;
1233 	spin_unlock_bh(&ap_dev->lock);
1234 	return 0;
1235 }
1236 
1237 static int ap_dev_resume(struct device *dev)
1238 {
1239 	return 0;
1240 }
1241 
1242 static void ap_bus_suspend(void)
1243 {
1244 	ap_suspend_flag = 1;
1245 	/*
1246 	 * Disable scanning for devices, thus we do not want to scan
1247 	 * for them after removing.
1248 	 */
1249 	flush_work(&ap_scan_work);
1250 	tasklet_disable(&ap_tasklet);
1251 }
1252 
1253 static int __ap_devices_unregister(struct device *dev, void *dummy)
1254 {
1255 	device_unregister(dev);
1256 	return 0;
1257 }
1258 
1259 static void ap_bus_resume(void)
1260 {
1261 	int rc;
1262 
1263 	/* Unconditionally remove all AP devices */
1264 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1265 	/* Reset thin interrupt setting */
1266 	if (ap_interrupts_available() && !ap_using_interrupts()) {
1267 		rc = register_adapter_interrupt(&ap_airq);
1268 		ap_airq_flag = (rc == 0);
1269 	}
1270 	if (!ap_interrupts_available() && ap_using_interrupts()) {
1271 		unregister_adapter_interrupt(&ap_airq);
1272 		ap_airq_flag = 0;
1273 	}
1274 	/* Reset domain */
1275 	if (!user_set_domain)
1276 		ap_domain_index = -1;
1277 	/* Get things going again */
1278 	ap_suspend_flag = 0;
1279 	if (ap_airq_flag)
1280 		xchg(ap_airq.lsi_ptr, 0);
1281 	tasklet_enable(&ap_tasklet);
1282 	queue_work(system_long_wq, &ap_scan_work);
1283 }
1284 
1285 static int ap_power_event(struct notifier_block *this, unsigned long event,
1286 			  void *ptr)
1287 {
1288 	switch (event) {
1289 	case PM_HIBERNATION_PREPARE:
1290 	case PM_SUSPEND_PREPARE:
1291 		ap_bus_suspend();
1292 		break;
1293 	case PM_POST_HIBERNATION:
1294 	case PM_POST_SUSPEND:
1295 		ap_bus_resume();
1296 		break;
1297 	default:
1298 		break;
1299 	}
1300 	return NOTIFY_DONE;
1301 }
1302 static struct notifier_block ap_power_notifier = {
1303 	.notifier_call = ap_power_event,
1304 };
1305 
1306 static struct bus_type ap_bus_type = {
1307 	.name = "ap",
1308 	.match = &ap_bus_match,
1309 	.uevent = &ap_uevent,
1310 	.suspend = ap_dev_suspend,
1311 	.resume = ap_dev_resume,
1312 };
1313 
1314 static int ap_device_probe(struct device *dev)
1315 {
1316 	struct ap_device *ap_dev = to_ap_dev(dev);
1317 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1318 	int rc;
1319 
1320 	ap_dev->drv = ap_drv;
1321 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1322 	if (rc)
1323 		ap_dev->drv = NULL;
1324 	return rc;
1325 }
1326 
1327 /**
1328  * __ap_flush_queue(): Flush requests.
1329  * @ap_dev: Pointer to the AP device
1330  *
1331  * Flush all requests from the request/pending queue of an AP device.
1332  */
1333 static void __ap_flush_queue(struct ap_device *ap_dev)
1334 {
1335 	struct ap_message *ap_msg, *next;
1336 
1337 	list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1338 		list_del_init(&ap_msg->list);
1339 		ap_dev->pendingq_count--;
1340 		ap_msg->rc = -EAGAIN;
1341 		ap_msg->receive(ap_dev, ap_msg, NULL);
1342 	}
1343 	list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1344 		list_del_init(&ap_msg->list);
1345 		ap_dev->requestq_count--;
1346 		ap_msg->rc = -EAGAIN;
1347 		ap_msg->receive(ap_dev, ap_msg, NULL);
1348 	}
1349 }
1350 
1351 void ap_flush_queue(struct ap_device *ap_dev)
1352 {
1353 	spin_lock_bh(&ap_dev->lock);
1354 	__ap_flush_queue(ap_dev);
1355 	spin_unlock_bh(&ap_dev->lock);
1356 }
1357 EXPORT_SYMBOL(ap_flush_queue);
1358 
1359 static int ap_device_remove(struct device *dev)
1360 {
1361 	struct ap_device *ap_dev = to_ap_dev(dev);
1362 	struct ap_driver *ap_drv = ap_dev->drv;
1363 
1364 	ap_flush_queue(ap_dev);
1365 	del_timer_sync(&ap_dev->timeout);
1366 	spin_lock_bh(&ap_device_list_lock);
1367 	list_del_init(&ap_dev->list);
1368 	spin_unlock_bh(&ap_device_list_lock);
1369 	if (ap_drv->remove)
1370 		ap_drv->remove(ap_dev);
1371 	spin_lock_bh(&ap_dev->lock);
1372 	atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1373 	spin_unlock_bh(&ap_dev->lock);
1374 	return 0;
1375 }
1376 
1377 static void ap_device_release(struct device *dev)
1378 {
1379 	kfree(to_ap_dev(dev));
1380 }
1381 
1382 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1383 		       char *name)
1384 {
1385 	struct device_driver *drv = &ap_drv->driver;
1386 
1387 	drv->bus = &ap_bus_type;
1388 	drv->probe = ap_device_probe;
1389 	drv->remove = ap_device_remove;
1390 	drv->owner = owner;
1391 	drv->name = name;
1392 	return driver_register(drv);
1393 }
1394 EXPORT_SYMBOL(ap_driver_register);
1395 
1396 void ap_driver_unregister(struct ap_driver *ap_drv)
1397 {
1398 	driver_unregister(&ap_drv->driver);
1399 }
1400 EXPORT_SYMBOL(ap_driver_unregister);
1401 
1402 void ap_bus_force_rescan(void)
1403 {
1404 	if (ap_suspend_flag)
1405 		return;
1406 	/* processing a asynchronous bus rescan */
1407 	del_timer(&ap_config_timer);
1408 	queue_work(system_long_wq, &ap_scan_work);
1409 	flush_work(&ap_scan_work);
1410 }
1411 EXPORT_SYMBOL(ap_bus_force_rescan);
1412 
1413 /*
1414  * AP bus attributes.
1415  */
1416 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1417 {
1418 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1419 }
1420 
1421 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1422 
1423 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1424 {
1425 	if (!ap_configuration)	/* QCI not supported */
1426 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1427 	if (!test_facility(76))
1428 		/* format 0 - 16 bit domain field */
1429 		return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1430 				ap_configuration->adm[0],
1431 				ap_configuration->adm[1]);
1432 	/* format 1 - 256 bit domain field */
1433 	return snprintf(buf, PAGE_SIZE,
1434 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1435 			ap_configuration->adm[0], ap_configuration->adm[1],
1436 			ap_configuration->adm[2], ap_configuration->adm[3],
1437 			ap_configuration->adm[4], ap_configuration->adm[5],
1438 			ap_configuration->adm[6], ap_configuration->adm[7]);
1439 }
1440 
1441 static BUS_ATTR(ap_control_domain_mask, 0444,
1442 		ap_control_domain_mask_show, NULL);
1443 
1444 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1445 {
1446 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1447 }
1448 
1449 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1450 {
1451 	return snprintf(buf, PAGE_SIZE, "%d\n",
1452 			ap_using_interrupts() ? 1 : 0);
1453 }
1454 
1455 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1456 
1457 static ssize_t ap_config_time_store(struct bus_type *bus,
1458 				    const char *buf, size_t count)
1459 {
1460 	int time;
1461 
1462 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1463 		return -EINVAL;
1464 	ap_config_time = time;
1465 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1466 	return count;
1467 }
1468 
1469 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1470 
1471 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1472 {
1473 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1474 }
1475 
1476 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1477 				    const char *buf, size_t count)
1478 {
1479 	int flag, rc;
1480 
1481 	if (sscanf(buf, "%d\n", &flag) != 1)
1482 		return -EINVAL;
1483 	if (flag) {
1484 		rc = ap_poll_thread_start();
1485 		if (rc)
1486 			count = rc;
1487 	} else
1488 		ap_poll_thread_stop();
1489 	return count;
1490 }
1491 
1492 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1493 
1494 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1495 {
1496 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1497 }
1498 
1499 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1500 				  size_t count)
1501 {
1502 	unsigned long long time;
1503 	ktime_t hr_time;
1504 
1505 	/* 120 seconds = maximum poll interval */
1506 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1507 	    time > 120000000000ULL)
1508 		return -EINVAL;
1509 	poll_timeout = time;
1510 	hr_time = ktime_set(0, poll_timeout);
1511 
1512 	spin_lock_bh(&ap_poll_timer_lock);
1513 	hrtimer_cancel(&ap_poll_timer);
1514 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1515 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1516 	spin_unlock_bh(&ap_poll_timer_lock);
1517 
1518 	return count;
1519 }
1520 
1521 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1522 
1523 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1524 {
1525 	int max_domain_id;
1526 
1527 	if (ap_configuration)
1528 		max_domain_id = ap_max_domain_id ? : -1;
1529 	else
1530 		max_domain_id = 15;
1531 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1532 }
1533 
1534 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1535 
1536 static struct bus_attribute *const ap_bus_attrs[] = {
1537 	&bus_attr_ap_domain,
1538 	&bus_attr_ap_control_domain_mask,
1539 	&bus_attr_config_time,
1540 	&bus_attr_poll_thread,
1541 	&bus_attr_ap_interrupts,
1542 	&bus_attr_poll_timeout,
1543 	&bus_attr_ap_max_domain_id,
1544 	NULL,
1545 };
1546 
1547 /**
1548  * ap_select_domain(): Select an AP domain.
1549  *
1550  * Pick one of the 16 AP domains.
1551  */
1552 static int ap_select_domain(void)
1553 {
1554 	int count, max_count, best_domain;
1555 	struct ap_queue_status status;
1556 	int i, j;
1557 
1558 	/*
1559 	 * We want to use a single domain. Either the one specified with
1560 	 * the "domain=" parameter or the domain with the maximum number
1561 	 * of devices.
1562 	 */
1563 	if (ap_domain_index >= 0)
1564 		/* Domain has already been selected. */
1565 		return 0;
1566 	best_domain = -1;
1567 	max_count = 0;
1568 	for (i = 0; i < AP_DOMAINS; i++) {
1569 		if (!ap_test_config_domain(i))
1570 			continue;
1571 		count = 0;
1572 		for (j = 0; j < AP_DEVICES; j++) {
1573 			if (!ap_test_config_card_id(j))
1574 				continue;
1575 			status = ap_test_queue(AP_MKQID(j, i), NULL);
1576 			if (status.response_code != AP_RESPONSE_NORMAL)
1577 				continue;
1578 			count++;
1579 		}
1580 		if (count > max_count) {
1581 			max_count = count;
1582 			best_domain = i;
1583 		}
1584 	}
1585 	if (best_domain >= 0){
1586 		ap_domain_index = best_domain;
1587 		return 0;
1588 	}
1589 	return -ENODEV;
1590 }
1591 
1592 /**
1593  * __ap_scan_bus(): Scan the AP bus.
1594  * @dev: Pointer to device
1595  * @data: Pointer to data
1596  *
1597  * Scan the AP bus for new devices.
1598  */
1599 static int __ap_scan_bus(struct device *dev, void *data)
1600 {
1601 	return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1602 }
1603 
1604 static void ap_scan_bus(struct work_struct *unused)
1605 {
1606 	struct ap_device *ap_dev;
1607 	struct device *dev;
1608 	ap_qid_t qid;
1609 	int queue_depth = 0, device_type = 0;
1610 	unsigned int device_functions = 0;
1611 	int rc, i, borked;
1612 
1613 	ap_query_configuration();
1614 	if (ap_select_domain() != 0)
1615 		goto out;
1616 
1617 	for (i = 0; i < AP_DEVICES; i++) {
1618 		qid = AP_MKQID(i, ap_domain_index);
1619 		dev = bus_find_device(&ap_bus_type, NULL,
1620 				      (void *)(unsigned long)qid,
1621 				      __ap_scan_bus);
1622 		rc = ap_query_queue(qid, &queue_depth, &device_type,
1623 				    &device_functions);
1624 		if (dev) {
1625 			ap_dev = to_ap_dev(dev);
1626 			spin_lock_bh(&ap_dev->lock);
1627 			if (rc == -ENODEV)
1628 				ap_dev->state = AP_STATE_BORKED;
1629 			borked = ap_dev->state == AP_STATE_BORKED;
1630 			spin_unlock_bh(&ap_dev->lock);
1631 			if (borked)	/* Remove broken device */
1632 				device_unregister(dev);
1633 			put_device(dev);
1634 			if (!borked)
1635 				continue;
1636 		}
1637 		if (rc)
1638 			continue;
1639 		ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1640 		if (!ap_dev)
1641 			break;
1642 		ap_dev->qid = qid;
1643 		ap_dev->state = AP_STATE_RESET_START;
1644 		ap_dev->interrupt = AP_INTR_DISABLED;
1645 		ap_dev->queue_depth = queue_depth;
1646 		ap_dev->raw_hwtype = device_type;
1647 		ap_dev->device_type = device_type;
1648 		ap_dev->functions = device_functions;
1649 		spin_lock_init(&ap_dev->lock);
1650 		INIT_LIST_HEAD(&ap_dev->pendingq);
1651 		INIT_LIST_HEAD(&ap_dev->requestq);
1652 		INIT_LIST_HEAD(&ap_dev->list);
1653 		setup_timer(&ap_dev->timeout, ap_request_timeout,
1654 			    (unsigned long) ap_dev);
1655 
1656 		ap_dev->device.bus = &ap_bus_type;
1657 		ap_dev->device.parent = ap_root_device;
1658 		rc = dev_set_name(&ap_dev->device, "card%02x",
1659 				  AP_QID_DEVICE(ap_dev->qid));
1660 		if (rc) {
1661 			kfree(ap_dev);
1662 			continue;
1663 		}
1664 		/* Add to list of devices */
1665 		spin_lock_bh(&ap_device_list_lock);
1666 		list_add(&ap_dev->list, &ap_device_list);
1667 		spin_unlock_bh(&ap_device_list_lock);
1668 		/* Start with a device reset */
1669 		spin_lock_bh(&ap_dev->lock);
1670 		ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1671 		spin_unlock_bh(&ap_dev->lock);
1672 		/* Register device */
1673 		ap_dev->device.release = ap_device_release;
1674 		rc = device_register(&ap_dev->device);
1675 		if (rc) {
1676 			spin_lock_bh(&ap_dev->lock);
1677 			list_del_init(&ap_dev->list);
1678 			spin_unlock_bh(&ap_dev->lock);
1679 			put_device(&ap_dev->device);
1680 			continue;
1681 		}
1682 		/* Add device attributes. */
1683 		rc = sysfs_create_group(&ap_dev->device.kobj,
1684 					&ap_dev_attr_group);
1685 		if (rc) {
1686 			device_unregister(&ap_dev->device);
1687 			continue;
1688 		}
1689 	}
1690 out:
1691 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1692 }
1693 
1694 static void ap_config_timeout(unsigned long ptr)
1695 {
1696 	if (ap_suspend_flag)
1697 		return;
1698 	queue_work(system_long_wq, &ap_scan_work);
1699 }
1700 
1701 static void ap_reset_domain(void)
1702 {
1703 	int i;
1704 
1705 	if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1706 		return;
1707 	for (i = 0; i < AP_DEVICES; i++)
1708 		ap_reset_queue(AP_MKQID(i, ap_domain_index));
1709 }
1710 
1711 static void ap_reset_all(void)
1712 {
1713 	int i, j;
1714 
1715 	for (i = 0; i < AP_DOMAINS; i++) {
1716 		if (!ap_test_config_domain(i))
1717 			continue;
1718 		for (j = 0; j < AP_DEVICES; j++) {
1719 			if (!ap_test_config_card_id(j))
1720 				continue;
1721 			ap_reset_queue(AP_MKQID(j, i));
1722 		}
1723 	}
1724 }
1725 
1726 static struct reset_call ap_reset_call = {
1727 	.fn = ap_reset_all,
1728 };
1729 
1730 /**
1731  * ap_module_init(): The module initialization code.
1732  *
1733  * Initializes the module.
1734  */
1735 int __init ap_module_init(void)
1736 {
1737 	int max_domain_id;
1738 	int rc, i;
1739 
1740 	if (ap_instructions_available() != 0) {
1741 		pr_warn("The hardware system does not support AP instructions\n");
1742 		return -ENODEV;
1743 	}
1744 
1745 	/* Get AP configuration data if available */
1746 	ap_init_configuration();
1747 
1748 	if (ap_configuration)
1749 		max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1750 	else
1751 		max_domain_id = 15;
1752 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1753 		pr_warn("%d is not a valid cryptographic domain\n",
1754 			ap_domain_index);
1755 		return -EINVAL;
1756 	}
1757 	/* In resume callback we need to know if the user had set the domain.
1758 	 * If so, we can not just reset it.
1759 	 */
1760 	if (ap_domain_index >= 0)
1761 		user_set_domain = 1;
1762 
1763 	if (ap_interrupts_available()) {
1764 		rc = register_adapter_interrupt(&ap_airq);
1765 		ap_airq_flag = (rc == 0);
1766 	}
1767 
1768 	register_reset_call(&ap_reset_call);
1769 
1770 	/* Create /sys/bus/ap. */
1771 	rc = bus_register(&ap_bus_type);
1772 	if (rc)
1773 		goto out;
1774 	for (i = 0; ap_bus_attrs[i]; i++) {
1775 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1776 		if (rc)
1777 			goto out_bus;
1778 	}
1779 
1780 	/* Create /sys/devices/ap. */
1781 	ap_root_device = root_device_register("ap");
1782 	rc = PTR_RET(ap_root_device);
1783 	if (rc)
1784 		goto out_bus;
1785 
1786 	/* Setup the AP bus rescan timer. */
1787 	setup_timer(&ap_config_timer, ap_config_timeout, 0);
1788 
1789 	/*
1790 	 * Setup the high resultion poll timer.
1791 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1792 	 */
1793 	if (MACHINE_IS_VM)
1794 		poll_timeout = 1500000;
1795 	spin_lock_init(&ap_poll_timer_lock);
1796 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1797 	ap_poll_timer.function = ap_poll_timeout;
1798 
1799 	/* Start the low priority AP bus poll thread. */
1800 	if (ap_thread_flag) {
1801 		rc = ap_poll_thread_start();
1802 		if (rc)
1803 			goto out_work;
1804 	}
1805 
1806 	rc = register_pm_notifier(&ap_power_notifier);
1807 	if (rc)
1808 		goto out_pm;
1809 
1810 	queue_work(system_long_wq, &ap_scan_work);
1811 
1812 	return 0;
1813 
1814 out_pm:
1815 	ap_poll_thread_stop();
1816 out_work:
1817 	hrtimer_cancel(&ap_poll_timer);
1818 	root_device_unregister(ap_root_device);
1819 out_bus:
1820 	while (i--)
1821 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1822 	bus_unregister(&ap_bus_type);
1823 out:
1824 	unregister_reset_call(&ap_reset_call);
1825 	if (ap_using_interrupts())
1826 		unregister_adapter_interrupt(&ap_airq);
1827 	kfree(ap_configuration);
1828 	return rc;
1829 }
1830 
1831 /**
1832  * ap_modules_exit(): The module termination code
1833  *
1834  * Terminates the module.
1835  */
1836 void ap_module_exit(void)
1837 {
1838 	int i;
1839 
1840 	ap_reset_domain();
1841 	ap_poll_thread_stop();
1842 	del_timer_sync(&ap_config_timer);
1843 	hrtimer_cancel(&ap_poll_timer);
1844 	tasklet_kill(&ap_tasklet);
1845 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1846 	for (i = 0; ap_bus_attrs[i]; i++)
1847 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1848 	unregister_pm_notifier(&ap_power_notifier);
1849 	root_device_unregister(ap_root_device);
1850 	bus_unregister(&ap_bus_type);
1851 	kfree(ap_configuration);
1852 	unregister_reset_call(&ap_reset_call);
1853 	if (ap_using_interrupts())
1854 		unregister_adapter_interrupt(&ap_airq);
1855 }
1856 
1857 module_init(ap_module_init);
1858 module_exit(ap_module_exit);
1859