1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2023 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define pr_fmt(fmt) "ap: " fmt 15 16 #include <linux/kernel_stat.h> 17 #include <linux/moduleparam.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/machine.h> 30 #include <asm/airq.h> 31 #include <asm/tpi.h> 32 #include <linux/atomic.h> 33 #include <asm/isc.h> 34 #include <linux/hrtimer.h> 35 #include <linux/ktime.h> 36 #include <asm/facility.h> 37 #include <linux/crypto.h> 38 #include <linux/mod_devicetable.h> 39 #include <linux/debugfs.h> 40 #include <linux/ctype.h> 41 #include <linux/module.h> 42 #include <asm/uv.h> 43 #include <asm/chsc.h> 44 #include <linux/mempool.h> 45 46 #include "ap_bus.h" 47 #include "ap_debug.h" 48 49 MODULE_AUTHOR("IBM Corporation"); 50 MODULE_DESCRIPTION("Adjunct Processor Bus driver"); 51 MODULE_LICENSE("GPL"); 52 53 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 54 static DEFINE_SPINLOCK(ap_domain_lock); 55 module_param_named(domain, ap_domain_index, int, 0440); 56 MODULE_PARM_DESC(domain, "domain index for ap devices"); 57 EXPORT_SYMBOL(ap_domain_index); 58 59 static int ap_thread_flag; 60 module_param_named(poll_thread, ap_thread_flag, int, 0440); 61 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 62 63 static char *apm_str; 64 module_param_named(apmask, apm_str, charp, 0440); 65 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 66 67 static char *aqm_str; 68 module_param_named(aqmask, aqm_str, charp, 0440); 69 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 70 71 static int ap_useirq = 1; 72 module_param_named(useirq, ap_useirq, int, 0440); 73 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 74 75 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 76 EXPORT_SYMBOL(ap_max_msg_size); 77 78 static struct device *ap_root_device; 79 80 /* Hashtable of all queue devices on the AP bus */ 81 DEFINE_HASHTABLE(ap_queues, 8); 82 /* lock used for the ap_queues hashtable */ 83 DEFINE_SPINLOCK(ap_queues_lock); 84 85 /* Default permissions (ioctl, card and domain masking) */ 86 struct ap_perms ap_perms; 87 EXPORT_SYMBOL(ap_perms); 88 /* true if apmask and/or aqmask are NOT default */ 89 bool ap_apmask_aqmask_in_use; 90 /* counter for how many driver_overrides are currently active */ 91 int ap_driver_override_ctr; 92 /* 93 * Mutex for consistent read and write of the ap_perms struct, 94 * ap_apmask_aqmask_in_use, ap_driver_override_ctr 95 * and the ap bus sysfs attributes apmask and aqmask. 96 */ 97 DEFINE_MUTEX(ap_attr_mutex); 98 EXPORT_SYMBOL(ap_attr_mutex); 99 100 /* # of bindings complete since init */ 101 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 102 103 /* completion for APQN bindings complete */ 104 static DECLARE_COMPLETION(ap_apqn_bindings_complete); 105 106 static struct ap_config_info qci[2]; 107 static struct ap_config_info *const ap_qci_info = &qci[0]; 108 static struct ap_config_info *const ap_qci_info_old = &qci[1]; 109 110 /* 111 * AP bus related debug feature things. 112 */ 113 debug_info_t *ap_dbf_info; 114 115 /* 116 * There is a need for a do-not-allocate-memory path through the AP bus 117 * layer. The pkey layer may be triggered via the in-kernel interface from 118 * a protected key crypto algorithm (namely PAES) to convert a secure key 119 * into a protected key. This happens in a workqueue context, so sleeping 120 * is allowed but memory allocations causing IO operations are not permitted. 121 * To accomplish this, an AP message memory pool with pre-allocated space 122 * is established. When ap_init_apmsg() with use_mempool set to true is 123 * called, instead of kmalloc() the ap message buffer is allocated from 124 * the ap_msg_pool. This pool only holds a limited amount of buffers: 125 * ap_msg_pool_min_items with the item size AP_DEFAULT_MAX_MSG_SIZE and 126 * exactly one of these items (if available) is returned if ap_init_apmsg() 127 * with the use_mempool arg set to true is called. When this pool is exhausted 128 * and use_mempool is set true, ap_init_apmsg() returns -ENOMEM without 129 * any attempt to allocate memory and the caller has to deal with that. 130 */ 131 static mempool_t *ap_msg_pool; 132 static unsigned int ap_msg_pool_min_items = 8; 133 module_param_named(msgpool_min_items, ap_msg_pool_min_items, uint, 0440); 134 MODULE_PARM_DESC(msgpool_min_items, "AP message pool minimal items"); 135 136 /* 137 * AP bus rescan related things. 138 */ 139 static bool ap_scan_bus(void); 140 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */ 141 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */ 142 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */ 143 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */ 144 static int ap_scan_bus_time = AP_CONFIG_TIME; 145 static struct timer_list ap_scan_bus_timer; 146 static void ap_scan_bus_wq_callback(struct work_struct *); 147 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback); 148 149 /* 150 * Tasklet & timer for AP request polling and interrupts 151 */ 152 static void ap_tasklet_fn(unsigned long); 153 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 154 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 155 static struct task_struct *ap_poll_kthread; 156 static DEFINE_MUTEX(ap_poll_thread_mutex); 157 static DEFINE_SPINLOCK(ap_poll_timer_lock); 158 static struct hrtimer ap_poll_timer; 159 /* 160 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 161 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 162 */ 163 static unsigned long poll_high_timeout = 250000UL; 164 165 /* 166 * Some state machine states only require a low frequency polling. 167 * We use 25 Hz frequency for these. 168 */ 169 static unsigned long poll_low_timeout = 40000000UL; 170 171 /* Maximum domain id, if not given via qci */ 172 static int ap_max_domain_id = 15; 173 /* Maximum adapter id, if not given via qci */ 174 static int ap_max_adapter_id = 63; 175 176 static const struct bus_type ap_bus_type; 177 178 /* Adapter interrupt definitions */ 179 static void ap_interrupt_handler(struct airq_struct *airq, 180 struct tpi_info *tpi_info); 181 182 static bool ap_irq_flag; 183 184 static struct airq_struct ap_airq = { 185 .handler = ap_interrupt_handler, 186 .isc = AP_ISC, 187 }; 188 189 /** 190 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 191 * 192 * Returns the address of the local-summary-indicator of the adapter 193 * interrupt handler for AP, or NULL if adapter interrupts are not 194 * available. 195 */ 196 void *ap_airq_ptr(void) 197 { 198 if (ap_irq_flag) 199 return ap_airq.lsi_ptr; 200 return NULL; 201 } 202 203 /** 204 * ap_interrupts_available(): Test if AP interrupts are available. 205 * 206 * Returns 1 if AP interrupts are available. 207 */ 208 static int ap_interrupts_available(void) 209 { 210 return test_facility(65); 211 } 212 213 /** 214 * ap_qci_available(): Test if AP configuration 215 * information can be queried via QCI subfunction. 216 * 217 * Returns 1 if subfunction PQAP(QCI) is available. 218 */ 219 static int ap_qci_available(void) 220 { 221 return test_facility(12); 222 } 223 224 /** 225 * ap_apft_available(): Test if AP facilities test (APFT) 226 * facility is available. 227 * 228 * Returns 1 if APFT is available. 229 */ 230 static int ap_apft_available(void) 231 { 232 return test_facility(15); 233 } 234 235 /* 236 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 237 * 238 * Returns 1 if the QACT subfunction is available. 239 */ 240 static inline int ap_qact_available(void) 241 { 242 return ap_qci_info->qact; 243 } 244 245 /* 246 * ap_sb_available(): Test if the AP secure binding facility is available. 247 * 248 * Returns 1 if secure binding facility is available. 249 */ 250 int ap_sb_available(void) 251 { 252 return ap_qci_info->apsb; 253 } 254 255 /* 256 * ap_is_se_guest(): Check for SE guest with AP pass-through support. 257 */ 258 bool ap_is_se_guest(void) 259 { 260 return is_prot_virt_guest() && ap_sb_available(); 261 } 262 EXPORT_SYMBOL(ap_is_se_guest); 263 264 /** 265 * ap_init_qci_info(): Allocate and query qci config info. 266 * Does also update the static variables ap_max_domain_id 267 * and ap_max_adapter_id if this info is available. 268 */ 269 static void __init ap_init_qci_info(void) 270 { 271 if (!ap_qci_available() || 272 ap_qci(ap_qci_info)) { 273 AP_DBF_INFO("%s QCI not supported\n", __func__); 274 return; 275 } 276 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 277 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 278 279 if (ap_qci_info->apxa) { 280 if (ap_qci_info->na) { 281 ap_max_adapter_id = ap_qci_info->na; 282 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 283 __func__, ap_max_adapter_id); 284 } 285 if (ap_qci_info->nd) { 286 ap_max_domain_id = ap_qci_info->nd; 287 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 288 __func__, ap_max_domain_id); 289 } 290 } 291 } 292 293 /* 294 * ap_test_config(): helper function to extract the nrth bit 295 * within the unsigned int array field. 296 */ 297 static inline int ap_test_config(unsigned int *field, unsigned int nr) 298 { 299 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 300 } 301 302 /* 303 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 304 * 305 * Returns 0 if the card is not configured 306 * 1 if the card is configured or 307 * if the configuration information is not available 308 */ 309 static inline int ap_test_config_card_id(unsigned int id) 310 { 311 if (id > ap_max_adapter_id) 312 return 0; 313 if (ap_qci_info->flags) 314 return ap_test_config(ap_qci_info->apm, id); 315 return 1; 316 } 317 318 /* 319 * ap_test_config_usage_domain(): Test, whether an AP usage domain 320 * is configured. 321 * 322 * Returns 0 if the usage domain is not configured 323 * 1 if the usage domain is configured or 324 * if the configuration information is not available 325 */ 326 int ap_test_config_usage_domain(unsigned int domain) 327 { 328 if (domain > ap_max_domain_id) 329 return 0; 330 if (ap_qci_info->flags) 331 return ap_test_config(ap_qci_info->aqm, domain); 332 return 1; 333 } 334 EXPORT_SYMBOL(ap_test_config_usage_domain); 335 336 /* 337 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 338 * is configured. 339 * @domain AP control domain ID 340 * 341 * Returns 1 if the control domain is configured 342 * 0 in all other cases 343 */ 344 int ap_test_config_ctrl_domain(unsigned int domain) 345 { 346 if (!ap_qci_info || domain > ap_max_domain_id) 347 return 0; 348 return ap_test_config(ap_qci_info->adm, domain); 349 } 350 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 351 352 /* 353 * ap_queue_info(): Check and get AP queue info. 354 * Returns: 1 if APQN exists and info is filled, 355 * 0 if APQN seems to exist but there is no info 356 * available (eg. caused by an asynch pending error) 357 * -1 invalid APQN, TAPQ error or AP queue status which 358 * indicates there is no APQN. 359 */ 360 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo, 361 bool *decfg, bool *cstop) 362 { 363 struct ap_queue_status status; 364 365 hwinfo->value = 0; 366 367 /* make sure we don't run into a specifiation exception */ 368 if (AP_QID_CARD(qid) > ap_max_adapter_id || 369 AP_QID_QUEUE(qid) > ap_max_domain_id) 370 return -1; 371 372 /* call TAPQ on this APQN */ 373 status = ap_test_queue(qid, ap_apft_available(), hwinfo); 374 375 switch (status.response_code) { 376 case AP_RESPONSE_NORMAL: 377 case AP_RESPONSE_RESET_IN_PROGRESS: 378 case AP_RESPONSE_DECONFIGURED: 379 case AP_RESPONSE_CHECKSTOPPED: 380 case AP_RESPONSE_BUSY: 381 /* For all these RCs the tapq info should be available */ 382 break; 383 default: 384 /* On a pending async error the info should be available */ 385 if (!status.async) 386 return -1; 387 break; 388 } 389 390 /* There should be at least one of the mode bits set */ 391 if (WARN_ON_ONCE(!hwinfo->value)) 392 return 0; 393 394 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 395 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 396 397 return 1; 398 } 399 400 void ap_wait(enum ap_sm_wait wait) 401 { 402 ktime_t hr_time; 403 404 switch (wait) { 405 case AP_SM_WAIT_AGAIN: 406 case AP_SM_WAIT_INTERRUPT: 407 if (ap_irq_flag) 408 break; 409 if (ap_poll_kthread) { 410 wake_up(&ap_poll_wait); 411 break; 412 } 413 fallthrough; 414 case AP_SM_WAIT_LOW_TIMEOUT: 415 case AP_SM_WAIT_HIGH_TIMEOUT: 416 spin_lock_bh(&ap_poll_timer_lock); 417 if (!hrtimer_is_queued(&ap_poll_timer)) { 418 hr_time = 419 wait == AP_SM_WAIT_LOW_TIMEOUT ? 420 poll_low_timeout : poll_high_timeout; 421 hrtimer_forward_now(&ap_poll_timer, hr_time); 422 hrtimer_restart(&ap_poll_timer); 423 } 424 spin_unlock_bh(&ap_poll_timer_lock); 425 break; 426 case AP_SM_WAIT_NONE: 427 default: 428 break; 429 } 430 } 431 432 /** 433 * ap_request_timeout(): Handling of request timeouts 434 * @t: timer making this callback 435 * 436 * Handles request timeouts. 437 */ 438 void ap_request_timeout(struct timer_list *t) 439 { 440 struct ap_queue *aq = timer_container_of(aq, t, timeout); 441 442 spin_lock_bh(&aq->lock); 443 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 444 spin_unlock_bh(&aq->lock); 445 } 446 447 /** 448 * ap_poll_timeout(): AP receive polling for finished AP requests. 449 * @unused: Unused pointer. 450 * 451 * Schedules the AP tasklet using a high resolution timer. 452 */ 453 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 454 { 455 tasklet_schedule(&ap_tasklet); 456 return HRTIMER_NORESTART; 457 } 458 459 /** 460 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 461 * @airq: pointer to adapter interrupt descriptor 462 * @tpi_info: ignored 463 */ 464 static void ap_interrupt_handler(struct airq_struct *airq, 465 struct tpi_info *tpi_info) 466 { 467 inc_irq_stat(IRQIO_APB); 468 tasklet_schedule(&ap_tasklet); 469 } 470 471 /** 472 * ap_tasklet_fn(): Tasklet to poll all AP devices. 473 * @dummy: Unused variable 474 * 475 * Poll all AP devices on the bus. 476 */ 477 static void ap_tasklet_fn(unsigned long dummy) 478 { 479 int bkt; 480 struct ap_queue *aq; 481 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 482 483 /* Reset the indicator if interrupts are used. Thus new interrupts can 484 * be received. Doing it in the beginning of the tasklet is therefore 485 * important that no requests on any AP get lost. 486 */ 487 if (ap_irq_flag) 488 WRITE_ONCE(*ap_airq.lsi_ptr, 0); 489 490 spin_lock_bh(&ap_queues_lock); 491 hash_for_each(ap_queues, bkt, aq, hnode) { 492 spin_lock_bh(&aq->lock); 493 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 494 spin_unlock_bh(&aq->lock); 495 } 496 spin_unlock_bh(&ap_queues_lock); 497 498 ap_wait(wait); 499 } 500 501 static int ap_pending_requests(void) 502 { 503 int bkt; 504 struct ap_queue *aq; 505 506 spin_lock_bh(&ap_queues_lock); 507 hash_for_each(ap_queues, bkt, aq, hnode) { 508 if (aq->queue_count == 0) 509 continue; 510 spin_unlock_bh(&ap_queues_lock); 511 return 1; 512 } 513 spin_unlock_bh(&ap_queues_lock); 514 return 0; 515 } 516 517 /** 518 * ap_poll_thread(): Thread that polls for finished requests. 519 * @data: Unused pointer 520 * 521 * AP bus poll thread. The purpose of this thread is to poll for 522 * finished requests in a loop if there is a "free" cpu - that is 523 * a cpu that doesn't have anything better to do. The polling stops 524 * as soon as there is another task or if all messages have been 525 * delivered. 526 */ 527 static int ap_poll_thread(void *data) 528 { 529 DECLARE_WAITQUEUE(wait, current); 530 531 set_user_nice(current, MAX_NICE); 532 set_freezable(); 533 while (!kthread_should_stop()) { 534 add_wait_queue(&ap_poll_wait, &wait); 535 set_current_state(TASK_INTERRUPTIBLE); 536 if (!ap_pending_requests()) { 537 schedule(); 538 try_to_freeze(); 539 } 540 set_current_state(TASK_RUNNING); 541 remove_wait_queue(&ap_poll_wait, &wait); 542 if (need_resched()) { 543 schedule(); 544 try_to_freeze(); 545 continue; 546 } 547 ap_tasklet_fn(0); 548 } 549 550 return 0; 551 } 552 553 static int ap_poll_thread_start(void) 554 { 555 int rc; 556 557 if (ap_irq_flag || ap_poll_kthread) 558 return 0; 559 mutex_lock(&ap_poll_thread_mutex); 560 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 561 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 562 if (rc) 563 ap_poll_kthread = NULL; 564 mutex_unlock(&ap_poll_thread_mutex); 565 return rc; 566 } 567 568 static void ap_poll_thread_stop(void) 569 { 570 if (!ap_poll_kthread) 571 return; 572 mutex_lock(&ap_poll_thread_mutex); 573 kthread_stop(ap_poll_kthread); 574 ap_poll_kthread = NULL; 575 mutex_unlock(&ap_poll_thread_mutex); 576 } 577 578 #define is_card_dev(x) ((x)->parent == ap_root_device) 579 #define is_queue_dev(x) ((x)->parent != ap_root_device) 580 581 /* 582 * ap_init_apmsg() - Initialize ap_message. 583 */ 584 int ap_init_apmsg(struct ap_message *ap_msg, u32 flags) 585 { 586 unsigned int maxmsgsize; 587 588 memset(ap_msg, 0, sizeof(*ap_msg)); 589 ap_msg->flags = flags; 590 591 if (flags & AP_MSG_FLAG_MEMPOOL) { 592 ap_msg->msg = mempool_alloc_preallocated(ap_msg_pool); 593 if (!ap_msg->msg) 594 return -ENOMEM; 595 ap_msg->bufsize = AP_DEFAULT_MAX_MSG_SIZE; 596 return 0; 597 } 598 599 maxmsgsize = atomic_read(&ap_max_msg_size); 600 ap_msg->msg = kmalloc(maxmsgsize, GFP_KERNEL); 601 if (!ap_msg->msg) 602 return -ENOMEM; 603 ap_msg->bufsize = maxmsgsize; 604 605 return 0; 606 } 607 EXPORT_SYMBOL(ap_init_apmsg); 608 609 /* 610 * ap_release_apmsg() - Release ap_message. 611 */ 612 void ap_release_apmsg(struct ap_message *ap_msg) 613 { 614 if (ap_msg->flags & AP_MSG_FLAG_MEMPOOL) { 615 memzero_explicit(ap_msg->msg, ap_msg->bufsize); 616 mempool_free(ap_msg->msg, ap_msg_pool); 617 } else { 618 kfree_sensitive(ap_msg->msg); 619 } 620 } 621 EXPORT_SYMBOL(ap_release_apmsg); 622 623 /** 624 * ap_bus_match() 625 * @dev: Pointer to device 626 * @drv: Pointer to device_driver 627 * 628 * AP bus driver registration/unregistration. 629 */ 630 static int ap_bus_match(struct device *dev, const struct device_driver *drv) 631 { 632 const struct ap_driver *ap_drv = to_ap_drv(drv); 633 struct ap_device_id *id; 634 635 /* 636 * Compare device type of the device with the list of 637 * supported types of the device_driver. 638 */ 639 for (id = ap_drv->ids; id->match_flags; id++) { 640 if (is_card_dev(dev) && 641 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 642 id->dev_type == to_ap_dev(dev)->device_type) 643 return 1; 644 if (is_queue_dev(dev) && 645 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 646 id->dev_type == to_ap_dev(dev)->device_type) 647 return 1; 648 } 649 return 0; 650 } 651 652 /** 653 * ap_uevent(): Uevent function for AP devices. 654 * @dev: Pointer to device 655 * @env: Pointer to kobj_uevent_env 656 * 657 * It sets up a single environment variable DEV_TYPE which contains the 658 * hardware device type. 659 */ 660 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env) 661 { 662 int rc = 0; 663 const struct ap_device *ap_dev = to_ap_dev(dev); 664 665 /* Uevents from ap bus core don't need extensions to the env */ 666 if (dev == ap_root_device) 667 return 0; 668 669 if (is_card_dev(dev)) { 670 struct ap_card *ac = to_ap_card(&ap_dev->device); 671 672 /* Set up DEV_TYPE environment variable. */ 673 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 674 if (rc) 675 return rc; 676 /* Add MODALIAS= */ 677 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 678 if (rc) 679 return rc; 680 681 /* Add MODE=<accel|cca|ep11> */ 682 if (ac->hwinfo.accel) 683 rc = add_uevent_var(env, "MODE=accel"); 684 else if (ac->hwinfo.cca) 685 rc = add_uevent_var(env, "MODE=cca"); 686 else if (ac->hwinfo.ep11) 687 rc = add_uevent_var(env, "MODE=ep11"); 688 if (rc) 689 return rc; 690 } else { 691 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 692 693 /* Add MODE=<accel|cca|ep11> */ 694 if (aq->card->hwinfo.accel) 695 rc = add_uevent_var(env, "MODE=accel"); 696 else if (aq->card->hwinfo.cca) 697 rc = add_uevent_var(env, "MODE=cca"); 698 else if (aq->card->hwinfo.ep11) 699 rc = add_uevent_var(env, "MODE=ep11"); 700 if (rc) 701 return rc; 702 } 703 704 return 0; 705 } 706 707 static void ap_send_init_scan_done_uevent(void) 708 { 709 char *envp[] = { "INITSCAN=done", NULL }; 710 711 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 712 } 713 714 static void ap_send_bindings_complete_uevent(void) 715 { 716 char buf[32]; 717 char *envp[] = { "BINDINGS=complete", buf, NULL }; 718 719 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 720 atomic64_inc_return(&ap_bindings_complete_count)); 721 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 722 } 723 724 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 725 { 726 char buf[16]; 727 char *envp[] = { buf, NULL }; 728 729 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 730 731 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 732 } 733 EXPORT_SYMBOL(ap_send_config_uevent); 734 735 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 736 { 737 char buf[16]; 738 char *envp[] = { buf, NULL }; 739 740 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 741 742 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 743 } 744 EXPORT_SYMBOL(ap_send_online_uevent); 745 746 static void ap_send_mask_changed_uevent(unsigned long *newapm, 747 unsigned long *newaqm) 748 { 749 char buf[100]; 750 char *envp[] = { buf, NULL }; 751 752 if (newapm) 753 snprintf(buf, sizeof(buf), 754 "APMASK=0x%016lx%016lx%016lx%016lx\n", 755 newapm[0], newapm[1], newapm[2], newapm[3]); 756 else 757 snprintf(buf, sizeof(buf), 758 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 759 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 760 761 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 762 } 763 764 /* 765 * calc # of bound APQNs 766 */ 767 768 struct __ap_calc_ctrs { 769 unsigned int apqns; 770 unsigned int bound; 771 }; 772 773 static int __ap_calc_helper(struct device *dev, void *arg) 774 { 775 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 776 777 if (is_queue_dev(dev)) { 778 pctrs->apqns++; 779 if (dev->driver) 780 pctrs->bound++; 781 } 782 783 return 0; 784 } 785 786 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 787 { 788 struct __ap_calc_ctrs ctrs; 789 790 memset(&ctrs, 0, sizeof(ctrs)); 791 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 792 793 *apqns = ctrs.apqns; 794 *bound = ctrs.bound; 795 } 796 797 /* 798 * After ap bus scan do check if all existing APQNs are 799 * bound to device drivers. 800 */ 801 static void ap_check_bindings_complete(void) 802 { 803 unsigned int apqns, bound; 804 805 if (atomic64_read(&ap_scan_bus_count) >= 1) { 806 ap_calc_bound_apqns(&apqns, &bound); 807 if (bound == apqns) { 808 if (!completion_done(&ap_apqn_bindings_complete)) { 809 complete_all(&ap_apqn_bindings_complete); 810 ap_send_bindings_complete_uevent(); 811 pr_debug("all apqn bindings complete\n"); 812 } 813 } 814 } 815 } 816 817 /* 818 * Interface to wait for the AP bus to have done one initial ap bus 819 * scan and all detected APQNs have been bound to device drivers. 820 * If these both conditions are not fulfilled, this function blocks 821 * on a condition with wait_for_completion_interruptible_timeout(). 822 * If these both conditions are fulfilled (before the timeout hits) 823 * the return value is 0. If the timeout (in jiffies) hits instead 824 * -ETIME is returned. On failures negative return values are 825 * returned to the caller. 826 */ 827 int ap_wait_apqn_bindings_complete(unsigned long timeout) 828 { 829 int rc = 0; 830 long l; 831 832 if (completion_done(&ap_apqn_bindings_complete)) 833 return 0; 834 835 if (timeout) 836 l = wait_for_completion_interruptible_timeout( 837 &ap_apqn_bindings_complete, timeout); 838 else 839 l = wait_for_completion_interruptible( 840 &ap_apqn_bindings_complete); 841 if (l < 0) 842 rc = l == -ERESTARTSYS ? -EINTR : l; 843 else if (l == 0 && timeout) 844 rc = -ETIME; 845 846 pr_debug("rc=%d\n", rc); 847 return rc; 848 } 849 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete); 850 851 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 852 { 853 if (is_queue_dev(dev) && 854 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 855 device_unregister(dev); 856 return 0; 857 } 858 859 static int __ap_revise_reserved(struct device *dev, void *dummy) 860 { 861 int rc, card, queue, devres, drvres; 862 863 if (is_queue_dev(dev)) { 864 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 865 struct ap_queue *aq = to_ap_queue(dev); 866 struct ap_device *ap_dev = &aq->ap_dev; 867 868 card = AP_QID_CARD(aq->qid); 869 queue = AP_QID_QUEUE(aq->qid); 870 871 if (ap_dev->driver_override) { 872 if (strcmp(ap_dev->driver_override, 873 ap_drv->driver.name)) { 874 pr_debug("reprobing queue=%02x.%04x\n", card, queue); 875 rc = device_reprobe(dev); 876 if (rc) { 877 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 878 __func__, card, queue); 879 } 880 } 881 } else { 882 mutex_lock(&ap_attr_mutex); 883 devres = test_bit_inv(card, ap_perms.apm) && 884 test_bit_inv(queue, ap_perms.aqm); 885 mutex_unlock(&ap_attr_mutex); 886 drvres = to_ap_drv(dev->driver)->flags 887 & AP_DRIVER_FLAG_DEFAULT; 888 if (!!devres != !!drvres) { 889 pr_debug("reprobing queue=%02x.%04x\n", card, queue); 890 rc = device_reprobe(dev); 891 if (rc) { 892 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 893 __func__, card, queue); 894 } 895 } 896 } 897 } 898 899 return 0; 900 } 901 902 static void ap_bus_revise_bindings(void) 903 { 904 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 905 } 906 907 /** 908 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 909 * default host driver or not. 910 * @card: the APID of the adapter card to check 911 * @queue: the APQI of the queue to check 912 * 913 * Note: the ap_attr_mutex must be locked by the caller of this function. 914 * 915 * Return: an int specifying whether the AP adapter is reserved for the host (1) 916 * or not (0). 917 */ 918 int ap_owned_by_def_drv(int card, int queue) 919 { 920 struct ap_queue *aq; 921 int rc = 0; 922 923 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 924 return -EINVAL; 925 926 aq = ap_get_qdev(AP_MKQID(card, queue)); 927 if (aq) { 928 const struct device_driver *drv = aq->ap_dev.device.driver; 929 const struct ap_driver *ap_drv = to_ap_drv(drv); 930 bool override = !!aq->ap_dev.driver_override; 931 932 if (override && drv && ap_drv->flags & AP_DRIVER_FLAG_DEFAULT) 933 rc = 1; 934 put_device(&aq->ap_dev.device); 935 if (override) 936 goto out; 937 } 938 939 if (test_bit_inv(card, ap_perms.apm) && 940 test_bit_inv(queue, ap_perms.aqm)) 941 rc = 1; 942 943 out: 944 return rc; 945 } 946 EXPORT_SYMBOL(ap_owned_by_def_drv); 947 948 /** 949 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 950 * a set is reserved for the host drivers 951 * or not. 952 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 953 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 954 * 955 * Note: the ap_attr_mutex must be locked by the caller of this function. 956 * 957 * Return: an int specifying whether each APQN is reserved for the host (1) or 958 * not (0) 959 */ 960 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 961 unsigned long *aqm) 962 { 963 int card, queue, rc = 0; 964 965 for (card = 0; !rc && card < AP_DEVICES; card++) 966 if (test_bit_inv(card, apm)) 967 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 968 if (test_bit_inv(queue, aqm)) 969 rc = ap_owned_by_def_drv(card, queue); 970 971 return rc; 972 } 973 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 974 975 static int ap_device_probe(struct device *dev) 976 { 977 struct ap_device *ap_dev = to_ap_dev(dev); 978 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 979 int card, queue, devres, drvres, rc = -ENODEV; 980 981 if (!get_device(dev)) 982 return rc; 983 984 if (is_queue_dev(dev)) { 985 /* 986 * If the apqn is marked as reserved/used by ap bus and 987 * default drivers, only probe with drivers with the default 988 * flag set. If it is not marked, only probe with drivers 989 * with the default flag not set. 990 */ 991 card = AP_QID_CARD(to_ap_queue(dev)->qid); 992 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 993 if (ap_dev->driver_override) { 994 if (strcmp(ap_dev->driver_override, 995 ap_drv->driver.name)) 996 goto out; 997 } else { 998 mutex_lock(&ap_attr_mutex); 999 devres = test_bit_inv(card, ap_perms.apm) && 1000 test_bit_inv(queue, ap_perms.aqm); 1001 mutex_unlock(&ap_attr_mutex); 1002 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 1003 if (!!devres != !!drvres) 1004 goto out; 1005 } 1006 } 1007 1008 /* 1009 * Rearm the bindings complete completion to trigger 1010 * bindings complete when all devices are bound again 1011 */ 1012 reinit_completion(&ap_apqn_bindings_complete); 1013 1014 /* Add queue/card to list of active queues/cards */ 1015 spin_lock_bh(&ap_queues_lock); 1016 if (is_queue_dev(dev)) 1017 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 1018 to_ap_queue(dev)->qid); 1019 spin_unlock_bh(&ap_queues_lock); 1020 1021 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 1022 1023 if (rc) { 1024 spin_lock_bh(&ap_queues_lock); 1025 if (is_queue_dev(dev)) 1026 hash_del(&to_ap_queue(dev)->hnode); 1027 spin_unlock_bh(&ap_queues_lock); 1028 } 1029 1030 out: 1031 if (rc) { 1032 put_device(dev); 1033 } else { 1034 if (is_queue_dev(dev)) { 1035 pr_debug("queue=%02x.%04x new driver=%s\n", 1036 card, queue, ap_drv->driver.name); 1037 } else { 1038 pr_debug("card=%02x new driver=%s\n", 1039 to_ap_card(dev)->id, ap_drv->driver.name); 1040 } 1041 } 1042 return rc; 1043 } 1044 1045 static void ap_device_remove(struct device *dev) 1046 { 1047 struct ap_device *ap_dev = to_ap_dev(dev); 1048 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 1049 1050 /* prepare ap queue device removal */ 1051 if (is_queue_dev(dev)) 1052 ap_queue_prepare_remove(to_ap_queue(dev)); 1053 1054 /* driver's chance to clean up gracefully */ 1055 if (ap_drv->remove) 1056 ap_drv->remove(ap_dev); 1057 1058 /* now do the ap queue device remove */ 1059 if (is_queue_dev(dev)) 1060 ap_queue_remove(to_ap_queue(dev)); 1061 1062 /* Remove queue/card from list of active queues/cards */ 1063 spin_lock_bh(&ap_queues_lock); 1064 if (is_queue_dev(dev)) 1065 hash_del(&to_ap_queue(dev)->hnode); 1066 spin_unlock_bh(&ap_queues_lock); 1067 1068 put_device(dev); 1069 } 1070 1071 struct ap_queue *ap_get_qdev(ap_qid_t qid) 1072 { 1073 int bkt; 1074 struct ap_queue *aq; 1075 1076 spin_lock_bh(&ap_queues_lock); 1077 hash_for_each(ap_queues, bkt, aq, hnode) { 1078 if (aq->qid == qid) { 1079 get_device(&aq->ap_dev.device); 1080 spin_unlock_bh(&ap_queues_lock); 1081 return aq; 1082 } 1083 } 1084 spin_unlock_bh(&ap_queues_lock); 1085 1086 return NULL; 1087 } 1088 EXPORT_SYMBOL(ap_get_qdev); 1089 1090 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 1091 char *name) 1092 { 1093 struct device_driver *drv = &ap_drv->driver; 1094 int rc; 1095 1096 drv->bus = &ap_bus_type; 1097 drv->owner = owner; 1098 drv->name = name; 1099 rc = driver_register(drv); 1100 1101 ap_check_bindings_complete(); 1102 1103 return rc; 1104 } 1105 EXPORT_SYMBOL(ap_driver_register); 1106 1107 void ap_driver_unregister(struct ap_driver *ap_drv) 1108 { 1109 driver_unregister(&ap_drv->driver); 1110 } 1111 EXPORT_SYMBOL(ap_driver_unregister); 1112 1113 /* 1114 * Enforce a synchronous AP bus rescan. 1115 * Returns true if the bus scan finds a change in the AP configuration 1116 * and AP devices have been added or deleted when this function returns. 1117 */ 1118 bool ap_bus_force_rescan(void) 1119 { 1120 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count); 1121 bool rc = false; 1122 1123 pr_debug("> scan counter=%lu\n", scan_counter); 1124 1125 /* Only trigger AP bus scans after the initial scan is done */ 1126 if (scan_counter <= 0) 1127 goto out; 1128 1129 /* 1130 * There is one unlikely but nevertheless valid scenario where the 1131 * thread holding the mutex may try to send some crypto load but 1132 * all cards are offline so a rescan is triggered which causes 1133 * a recursive call of ap_bus_force_rescan(). A simple return if 1134 * the mutex is already locked by this thread solves this. 1135 */ 1136 if (mutex_is_locked(&ap_scan_bus_mutex)) { 1137 if (ap_scan_bus_task == current) 1138 goto out; 1139 } 1140 1141 /* Try to acquire the AP scan bus mutex */ 1142 if (mutex_trylock(&ap_scan_bus_mutex)) { 1143 /* mutex acquired, run the AP bus scan */ 1144 ap_scan_bus_task = current; 1145 ap_scan_bus_result = ap_scan_bus(); 1146 rc = ap_scan_bus_result; 1147 ap_scan_bus_task = NULL; 1148 mutex_unlock(&ap_scan_bus_mutex); 1149 goto out; 1150 } 1151 1152 /* 1153 * Mutex acquire failed. So there is currently another task 1154 * already running the AP bus scan. Then let's simple wait 1155 * for the lock which means the other task has finished and 1156 * stored the result in ap_scan_bus_result. 1157 */ 1158 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) { 1159 /* some error occurred, ignore and go out */ 1160 goto out; 1161 } 1162 rc = ap_scan_bus_result; 1163 mutex_unlock(&ap_scan_bus_mutex); 1164 1165 out: 1166 pr_debug("rc=%d\n", rc); 1167 return rc; 1168 } 1169 EXPORT_SYMBOL(ap_bus_force_rescan); 1170 1171 /* 1172 * A config change has happened, force an ap bus rescan. 1173 */ 1174 static int ap_bus_cfg_chg(struct notifier_block *nb, 1175 unsigned long action, void *data) 1176 { 1177 if (action != CHSC_NOTIFY_AP_CFG) 1178 return NOTIFY_DONE; 1179 1180 pr_debug("config change, forcing bus rescan\n"); 1181 1182 ap_bus_force_rescan(); 1183 1184 return NOTIFY_OK; 1185 } 1186 1187 static struct notifier_block ap_bus_nb = { 1188 .notifier_call = ap_bus_cfg_chg, 1189 }; 1190 1191 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1192 { 1193 int i, n, b; 1194 1195 /* bits needs to be a multiple of 8 */ 1196 if (bits & 0x07) 1197 return -EINVAL; 1198 1199 if (str[0] == '0' && str[1] == 'x') 1200 str++; 1201 if (*str == 'x') 1202 str++; 1203 1204 for (i = 0; isxdigit(*str) && i < bits; str++) { 1205 b = hex_to_bin(*str); 1206 for (n = 0; n < 4; n++) 1207 if (b & (0x08 >> n)) 1208 set_bit_inv(i + n, bitmap); 1209 i += 4; 1210 } 1211 1212 if (*str == '\n') 1213 str++; 1214 if (*str) 1215 return -EINVAL; 1216 return 0; 1217 } 1218 EXPORT_SYMBOL(ap_hex2bitmap); 1219 1220 /* 1221 * modify_bitmap() - parse bitmask argument and modify an existing 1222 * bit mask accordingly. A concatenation (done with ',') of these 1223 * terms is recognized: 1224 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1225 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1226 * 0...bits-1; the leading + or - is required. Here are some examples: 1227 * +0-15,+32,-128,-0xFF 1228 * -0-255,+1-16,+0x128 1229 * +1,+2,+3,+4,-5,-7-10 1230 * Returns the new bitmap after all changes have been applied. Every 1231 * positive value in the string will set a bit and every negative value 1232 * in the string will clear a bit. As a bit may be touched more than once, 1233 * the last 'operation' wins: 1234 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1235 * cleared again. All other bits are unmodified. 1236 */ 1237 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1238 { 1239 unsigned long a, i, z; 1240 char *np, sign; 1241 1242 /* bits needs to be a multiple of 8 */ 1243 if (bits & 0x07) 1244 return -EINVAL; 1245 1246 while (*str) { 1247 sign = *str++; 1248 if (sign != '+' && sign != '-') 1249 return -EINVAL; 1250 a = z = simple_strtoul(str, &np, 0); 1251 if (str == np || a >= bits) 1252 return -EINVAL; 1253 str = np; 1254 if (*str == '-') { 1255 z = simple_strtoul(++str, &np, 0); 1256 if (str == np || a > z || z >= bits) 1257 return -EINVAL; 1258 str = np; 1259 } 1260 for (i = a; i <= z; i++) 1261 if (sign == '+') 1262 set_bit_inv(i, bitmap); 1263 else 1264 clear_bit_inv(i, bitmap); 1265 while (*str == ',' || *str == '\n') 1266 str++; 1267 } 1268 1269 return 0; 1270 } 1271 1272 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1273 unsigned long *newmap) 1274 { 1275 unsigned long size; 1276 int rc; 1277 1278 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1279 if (*str == '+' || *str == '-') { 1280 memcpy(newmap, bitmap, size); 1281 rc = modify_bitmap(str, newmap, bits); 1282 } else { 1283 memset(newmap, 0, size); 1284 rc = ap_hex2bitmap(str, newmap, bits); 1285 } 1286 return rc; 1287 } 1288 1289 int ap_parse_mask_str(const char *str, 1290 unsigned long *bitmap, int bits, 1291 struct mutex *lock) 1292 { 1293 unsigned long *newmap, size; 1294 int rc; 1295 1296 /* bits needs to be a multiple of 8 */ 1297 if (bits & 0x07) 1298 return -EINVAL; 1299 1300 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1301 newmap = kmalloc(size, GFP_KERNEL); 1302 if (!newmap) 1303 return -ENOMEM; 1304 if (mutex_lock_interruptible(lock)) { 1305 kfree(newmap); 1306 return -ERESTARTSYS; 1307 } 1308 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1309 if (rc == 0) 1310 memcpy(bitmap, newmap, size); 1311 mutex_unlock(lock); 1312 kfree(newmap); 1313 return rc; 1314 } 1315 EXPORT_SYMBOL(ap_parse_mask_str); 1316 1317 /* 1318 * AP bus attributes. 1319 */ 1320 1321 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf) 1322 { 1323 return sysfs_emit(buf, "%d\n", ap_domain_index); 1324 } 1325 1326 static ssize_t ap_domain_store(const struct bus_type *bus, 1327 const char *buf, size_t count) 1328 { 1329 int domain; 1330 1331 if (sscanf(buf, "%i\n", &domain) != 1 || 1332 domain < 0 || domain > ap_max_domain_id || 1333 !test_bit_inv(domain, ap_perms.aqm)) 1334 return -EINVAL; 1335 1336 spin_lock_bh(&ap_domain_lock); 1337 ap_domain_index = domain; 1338 spin_unlock_bh(&ap_domain_lock); 1339 1340 AP_DBF_INFO("%s stored new default domain=%d\n", 1341 __func__, domain); 1342 1343 return count; 1344 } 1345 1346 static BUS_ATTR_RW(ap_domain); 1347 1348 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf) 1349 { 1350 if (!ap_qci_info->flags) /* QCI not supported */ 1351 return sysfs_emit(buf, "not supported\n"); 1352 1353 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1354 ap_qci_info->adm[0], ap_qci_info->adm[1], 1355 ap_qci_info->adm[2], ap_qci_info->adm[3], 1356 ap_qci_info->adm[4], ap_qci_info->adm[5], 1357 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1358 } 1359 1360 static BUS_ATTR_RO(ap_control_domain_mask); 1361 1362 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf) 1363 { 1364 if (!ap_qci_info->flags) /* QCI not supported */ 1365 return sysfs_emit(buf, "not supported\n"); 1366 1367 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1368 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1369 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1370 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1371 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1372 } 1373 1374 static BUS_ATTR_RO(ap_usage_domain_mask); 1375 1376 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf) 1377 { 1378 if (!ap_qci_info->flags) /* QCI not supported */ 1379 return sysfs_emit(buf, "not supported\n"); 1380 1381 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1382 ap_qci_info->apm[0], ap_qci_info->apm[1], 1383 ap_qci_info->apm[2], ap_qci_info->apm[3], 1384 ap_qci_info->apm[4], ap_qci_info->apm[5], 1385 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1386 } 1387 1388 static BUS_ATTR_RO(ap_adapter_mask); 1389 1390 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf) 1391 { 1392 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0); 1393 } 1394 1395 static BUS_ATTR_RO(ap_interrupts); 1396 1397 static ssize_t config_time_show(const struct bus_type *bus, char *buf) 1398 { 1399 return sysfs_emit(buf, "%d\n", ap_scan_bus_time); 1400 } 1401 1402 static ssize_t config_time_store(const struct bus_type *bus, 1403 const char *buf, size_t count) 1404 { 1405 int time; 1406 1407 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1408 return -EINVAL; 1409 ap_scan_bus_time = time; 1410 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 1411 return count; 1412 } 1413 1414 static BUS_ATTR_RW(config_time); 1415 1416 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf) 1417 { 1418 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0); 1419 } 1420 1421 static ssize_t poll_thread_store(const struct bus_type *bus, 1422 const char *buf, size_t count) 1423 { 1424 bool value; 1425 int rc; 1426 1427 rc = kstrtobool(buf, &value); 1428 if (rc) 1429 return rc; 1430 1431 if (value) { 1432 rc = ap_poll_thread_start(); 1433 if (rc) 1434 count = rc; 1435 } else { 1436 ap_poll_thread_stop(); 1437 } 1438 return count; 1439 } 1440 1441 static BUS_ATTR_RW(poll_thread); 1442 1443 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf) 1444 { 1445 return sysfs_emit(buf, "%lu\n", poll_high_timeout); 1446 } 1447 1448 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf, 1449 size_t count) 1450 { 1451 unsigned long value; 1452 ktime_t hr_time; 1453 int rc; 1454 1455 rc = kstrtoul(buf, 0, &value); 1456 if (rc) 1457 return rc; 1458 1459 /* 120 seconds = maximum poll interval */ 1460 if (value > 120000000000UL) 1461 return -EINVAL; 1462 poll_high_timeout = value; 1463 hr_time = poll_high_timeout; 1464 1465 spin_lock_bh(&ap_poll_timer_lock); 1466 hrtimer_cancel(&ap_poll_timer); 1467 hrtimer_set_expires(&ap_poll_timer, hr_time); 1468 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1469 spin_unlock_bh(&ap_poll_timer_lock); 1470 1471 return count; 1472 } 1473 1474 static BUS_ATTR_RW(poll_timeout); 1475 1476 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf) 1477 { 1478 return sysfs_emit(buf, "%d\n", ap_max_domain_id); 1479 } 1480 1481 static BUS_ATTR_RO(ap_max_domain_id); 1482 1483 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf) 1484 { 1485 return sysfs_emit(buf, "%d\n", ap_max_adapter_id); 1486 } 1487 1488 static BUS_ATTR_RO(ap_max_adapter_id); 1489 1490 static ssize_t apmask_show(const struct bus_type *bus, char *buf) 1491 { 1492 int rc; 1493 1494 if (mutex_lock_interruptible(&ap_attr_mutex)) 1495 return -ERESTARTSYS; 1496 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1497 ap_perms.apm[0], ap_perms.apm[1], 1498 ap_perms.apm[2], ap_perms.apm[3]); 1499 mutex_unlock(&ap_attr_mutex); 1500 1501 return rc; 1502 } 1503 1504 static int __verify_card_reservations(struct device_driver *drv, void *data) 1505 { 1506 int rc = 0; 1507 struct ap_driver *ap_drv = to_ap_drv(drv); 1508 unsigned long *newapm = (unsigned long *)data; 1509 unsigned long aqm_any[BITS_TO_LONGS(AP_DOMAINS)]; 1510 1511 /* 1512 * increase the driver's module refcounter to be sure it is not 1513 * going away when we invoke the callback function. 1514 */ 1515 if (!try_module_get(drv->owner)) 1516 return 0; 1517 1518 if (ap_drv->in_use) { 1519 bitmap_fill(aqm_any, AP_DOMAINS); 1520 rc = ap_drv->in_use(newapm, aqm_any); 1521 if (rc) 1522 rc = -EBUSY; 1523 } 1524 1525 /* release the driver's module */ 1526 module_put(drv->owner); 1527 1528 return rc; 1529 } 1530 1531 static int apmask_commit(unsigned long *newapm) 1532 { 1533 int rc; 1534 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1535 1536 /* 1537 * Check if any bits in the apmask have been set which will 1538 * result in queues being removed from non-default drivers 1539 */ 1540 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1541 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1542 __verify_card_reservations); 1543 if (rc) 1544 return rc; 1545 } 1546 1547 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1548 1549 /* 1550 * Update ap_apmask_aqmask_in_use. Note that the 1551 * ap_attr_mutex has to be obtained here. 1552 */ 1553 ap_apmask_aqmask_in_use = 1554 bitmap_full(ap_perms.apm, AP_DEVICES) && 1555 bitmap_full(ap_perms.aqm, AP_DOMAINS) ? 1556 false : true; 1557 1558 return 0; 1559 } 1560 1561 static ssize_t apmask_store(const struct bus_type *bus, const char *buf, 1562 size_t count) 1563 { 1564 DECLARE_BITMAP(newapm, AP_DEVICES); 1565 int rc = -EINVAL, changes = 0; 1566 1567 if (mutex_lock_interruptible(&ap_attr_mutex)) 1568 return -ERESTARTSYS; 1569 1570 /* Do not allow apmask/aqmask if driver override is active */ 1571 if (ap_driver_override_ctr) 1572 goto done; 1573 1574 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1575 if (rc) 1576 goto done; 1577 1578 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1579 if (changes) 1580 rc = apmask_commit(newapm); 1581 1582 done: 1583 mutex_unlock(&ap_attr_mutex); 1584 if (rc) 1585 return rc; 1586 1587 if (changes) { 1588 ap_bus_revise_bindings(); 1589 ap_send_mask_changed_uevent(newapm, NULL); 1590 } 1591 1592 return count; 1593 } 1594 1595 static BUS_ATTR_RW(apmask); 1596 1597 static ssize_t aqmask_show(const struct bus_type *bus, char *buf) 1598 { 1599 int rc; 1600 1601 if (mutex_lock_interruptible(&ap_attr_mutex)) 1602 return -ERESTARTSYS; 1603 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1604 ap_perms.aqm[0], ap_perms.aqm[1], 1605 ap_perms.aqm[2], ap_perms.aqm[3]); 1606 mutex_unlock(&ap_attr_mutex); 1607 1608 return rc; 1609 } 1610 1611 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1612 { 1613 int rc = 0; 1614 struct ap_driver *ap_drv = to_ap_drv(drv); 1615 unsigned long *newaqm = (unsigned long *)data; 1616 unsigned long apm_any[BITS_TO_LONGS(AP_DEVICES)]; 1617 1618 /* 1619 * increase the driver's module refcounter to be sure it is not 1620 * going away when we invoke the callback function. 1621 */ 1622 if (!try_module_get(drv->owner)) 1623 return 0; 1624 1625 if (ap_drv->in_use) { 1626 bitmap_fill(apm_any, AP_DEVICES); 1627 rc = ap_drv->in_use(apm_any, newaqm); 1628 if (rc) 1629 rc = -EBUSY; 1630 } 1631 1632 /* release the driver's module */ 1633 module_put(drv->owner); 1634 1635 return rc; 1636 } 1637 1638 static int aqmask_commit(unsigned long *newaqm) 1639 { 1640 int rc; 1641 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1642 1643 /* 1644 * Check if any bits in the aqmask have been set which will 1645 * result in queues being removed from non-default drivers 1646 */ 1647 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1648 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1649 __verify_queue_reservations); 1650 if (rc) 1651 return rc; 1652 } 1653 1654 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1655 1656 /* 1657 * Update ap_apmask_aqmask_in_use. Note that the 1658 * ap_attr_mutex has to be obtained here. 1659 */ 1660 ap_apmask_aqmask_in_use = 1661 bitmap_full(ap_perms.apm, AP_DEVICES) && 1662 bitmap_full(ap_perms.aqm, AP_DOMAINS) ? 1663 false : true; 1664 1665 return 0; 1666 } 1667 1668 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf, 1669 size_t count) 1670 { 1671 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1672 int rc = -EINVAL, changes = 0; 1673 1674 if (mutex_lock_interruptible(&ap_attr_mutex)) 1675 return -ERESTARTSYS; 1676 1677 /* Do not allow apmask/aqmask if driver override is active */ 1678 if (ap_driver_override_ctr) 1679 goto done; 1680 1681 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1682 if (rc) 1683 goto done; 1684 1685 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1686 if (changes) 1687 rc = aqmask_commit(newaqm); 1688 1689 done: 1690 mutex_unlock(&ap_attr_mutex); 1691 if (rc) 1692 return rc; 1693 1694 if (changes) { 1695 ap_bus_revise_bindings(); 1696 ap_send_mask_changed_uevent(NULL, newaqm); 1697 } 1698 1699 return count; 1700 } 1701 1702 static BUS_ATTR_RW(aqmask); 1703 1704 static ssize_t scans_show(const struct bus_type *bus, char *buf) 1705 { 1706 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count)); 1707 } 1708 1709 static ssize_t scans_store(const struct bus_type *bus, const char *buf, 1710 size_t count) 1711 { 1712 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1713 1714 ap_bus_force_rescan(); 1715 1716 return count; 1717 } 1718 1719 static BUS_ATTR_RW(scans); 1720 1721 static ssize_t bindings_show(const struct bus_type *bus, char *buf) 1722 { 1723 int rc; 1724 unsigned int apqns, n; 1725 1726 ap_calc_bound_apqns(&apqns, &n); 1727 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1728 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns); 1729 else 1730 rc = sysfs_emit(buf, "%u/%u\n", n, apqns); 1731 1732 return rc; 1733 } 1734 1735 static BUS_ATTR_RO(bindings); 1736 1737 static ssize_t bindings_complete_count_show(const struct bus_type *bus, 1738 char *buf) 1739 { 1740 return sysfs_emit(buf, "%llu\n", 1741 atomic64_read(&ap_bindings_complete_count)); 1742 } 1743 1744 static BUS_ATTR_RO(bindings_complete_count); 1745 1746 static ssize_t features_show(const struct bus_type *bus, char *buf) 1747 { 1748 int n = 0; 1749 1750 if (!ap_qci_info->flags) /* QCI not supported */ 1751 return sysfs_emit(buf, "-\n"); 1752 1753 if (ap_qci_info->apsc) 1754 n += sysfs_emit_at(buf, n, "APSC "); 1755 if (ap_qci_info->apxa) 1756 n += sysfs_emit_at(buf, n, "APXA "); 1757 if (ap_qci_info->qact) 1758 n += sysfs_emit_at(buf, n, "QACT "); 1759 if (ap_qci_info->rc8a) 1760 n += sysfs_emit_at(buf, n, "RC8A "); 1761 if (ap_qci_info->apsb) 1762 n += sysfs_emit_at(buf, n, "APSB "); 1763 1764 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n"); 1765 1766 return n; 1767 } 1768 1769 static BUS_ATTR_RO(features); 1770 1771 static struct attribute *ap_bus_attrs[] = { 1772 &bus_attr_ap_domain.attr, 1773 &bus_attr_ap_control_domain_mask.attr, 1774 &bus_attr_ap_usage_domain_mask.attr, 1775 &bus_attr_ap_adapter_mask.attr, 1776 &bus_attr_config_time.attr, 1777 &bus_attr_poll_thread.attr, 1778 &bus_attr_ap_interrupts.attr, 1779 &bus_attr_poll_timeout.attr, 1780 &bus_attr_ap_max_domain_id.attr, 1781 &bus_attr_ap_max_adapter_id.attr, 1782 &bus_attr_apmask.attr, 1783 &bus_attr_aqmask.attr, 1784 &bus_attr_scans.attr, 1785 &bus_attr_bindings.attr, 1786 &bus_attr_bindings_complete_count.attr, 1787 &bus_attr_features.attr, 1788 NULL, 1789 }; 1790 ATTRIBUTE_GROUPS(ap_bus); 1791 1792 static const struct bus_type ap_bus_type = { 1793 .name = "ap", 1794 .bus_groups = ap_bus_groups, 1795 .match = &ap_bus_match, 1796 .uevent = &ap_uevent, 1797 .probe = ap_device_probe, 1798 .remove = ap_device_remove, 1799 }; 1800 1801 /** 1802 * ap_select_domain(): Select an AP domain if possible and we haven't 1803 * already done so before. 1804 */ 1805 static void ap_select_domain(void) 1806 { 1807 struct ap_queue_status status; 1808 int card, dom; 1809 1810 /* 1811 * Choose the default domain. Either the one specified with 1812 * the "domain=" parameter or the first domain with at least 1813 * one valid APQN. 1814 */ 1815 spin_lock_bh(&ap_domain_lock); 1816 if (ap_domain_index >= 0) { 1817 /* Domain has already been selected. */ 1818 goto out; 1819 } 1820 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1821 if (!ap_test_config_usage_domain(dom) || 1822 !test_bit_inv(dom, ap_perms.aqm)) 1823 continue; 1824 for (card = 0; card <= ap_max_adapter_id; card++) { 1825 if (!ap_test_config_card_id(card) || 1826 !test_bit_inv(card, ap_perms.apm)) 1827 continue; 1828 status = ap_test_queue(AP_MKQID(card, dom), 1829 ap_apft_available(), 1830 NULL); 1831 if (status.response_code == AP_RESPONSE_NORMAL) 1832 break; 1833 } 1834 if (card <= ap_max_adapter_id) 1835 break; 1836 } 1837 if (dom <= ap_max_domain_id) { 1838 ap_domain_index = dom; 1839 AP_DBF_INFO("%s new default domain is %d\n", 1840 __func__, ap_domain_index); 1841 } 1842 out: 1843 spin_unlock_bh(&ap_domain_lock); 1844 } 1845 1846 /* 1847 * This function checks the type and returns either 0 for not 1848 * supported or the highest compatible type value (which may 1849 * include the input type value). 1850 */ 1851 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1852 { 1853 int comp_type = 0; 1854 1855 /* < CEX4 is not supported */ 1856 if (rawtype < AP_DEVICE_TYPE_CEX4) { 1857 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1858 __func__, AP_QID_CARD(qid), 1859 AP_QID_QUEUE(qid), rawtype); 1860 return 0; 1861 } 1862 /* up to CEX8 known and fully supported */ 1863 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1864 return rawtype; 1865 /* 1866 * unknown new type > CEX8, check for compatibility 1867 * to the highest known and supported type which is 1868 * currently CEX8 with the help of the QACT function. 1869 */ 1870 if (ap_qact_available()) { 1871 struct ap_queue_status status; 1872 union ap_qact_ap_info apinfo = {0}; 1873 1874 apinfo.mode = (func >> 26) & 0x07; 1875 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1876 status = ap_qact(qid, 0, &apinfo); 1877 if (status.response_code == AP_RESPONSE_NORMAL && 1878 apinfo.cat >= AP_DEVICE_TYPE_CEX4 && 1879 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1880 comp_type = apinfo.cat; 1881 } 1882 if (!comp_type) 1883 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1884 __func__, AP_QID_CARD(qid), 1885 AP_QID_QUEUE(qid), rawtype); 1886 else if (comp_type != rawtype) 1887 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1888 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1889 rawtype, comp_type); 1890 return comp_type; 1891 } 1892 1893 /* 1894 * Helper function to be used with bus_find_dev 1895 * matches for the card device with the given id 1896 */ 1897 static int __match_card_device_with_id(struct device *dev, const void *data) 1898 { 1899 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1900 } 1901 1902 /* 1903 * Helper function to be used with bus_find_dev 1904 * matches for the queue device with a given qid 1905 */ 1906 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1907 { 1908 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1909 } 1910 1911 /* 1912 * Helper function to be used with bus_find_dev 1913 * matches any queue device with given queue id 1914 */ 1915 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1916 { 1917 return is_queue_dev(dev) && 1918 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1919 } 1920 1921 /* Helper function for notify_config_changed */ 1922 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1923 { 1924 struct ap_driver *ap_drv = to_ap_drv(drv); 1925 1926 if (try_module_get(drv->owner)) { 1927 if (ap_drv->on_config_changed) 1928 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1929 module_put(drv->owner); 1930 } 1931 1932 return 0; 1933 } 1934 1935 /* Notify all drivers about an qci config change */ 1936 static inline void notify_config_changed(void) 1937 { 1938 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1939 __drv_notify_config_changed); 1940 } 1941 1942 /* Helper function for notify_scan_complete */ 1943 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1944 { 1945 struct ap_driver *ap_drv = to_ap_drv(drv); 1946 1947 if (try_module_get(drv->owner)) { 1948 if (ap_drv->on_scan_complete) 1949 ap_drv->on_scan_complete(ap_qci_info, 1950 ap_qci_info_old); 1951 module_put(drv->owner); 1952 } 1953 1954 return 0; 1955 } 1956 1957 /* Notify all drivers about bus scan complete */ 1958 static inline void notify_scan_complete(void) 1959 { 1960 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1961 __drv_notify_scan_complete); 1962 } 1963 1964 /* 1965 * Helper function for ap_scan_bus(). 1966 * Remove card device and associated queue devices. 1967 */ 1968 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1969 { 1970 bus_for_each_dev(&ap_bus_type, NULL, 1971 (void *)(long)ac->id, 1972 __ap_queue_devices_with_id_unregister); 1973 device_unregister(&ac->ap_dev.device); 1974 } 1975 1976 /* 1977 * Helper function for ap_scan_bus(). 1978 * Does the scan bus job for all the domains within 1979 * a valid adapter given by an ap_card ptr. 1980 */ 1981 static inline void ap_scan_domains(struct ap_card *ac) 1982 { 1983 struct ap_tapq_hwinfo hwinfo; 1984 bool decfg, chkstop; 1985 struct ap_queue *aq; 1986 struct device *dev; 1987 ap_qid_t qid; 1988 int rc, dom; 1989 1990 /* 1991 * Go through the configuration for the domains and compare them 1992 * to the existing queue devices. Also take care of the config 1993 * and error state for the queue devices. 1994 */ 1995 1996 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1997 qid = AP_MKQID(ac->id, dom); 1998 dev = bus_find_device(&ap_bus_type, NULL, 1999 (void *)(long)qid, 2000 __match_queue_device_with_qid); 2001 aq = dev ? to_ap_queue(dev) : NULL; 2002 if (!ap_test_config_usage_domain(dom)) { 2003 if (dev) { 2004 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 2005 __func__, ac->id, dom); 2006 device_unregister(dev); 2007 } 2008 goto put_dev_and_continue; 2009 } 2010 /* domain is valid, get info from this APQN */ 2011 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop); 2012 switch (rc) { 2013 case -1: 2014 if (dev) { 2015 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 2016 __func__, ac->id, dom); 2017 device_unregister(dev); 2018 } 2019 fallthrough; 2020 case 0: 2021 goto put_dev_and_continue; 2022 default: 2023 break; 2024 } 2025 /* if no queue device exists, create a new one */ 2026 if (!aq) { 2027 aq = ap_queue_create(qid, ac); 2028 if (!aq) { 2029 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 2030 __func__, ac->id, dom); 2031 continue; 2032 } 2033 aq->config = !decfg; 2034 aq->chkstop = chkstop; 2035 aq->se_bstate = hwinfo.bs; 2036 dev = &aq->ap_dev.device; 2037 dev->bus = &ap_bus_type; 2038 dev->parent = &ac->ap_dev.device; 2039 dev_set_name(dev, "%02x.%04x", ac->id, dom); 2040 /* register queue device */ 2041 rc = device_register(dev); 2042 if (rc) { 2043 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 2044 __func__, ac->id, dom); 2045 goto put_dev_and_continue; 2046 } 2047 /* get it and thus adjust reference counter */ 2048 get_device(dev); 2049 if (decfg) { 2050 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 2051 __func__, ac->id, dom); 2052 } else if (chkstop) { 2053 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 2054 __func__, ac->id, dom); 2055 } else { 2056 /* nudge the queue's state machine */ 2057 ap_queue_init_state(aq); 2058 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 2059 __func__, ac->id, dom); 2060 } 2061 goto put_dev_and_continue; 2062 } 2063 /* handle state changes on already existing queue device */ 2064 spin_lock_bh(&aq->lock); 2065 /* SE bind state */ 2066 aq->se_bstate = hwinfo.bs; 2067 /* checkstop state */ 2068 if (chkstop && !aq->chkstop) { 2069 /* checkstop on */ 2070 aq->chkstop = true; 2071 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 2072 aq->dev_state = AP_DEV_STATE_ERROR; 2073 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 2074 } 2075 spin_unlock_bh(&aq->lock); 2076 pr_debug("(%d,%d) queue dev checkstop on\n", 2077 ac->id, dom); 2078 /* 'receive' pending messages with -EAGAIN */ 2079 ap_flush_queue(aq); 2080 goto put_dev_and_continue; 2081 } else if (!chkstop && aq->chkstop) { 2082 /* checkstop off */ 2083 aq->chkstop = false; 2084 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 2085 _ap_queue_init_state(aq); 2086 spin_unlock_bh(&aq->lock); 2087 pr_debug("(%d,%d) queue dev checkstop off\n", 2088 ac->id, dom); 2089 goto put_dev_and_continue; 2090 } 2091 /* config state change */ 2092 if (decfg && aq->config) { 2093 /* config off this queue device */ 2094 aq->config = false; 2095 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 2096 aq->dev_state = AP_DEV_STATE_ERROR; 2097 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 2098 } 2099 spin_unlock_bh(&aq->lock); 2100 pr_debug("(%d,%d) queue dev config off\n", 2101 ac->id, dom); 2102 ap_send_config_uevent(&aq->ap_dev, aq->config); 2103 /* 'receive' pending messages with -EAGAIN */ 2104 ap_flush_queue(aq); 2105 goto put_dev_and_continue; 2106 } else if (!decfg && !aq->config) { 2107 /* config on this queue device */ 2108 aq->config = true; 2109 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 2110 _ap_queue_init_state(aq); 2111 spin_unlock_bh(&aq->lock); 2112 pr_debug("(%d,%d) queue dev config on\n", 2113 ac->id, dom); 2114 ap_send_config_uevent(&aq->ap_dev, aq->config); 2115 goto put_dev_and_continue; 2116 } 2117 /* handle other error states */ 2118 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 2119 spin_unlock_bh(&aq->lock); 2120 /* 'receive' pending messages with -EAGAIN */ 2121 ap_flush_queue(aq); 2122 /* re-init (with reset) the queue device */ 2123 ap_queue_init_state(aq); 2124 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 2125 __func__, ac->id, dom); 2126 goto put_dev_and_continue; 2127 } 2128 spin_unlock_bh(&aq->lock); 2129 put_dev_and_continue: 2130 put_device(dev); 2131 } 2132 } 2133 2134 /* 2135 * Helper function for ap_scan_bus(). 2136 * Does the scan bus job for the given adapter id. 2137 */ 2138 static inline void ap_scan_adapter(int ap) 2139 { 2140 struct ap_tapq_hwinfo hwinfo; 2141 int rc, dom, comp_type; 2142 bool decfg, chkstop; 2143 struct ap_card *ac; 2144 struct device *dev; 2145 ap_qid_t qid; 2146 2147 /* Is there currently a card device for this adapter ? */ 2148 dev = bus_find_device(&ap_bus_type, NULL, 2149 (void *)(long)ap, 2150 __match_card_device_with_id); 2151 ac = dev ? to_ap_card(dev) : NULL; 2152 2153 /* Adapter not in configuration ? */ 2154 if (!ap_test_config_card_id(ap)) { 2155 if (ac) { 2156 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 2157 __func__, ap); 2158 ap_scan_rm_card_dev_and_queue_devs(ac); 2159 put_device(dev); 2160 } 2161 return; 2162 } 2163 2164 /* 2165 * Adapter ap is valid in the current configuration. So do some checks: 2166 * If no card device exists, build one. If a card device exists, check 2167 * for type and functions changed. For all this we need to find a valid 2168 * APQN first. 2169 */ 2170 2171 for (dom = 0; dom <= ap_max_domain_id; dom++) 2172 if (ap_test_config_usage_domain(dom)) { 2173 qid = AP_MKQID(ap, dom); 2174 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0) 2175 break; 2176 } 2177 if (dom > ap_max_domain_id) { 2178 /* Could not find one valid APQN for this adapter */ 2179 if (ac) { 2180 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 2181 __func__, ap); 2182 ap_scan_rm_card_dev_and_queue_devs(ac); 2183 put_device(dev); 2184 } else { 2185 pr_debug("(%d) no type info (no APQN found), ignored\n", 2186 ap); 2187 } 2188 return; 2189 } 2190 if (!hwinfo.at) { 2191 /* No apdater type info available, an unusable adapter */ 2192 if (ac) { 2193 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 2194 __func__, ap); 2195 ap_scan_rm_card_dev_and_queue_devs(ac); 2196 put_device(dev); 2197 } else { 2198 pr_debug("(%d) no valid type (0) info, ignored\n", ap); 2199 } 2200 return; 2201 } 2202 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */ 2203 if (ac) { 2204 /* Check APQN against existing card device for changes */ 2205 if (ac->hwinfo.at != hwinfo.at) { 2206 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 2207 __func__, ap, hwinfo.at); 2208 ap_scan_rm_card_dev_and_queue_devs(ac); 2209 put_device(dev); 2210 ac = NULL; 2211 } else if (ac->hwinfo.fac != hwinfo.fac) { 2212 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 2213 __func__, ap, hwinfo.fac); 2214 ap_scan_rm_card_dev_and_queue_devs(ac); 2215 put_device(dev); 2216 ac = NULL; 2217 } else { 2218 /* handle checkstop state change */ 2219 if (chkstop && !ac->chkstop) { 2220 /* checkstop on */ 2221 ac->chkstop = true; 2222 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2223 __func__, ap); 2224 } else if (!chkstop && ac->chkstop) { 2225 /* checkstop off */ 2226 ac->chkstop = false; 2227 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2228 __func__, ap); 2229 } 2230 /* handle config state change */ 2231 if (decfg && ac->config) { 2232 ac->config = false; 2233 AP_DBF_INFO("%s(%d) card dev config off\n", 2234 __func__, ap); 2235 ap_send_config_uevent(&ac->ap_dev, ac->config); 2236 } else if (!decfg && !ac->config) { 2237 ac->config = true; 2238 AP_DBF_INFO("%s(%d) card dev config on\n", 2239 __func__, ap); 2240 ap_send_config_uevent(&ac->ap_dev, ac->config); 2241 } 2242 } 2243 } 2244 2245 if (!ac) { 2246 /* Build a new card device */ 2247 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac); 2248 if (!comp_type) { 2249 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2250 __func__, ap, hwinfo.at); 2251 return; 2252 } 2253 ac = ap_card_create(ap, hwinfo, comp_type); 2254 if (!ac) { 2255 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2256 __func__, ap); 2257 return; 2258 } 2259 ac->config = !decfg; 2260 ac->chkstop = chkstop; 2261 dev = &ac->ap_dev.device; 2262 dev->bus = &ap_bus_type; 2263 dev->parent = ap_root_device; 2264 dev_set_name(dev, "card%02x", ap); 2265 /* maybe enlarge ap_max_msg_size to support this card */ 2266 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2267 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2268 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2269 __func__, ap, 2270 atomic_read(&ap_max_msg_size)); 2271 } 2272 /* Register the new card device with AP bus */ 2273 rc = device_register(dev); 2274 if (rc) { 2275 AP_DBF_WARN("%s(%d) device_register() failed\n", 2276 __func__, ap); 2277 put_device(dev); 2278 return; 2279 } 2280 /* get it and thus adjust reference counter */ 2281 get_device(dev); 2282 if (decfg) 2283 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2284 __func__, ap, hwinfo.at, hwinfo.fac); 2285 else if (chkstop) 2286 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2287 __func__, ap, hwinfo.at, hwinfo.fac); 2288 else 2289 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2290 __func__, ap, hwinfo.at, hwinfo.fac); 2291 } 2292 2293 /* Verify the domains and the queue devices for this card */ 2294 ap_scan_domains(ac); 2295 2296 /* release the card device */ 2297 put_device(&ac->ap_dev.device); 2298 } 2299 2300 /** 2301 * ap_get_configuration - get the host AP configuration 2302 * 2303 * Stores the host AP configuration information returned from the previous call 2304 * to Query Configuration Information (QCI), then retrieves and stores the 2305 * current AP configuration returned from QCI. 2306 * 2307 * Return: true if the host AP configuration changed between calls to QCI; 2308 * otherwise, return false. 2309 */ 2310 static bool ap_get_configuration(void) 2311 { 2312 if (!ap_qci_info->flags) /* QCI not supported */ 2313 return false; 2314 2315 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2316 ap_qci(ap_qci_info); 2317 2318 return memcmp(ap_qci_info, ap_qci_info_old, 2319 sizeof(struct ap_config_info)) != 0; 2320 } 2321 2322 /* 2323 * ap_config_has_new_aps - Check current against old qci info if 2324 * new adapters have appeared. Returns true if at least one new 2325 * adapter in the apm mask is showing up. Existing adapters or 2326 * receding adapters are not counted. 2327 */ 2328 static bool ap_config_has_new_aps(void) 2329 { 2330 2331 unsigned long m[BITS_TO_LONGS(AP_DEVICES)]; 2332 2333 if (!ap_qci_info->flags) 2334 return false; 2335 2336 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm, 2337 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES); 2338 if (!bitmap_empty(m, AP_DEVICES)) 2339 return true; 2340 2341 return false; 2342 } 2343 2344 /* 2345 * ap_config_has_new_doms - Check current against old qci info if 2346 * new (usage) domains have appeared. Returns true if at least one 2347 * new domain in the aqm mask is showing up. Existing domains or 2348 * receding domains are not counted. 2349 */ 2350 static bool ap_config_has_new_doms(void) 2351 { 2352 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)]; 2353 2354 if (!ap_qci_info->flags) 2355 return false; 2356 2357 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm, 2358 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS); 2359 if (!bitmap_empty(m, AP_DOMAINS)) 2360 return true; 2361 2362 return false; 2363 } 2364 2365 /** 2366 * ap_scan_bus(): Scan the AP bus for new devices 2367 * Always run under mutex ap_scan_bus_mutex protection 2368 * which needs to get locked/unlocked by the caller! 2369 * Returns true if any config change has been detected 2370 * during the scan, otherwise false. 2371 */ 2372 static bool ap_scan_bus(void) 2373 { 2374 bool config_changed; 2375 int ap; 2376 2377 pr_debug(">\n"); 2378 2379 /* (re-)fetch configuration via QCI */ 2380 config_changed = ap_get_configuration(); 2381 if (config_changed) { 2382 if (ap_config_has_new_aps() || ap_config_has_new_doms()) { 2383 /* 2384 * Appearance of new adapters and/or domains need to 2385 * build new ap devices which need to get bound to an 2386 * device driver. Thus reset the APQN bindings complete 2387 * completion. 2388 */ 2389 reinit_completion(&ap_apqn_bindings_complete); 2390 } 2391 /* post a config change notify */ 2392 notify_config_changed(); 2393 } 2394 ap_select_domain(); 2395 2396 /* loop over all possible adapters */ 2397 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2398 ap_scan_adapter(ap); 2399 2400 /* scan complete notify */ 2401 if (config_changed) 2402 notify_scan_complete(); 2403 2404 /* check if there is at least one queue available with default domain */ 2405 if (ap_domain_index >= 0) { 2406 struct device *dev = 2407 bus_find_device(&ap_bus_type, NULL, 2408 (void *)(long)ap_domain_index, 2409 __match_queue_device_with_queue_id); 2410 if (dev) 2411 put_device(dev); 2412 else 2413 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2414 __func__, ap_domain_index); 2415 } 2416 2417 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2418 pr_debug("init scan complete\n"); 2419 ap_send_init_scan_done_uevent(); 2420 } 2421 2422 ap_check_bindings_complete(); 2423 2424 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 2425 2426 pr_debug("< config_changed=%d\n", config_changed); 2427 2428 return config_changed; 2429 } 2430 2431 /* 2432 * Callback for the ap_scan_bus_timer 2433 * Runs periodically, workqueue timer (ap_scan_bus_time) 2434 */ 2435 static void ap_scan_bus_timer_callback(struct timer_list *unused) 2436 { 2437 /* 2438 * schedule work into the system long wq which when 2439 * the work is finally executed, calls the AP bus scan. 2440 */ 2441 queue_work(system_long_wq, &ap_scan_bus_work); 2442 } 2443 2444 /* 2445 * Callback for the ap_scan_bus_work 2446 */ 2447 static void ap_scan_bus_wq_callback(struct work_struct *unused) 2448 { 2449 /* 2450 * Try to invoke an ap_scan_bus(). If the mutex acquisition 2451 * fails there is currently another task already running the 2452 * AP scan bus and there is no need to wait and re-trigger the 2453 * scan again. Please note at the end of the scan bus function 2454 * the AP scan bus timer is re-armed which triggers then the 2455 * ap_scan_bus_timer_callback which enqueues a work into the 2456 * system_long_wq which invokes this function here again. 2457 */ 2458 if (mutex_trylock(&ap_scan_bus_mutex)) { 2459 ap_scan_bus_task = current; 2460 ap_scan_bus_result = ap_scan_bus(); 2461 ap_scan_bus_task = NULL; 2462 mutex_unlock(&ap_scan_bus_mutex); 2463 } 2464 } 2465 2466 static inline void __exit ap_async_exit(void) 2467 { 2468 if (ap_thread_flag) 2469 ap_poll_thread_stop(); 2470 chsc_notifier_unregister(&ap_bus_nb); 2471 cancel_work(&ap_scan_bus_work); 2472 hrtimer_cancel(&ap_poll_timer); 2473 timer_delete(&ap_scan_bus_timer); 2474 } 2475 2476 static inline int __init ap_async_init(void) 2477 { 2478 int rc; 2479 2480 /* Setup the AP bus rescan timer. */ 2481 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0); 2482 2483 /* 2484 * Setup the high resolution poll timer. 2485 * If we are running under z/VM adjust polling to z/VM polling rate. 2486 */ 2487 if (machine_is_vm()) 2488 poll_high_timeout = 1500000; 2489 hrtimer_setup(&ap_poll_timer, ap_poll_timeout, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2490 2491 queue_work(system_long_wq, &ap_scan_bus_work); 2492 2493 rc = chsc_notifier_register(&ap_bus_nb); 2494 if (rc) 2495 goto out; 2496 2497 /* Start the low priority AP bus poll thread. */ 2498 if (!ap_thread_flag) 2499 return 0; 2500 2501 rc = ap_poll_thread_start(); 2502 if (rc) 2503 goto out_notifier; 2504 2505 return 0; 2506 2507 out_notifier: 2508 chsc_notifier_unregister(&ap_bus_nb); 2509 out: 2510 cancel_work(&ap_scan_bus_work); 2511 hrtimer_cancel(&ap_poll_timer); 2512 timer_delete(&ap_scan_bus_timer); 2513 return rc; 2514 } 2515 2516 static inline void ap_irq_exit(void) 2517 { 2518 if (ap_irq_flag) 2519 unregister_adapter_interrupt(&ap_airq); 2520 } 2521 2522 static inline int __init ap_irq_init(void) 2523 { 2524 int rc; 2525 2526 if (!ap_interrupts_available() || !ap_useirq) 2527 return 0; 2528 2529 rc = register_adapter_interrupt(&ap_airq); 2530 ap_irq_flag = (rc == 0); 2531 2532 return rc; 2533 } 2534 2535 static inline void ap_debug_exit(void) 2536 { 2537 debug_unregister(ap_dbf_info); 2538 } 2539 2540 static inline int __init ap_debug_init(void) 2541 { 2542 ap_dbf_info = debug_register("ap", 2, 1, 2543 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2544 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2545 debug_set_level(ap_dbf_info, DBF_ERR); 2546 2547 return 0; 2548 } 2549 2550 static void __init ap_perms_init(void) 2551 { 2552 /* all resources usable if no kernel parameter string given */ 2553 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2554 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2555 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2556 2557 /* apm kernel parameter string */ 2558 if (apm_str) { 2559 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2560 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2561 &ap_attr_mutex); 2562 } 2563 2564 /* aqm kernel parameter string */ 2565 if (aqm_str) { 2566 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2567 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2568 &ap_attr_mutex); 2569 } 2570 } 2571 2572 /** 2573 * ap_module_init(): The module initialization code. 2574 * 2575 * Initializes the module. 2576 */ 2577 static int __init ap_module_init(void) 2578 { 2579 int rc; 2580 2581 if (!ap_instructions_available()) { 2582 pr_warn("The hardware system does not support AP instructions\n"); 2583 return -ENODEV; 2584 } 2585 2586 rc = ap_debug_init(); 2587 if (rc) 2588 return rc; 2589 2590 /* init ap_queue hashtable */ 2591 hash_init(ap_queues); 2592 2593 /* create ap msg buffer memory pool */ 2594 ap_msg_pool = mempool_create_kmalloc_pool(ap_msg_pool_min_items, 2595 AP_DEFAULT_MAX_MSG_SIZE); 2596 if (!ap_msg_pool) { 2597 rc = -ENOMEM; 2598 goto out; 2599 } 2600 2601 /* set up the AP permissions (ioctls, ap and aq masks) */ 2602 ap_perms_init(); 2603 2604 /* Get AP configuration data if available */ 2605 ap_init_qci_info(); 2606 2607 /* check default domain setting */ 2608 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2609 (ap_domain_index >= 0 && 2610 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2611 pr_warn("%d is not a valid cryptographic domain\n", 2612 ap_domain_index); 2613 ap_domain_index = -1; 2614 } 2615 2616 /* Create /sys/bus/ap. */ 2617 rc = bus_register(&ap_bus_type); 2618 if (rc) 2619 goto out; 2620 2621 /* Create /sys/devices/ap. */ 2622 ap_root_device = root_device_register("ap"); 2623 rc = PTR_ERR_OR_ZERO(ap_root_device); 2624 if (rc) 2625 goto out_bus; 2626 ap_root_device->bus = &ap_bus_type; 2627 2628 /* enable interrupts if available */ 2629 rc = ap_irq_init(); 2630 if (rc) 2631 goto out_device; 2632 2633 /* Setup asynchronous work (timers, workqueue, etc). */ 2634 rc = ap_async_init(); 2635 if (rc) 2636 goto out_irq; 2637 2638 return 0; 2639 2640 out_irq: 2641 ap_irq_exit(); 2642 out_device: 2643 root_device_unregister(ap_root_device); 2644 out_bus: 2645 bus_unregister(&ap_bus_type); 2646 out: 2647 mempool_destroy(ap_msg_pool); 2648 ap_debug_exit(); 2649 return rc; 2650 } 2651 2652 static void __exit ap_module_exit(void) 2653 { 2654 ap_async_exit(); 2655 ap_irq_exit(); 2656 root_device_unregister(ap_root_device); 2657 bus_unregister(&ap_bus_type); 2658 mempool_destroy(ap_msg_pool); 2659 ap_debug_exit(); 2660 } 2661 2662 module_init(ap_module_init); 2663 module_exit(ap_module_exit); 2664