xref: /linux/drivers/s390/crypto/ap_bus.c (revision 6a4aee277740d04ac0fd54cfa17cc28261932ddc)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2023
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41 #include <asm/uv.h>
42 
43 #include "ap_bus.h"
44 #include "ap_debug.h"
45 
46 /*
47  * Module parameters; note though this file itself isn't modular.
48  */
49 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
50 static DEFINE_SPINLOCK(ap_domain_lock);
51 module_param_named(domain, ap_domain_index, int, 0440);
52 MODULE_PARM_DESC(domain, "domain index for ap devices");
53 EXPORT_SYMBOL(ap_domain_index);
54 
55 static int ap_thread_flag;
56 module_param_named(poll_thread, ap_thread_flag, int, 0440);
57 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
58 
59 static char *apm_str;
60 module_param_named(apmask, apm_str, charp, 0440);
61 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
62 
63 static char *aqm_str;
64 module_param_named(aqmask, aqm_str, charp, 0440);
65 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
66 
67 static int ap_useirq = 1;
68 module_param_named(useirq, ap_useirq, int, 0440);
69 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
70 
71 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
72 EXPORT_SYMBOL(ap_max_msg_size);
73 
74 static struct device *ap_root_device;
75 
76 /* Hashtable of all queue devices on the AP bus */
77 DEFINE_HASHTABLE(ap_queues, 8);
78 /* lock used for the ap_queues hashtable */
79 DEFINE_SPINLOCK(ap_queues_lock);
80 
81 /* Default permissions (ioctl, card and domain masking) */
82 struct ap_perms ap_perms;
83 EXPORT_SYMBOL(ap_perms);
84 DEFINE_MUTEX(ap_perms_mutex);
85 EXPORT_SYMBOL(ap_perms_mutex);
86 
87 /* # of bindings complete since init */
88 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
89 
90 /* completion for APQN bindings complete */
91 static DECLARE_COMPLETION(ap_apqn_bindings_complete);
92 
93 static struct ap_config_info *ap_qci_info;
94 static struct ap_config_info *ap_qci_info_old;
95 
96 /*
97  * AP bus related debug feature things.
98  */
99 debug_info_t *ap_dbf_info;
100 
101 /*
102  * AP bus rescan related things.
103  */
104 static bool ap_scan_bus(void);
105 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
106 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
107 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
108 static int ap_scan_bus_time = AP_CONFIG_TIME;
109 static struct timer_list ap_scan_bus_timer;
110 static void ap_scan_bus_wq_callback(struct work_struct *);
111 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
112 
113 /*
114  * Tasklet & timer for AP request polling and interrupts
115  */
116 static void ap_tasklet_fn(unsigned long);
117 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
118 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
119 static struct task_struct *ap_poll_kthread;
120 static DEFINE_MUTEX(ap_poll_thread_mutex);
121 static DEFINE_SPINLOCK(ap_poll_timer_lock);
122 static struct hrtimer ap_poll_timer;
123 /*
124  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
125  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
126  */
127 static unsigned long poll_high_timeout = 250000UL;
128 
129 /*
130  * Some state machine states only require a low frequency polling.
131  * We use 25 Hz frequency for these.
132  */
133 static unsigned long poll_low_timeout = 40000000UL;
134 
135 /* Maximum domain id, if not given via qci */
136 static int ap_max_domain_id = 15;
137 /* Maximum adapter id, if not given via qci */
138 static int ap_max_adapter_id = 63;
139 
140 static const struct bus_type ap_bus_type;
141 
142 /* Adapter interrupt definitions */
143 static void ap_interrupt_handler(struct airq_struct *airq,
144 				 struct tpi_info *tpi_info);
145 
146 static bool ap_irq_flag;
147 
148 static struct airq_struct ap_airq = {
149 	.handler = ap_interrupt_handler,
150 	.isc = AP_ISC,
151 };
152 
153 /**
154  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
155  *
156  * Returns the address of the local-summary-indicator of the adapter
157  * interrupt handler for AP, or NULL if adapter interrupts are not
158  * available.
159  */
160 void *ap_airq_ptr(void)
161 {
162 	if (ap_irq_flag)
163 		return ap_airq.lsi_ptr;
164 	return NULL;
165 }
166 
167 /**
168  * ap_interrupts_available(): Test if AP interrupts are available.
169  *
170  * Returns 1 if AP interrupts are available.
171  */
172 static int ap_interrupts_available(void)
173 {
174 	return test_facility(65);
175 }
176 
177 /**
178  * ap_qci_available(): Test if AP configuration
179  * information can be queried via QCI subfunction.
180  *
181  * Returns 1 if subfunction PQAP(QCI) is available.
182  */
183 static int ap_qci_available(void)
184 {
185 	return test_facility(12);
186 }
187 
188 /**
189  * ap_apft_available(): Test if AP facilities test (APFT)
190  * facility is available.
191  *
192  * Returns 1 if APFT is available.
193  */
194 static int ap_apft_available(void)
195 {
196 	return test_facility(15);
197 }
198 
199 /*
200  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
201  *
202  * Returns 1 if the QACT subfunction is available.
203  */
204 static inline int ap_qact_available(void)
205 {
206 	if (ap_qci_info)
207 		return ap_qci_info->qact;
208 	return 0;
209 }
210 
211 /*
212  * ap_sb_available(): Test if the AP secure binding facility is available.
213  *
214  * Returns 1 if secure binding facility is available.
215  */
216 int ap_sb_available(void)
217 {
218 	if (ap_qci_info)
219 		return ap_qci_info->apsb;
220 	return 0;
221 }
222 
223 /*
224  * ap_is_se_guest(): Check for SE guest with AP pass-through support.
225  */
226 bool ap_is_se_guest(void)
227 {
228 	return is_prot_virt_guest() && ap_sb_available();
229 }
230 EXPORT_SYMBOL(ap_is_se_guest);
231 
232 /*
233  * ap_fetch_qci_info(): Fetch cryptographic config info
234  *
235  * Returns the ap configuration info fetched via PQAP(QCI).
236  * On success 0 is returned, on failure a negative errno
237  * is returned, e.g. if the PQAP(QCI) instruction is not
238  * available, the return value will be -EOPNOTSUPP.
239  */
240 static inline int ap_fetch_qci_info(struct ap_config_info *info)
241 {
242 	if (!ap_qci_available())
243 		return -EOPNOTSUPP;
244 	if (!info)
245 		return -EINVAL;
246 	return ap_qci(info);
247 }
248 
249 /**
250  * ap_init_qci_info(): Allocate and query qci config info.
251  * Does also update the static variables ap_max_domain_id
252  * and ap_max_adapter_id if this info is available.
253  */
254 static void __init ap_init_qci_info(void)
255 {
256 	if (!ap_qci_available()) {
257 		AP_DBF_INFO("%s QCI not supported\n", __func__);
258 		return;
259 	}
260 
261 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
262 	if (!ap_qci_info)
263 		return;
264 	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
265 	if (!ap_qci_info_old) {
266 		kfree(ap_qci_info);
267 		ap_qci_info = NULL;
268 		return;
269 	}
270 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
271 		kfree(ap_qci_info);
272 		kfree(ap_qci_info_old);
273 		ap_qci_info = NULL;
274 		ap_qci_info_old = NULL;
275 		return;
276 	}
277 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
278 
279 	if (ap_qci_info->apxa) {
280 		if (ap_qci_info->na) {
281 			ap_max_adapter_id = ap_qci_info->na;
282 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
283 				    __func__, ap_max_adapter_id);
284 		}
285 		if (ap_qci_info->nd) {
286 			ap_max_domain_id = ap_qci_info->nd;
287 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
288 				    __func__, ap_max_domain_id);
289 		}
290 	}
291 
292 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
293 }
294 
295 /*
296  * ap_test_config(): helper function to extract the nrth bit
297  *		     within the unsigned int array field.
298  */
299 static inline int ap_test_config(unsigned int *field, unsigned int nr)
300 {
301 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
302 }
303 
304 /*
305  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
306  *
307  * Returns 0 if the card is not configured
308  *	   1 if the card is configured or
309  *	     if the configuration information is not available
310  */
311 static inline int ap_test_config_card_id(unsigned int id)
312 {
313 	if (id > ap_max_adapter_id)
314 		return 0;
315 	if (ap_qci_info)
316 		return ap_test_config(ap_qci_info->apm, id);
317 	return 1;
318 }
319 
320 /*
321  * ap_test_config_usage_domain(): Test, whether an AP usage domain
322  * is configured.
323  *
324  * Returns 0 if the usage domain is not configured
325  *	   1 if the usage domain is configured or
326  *	     if the configuration information is not available
327  */
328 int ap_test_config_usage_domain(unsigned int domain)
329 {
330 	if (domain > ap_max_domain_id)
331 		return 0;
332 	if (ap_qci_info)
333 		return ap_test_config(ap_qci_info->aqm, domain);
334 	return 1;
335 }
336 EXPORT_SYMBOL(ap_test_config_usage_domain);
337 
338 /*
339  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
340  * is configured.
341  * @domain AP control domain ID
342  *
343  * Returns 1 if the control domain is configured
344  *	   0 in all other cases
345  */
346 int ap_test_config_ctrl_domain(unsigned int domain)
347 {
348 	if (!ap_qci_info || domain > ap_max_domain_id)
349 		return 0;
350 	return ap_test_config(ap_qci_info->adm, domain);
351 }
352 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
353 
354 /*
355  * ap_queue_info(): Check and get AP queue info.
356  * Returns: 1 if APQN exists and info is filled,
357  *	    0 if APQN seems to exist but there is no info
358  *	      available (eg. caused by an asynch pending error)
359  *	   -1 invalid APQN, TAPQ error or AP queue status which
360  *	      indicates there is no APQN.
361  */
362 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
363 			 bool *decfg, bool *cstop)
364 {
365 	struct ap_queue_status status;
366 
367 	hwinfo->value = 0;
368 
369 	/* make sure we don't run into a specifiation exception */
370 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
371 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
372 		return -1;
373 
374 	/* call TAPQ on this APQN */
375 	status = ap_test_queue(qid, ap_apft_available(), hwinfo);
376 
377 	switch (status.response_code) {
378 	case AP_RESPONSE_NORMAL:
379 	case AP_RESPONSE_RESET_IN_PROGRESS:
380 	case AP_RESPONSE_DECONFIGURED:
381 	case AP_RESPONSE_CHECKSTOPPED:
382 	case AP_RESPONSE_BUSY:
383 		/* For all these RCs the tapq info should be available */
384 		break;
385 	default:
386 		/* On a pending async error the info should be available */
387 		if (!status.async)
388 			return -1;
389 		break;
390 	}
391 
392 	/* There should be at least one of the mode bits set */
393 	if (WARN_ON_ONCE(!hwinfo->value))
394 		return 0;
395 
396 	*decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
397 	*cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
398 
399 	return 1;
400 }
401 
402 void ap_wait(enum ap_sm_wait wait)
403 {
404 	ktime_t hr_time;
405 
406 	switch (wait) {
407 	case AP_SM_WAIT_AGAIN:
408 	case AP_SM_WAIT_INTERRUPT:
409 		if (ap_irq_flag)
410 			break;
411 		if (ap_poll_kthread) {
412 			wake_up(&ap_poll_wait);
413 			break;
414 		}
415 		fallthrough;
416 	case AP_SM_WAIT_LOW_TIMEOUT:
417 	case AP_SM_WAIT_HIGH_TIMEOUT:
418 		spin_lock_bh(&ap_poll_timer_lock);
419 		if (!hrtimer_is_queued(&ap_poll_timer)) {
420 			hr_time =
421 				wait == AP_SM_WAIT_LOW_TIMEOUT ?
422 				poll_low_timeout : poll_high_timeout;
423 			hrtimer_forward_now(&ap_poll_timer, hr_time);
424 			hrtimer_restart(&ap_poll_timer);
425 		}
426 		spin_unlock_bh(&ap_poll_timer_lock);
427 		break;
428 	case AP_SM_WAIT_NONE:
429 	default:
430 		break;
431 	}
432 }
433 
434 /**
435  * ap_request_timeout(): Handling of request timeouts
436  * @t: timer making this callback
437  *
438  * Handles request timeouts.
439  */
440 void ap_request_timeout(struct timer_list *t)
441 {
442 	struct ap_queue *aq = from_timer(aq, t, timeout);
443 
444 	spin_lock_bh(&aq->lock);
445 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
446 	spin_unlock_bh(&aq->lock);
447 }
448 
449 /**
450  * ap_poll_timeout(): AP receive polling for finished AP requests.
451  * @unused: Unused pointer.
452  *
453  * Schedules the AP tasklet using a high resolution timer.
454  */
455 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
456 {
457 	tasklet_schedule(&ap_tasklet);
458 	return HRTIMER_NORESTART;
459 }
460 
461 /**
462  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
463  * @airq: pointer to adapter interrupt descriptor
464  * @tpi_info: ignored
465  */
466 static void ap_interrupt_handler(struct airq_struct *airq,
467 				 struct tpi_info *tpi_info)
468 {
469 	inc_irq_stat(IRQIO_APB);
470 	tasklet_schedule(&ap_tasklet);
471 }
472 
473 /**
474  * ap_tasklet_fn(): Tasklet to poll all AP devices.
475  * @dummy: Unused variable
476  *
477  * Poll all AP devices on the bus.
478  */
479 static void ap_tasklet_fn(unsigned long dummy)
480 {
481 	int bkt;
482 	struct ap_queue *aq;
483 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
484 
485 	/* Reset the indicator if interrupts are used. Thus new interrupts can
486 	 * be received. Doing it in the beginning of the tasklet is therefore
487 	 * important that no requests on any AP get lost.
488 	 */
489 	if (ap_irq_flag)
490 		xchg(ap_airq.lsi_ptr, 0);
491 
492 	spin_lock_bh(&ap_queues_lock);
493 	hash_for_each(ap_queues, bkt, aq, hnode) {
494 		spin_lock_bh(&aq->lock);
495 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
496 		spin_unlock_bh(&aq->lock);
497 	}
498 	spin_unlock_bh(&ap_queues_lock);
499 
500 	ap_wait(wait);
501 }
502 
503 static int ap_pending_requests(void)
504 {
505 	int bkt;
506 	struct ap_queue *aq;
507 
508 	spin_lock_bh(&ap_queues_lock);
509 	hash_for_each(ap_queues, bkt, aq, hnode) {
510 		if (aq->queue_count == 0)
511 			continue;
512 		spin_unlock_bh(&ap_queues_lock);
513 		return 1;
514 	}
515 	spin_unlock_bh(&ap_queues_lock);
516 	return 0;
517 }
518 
519 /**
520  * ap_poll_thread(): Thread that polls for finished requests.
521  * @data: Unused pointer
522  *
523  * AP bus poll thread. The purpose of this thread is to poll for
524  * finished requests in a loop if there is a "free" cpu - that is
525  * a cpu that doesn't have anything better to do. The polling stops
526  * as soon as there is another task or if all messages have been
527  * delivered.
528  */
529 static int ap_poll_thread(void *data)
530 {
531 	DECLARE_WAITQUEUE(wait, current);
532 
533 	set_user_nice(current, MAX_NICE);
534 	set_freezable();
535 	while (!kthread_should_stop()) {
536 		add_wait_queue(&ap_poll_wait, &wait);
537 		set_current_state(TASK_INTERRUPTIBLE);
538 		if (!ap_pending_requests()) {
539 			schedule();
540 			try_to_freeze();
541 		}
542 		set_current_state(TASK_RUNNING);
543 		remove_wait_queue(&ap_poll_wait, &wait);
544 		if (need_resched()) {
545 			schedule();
546 			try_to_freeze();
547 			continue;
548 		}
549 		ap_tasklet_fn(0);
550 	}
551 
552 	return 0;
553 }
554 
555 static int ap_poll_thread_start(void)
556 {
557 	int rc;
558 
559 	if (ap_irq_flag || ap_poll_kthread)
560 		return 0;
561 	mutex_lock(&ap_poll_thread_mutex);
562 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
563 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
564 	if (rc)
565 		ap_poll_kthread = NULL;
566 	mutex_unlock(&ap_poll_thread_mutex);
567 	return rc;
568 }
569 
570 static void ap_poll_thread_stop(void)
571 {
572 	if (!ap_poll_kthread)
573 		return;
574 	mutex_lock(&ap_poll_thread_mutex);
575 	kthread_stop(ap_poll_kthread);
576 	ap_poll_kthread = NULL;
577 	mutex_unlock(&ap_poll_thread_mutex);
578 }
579 
580 #define is_card_dev(x) ((x)->parent == ap_root_device)
581 #define is_queue_dev(x) ((x)->parent != ap_root_device)
582 
583 /**
584  * ap_bus_match()
585  * @dev: Pointer to device
586  * @drv: Pointer to device_driver
587  *
588  * AP bus driver registration/unregistration.
589  */
590 static int ap_bus_match(struct device *dev, struct device_driver *drv)
591 {
592 	struct ap_driver *ap_drv = to_ap_drv(drv);
593 	struct ap_device_id *id;
594 
595 	/*
596 	 * Compare device type of the device with the list of
597 	 * supported types of the device_driver.
598 	 */
599 	for (id = ap_drv->ids; id->match_flags; id++) {
600 		if (is_card_dev(dev) &&
601 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
602 		    id->dev_type == to_ap_dev(dev)->device_type)
603 			return 1;
604 		if (is_queue_dev(dev) &&
605 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
606 		    id->dev_type == to_ap_dev(dev)->device_type)
607 			return 1;
608 	}
609 	return 0;
610 }
611 
612 /**
613  * ap_uevent(): Uevent function for AP devices.
614  * @dev: Pointer to device
615  * @env: Pointer to kobj_uevent_env
616  *
617  * It sets up a single environment variable DEV_TYPE which contains the
618  * hardware device type.
619  */
620 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
621 {
622 	int rc = 0;
623 	const struct ap_device *ap_dev = to_ap_dev(dev);
624 
625 	/* Uevents from ap bus core don't need extensions to the env */
626 	if (dev == ap_root_device)
627 		return 0;
628 
629 	if (is_card_dev(dev)) {
630 		struct ap_card *ac = to_ap_card(&ap_dev->device);
631 
632 		/* Set up DEV_TYPE environment variable. */
633 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
634 		if (rc)
635 			return rc;
636 		/* Add MODALIAS= */
637 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
638 		if (rc)
639 			return rc;
640 
641 		/* Add MODE=<accel|cca|ep11> */
642 		if (ac->hwinfo.accel)
643 			rc = add_uevent_var(env, "MODE=accel");
644 		else if (ac->hwinfo.cca)
645 			rc = add_uevent_var(env, "MODE=cca");
646 		else if (ac->hwinfo.ep11)
647 			rc = add_uevent_var(env, "MODE=ep11");
648 		if (rc)
649 			return rc;
650 	} else {
651 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
652 
653 		/* Add MODE=<accel|cca|ep11> */
654 		if (aq->card->hwinfo.accel)
655 			rc = add_uevent_var(env, "MODE=accel");
656 		else if (aq->card->hwinfo.cca)
657 			rc = add_uevent_var(env, "MODE=cca");
658 		else if (aq->card->hwinfo.ep11)
659 			rc = add_uevent_var(env, "MODE=ep11");
660 		if (rc)
661 			return rc;
662 	}
663 
664 	return 0;
665 }
666 
667 static void ap_send_init_scan_done_uevent(void)
668 {
669 	char *envp[] = { "INITSCAN=done", NULL };
670 
671 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
672 }
673 
674 static void ap_send_bindings_complete_uevent(void)
675 {
676 	char buf[32];
677 	char *envp[] = { "BINDINGS=complete", buf, NULL };
678 
679 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
680 		 atomic64_inc_return(&ap_bindings_complete_count));
681 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
682 }
683 
684 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
685 {
686 	char buf[16];
687 	char *envp[] = { buf, NULL };
688 
689 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
690 
691 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
692 }
693 EXPORT_SYMBOL(ap_send_config_uevent);
694 
695 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
696 {
697 	char buf[16];
698 	char *envp[] = { buf, NULL };
699 
700 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
701 
702 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
703 }
704 EXPORT_SYMBOL(ap_send_online_uevent);
705 
706 static void ap_send_mask_changed_uevent(unsigned long *newapm,
707 					unsigned long *newaqm)
708 {
709 	char buf[100];
710 	char *envp[] = { buf, NULL };
711 
712 	if (newapm)
713 		snprintf(buf, sizeof(buf),
714 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
715 			 newapm[0], newapm[1], newapm[2], newapm[3]);
716 	else
717 		snprintf(buf, sizeof(buf),
718 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
719 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
720 
721 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
722 }
723 
724 /*
725  * calc # of bound APQNs
726  */
727 
728 struct __ap_calc_ctrs {
729 	unsigned int apqns;
730 	unsigned int bound;
731 };
732 
733 static int __ap_calc_helper(struct device *dev, void *arg)
734 {
735 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
736 
737 	if (is_queue_dev(dev)) {
738 		pctrs->apqns++;
739 		if (dev->driver)
740 			pctrs->bound++;
741 	}
742 
743 	return 0;
744 }
745 
746 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
747 {
748 	struct __ap_calc_ctrs ctrs;
749 
750 	memset(&ctrs, 0, sizeof(ctrs));
751 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
752 
753 	*apqns = ctrs.apqns;
754 	*bound = ctrs.bound;
755 }
756 
757 /*
758  * After ap bus scan do check if all existing APQNs are
759  * bound to device drivers.
760  */
761 static void ap_check_bindings_complete(void)
762 {
763 	unsigned int apqns, bound;
764 
765 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
766 		ap_calc_bound_apqns(&apqns, &bound);
767 		if (bound == apqns) {
768 			if (!completion_done(&ap_apqn_bindings_complete)) {
769 				complete_all(&ap_apqn_bindings_complete);
770 				pr_debug("%s all apqn bindings complete\n", __func__);
771 			}
772 			ap_send_bindings_complete_uevent();
773 		}
774 	}
775 }
776 
777 /*
778  * Interface to wait for the AP bus to have done one initial ap bus
779  * scan and all detected APQNs have been bound to device drivers.
780  * If these both conditions are not fulfilled, this function blocks
781  * on a condition with wait_for_completion_interruptible_timeout().
782  * If these both conditions are fulfilled (before the timeout hits)
783  * the return value is 0. If the timeout (in jiffies) hits instead
784  * -ETIME is returned. On failures negative return values are
785  * returned to the caller.
786  */
787 int ap_wait_apqn_bindings_complete(unsigned long timeout)
788 {
789 	int rc = 0;
790 	long l;
791 
792 	if (completion_done(&ap_apqn_bindings_complete))
793 		return 0;
794 
795 	if (timeout)
796 		l = wait_for_completion_interruptible_timeout(
797 			&ap_apqn_bindings_complete, timeout);
798 	else
799 		l = wait_for_completion_interruptible(
800 			&ap_apqn_bindings_complete);
801 	if (l < 0)
802 		rc = l == -ERESTARTSYS ? -EINTR : l;
803 	else if (l == 0 && timeout)
804 		rc = -ETIME;
805 
806 	pr_debug("%s rc=%d\n", __func__, rc);
807 	return rc;
808 }
809 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
810 
811 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
812 {
813 	if (is_queue_dev(dev) &&
814 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
815 		device_unregister(dev);
816 	return 0;
817 }
818 
819 static int __ap_revise_reserved(struct device *dev, void *dummy)
820 {
821 	int rc, card, queue, devres, drvres;
822 
823 	if (is_queue_dev(dev)) {
824 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
825 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
826 		mutex_lock(&ap_perms_mutex);
827 		devres = test_bit_inv(card, ap_perms.apm) &&
828 			test_bit_inv(queue, ap_perms.aqm);
829 		mutex_unlock(&ap_perms_mutex);
830 		drvres = to_ap_drv(dev->driver)->flags
831 			& AP_DRIVER_FLAG_DEFAULT;
832 		if (!!devres != !!drvres) {
833 			pr_debug("%s reprobing queue=%02x.%04x\n",
834 				 __func__, card, queue);
835 			rc = device_reprobe(dev);
836 			if (rc)
837 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
838 					    __func__, card, queue);
839 		}
840 	}
841 
842 	return 0;
843 }
844 
845 static void ap_bus_revise_bindings(void)
846 {
847 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
848 }
849 
850 /**
851  * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
852  *			default host driver or not.
853  * @card: the APID of the adapter card to check
854  * @queue: the APQI of the queue to check
855  *
856  * Note: the ap_perms_mutex must be locked by the caller of this function.
857  *
858  * Return: an int specifying whether the AP adapter is reserved for the host (1)
859  *	   or not (0).
860  */
861 int ap_owned_by_def_drv(int card, int queue)
862 {
863 	int rc = 0;
864 
865 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
866 		return -EINVAL;
867 
868 	if (test_bit_inv(card, ap_perms.apm) &&
869 	    test_bit_inv(queue, ap_perms.aqm))
870 		rc = 1;
871 
872 	return rc;
873 }
874 EXPORT_SYMBOL(ap_owned_by_def_drv);
875 
876 /**
877  * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
878  *				       a set is reserved for the host drivers
879  *				       or not.
880  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
881  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
882  *
883  * Note: the ap_perms_mutex must be locked by the caller of this function.
884  *
885  * Return: an int specifying whether each APQN is reserved for the host (1) or
886  *	   not (0)
887  */
888 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
889 				       unsigned long *aqm)
890 {
891 	int card, queue, rc = 0;
892 
893 	for (card = 0; !rc && card < AP_DEVICES; card++)
894 		if (test_bit_inv(card, apm) &&
895 		    test_bit_inv(card, ap_perms.apm))
896 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
897 				if (test_bit_inv(queue, aqm) &&
898 				    test_bit_inv(queue, ap_perms.aqm))
899 					rc = 1;
900 
901 	return rc;
902 }
903 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
904 
905 static int ap_device_probe(struct device *dev)
906 {
907 	struct ap_device *ap_dev = to_ap_dev(dev);
908 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
909 	int card, queue, devres, drvres, rc = -ENODEV;
910 
911 	if (!get_device(dev))
912 		return rc;
913 
914 	if (is_queue_dev(dev)) {
915 		/*
916 		 * If the apqn is marked as reserved/used by ap bus and
917 		 * default drivers, only probe with drivers with the default
918 		 * flag set. If it is not marked, only probe with drivers
919 		 * with the default flag not set.
920 		 */
921 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
922 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
923 		mutex_lock(&ap_perms_mutex);
924 		devres = test_bit_inv(card, ap_perms.apm) &&
925 			test_bit_inv(queue, ap_perms.aqm);
926 		mutex_unlock(&ap_perms_mutex);
927 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
928 		if (!!devres != !!drvres)
929 			goto out;
930 	}
931 
932 	/* Add queue/card to list of active queues/cards */
933 	spin_lock_bh(&ap_queues_lock);
934 	if (is_queue_dev(dev))
935 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
936 			 to_ap_queue(dev)->qid);
937 	spin_unlock_bh(&ap_queues_lock);
938 
939 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
940 
941 	if (rc) {
942 		spin_lock_bh(&ap_queues_lock);
943 		if (is_queue_dev(dev))
944 			hash_del(&to_ap_queue(dev)->hnode);
945 		spin_unlock_bh(&ap_queues_lock);
946 	}
947 
948 out:
949 	if (rc)
950 		put_device(dev);
951 	return rc;
952 }
953 
954 static void ap_device_remove(struct device *dev)
955 {
956 	struct ap_device *ap_dev = to_ap_dev(dev);
957 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
958 
959 	/* prepare ap queue device removal */
960 	if (is_queue_dev(dev))
961 		ap_queue_prepare_remove(to_ap_queue(dev));
962 
963 	/* driver's chance to clean up gracefully */
964 	if (ap_drv->remove)
965 		ap_drv->remove(ap_dev);
966 
967 	/* now do the ap queue device remove */
968 	if (is_queue_dev(dev))
969 		ap_queue_remove(to_ap_queue(dev));
970 
971 	/* Remove queue/card from list of active queues/cards */
972 	spin_lock_bh(&ap_queues_lock);
973 	if (is_queue_dev(dev))
974 		hash_del(&to_ap_queue(dev)->hnode);
975 	spin_unlock_bh(&ap_queues_lock);
976 
977 	put_device(dev);
978 }
979 
980 struct ap_queue *ap_get_qdev(ap_qid_t qid)
981 {
982 	int bkt;
983 	struct ap_queue *aq;
984 
985 	spin_lock_bh(&ap_queues_lock);
986 	hash_for_each(ap_queues, bkt, aq, hnode) {
987 		if (aq->qid == qid) {
988 			get_device(&aq->ap_dev.device);
989 			spin_unlock_bh(&ap_queues_lock);
990 			return aq;
991 		}
992 	}
993 	spin_unlock_bh(&ap_queues_lock);
994 
995 	return NULL;
996 }
997 EXPORT_SYMBOL(ap_get_qdev);
998 
999 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1000 		       char *name)
1001 {
1002 	struct device_driver *drv = &ap_drv->driver;
1003 
1004 	drv->bus = &ap_bus_type;
1005 	drv->owner = owner;
1006 	drv->name = name;
1007 	return driver_register(drv);
1008 }
1009 EXPORT_SYMBOL(ap_driver_register);
1010 
1011 void ap_driver_unregister(struct ap_driver *ap_drv)
1012 {
1013 	driver_unregister(&ap_drv->driver);
1014 }
1015 EXPORT_SYMBOL(ap_driver_unregister);
1016 
1017 /*
1018  * Enforce a synchronous AP bus rescan.
1019  * Returns true if the bus scan finds a change in the AP configuration
1020  * and AP devices have been added or deleted when this function returns.
1021  */
1022 bool ap_bus_force_rescan(void)
1023 {
1024 	unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
1025 	bool rc = false;
1026 
1027 	pr_debug(">%s scan counter=%lu\n", __func__, scan_counter);
1028 
1029 	/* Only trigger AP bus scans after the initial scan is done */
1030 	if (scan_counter <= 0)
1031 		goto out;
1032 
1033 	/* Try to acquire the AP scan bus mutex */
1034 	if (mutex_trylock(&ap_scan_bus_mutex)) {
1035 		/* mutex acquired, run the AP bus scan */
1036 		ap_scan_bus_result = ap_scan_bus();
1037 		rc = ap_scan_bus_result;
1038 		mutex_unlock(&ap_scan_bus_mutex);
1039 		goto out;
1040 	}
1041 
1042 	/*
1043 	 * Mutex acquire failed. So there is currently another task
1044 	 * already running the AP bus scan. Then let's simple wait
1045 	 * for the lock which means the other task has finished and
1046 	 * stored the result in ap_scan_bus_result.
1047 	 */
1048 	if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1049 		/* some error occurred, ignore and go out */
1050 		goto out;
1051 	}
1052 	rc = ap_scan_bus_result;
1053 	mutex_unlock(&ap_scan_bus_mutex);
1054 
1055 out:
1056 	pr_debug("%s rc=%d\n", __func__, rc);
1057 	return rc;
1058 }
1059 EXPORT_SYMBOL(ap_bus_force_rescan);
1060 
1061 /*
1062  * A config change has happened, force an ap bus rescan.
1063  */
1064 void ap_bus_cfg_chg(void)
1065 {
1066 	pr_debug("%s config change, forcing bus rescan\n", __func__);
1067 
1068 	ap_bus_force_rescan();
1069 }
1070 
1071 /*
1072  * hex2bitmap() - parse hex mask string and set bitmap.
1073  * Valid strings are "0x012345678" with at least one valid hex number.
1074  * Rest of the bitmap to the right is padded with 0. No spaces allowed
1075  * within the string, the leading 0x may be omitted.
1076  * Returns the bitmask with exactly the bits set as given by the hex
1077  * string (both in big endian order).
1078  */
1079 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1080 {
1081 	int i, n, b;
1082 
1083 	/* bits needs to be a multiple of 8 */
1084 	if (bits & 0x07)
1085 		return -EINVAL;
1086 
1087 	if (str[0] == '0' && str[1] == 'x')
1088 		str++;
1089 	if (*str == 'x')
1090 		str++;
1091 
1092 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1093 		b = hex_to_bin(*str);
1094 		for (n = 0; n < 4; n++)
1095 			if (b & (0x08 >> n))
1096 				set_bit_inv(i + n, bitmap);
1097 		i += 4;
1098 	}
1099 
1100 	if (*str == '\n')
1101 		str++;
1102 	if (*str)
1103 		return -EINVAL;
1104 	return 0;
1105 }
1106 
1107 /*
1108  * modify_bitmap() - parse bitmask argument and modify an existing
1109  * bit mask accordingly. A concatenation (done with ',') of these
1110  * terms is recognized:
1111  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1112  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1113  * 0...bits-1; the leading + or - is required. Here are some examples:
1114  *   +0-15,+32,-128,-0xFF
1115  *   -0-255,+1-16,+0x128
1116  *   +1,+2,+3,+4,-5,-7-10
1117  * Returns the new bitmap after all changes have been applied. Every
1118  * positive value in the string will set a bit and every negative value
1119  * in the string will clear a bit. As a bit may be touched more than once,
1120  * the last 'operation' wins:
1121  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1122  * cleared again. All other bits are unmodified.
1123  */
1124 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1125 {
1126 	int a, i, z;
1127 	char *np, sign;
1128 
1129 	/* bits needs to be a multiple of 8 */
1130 	if (bits & 0x07)
1131 		return -EINVAL;
1132 
1133 	while (*str) {
1134 		sign = *str++;
1135 		if (sign != '+' && sign != '-')
1136 			return -EINVAL;
1137 		a = z = simple_strtoul(str, &np, 0);
1138 		if (str == np || a >= bits)
1139 			return -EINVAL;
1140 		str = np;
1141 		if (*str == '-') {
1142 			z = simple_strtoul(++str, &np, 0);
1143 			if (str == np || a > z || z >= bits)
1144 				return -EINVAL;
1145 			str = np;
1146 		}
1147 		for (i = a; i <= z; i++)
1148 			if (sign == '+')
1149 				set_bit_inv(i, bitmap);
1150 			else
1151 				clear_bit_inv(i, bitmap);
1152 		while (*str == ',' || *str == '\n')
1153 			str++;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1160 			       unsigned long *newmap)
1161 {
1162 	unsigned long size;
1163 	int rc;
1164 
1165 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1166 	if (*str == '+' || *str == '-') {
1167 		memcpy(newmap, bitmap, size);
1168 		rc = modify_bitmap(str, newmap, bits);
1169 	} else {
1170 		memset(newmap, 0, size);
1171 		rc = hex2bitmap(str, newmap, bits);
1172 	}
1173 	return rc;
1174 }
1175 
1176 int ap_parse_mask_str(const char *str,
1177 		      unsigned long *bitmap, int bits,
1178 		      struct mutex *lock)
1179 {
1180 	unsigned long *newmap, size;
1181 	int rc;
1182 
1183 	/* bits needs to be a multiple of 8 */
1184 	if (bits & 0x07)
1185 		return -EINVAL;
1186 
1187 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1188 	newmap = kmalloc(size, GFP_KERNEL);
1189 	if (!newmap)
1190 		return -ENOMEM;
1191 	if (mutex_lock_interruptible(lock)) {
1192 		kfree(newmap);
1193 		return -ERESTARTSYS;
1194 	}
1195 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1196 	if (rc == 0)
1197 		memcpy(bitmap, newmap, size);
1198 	mutex_unlock(lock);
1199 	kfree(newmap);
1200 	return rc;
1201 }
1202 EXPORT_SYMBOL(ap_parse_mask_str);
1203 
1204 /*
1205  * AP bus attributes.
1206  */
1207 
1208 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1209 {
1210 	return sysfs_emit(buf, "%d\n", ap_domain_index);
1211 }
1212 
1213 static ssize_t ap_domain_store(const struct bus_type *bus,
1214 			       const char *buf, size_t count)
1215 {
1216 	int domain;
1217 
1218 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1219 	    domain < 0 || domain > ap_max_domain_id ||
1220 	    !test_bit_inv(domain, ap_perms.aqm))
1221 		return -EINVAL;
1222 
1223 	spin_lock_bh(&ap_domain_lock);
1224 	ap_domain_index = domain;
1225 	spin_unlock_bh(&ap_domain_lock);
1226 
1227 	AP_DBF_INFO("%s stored new default domain=%d\n",
1228 		    __func__, domain);
1229 
1230 	return count;
1231 }
1232 
1233 static BUS_ATTR_RW(ap_domain);
1234 
1235 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1236 {
1237 	if (!ap_qci_info)	/* QCI not supported */
1238 		return sysfs_emit(buf, "not supported\n");
1239 
1240 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1241 			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1242 			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1243 			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1244 			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1245 }
1246 
1247 static BUS_ATTR_RO(ap_control_domain_mask);
1248 
1249 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1250 {
1251 	if (!ap_qci_info)	/* QCI not supported */
1252 		return sysfs_emit(buf, "not supported\n");
1253 
1254 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1255 			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1256 			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1257 			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1258 			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1259 }
1260 
1261 static BUS_ATTR_RO(ap_usage_domain_mask);
1262 
1263 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1264 {
1265 	if (!ap_qci_info)	/* QCI not supported */
1266 		return sysfs_emit(buf, "not supported\n");
1267 
1268 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1269 			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1270 			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1271 			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1272 			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1273 }
1274 
1275 static BUS_ATTR_RO(ap_adapter_mask);
1276 
1277 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1278 {
1279 	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1280 }
1281 
1282 static BUS_ATTR_RO(ap_interrupts);
1283 
1284 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1285 {
1286 	return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1287 }
1288 
1289 static ssize_t config_time_store(const struct bus_type *bus,
1290 				 const char *buf, size_t count)
1291 {
1292 	int time;
1293 
1294 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1295 		return -EINVAL;
1296 	ap_scan_bus_time = time;
1297 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1298 	return count;
1299 }
1300 
1301 static BUS_ATTR_RW(config_time);
1302 
1303 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1304 {
1305 	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1306 }
1307 
1308 static ssize_t poll_thread_store(const struct bus_type *bus,
1309 				 const char *buf, size_t count)
1310 {
1311 	bool value;
1312 	int rc;
1313 
1314 	rc = kstrtobool(buf, &value);
1315 	if (rc)
1316 		return rc;
1317 
1318 	if (value) {
1319 		rc = ap_poll_thread_start();
1320 		if (rc)
1321 			count = rc;
1322 	} else {
1323 		ap_poll_thread_stop();
1324 	}
1325 	return count;
1326 }
1327 
1328 static BUS_ATTR_RW(poll_thread);
1329 
1330 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1331 {
1332 	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1333 }
1334 
1335 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1336 				  size_t count)
1337 {
1338 	unsigned long value;
1339 	ktime_t hr_time;
1340 	int rc;
1341 
1342 	rc = kstrtoul(buf, 0, &value);
1343 	if (rc)
1344 		return rc;
1345 
1346 	/* 120 seconds = maximum poll interval */
1347 	if (value > 120000000000UL)
1348 		return -EINVAL;
1349 	poll_high_timeout = value;
1350 	hr_time = poll_high_timeout;
1351 
1352 	spin_lock_bh(&ap_poll_timer_lock);
1353 	hrtimer_cancel(&ap_poll_timer);
1354 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1355 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1356 	spin_unlock_bh(&ap_poll_timer_lock);
1357 
1358 	return count;
1359 }
1360 
1361 static BUS_ATTR_RW(poll_timeout);
1362 
1363 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1364 {
1365 	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1366 }
1367 
1368 static BUS_ATTR_RO(ap_max_domain_id);
1369 
1370 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1371 {
1372 	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1373 }
1374 
1375 static BUS_ATTR_RO(ap_max_adapter_id);
1376 
1377 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1378 {
1379 	int rc;
1380 
1381 	if (mutex_lock_interruptible(&ap_perms_mutex))
1382 		return -ERESTARTSYS;
1383 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1384 			ap_perms.apm[0], ap_perms.apm[1],
1385 			ap_perms.apm[2], ap_perms.apm[3]);
1386 	mutex_unlock(&ap_perms_mutex);
1387 
1388 	return rc;
1389 }
1390 
1391 static int __verify_card_reservations(struct device_driver *drv, void *data)
1392 {
1393 	int rc = 0;
1394 	struct ap_driver *ap_drv = to_ap_drv(drv);
1395 	unsigned long *newapm = (unsigned long *)data;
1396 
1397 	/*
1398 	 * increase the driver's module refcounter to be sure it is not
1399 	 * going away when we invoke the callback function.
1400 	 */
1401 	if (!try_module_get(drv->owner))
1402 		return 0;
1403 
1404 	if (ap_drv->in_use) {
1405 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1406 		if (rc)
1407 			rc = -EBUSY;
1408 	}
1409 
1410 	/* release the driver's module */
1411 	module_put(drv->owner);
1412 
1413 	return rc;
1414 }
1415 
1416 static int apmask_commit(unsigned long *newapm)
1417 {
1418 	int rc;
1419 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1420 
1421 	/*
1422 	 * Check if any bits in the apmask have been set which will
1423 	 * result in queues being removed from non-default drivers
1424 	 */
1425 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1426 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1427 				      __verify_card_reservations);
1428 		if (rc)
1429 			return rc;
1430 	}
1431 
1432 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1433 
1434 	return 0;
1435 }
1436 
1437 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1438 			    size_t count)
1439 {
1440 	int rc, changes = 0;
1441 	DECLARE_BITMAP(newapm, AP_DEVICES);
1442 
1443 	if (mutex_lock_interruptible(&ap_perms_mutex))
1444 		return -ERESTARTSYS;
1445 
1446 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1447 	if (rc)
1448 		goto done;
1449 
1450 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1451 	if (changes)
1452 		rc = apmask_commit(newapm);
1453 
1454 done:
1455 	mutex_unlock(&ap_perms_mutex);
1456 	if (rc)
1457 		return rc;
1458 
1459 	if (changes) {
1460 		ap_bus_revise_bindings();
1461 		ap_send_mask_changed_uevent(newapm, NULL);
1462 	}
1463 
1464 	return count;
1465 }
1466 
1467 static BUS_ATTR_RW(apmask);
1468 
1469 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1470 {
1471 	int rc;
1472 
1473 	if (mutex_lock_interruptible(&ap_perms_mutex))
1474 		return -ERESTARTSYS;
1475 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1476 			ap_perms.aqm[0], ap_perms.aqm[1],
1477 			ap_perms.aqm[2], ap_perms.aqm[3]);
1478 	mutex_unlock(&ap_perms_mutex);
1479 
1480 	return rc;
1481 }
1482 
1483 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1484 {
1485 	int rc = 0;
1486 	struct ap_driver *ap_drv = to_ap_drv(drv);
1487 	unsigned long *newaqm = (unsigned long *)data;
1488 
1489 	/*
1490 	 * increase the driver's module refcounter to be sure it is not
1491 	 * going away when we invoke the callback function.
1492 	 */
1493 	if (!try_module_get(drv->owner))
1494 		return 0;
1495 
1496 	if (ap_drv->in_use) {
1497 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1498 		if (rc)
1499 			rc = -EBUSY;
1500 	}
1501 
1502 	/* release the driver's module */
1503 	module_put(drv->owner);
1504 
1505 	return rc;
1506 }
1507 
1508 static int aqmask_commit(unsigned long *newaqm)
1509 {
1510 	int rc;
1511 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1512 
1513 	/*
1514 	 * Check if any bits in the aqmask have been set which will
1515 	 * result in queues being removed from non-default drivers
1516 	 */
1517 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1518 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1519 				      __verify_queue_reservations);
1520 		if (rc)
1521 			return rc;
1522 	}
1523 
1524 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1525 
1526 	return 0;
1527 }
1528 
1529 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1530 			    size_t count)
1531 {
1532 	int rc, changes = 0;
1533 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1534 
1535 	if (mutex_lock_interruptible(&ap_perms_mutex))
1536 		return -ERESTARTSYS;
1537 
1538 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1539 	if (rc)
1540 		goto done;
1541 
1542 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1543 	if (changes)
1544 		rc = aqmask_commit(newaqm);
1545 
1546 done:
1547 	mutex_unlock(&ap_perms_mutex);
1548 	if (rc)
1549 		return rc;
1550 
1551 	if (changes) {
1552 		ap_bus_revise_bindings();
1553 		ap_send_mask_changed_uevent(NULL, newaqm);
1554 	}
1555 
1556 	return count;
1557 }
1558 
1559 static BUS_ATTR_RW(aqmask);
1560 
1561 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1562 {
1563 	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1564 }
1565 
1566 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1567 			   size_t count)
1568 {
1569 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1570 
1571 	ap_bus_force_rescan();
1572 
1573 	return count;
1574 }
1575 
1576 static BUS_ATTR_RW(scans);
1577 
1578 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1579 {
1580 	int rc;
1581 	unsigned int apqns, n;
1582 
1583 	ap_calc_bound_apqns(&apqns, &n);
1584 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1585 		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1586 	else
1587 		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1588 
1589 	return rc;
1590 }
1591 
1592 static BUS_ATTR_RO(bindings);
1593 
1594 static ssize_t features_show(const struct bus_type *bus, char *buf)
1595 {
1596 	int n = 0;
1597 
1598 	if (!ap_qci_info)	/* QCI not supported */
1599 		return sysfs_emit(buf, "-\n");
1600 
1601 	if (ap_qci_info->apsc)
1602 		n += sysfs_emit_at(buf, n, "APSC ");
1603 	if (ap_qci_info->apxa)
1604 		n += sysfs_emit_at(buf, n, "APXA ");
1605 	if (ap_qci_info->qact)
1606 		n += sysfs_emit_at(buf, n, "QACT ");
1607 	if (ap_qci_info->rc8a)
1608 		n += sysfs_emit_at(buf, n, "RC8A ");
1609 	if (ap_qci_info->apsb)
1610 		n += sysfs_emit_at(buf, n, "APSB ");
1611 
1612 	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1613 
1614 	return n;
1615 }
1616 
1617 static BUS_ATTR_RO(features);
1618 
1619 static struct attribute *ap_bus_attrs[] = {
1620 	&bus_attr_ap_domain.attr,
1621 	&bus_attr_ap_control_domain_mask.attr,
1622 	&bus_attr_ap_usage_domain_mask.attr,
1623 	&bus_attr_ap_adapter_mask.attr,
1624 	&bus_attr_config_time.attr,
1625 	&bus_attr_poll_thread.attr,
1626 	&bus_attr_ap_interrupts.attr,
1627 	&bus_attr_poll_timeout.attr,
1628 	&bus_attr_ap_max_domain_id.attr,
1629 	&bus_attr_ap_max_adapter_id.attr,
1630 	&bus_attr_apmask.attr,
1631 	&bus_attr_aqmask.attr,
1632 	&bus_attr_scans.attr,
1633 	&bus_attr_bindings.attr,
1634 	&bus_attr_features.attr,
1635 	NULL,
1636 };
1637 ATTRIBUTE_GROUPS(ap_bus);
1638 
1639 static const struct bus_type ap_bus_type = {
1640 	.name = "ap",
1641 	.bus_groups = ap_bus_groups,
1642 	.match = &ap_bus_match,
1643 	.uevent = &ap_uevent,
1644 	.probe = ap_device_probe,
1645 	.remove = ap_device_remove,
1646 };
1647 
1648 /**
1649  * ap_select_domain(): Select an AP domain if possible and we haven't
1650  * already done so before.
1651  */
1652 static void ap_select_domain(void)
1653 {
1654 	struct ap_queue_status status;
1655 	int card, dom;
1656 
1657 	/*
1658 	 * Choose the default domain. Either the one specified with
1659 	 * the "domain=" parameter or the first domain with at least
1660 	 * one valid APQN.
1661 	 */
1662 	spin_lock_bh(&ap_domain_lock);
1663 	if (ap_domain_index >= 0) {
1664 		/* Domain has already been selected. */
1665 		goto out;
1666 	}
1667 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1668 		if (!ap_test_config_usage_domain(dom) ||
1669 		    !test_bit_inv(dom, ap_perms.aqm))
1670 			continue;
1671 		for (card = 0; card <= ap_max_adapter_id; card++) {
1672 			if (!ap_test_config_card_id(card) ||
1673 			    !test_bit_inv(card, ap_perms.apm))
1674 				continue;
1675 			status = ap_test_queue(AP_MKQID(card, dom),
1676 					       ap_apft_available(),
1677 					       NULL);
1678 			if (status.response_code == AP_RESPONSE_NORMAL)
1679 				break;
1680 		}
1681 		if (card <= ap_max_adapter_id)
1682 			break;
1683 	}
1684 	if (dom <= ap_max_domain_id) {
1685 		ap_domain_index = dom;
1686 		AP_DBF_INFO("%s new default domain is %d\n",
1687 			    __func__, ap_domain_index);
1688 	}
1689 out:
1690 	spin_unlock_bh(&ap_domain_lock);
1691 }
1692 
1693 /*
1694  * This function checks the type and returns either 0 for not
1695  * supported or the highest compatible type value (which may
1696  * include the input type value).
1697  */
1698 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1699 {
1700 	int comp_type = 0;
1701 
1702 	/* < CEX4 is not supported */
1703 	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1704 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1705 			    __func__, AP_QID_CARD(qid),
1706 			    AP_QID_QUEUE(qid), rawtype);
1707 		return 0;
1708 	}
1709 	/* up to CEX8 known and fully supported */
1710 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1711 		return rawtype;
1712 	/*
1713 	 * unknown new type > CEX8, check for compatibility
1714 	 * to the highest known and supported type which is
1715 	 * currently CEX8 with the help of the QACT function.
1716 	 */
1717 	if (ap_qact_available()) {
1718 		struct ap_queue_status status;
1719 		union ap_qact_ap_info apinfo = {0};
1720 
1721 		apinfo.mode = (func >> 26) & 0x07;
1722 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1723 		status = ap_qact(qid, 0, &apinfo);
1724 		if (status.response_code == AP_RESPONSE_NORMAL &&
1725 		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1726 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1727 			comp_type = apinfo.cat;
1728 	}
1729 	if (!comp_type)
1730 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1731 			    __func__, AP_QID_CARD(qid),
1732 			    AP_QID_QUEUE(qid), rawtype);
1733 	else if (comp_type != rawtype)
1734 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1735 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1736 			    rawtype, comp_type);
1737 	return comp_type;
1738 }
1739 
1740 /*
1741  * Helper function to be used with bus_find_dev
1742  * matches for the card device with the given id
1743  */
1744 static int __match_card_device_with_id(struct device *dev, const void *data)
1745 {
1746 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1747 }
1748 
1749 /*
1750  * Helper function to be used with bus_find_dev
1751  * matches for the queue device with a given qid
1752  */
1753 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1754 {
1755 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1756 }
1757 
1758 /*
1759  * Helper function to be used with bus_find_dev
1760  * matches any queue device with given queue id
1761  */
1762 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1763 {
1764 	return is_queue_dev(dev) &&
1765 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1766 }
1767 
1768 /* Helper function for notify_config_changed */
1769 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1770 {
1771 	struct ap_driver *ap_drv = to_ap_drv(drv);
1772 
1773 	if (try_module_get(drv->owner)) {
1774 		if (ap_drv->on_config_changed)
1775 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1776 		module_put(drv->owner);
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 /* Notify all drivers about an qci config change */
1783 static inline void notify_config_changed(void)
1784 {
1785 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1786 			 __drv_notify_config_changed);
1787 }
1788 
1789 /* Helper function for notify_scan_complete */
1790 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1791 {
1792 	struct ap_driver *ap_drv = to_ap_drv(drv);
1793 
1794 	if (try_module_get(drv->owner)) {
1795 		if (ap_drv->on_scan_complete)
1796 			ap_drv->on_scan_complete(ap_qci_info,
1797 						 ap_qci_info_old);
1798 		module_put(drv->owner);
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 /* Notify all drivers about bus scan complete */
1805 static inline void notify_scan_complete(void)
1806 {
1807 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1808 			 __drv_notify_scan_complete);
1809 }
1810 
1811 /*
1812  * Helper function for ap_scan_bus().
1813  * Remove card device and associated queue devices.
1814  */
1815 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1816 {
1817 	bus_for_each_dev(&ap_bus_type, NULL,
1818 			 (void *)(long)ac->id,
1819 			 __ap_queue_devices_with_id_unregister);
1820 	device_unregister(&ac->ap_dev.device);
1821 }
1822 
1823 /*
1824  * Helper function for ap_scan_bus().
1825  * Does the scan bus job for all the domains within
1826  * a valid adapter given by an ap_card ptr.
1827  */
1828 static inline void ap_scan_domains(struct ap_card *ac)
1829 {
1830 	struct ap_tapq_hwinfo hwinfo;
1831 	bool decfg, chkstop;
1832 	struct ap_queue *aq;
1833 	struct device *dev;
1834 	ap_qid_t qid;
1835 	int rc, dom;
1836 
1837 	/*
1838 	 * Go through the configuration for the domains and compare them
1839 	 * to the existing queue devices. Also take care of the config
1840 	 * and error state for the queue devices.
1841 	 */
1842 
1843 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1844 		qid = AP_MKQID(ac->id, dom);
1845 		dev = bus_find_device(&ap_bus_type, NULL,
1846 				      (void *)(long)qid,
1847 				      __match_queue_device_with_qid);
1848 		aq = dev ? to_ap_queue(dev) : NULL;
1849 		if (!ap_test_config_usage_domain(dom)) {
1850 			if (dev) {
1851 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1852 					    __func__, ac->id, dom);
1853 				device_unregister(dev);
1854 			}
1855 			goto put_dev_and_continue;
1856 		}
1857 		/* domain is valid, get info from this APQN */
1858 		rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1859 		switch (rc) {
1860 		case -1:
1861 			if (dev) {
1862 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1863 					    __func__, ac->id, dom);
1864 				device_unregister(dev);
1865 			}
1866 			fallthrough;
1867 		case 0:
1868 			goto put_dev_and_continue;
1869 		default:
1870 			break;
1871 		}
1872 		/* if no queue device exists, create a new one */
1873 		if (!aq) {
1874 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1875 			if (!aq) {
1876 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1877 					    __func__, ac->id, dom);
1878 				continue;
1879 			}
1880 			aq->card = ac;
1881 			aq->config = !decfg;
1882 			aq->chkstop = chkstop;
1883 			aq->se_bstate = hwinfo.bs;
1884 			dev = &aq->ap_dev.device;
1885 			dev->bus = &ap_bus_type;
1886 			dev->parent = &ac->ap_dev.device;
1887 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1888 			/* register queue device */
1889 			rc = device_register(dev);
1890 			if (rc) {
1891 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1892 					    __func__, ac->id, dom);
1893 				goto put_dev_and_continue;
1894 			}
1895 			/* get it and thus adjust reference counter */
1896 			get_device(dev);
1897 			if (decfg) {
1898 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1899 					    __func__, ac->id, dom);
1900 			} else if (chkstop) {
1901 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1902 					    __func__, ac->id, dom);
1903 			} else {
1904 				/* nudge the queue's state machine */
1905 				ap_queue_init_state(aq);
1906 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1907 					    __func__, ac->id, dom);
1908 			}
1909 			goto put_dev_and_continue;
1910 		}
1911 		/* handle state changes on already existing queue device */
1912 		spin_lock_bh(&aq->lock);
1913 		/* SE bind state */
1914 		aq->se_bstate = hwinfo.bs;
1915 		/* checkstop state */
1916 		if (chkstop && !aq->chkstop) {
1917 			/* checkstop on */
1918 			aq->chkstop = true;
1919 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1920 				aq->dev_state = AP_DEV_STATE_ERROR;
1921 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1922 			}
1923 			spin_unlock_bh(&aq->lock);
1924 			pr_debug("%s(%d,%d) queue dev checkstop on\n",
1925 				 __func__, ac->id, dom);
1926 			/* 'receive' pending messages with -EAGAIN */
1927 			ap_flush_queue(aq);
1928 			goto put_dev_and_continue;
1929 		} else if (!chkstop && aq->chkstop) {
1930 			/* checkstop off */
1931 			aq->chkstop = false;
1932 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1933 				_ap_queue_init_state(aq);
1934 			spin_unlock_bh(&aq->lock);
1935 			pr_debug("%s(%d,%d) queue dev checkstop off\n",
1936 				 __func__, ac->id, dom);
1937 			goto put_dev_and_continue;
1938 		}
1939 		/* config state change */
1940 		if (decfg && aq->config) {
1941 			/* config off this queue device */
1942 			aq->config = false;
1943 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1944 				aq->dev_state = AP_DEV_STATE_ERROR;
1945 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1946 			}
1947 			spin_unlock_bh(&aq->lock);
1948 			pr_debug("%s(%d,%d) queue dev config off\n",
1949 				 __func__, ac->id, dom);
1950 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1951 			/* 'receive' pending messages with -EAGAIN */
1952 			ap_flush_queue(aq);
1953 			goto put_dev_and_continue;
1954 		} else if (!decfg && !aq->config) {
1955 			/* config on this queue device */
1956 			aq->config = true;
1957 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1958 				_ap_queue_init_state(aq);
1959 			spin_unlock_bh(&aq->lock);
1960 			pr_debug("%s(%d,%d) queue dev config on\n",
1961 				 __func__, ac->id, dom);
1962 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1963 			goto put_dev_and_continue;
1964 		}
1965 		/* handle other error states */
1966 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1967 			spin_unlock_bh(&aq->lock);
1968 			/* 'receive' pending messages with -EAGAIN */
1969 			ap_flush_queue(aq);
1970 			/* re-init (with reset) the queue device */
1971 			ap_queue_init_state(aq);
1972 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1973 				    __func__, ac->id, dom);
1974 			goto put_dev_and_continue;
1975 		}
1976 		spin_unlock_bh(&aq->lock);
1977 put_dev_and_continue:
1978 		put_device(dev);
1979 	}
1980 }
1981 
1982 /*
1983  * Helper function for ap_scan_bus().
1984  * Does the scan bus job for the given adapter id.
1985  */
1986 static inline void ap_scan_adapter(int ap)
1987 {
1988 	struct ap_tapq_hwinfo hwinfo;
1989 	int rc, dom, comp_type;
1990 	bool decfg, chkstop;
1991 	struct ap_card *ac;
1992 	struct device *dev;
1993 	ap_qid_t qid;
1994 
1995 	/* Is there currently a card device for this adapter ? */
1996 	dev = bus_find_device(&ap_bus_type, NULL,
1997 			      (void *)(long)ap,
1998 			      __match_card_device_with_id);
1999 	ac = dev ? to_ap_card(dev) : NULL;
2000 
2001 	/* Adapter not in configuration ? */
2002 	if (!ap_test_config_card_id(ap)) {
2003 		if (ac) {
2004 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
2005 				    __func__, ap);
2006 			ap_scan_rm_card_dev_and_queue_devs(ac);
2007 			put_device(dev);
2008 		}
2009 		return;
2010 	}
2011 
2012 	/*
2013 	 * Adapter ap is valid in the current configuration. So do some checks:
2014 	 * If no card device exists, build one. If a card device exists, check
2015 	 * for type and functions changed. For all this we need to find a valid
2016 	 * APQN first.
2017 	 */
2018 
2019 	for (dom = 0; dom <= ap_max_domain_id; dom++)
2020 		if (ap_test_config_usage_domain(dom)) {
2021 			qid = AP_MKQID(ap, dom);
2022 			if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
2023 				break;
2024 		}
2025 	if (dom > ap_max_domain_id) {
2026 		/* Could not find one valid APQN for this adapter */
2027 		if (ac) {
2028 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2029 				    __func__, ap);
2030 			ap_scan_rm_card_dev_and_queue_devs(ac);
2031 			put_device(dev);
2032 		} else {
2033 			pr_debug("%s(%d) no type info (no APQN found), ignored\n",
2034 				 __func__, ap);
2035 		}
2036 		return;
2037 	}
2038 	if (!hwinfo.at) {
2039 		/* No apdater type info available, an unusable adapter */
2040 		if (ac) {
2041 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2042 				    __func__, ap);
2043 			ap_scan_rm_card_dev_and_queue_devs(ac);
2044 			put_device(dev);
2045 		} else {
2046 			pr_debug("%s(%d) no valid type (0) info, ignored\n",
2047 				 __func__, ap);
2048 		}
2049 		return;
2050 	}
2051 	hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2052 	if (ac) {
2053 		/* Check APQN against existing card device for changes */
2054 		if (ac->hwinfo.at != hwinfo.at) {
2055 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2056 				    __func__, ap, hwinfo.at);
2057 			ap_scan_rm_card_dev_and_queue_devs(ac);
2058 			put_device(dev);
2059 			ac = NULL;
2060 		} else if (ac->hwinfo.fac != hwinfo.fac) {
2061 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2062 				    __func__, ap, hwinfo.fac);
2063 			ap_scan_rm_card_dev_and_queue_devs(ac);
2064 			put_device(dev);
2065 			ac = NULL;
2066 		} else {
2067 			/* handle checkstop state change */
2068 			if (chkstop && !ac->chkstop) {
2069 				/* checkstop on */
2070 				ac->chkstop = true;
2071 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2072 					    __func__, ap);
2073 			} else if (!chkstop && ac->chkstop) {
2074 				/* checkstop off */
2075 				ac->chkstop = false;
2076 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2077 					    __func__, ap);
2078 			}
2079 			/* handle config state change */
2080 			if (decfg && ac->config) {
2081 				ac->config = false;
2082 				AP_DBF_INFO("%s(%d) card dev config off\n",
2083 					    __func__, ap);
2084 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2085 			} else if (!decfg && !ac->config) {
2086 				ac->config = true;
2087 				AP_DBF_INFO("%s(%d) card dev config on\n",
2088 					    __func__, ap);
2089 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2090 			}
2091 		}
2092 	}
2093 
2094 	if (!ac) {
2095 		/* Build a new card device */
2096 		comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2097 		if (!comp_type) {
2098 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2099 				    __func__, ap, hwinfo.at);
2100 			return;
2101 		}
2102 		ac = ap_card_create(ap, hwinfo, comp_type);
2103 		if (!ac) {
2104 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2105 				    __func__, ap);
2106 			return;
2107 		}
2108 		ac->config = !decfg;
2109 		ac->chkstop = chkstop;
2110 		dev = &ac->ap_dev.device;
2111 		dev->bus = &ap_bus_type;
2112 		dev->parent = ap_root_device;
2113 		dev_set_name(dev, "card%02x", ap);
2114 		/* maybe enlarge ap_max_msg_size to support this card */
2115 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2116 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2117 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2118 				    __func__, ap,
2119 				    atomic_read(&ap_max_msg_size));
2120 		}
2121 		/* Register the new card device with AP bus */
2122 		rc = device_register(dev);
2123 		if (rc) {
2124 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2125 				    __func__, ap);
2126 			put_device(dev);
2127 			return;
2128 		}
2129 		/* get it and thus adjust reference counter */
2130 		get_device(dev);
2131 		if (decfg)
2132 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2133 				    __func__, ap, hwinfo.at, hwinfo.fac);
2134 		else if (chkstop)
2135 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2136 				    __func__, ap, hwinfo.at, hwinfo.fac);
2137 		else
2138 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2139 				    __func__, ap, hwinfo.at, hwinfo.fac);
2140 	}
2141 
2142 	/* Verify the domains and the queue devices for this card */
2143 	ap_scan_domains(ac);
2144 
2145 	/* release the card device */
2146 	put_device(&ac->ap_dev.device);
2147 }
2148 
2149 /**
2150  * ap_get_configuration - get the host AP configuration
2151  *
2152  * Stores the host AP configuration information returned from the previous call
2153  * to Query Configuration Information (QCI), then retrieves and stores the
2154  * current AP configuration returned from QCI.
2155  *
2156  * Return: true if the host AP configuration changed between calls to QCI;
2157  * otherwise, return false.
2158  */
2159 static bool ap_get_configuration(void)
2160 {
2161 	if (!ap_qci_info)	/* QCI not supported */
2162 		return false;
2163 
2164 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2165 	ap_fetch_qci_info(ap_qci_info);
2166 
2167 	return memcmp(ap_qci_info, ap_qci_info_old,
2168 		      sizeof(struct ap_config_info)) != 0;
2169 }
2170 
2171 /*
2172  * ap_config_has_new_aps - Check current against old qci info if
2173  * new adapters have appeared. Returns true if at least one new
2174  * adapter in the apm mask is showing up. Existing adapters or
2175  * receding adapters are not counted.
2176  */
2177 static bool ap_config_has_new_aps(void)
2178 {
2179 
2180 	unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2181 
2182 	if (!ap_qci_info)
2183 		return false;
2184 
2185 	bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2186 		      (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2187 	if (!bitmap_empty(m, AP_DEVICES))
2188 		return true;
2189 
2190 	return false;
2191 }
2192 
2193 /*
2194  * ap_config_has_new_doms - Check current against old qci info if
2195  * new (usage) domains have appeared. Returns true if at least one
2196  * new domain in the aqm mask is showing up. Existing domains or
2197  * receding domains are not counted.
2198  */
2199 static bool ap_config_has_new_doms(void)
2200 {
2201 	unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2202 
2203 	if (!ap_qci_info)
2204 		return false;
2205 
2206 	bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2207 		      (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2208 	if (!bitmap_empty(m, AP_DOMAINS))
2209 		return true;
2210 
2211 	return false;
2212 }
2213 
2214 /**
2215  * ap_scan_bus(): Scan the AP bus for new devices
2216  * Always run under mutex ap_scan_bus_mutex protection
2217  * which needs to get locked/unlocked by the caller!
2218  * Returns true if any config change has been detected
2219  * during the scan, otherwise false.
2220  */
2221 static bool ap_scan_bus(void)
2222 {
2223 	bool config_changed;
2224 	int ap;
2225 
2226 	pr_debug(">%s\n", __func__);
2227 
2228 	/* (re-)fetch configuration via QCI */
2229 	config_changed = ap_get_configuration();
2230 	if (config_changed) {
2231 		if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2232 			/*
2233 			 * Appearance of new adapters and/or domains need to
2234 			 * build new ap devices which need to get bound to an
2235 			 * device driver. Thus reset the APQN bindings complete
2236 			 * completion.
2237 			 */
2238 			reinit_completion(&ap_apqn_bindings_complete);
2239 		}
2240 		/* post a config change notify */
2241 		notify_config_changed();
2242 	}
2243 	ap_select_domain();
2244 
2245 	/* loop over all possible adapters */
2246 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2247 		ap_scan_adapter(ap);
2248 
2249 	/* scan complete notify */
2250 	if (config_changed)
2251 		notify_scan_complete();
2252 
2253 	/* check if there is at least one queue available with default domain */
2254 	if (ap_domain_index >= 0) {
2255 		struct device *dev =
2256 			bus_find_device(&ap_bus_type, NULL,
2257 					(void *)(long)ap_domain_index,
2258 					__match_queue_device_with_queue_id);
2259 		if (dev)
2260 			put_device(dev);
2261 		else
2262 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2263 				    __func__, ap_domain_index);
2264 	}
2265 
2266 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2267 		pr_debug("%s init scan complete\n", __func__);
2268 		ap_send_init_scan_done_uevent();
2269 	}
2270 
2271 	ap_check_bindings_complete();
2272 
2273 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2274 
2275 	pr_debug("<%s config_changed=%d\n", __func__, config_changed);
2276 
2277 	return config_changed;
2278 }
2279 
2280 /*
2281  * Callback for the ap_scan_bus_timer
2282  * Runs periodically, workqueue timer (ap_scan_bus_time)
2283  */
2284 static void ap_scan_bus_timer_callback(struct timer_list *unused)
2285 {
2286 	/*
2287 	 * schedule work into the system long wq which when
2288 	 * the work is finally executed, calls the AP bus scan.
2289 	 */
2290 	queue_work(system_long_wq, &ap_scan_bus_work);
2291 }
2292 
2293 /*
2294  * Callback for the ap_scan_bus_work
2295  */
2296 static void ap_scan_bus_wq_callback(struct work_struct *unused)
2297 {
2298 	/*
2299 	 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2300 	 * fails there is currently another task already running the
2301 	 * AP scan bus and there is no need to wait and re-trigger the
2302 	 * scan again. Please note at the end of the scan bus function
2303 	 * the AP scan bus timer is re-armed which triggers then the
2304 	 * ap_scan_bus_timer_callback which enqueues a work into the
2305 	 * system_long_wq which invokes this function here again.
2306 	 */
2307 	if (mutex_trylock(&ap_scan_bus_mutex)) {
2308 		ap_scan_bus_result = ap_scan_bus();
2309 		mutex_unlock(&ap_scan_bus_mutex);
2310 	}
2311 }
2312 
2313 static int __init ap_debug_init(void)
2314 {
2315 	ap_dbf_info = debug_register("ap", 2, 1,
2316 				     AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2317 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2318 	debug_set_level(ap_dbf_info, DBF_ERR);
2319 
2320 	return 0;
2321 }
2322 
2323 static void __init ap_perms_init(void)
2324 {
2325 	/* all resources usable if no kernel parameter string given */
2326 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2327 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2328 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2329 
2330 	/* apm kernel parameter string */
2331 	if (apm_str) {
2332 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2333 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2334 				  &ap_perms_mutex);
2335 	}
2336 
2337 	/* aqm kernel parameter string */
2338 	if (aqm_str) {
2339 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2340 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2341 				  &ap_perms_mutex);
2342 	}
2343 }
2344 
2345 /**
2346  * ap_module_init(): The module initialization code.
2347  *
2348  * Initializes the module.
2349  */
2350 static int __init ap_module_init(void)
2351 {
2352 	int rc;
2353 
2354 	rc = ap_debug_init();
2355 	if (rc)
2356 		return rc;
2357 
2358 	if (!ap_instructions_available()) {
2359 		pr_warn("The hardware system does not support AP instructions\n");
2360 		return -ENODEV;
2361 	}
2362 
2363 	/* init ap_queue hashtable */
2364 	hash_init(ap_queues);
2365 
2366 	/* set up the AP permissions (ioctls, ap and aq masks) */
2367 	ap_perms_init();
2368 
2369 	/* Get AP configuration data if available */
2370 	ap_init_qci_info();
2371 
2372 	/* check default domain setting */
2373 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2374 	    (ap_domain_index >= 0 &&
2375 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2376 		pr_warn("%d is not a valid cryptographic domain\n",
2377 			ap_domain_index);
2378 		ap_domain_index = -1;
2379 	}
2380 
2381 	/* enable interrupts if available */
2382 	if (ap_interrupts_available() && ap_useirq) {
2383 		rc = register_adapter_interrupt(&ap_airq);
2384 		ap_irq_flag = (rc == 0);
2385 	}
2386 
2387 	/* Create /sys/bus/ap. */
2388 	rc = bus_register(&ap_bus_type);
2389 	if (rc)
2390 		goto out;
2391 
2392 	/* Create /sys/devices/ap. */
2393 	ap_root_device = root_device_register("ap");
2394 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2395 	if (rc)
2396 		goto out_bus;
2397 	ap_root_device->bus = &ap_bus_type;
2398 
2399 	/* Setup the AP bus rescan timer. */
2400 	timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2401 
2402 	/*
2403 	 * Setup the high resolution poll timer.
2404 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2405 	 */
2406 	if (MACHINE_IS_VM)
2407 		poll_high_timeout = 1500000;
2408 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2409 	ap_poll_timer.function = ap_poll_timeout;
2410 
2411 	/* Start the low priority AP bus poll thread. */
2412 	if (ap_thread_flag) {
2413 		rc = ap_poll_thread_start();
2414 		if (rc)
2415 			goto out_work;
2416 	}
2417 
2418 	queue_work(system_long_wq, &ap_scan_bus_work);
2419 
2420 	return 0;
2421 
2422 out_work:
2423 	hrtimer_cancel(&ap_poll_timer);
2424 	root_device_unregister(ap_root_device);
2425 out_bus:
2426 	bus_unregister(&ap_bus_type);
2427 out:
2428 	if (ap_irq_flag)
2429 		unregister_adapter_interrupt(&ap_airq);
2430 	kfree(ap_qci_info);
2431 	return rc;
2432 }
2433 device_initcall(ap_module_init);
2434