1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2023 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <asm/tpi.h> 31 #include <linux/atomic.h> 32 #include <asm/isc.h> 33 #include <linux/hrtimer.h> 34 #include <linux/ktime.h> 35 #include <asm/facility.h> 36 #include <linux/crypto.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/debugfs.h> 39 #include <linux/ctype.h> 40 #include <linux/module.h> 41 #include <asm/uv.h> 42 43 #include "ap_bus.h" 44 #include "ap_debug.h" 45 46 /* 47 * Module parameters; note though this file itself isn't modular. 48 */ 49 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 50 static DEFINE_SPINLOCK(ap_domain_lock); 51 module_param_named(domain, ap_domain_index, int, 0440); 52 MODULE_PARM_DESC(domain, "domain index for ap devices"); 53 EXPORT_SYMBOL(ap_domain_index); 54 55 static int ap_thread_flag; 56 module_param_named(poll_thread, ap_thread_flag, int, 0440); 57 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 58 59 static char *apm_str; 60 module_param_named(apmask, apm_str, charp, 0440); 61 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 62 63 static char *aqm_str; 64 module_param_named(aqmask, aqm_str, charp, 0440); 65 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 66 67 static int ap_useirq = 1; 68 module_param_named(useirq, ap_useirq, int, 0440); 69 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 70 71 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 72 EXPORT_SYMBOL(ap_max_msg_size); 73 74 static struct device *ap_root_device; 75 76 /* Hashtable of all queue devices on the AP bus */ 77 DEFINE_HASHTABLE(ap_queues, 8); 78 /* lock used for the ap_queues hashtable */ 79 DEFINE_SPINLOCK(ap_queues_lock); 80 81 /* Default permissions (ioctl, card and domain masking) */ 82 struct ap_perms ap_perms; 83 EXPORT_SYMBOL(ap_perms); 84 DEFINE_MUTEX(ap_perms_mutex); 85 EXPORT_SYMBOL(ap_perms_mutex); 86 87 /* # of bindings complete since init */ 88 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 89 90 /* completion for APQN bindings complete */ 91 static DECLARE_COMPLETION(ap_apqn_bindings_complete); 92 93 static struct ap_config_info *ap_qci_info; 94 static struct ap_config_info *ap_qci_info_old; 95 96 /* 97 * AP bus related debug feature things. 98 */ 99 debug_info_t *ap_dbf_info; 100 101 /* 102 * AP bus rescan related things. 103 */ 104 static bool ap_scan_bus(void); 105 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */ 106 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */ 107 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */ 108 static int ap_scan_bus_time = AP_CONFIG_TIME; 109 static struct timer_list ap_scan_bus_timer; 110 static void ap_scan_bus_wq_callback(struct work_struct *); 111 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback); 112 113 /* 114 * Tasklet & timer for AP request polling and interrupts 115 */ 116 static void ap_tasklet_fn(unsigned long); 117 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 118 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 119 static struct task_struct *ap_poll_kthread; 120 static DEFINE_MUTEX(ap_poll_thread_mutex); 121 static DEFINE_SPINLOCK(ap_poll_timer_lock); 122 static struct hrtimer ap_poll_timer; 123 /* 124 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 125 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 126 */ 127 static unsigned long poll_high_timeout = 250000UL; 128 129 /* 130 * Some state machine states only require a low frequency polling. 131 * We use 25 Hz frequency for these. 132 */ 133 static unsigned long poll_low_timeout = 40000000UL; 134 135 /* Maximum domain id, if not given via qci */ 136 static int ap_max_domain_id = 15; 137 /* Maximum adapter id, if not given via qci */ 138 static int ap_max_adapter_id = 63; 139 140 static const struct bus_type ap_bus_type; 141 142 /* Adapter interrupt definitions */ 143 static void ap_interrupt_handler(struct airq_struct *airq, 144 struct tpi_info *tpi_info); 145 146 static bool ap_irq_flag; 147 148 static struct airq_struct ap_airq = { 149 .handler = ap_interrupt_handler, 150 .isc = AP_ISC, 151 }; 152 153 /** 154 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 155 * 156 * Returns the address of the local-summary-indicator of the adapter 157 * interrupt handler for AP, or NULL if adapter interrupts are not 158 * available. 159 */ 160 void *ap_airq_ptr(void) 161 { 162 if (ap_irq_flag) 163 return ap_airq.lsi_ptr; 164 return NULL; 165 } 166 167 /** 168 * ap_interrupts_available(): Test if AP interrupts are available. 169 * 170 * Returns 1 if AP interrupts are available. 171 */ 172 static int ap_interrupts_available(void) 173 { 174 return test_facility(65); 175 } 176 177 /** 178 * ap_qci_available(): Test if AP configuration 179 * information can be queried via QCI subfunction. 180 * 181 * Returns 1 if subfunction PQAP(QCI) is available. 182 */ 183 static int ap_qci_available(void) 184 { 185 return test_facility(12); 186 } 187 188 /** 189 * ap_apft_available(): Test if AP facilities test (APFT) 190 * facility is available. 191 * 192 * Returns 1 if APFT is available. 193 */ 194 static int ap_apft_available(void) 195 { 196 return test_facility(15); 197 } 198 199 /* 200 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 201 * 202 * Returns 1 if the QACT subfunction is available. 203 */ 204 static inline int ap_qact_available(void) 205 { 206 if (ap_qci_info) 207 return ap_qci_info->qact; 208 return 0; 209 } 210 211 /* 212 * ap_sb_available(): Test if the AP secure binding facility is available. 213 * 214 * Returns 1 if secure binding facility is available. 215 */ 216 int ap_sb_available(void) 217 { 218 if (ap_qci_info) 219 return ap_qci_info->apsb; 220 return 0; 221 } 222 223 /* 224 * ap_is_se_guest(): Check for SE guest with AP pass-through support. 225 */ 226 bool ap_is_se_guest(void) 227 { 228 return is_prot_virt_guest() && ap_sb_available(); 229 } 230 EXPORT_SYMBOL(ap_is_se_guest); 231 232 /* 233 * ap_fetch_qci_info(): Fetch cryptographic config info 234 * 235 * Returns the ap configuration info fetched via PQAP(QCI). 236 * On success 0 is returned, on failure a negative errno 237 * is returned, e.g. if the PQAP(QCI) instruction is not 238 * available, the return value will be -EOPNOTSUPP. 239 */ 240 static inline int ap_fetch_qci_info(struct ap_config_info *info) 241 { 242 if (!ap_qci_available()) 243 return -EOPNOTSUPP; 244 if (!info) 245 return -EINVAL; 246 return ap_qci(info); 247 } 248 249 /** 250 * ap_init_qci_info(): Allocate and query qci config info. 251 * Does also update the static variables ap_max_domain_id 252 * and ap_max_adapter_id if this info is available. 253 */ 254 static void __init ap_init_qci_info(void) 255 { 256 if (!ap_qci_available()) { 257 AP_DBF_INFO("%s QCI not supported\n", __func__); 258 return; 259 } 260 261 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 262 if (!ap_qci_info) 263 return; 264 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL); 265 if (!ap_qci_info_old) { 266 kfree(ap_qci_info); 267 ap_qci_info = NULL; 268 return; 269 } 270 if (ap_fetch_qci_info(ap_qci_info) != 0) { 271 kfree(ap_qci_info); 272 kfree(ap_qci_info_old); 273 ap_qci_info = NULL; 274 ap_qci_info_old = NULL; 275 return; 276 } 277 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 278 279 if (ap_qci_info->apxa) { 280 if (ap_qci_info->na) { 281 ap_max_adapter_id = ap_qci_info->na; 282 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 283 __func__, ap_max_adapter_id); 284 } 285 if (ap_qci_info->nd) { 286 ap_max_domain_id = ap_qci_info->nd; 287 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 288 __func__, ap_max_domain_id); 289 } 290 } 291 292 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 293 } 294 295 /* 296 * ap_test_config(): helper function to extract the nrth bit 297 * within the unsigned int array field. 298 */ 299 static inline int ap_test_config(unsigned int *field, unsigned int nr) 300 { 301 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 302 } 303 304 /* 305 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 306 * 307 * Returns 0 if the card is not configured 308 * 1 if the card is configured or 309 * if the configuration information is not available 310 */ 311 static inline int ap_test_config_card_id(unsigned int id) 312 { 313 if (id > ap_max_adapter_id) 314 return 0; 315 if (ap_qci_info) 316 return ap_test_config(ap_qci_info->apm, id); 317 return 1; 318 } 319 320 /* 321 * ap_test_config_usage_domain(): Test, whether an AP usage domain 322 * is configured. 323 * 324 * Returns 0 if the usage domain is not configured 325 * 1 if the usage domain is configured or 326 * if the configuration information is not available 327 */ 328 int ap_test_config_usage_domain(unsigned int domain) 329 { 330 if (domain > ap_max_domain_id) 331 return 0; 332 if (ap_qci_info) 333 return ap_test_config(ap_qci_info->aqm, domain); 334 return 1; 335 } 336 EXPORT_SYMBOL(ap_test_config_usage_domain); 337 338 /* 339 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 340 * is configured. 341 * @domain AP control domain ID 342 * 343 * Returns 1 if the control domain is configured 344 * 0 in all other cases 345 */ 346 int ap_test_config_ctrl_domain(unsigned int domain) 347 { 348 if (!ap_qci_info || domain > ap_max_domain_id) 349 return 0; 350 return ap_test_config(ap_qci_info->adm, domain); 351 } 352 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 353 354 /* 355 * ap_queue_info(): Check and get AP queue info. 356 * Returns: 1 if APQN exists and info is filled, 357 * 0 if APQN seems to exist but there is no info 358 * available (eg. caused by an asynch pending error) 359 * -1 invalid APQN, TAPQ error or AP queue status which 360 * indicates there is no APQN. 361 */ 362 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo, 363 bool *decfg, bool *cstop) 364 { 365 struct ap_queue_status status; 366 367 hwinfo->value = 0; 368 369 /* make sure we don't run into a specifiation exception */ 370 if (AP_QID_CARD(qid) > ap_max_adapter_id || 371 AP_QID_QUEUE(qid) > ap_max_domain_id) 372 return -1; 373 374 /* call TAPQ on this APQN */ 375 status = ap_test_queue(qid, ap_apft_available(), hwinfo); 376 377 switch (status.response_code) { 378 case AP_RESPONSE_NORMAL: 379 case AP_RESPONSE_RESET_IN_PROGRESS: 380 case AP_RESPONSE_DECONFIGURED: 381 case AP_RESPONSE_CHECKSTOPPED: 382 case AP_RESPONSE_BUSY: 383 /* For all these RCs the tapq info should be available */ 384 break; 385 default: 386 /* On a pending async error the info should be available */ 387 if (!status.async) 388 return -1; 389 break; 390 } 391 392 /* There should be at least one of the mode bits set */ 393 if (WARN_ON_ONCE(!hwinfo->value)) 394 return 0; 395 396 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 397 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 398 399 return 1; 400 } 401 402 void ap_wait(enum ap_sm_wait wait) 403 { 404 ktime_t hr_time; 405 406 switch (wait) { 407 case AP_SM_WAIT_AGAIN: 408 case AP_SM_WAIT_INTERRUPT: 409 if (ap_irq_flag) 410 break; 411 if (ap_poll_kthread) { 412 wake_up(&ap_poll_wait); 413 break; 414 } 415 fallthrough; 416 case AP_SM_WAIT_LOW_TIMEOUT: 417 case AP_SM_WAIT_HIGH_TIMEOUT: 418 spin_lock_bh(&ap_poll_timer_lock); 419 if (!hrtimer_is_queued(&ap_poll_timer)) { 420 hr_time = 421 wait == AP_SM_WAIT_LOW_TIMEOUT ? 422 poll_low_timeout : poll_high_timeout; 423 hrtimer_forward_now(&ap_poll_timer, hr_time); 424 hrtimer_restart(&ap_poll_timer); 425 } 426 spin_unlock_bh(&ap_poll_timer_lock); 427 break; 428 case AP_SM_WAIT_NONE: 429 default: 430 break; 431 } 432 } 433 434 /** 435 * ap_request_timeout(): Handling of request timeouts 436 * @t: timer making this callback 437 * 438 * Handles request timeouts. 439 */ 440 void ap_request_timeout(struct timer_list *t) 441 { 442 struct ap_queue *aq = from_timer(aq, t, timeout); 443 444 spin_lock_bh(&aq->lock); 445 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 446 spin_unlock_bh(&aq->lock); 447 } 448 449 /** 450 * ap_poll_timeout(): AP receive polling for finished AP requests. 451 * @unused: Unused pointer. 452 * 453 * Schedules the AP tasklet using a high resolution timer. 454 */ 455 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 456 { 457 tasklet_schedule(&ap_tasklet); 458 return HRTIMER_NORESTART; 459 } 460 461 /** 462 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 463 * @airq: pointer to adapter interrupt descriptor 464 * @tpi_info: ignored 465 */ 466 static void ap_interrupt_handler(struct airq_struct *airq, 467 struct tpi_info *tpi_info) 468 { 469 inc_irq_stat(IRQIO_APB); 470 tasklet_schedule(&ap_tasklet); 471 } 472 473 /** 474 * ap_tasklet_fn(): Tasklet to poll all AP devices. 475 * @dummy: Unused variable 476 * 477 * Poll all AP devices on the bus. 478 */ 479 static void ap_tasklet_fn(unsigned long dummy) 480 { 481 int bkt; 482 struct ap_queue *aq; 483 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 484 485 /* Reset the indicator if interrupts are used. Thus new interrupts can 486 * be received. Doing it in the beginning of the tasklet is therefore 487 * important that no requests on any AP get lost. 488 */ 489 if (ap_irq_flag) 490 xchg(ap_airq.lsi_ptr, 0); 491 492 spin_lock_bh(&ap_queues_lock); 493 hash_for_each(ap_queues, bkt, aq, hnode) { 494 spin_lock_bh(&aq->lock); 495 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 496 spin_unlock_bh(&aq->lock); 497 } 498 spin_unlock_bh(&ap_queues_lock); 499 500 ap_wait(wait); 501 } 502 503 static int ap_pending_requests(void) 504 { 505 int bkt; 506 struct ap_queue *aq; 507 508 spin_lock_bh(&ap_queues_lock); 509 hash_for_each(ap_queues, bkt, aq, hnode) { 510 if (aq->queue_count == 0) 511 continue; 512 spin_unlock_bh(&ap_queues_lock); 513 return 1; 514 } 515 spin_unlock_bh(&ap_queues_lock); 516 return 0; 517 } 518 519 /** 520 * ap_poll_thread(): Thread that polls for finished requests. 521 * @data: Unused pointer 522 * 523 * AP bus poll thread. The purpose of this thread is to poll for 524 * finished requests in a loop if there is a "free" cpu - that is 525 * a cpu that doesn't have anything better to do. The polling stops 526 * as soon as there is another task or if all messages have been 527 * delivered. 528 */ 529 static int ap_poll_thread(void *data) 530 { 531 DECLARE_WAITQUEUE(wait, current); 532 533 set_user_nice(current, MAX_NICE); 534 set_freezable(); 535 while (!kthread_should_stop()) { 536 add_wait_queue(&ap_poll_wait, &wait); 537 set_current_state(TASK_INTERRUPTIBLE); 538 if (!ap_pending_requests()) { 539 schedule(); 540 try_to_freeze(); 541 } 542 set_current_state(TASK_RUNNING); 543 remove_wait_queue(&ap_poll_wait, &wait); 544 if (need_resched()) { 545 schedule(); 546 try_to_freeze(); 547 continue; 548 } 549 ap_tasklet_fn(0); 550 } 551 552 return 0; 553 } 554 555 static int ap_poll_thread_start(void) 556 { 557 int rc; 558 559 if (ap_irq_flag || ap_poll_kthread) 560 return 0; 561 mutex_lock(&ap_poll_thread_mutex); 562 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 563 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 564 if (rc) 565 ap_poll_kthread = NULL; 566 mutex_unlock(&ap_poll_thread_mutex); 567 return rc; 568 } 569 570 static void ap_poll_thread_stop(void) 571 { 572 if (!ap_poll_kthread) 573 return; 574 mutex_lock(&ap_poll_thread_mutex); 575 kthread_stop(ap_poll_kthread); 576 ap_poll_kthread = NULL; 577 mutex_unlock(&ap_poll_thread_mutex); 578 } 579 580 #define is_card_dev(x) ((x)->parent == ap_root_device) 581 #define is_queue_dev(x) ((x)->parent != ap_root_device) 582 583 /** 584 * ap_bus_match() 585 * @dev: Pointer to device 586 * @drv: Pointer to device_driver 587 * 588 * AP bus driver registration/unregistration. 589 */ 590 static int ap_bus_match(struct device *dev, struct device_driver *drv) 591 { 592 struct ap_driver *ap_drv = to_ap_drv(drv); 593 struct ap_device_id *id; 594 595 /* 596 * Compare device type of the device with the list of 597 * supported types of the device_driver. 598 */ 599 for (id = ap_drv->ids; id->match_flags; id++) { 600 if (is_card_dev(dev) && 601 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 602 id->dev_type == to_ap_dev(dev)->device_type) 603 return 1; 604 if (is_queue_dev(dev) && 605 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 606 id->dev_type == to_ap_dev(dev)->device_type) 607 return 1; 608 } 609 return 0; 610 } 611 612 /** 613 * ap_uevent(): Uevent function for AP devices. 614 * @dev: Pointer to device 615 * @env: Pointer to kobj_uevent_env 616 * 617 * It sets up a single environment variable DEV_TYPE which contains the 618 * hardware device type. 619 */ 620 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env) 621 { 622 int rc = 0; 623 const struct ap_device *ap_dev = to_ap_dev(dev); 624 625 /* Uevents from ap bus core don't need extensions to the env */ 626 if (dev == ap_root_device) 627 return 0; 628 629 if (is_card_dev(dev)) { 630 struct ap_card *ac = to_ap_card(&ap_dev->device); 631 632 /* Set up DEV_TYPE environment variable. */ 633 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 634 if (rc) 635 return rc; 636 /* Add MODALIAS= */ 637 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 638 if (rc) 639 return rc; 640 641 /* Add MODE=<accel|cca|ep11> */ 642 if (ac->hwinfo.accel) 643 rc = add_uevent_var(env, "MODE=accel"); 644 else if (ac->hwinfo.cca) 645 rc = add_uevent_var(env, "MODE=cca"); 646 else if (ac->hwinfo.ep11) 647 rc = add_uevent_var(env, "MODE=ep11"); 648 if (rc) 649 return rc; 650 } else { 651 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 652 653 /* Add MODE=<accel|cca|ep11> */ 654 if (aq->card->hwinfo.accel) 655 rc = add_uevent_var(env, "MODE=accel"); 656 else if (aq->card->hwinfo.cca) 657 rc = add_uevent_var(env, "MODE=cca"); 658 else if (aq->card->hwinfo.ep11) 659 rc = add_uevent_var(env, "MODE=ep11"); 660 if (rc) 661 return rc; 662 } 663 664 return 0; 665 } 666 667 static void ap_send_init_scan_done_uevent(void) 668 { 669 char *envp[] = { "INITSCAN=done", NULL }; 670 671 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 672 } 673 674 static void ap_send_bindings_complete_uevent(void) 675 { 676 char buf[32]; 677 char *envp[] = { "BINDINGS=complete", buf, NULL }; 678 679 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 680 atomic64_inc_return(&ap_bindings_complete_count)); 681 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 682 } 683 684 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 685 { 686 char buf[16]; 687 char *envp[] = { buf, NULL }; 688 689 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 690 691 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 692 } 693 EXPORT_SYMBOL(ap_send_config_uevent); 694 695 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 696 { 697 char buf[16]; 698 char *envp[] = { buf, NULL }; 699 700 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 701 702 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 703 } 704 EXPORT_SYMBOL(ap_send_online_uevent); 705 706 static void ap_send_mask_changed_uevent(unsigned long *newapm, 707 unsigned long *newaqm) 708 { 709 char buf[100]; 710 char *envp[] = { buf, NULL }; 711 712 if (newapm) 713 snprintf(buf, sizeof(buf), 714 "APMASK=0x%016lx%016lx%016lx%016lx\n", 715 newapm[0], newapm[1], newapm[2], newapm[3]); 716 else 717 snprintf(buf, sizeof(buf), 718 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 719 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 720 721 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 722 } 723 724 /* 725 * calc # of bound APQNs 726 */ 727 728 struct __ap_calc_ctrs { 729 unsigned int apqns; 730 unsigned int bound; 731 }; 732 733 static int __ap_calc_helper(struct device *dev, void *arg) 734 { 735 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 736 737 if (is_queue_dev(dev)) { 738 pctrs->apqns++; 739 if (dev->driver) 740 pctrs->bound++; 741 } 742 743 return 0; 744 } 745 746 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 747 { 748 struct __ap_calc_ctrs ctrs; 749 750 memset(&ctrs, 0, sizeof(ctrs)); 751 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 752 753 *apqns = ctrs.apqns; 754 *bound = ctrs.bound; 755 } 756 757 /* 758 * After ap bus scan do check if all existing APQNs are 759 * bound to device drivers. 760 */ 761 static void ap_check_bindings_complete(void) 762 { 763 unsigned int apqns, bound; 764 765 if (atomic64_read(&ap_scan_bus_count) >= 1) { 766 ap_calc_bound_apqns(&apqns, &bound); 767 if (bound == apqns) { 768 if (!completion_done(&ap_apqn_bindings_complete)) { 769 complete_all(&ap_apqn_bindings_complete); 770 pr_debug("%s all apqn bindings complete\n", __func__); 771 } 772 ap_send_bindings_complete_uevent(); 773 } 774 } 775 } 776 777 /* 778 * Interface to wait for the AP bus to have done one initial ap bus 779 * scan and all detected APQNs have been bound to device drivers. 780 * If these both conditions are not fulfilled, this function blocks 781 * on a condition with wait_for_completion_interruptible_timeout(). 782 * If these both conditions are fulfilled (before the timeout hits) 783 * the return value is 0. If the timeout (in jiffies) hits instead 784 * -ETIME is returned. On failures negative return values are 785 * returned to the caller. 786 */ 787 int ap_wait_apqn_bindings_complete(unsigned long timeout) 788 { 789 int rc = 0; 790 long l; 791 792 if (completion_done(&ap_apqn_bindings_complete)) 793 return 0; 794 795 if (timeout) 796 l = wait_for_completion_interruptible_timeout( 797 &ap_apqn_bindings_complete, timeout); 798 else 799 l = wait_for_completion_interruptible( 800 &ap_apqn_bindings_complete); 801 if (l < 0) 802 rc = l == -ERESTARTSYS ? -EINTR : l; 803 else if (l == 0 && timeout) 804 rc = -ETIME; 805 806 pr_debug("%s rc=%d\n", __func__, rc); 807 return rc; 808 } 809 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete); 810 811 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 812 { 813 if (is_queue_dev(dev) && 814 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 815 device_unregister(dev); 816 return 0; 817 } 818 819 static int __ap_revise_reserved(struct device *dev, void *dummy) 820 { 821 int rc, card, queue, devres, drvres; 822 823 if (is_queue_dev(dev)) { 824 card = AP_QID_CARD(to_ap_queue(dev)->qid); 825 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 826 mutex_lock(&ap_perms_mutex); 827 devres = test_bit_inv(card, ap_perms.apm) && 828 test_bit_inv(queue, ap_perms.aqm); 829 mutex_unlock(&ap_perms_mutex); 830 drvres = to_ap_drv(dev->driver)->flags 831 & AP_DRIVER_FLAG_DEFAULT; 832 if (!!devres != !!drvres) { 833 pr_debug("%s reprobing queue=%02x.%04x\n", 834 __func__, card, queue); 835 rc = device_reprobe(dev); 836 if (rc) 837 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 838 __func__, card, queue); 839 } 840 } 841 842 return 0; 843 } 844 845 static void ap_bus_revise_bindings(void) 846 { 847 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 848 } 849 850 /** 851 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 852 * default host driver or not. 853 * @card: the APID of the adapter card to check 854 * @queue: the APQI of the queue to check 855 * 856 * Note: the ap_perms_mutex must be locked by the caller of this function. 857 * 858 * Return: an int specifying whether the AP adapter is reserved for the host (1) 859 * or not (0). 860 */ 861 int ap_owned_by_def_drv(int card, int queue) 862 { 863 int rc = 0; 864 865 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 866 return -EINVAL; 867 868 if (test_bit_inv(card, ap_perms.apm) && 869 test_bit_inv(queue, ap_perms.aqm)) 870 rc = 1; 871 872 return rc; 873 } 874 EXPORT_SYMBOL(ap_owned_by_def_drv); 875 876 /** 877 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 878 * a set is reserved for the host drivers 879 * or not. 880 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 881 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 882 * 883 * Note: the ap_perms_mutex must be locked by the caller of this function. 884 * 885 * Return: an int specifying whether each APQN is reserved for the host (1) or 886 * not (0) 887 */ 888 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 889 unsigned long *aqm) 890 { 891 int card, queue, rc = 0; 892 893 for (card = 0; !rc && card < AP_DEVICES; card++) 894 if (test_bit_inv(card, apm) && 895 test_bit_inv(card, ap_perms.apm)) 896 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 897 if (test_bit_inv(queue, aqm) && 898 test_bit_inv(queue, ap_perms.aqm)) 899 rc = 1; 900 901 return rc; 902 } 903 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 904 905 static int ap_device_probe(struct device *dev) 906 { 907 struct ap_device *ap_dev = to_ap_dev(dev); 908 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 909 int card, queue, devres, drvres, rc = -ENODEV; 910 911 if (!get_device(dev)) 912 return rc; 913 914 if (is_queue_dev(dev)) { 915 /* 916 * If the apqn is marked as reserved/used by ap bus and 917 * default drivers, only probe with drivers with the default 918 * flag set. If it is not marked, only probe with drivers 919 * with the default flag not set. 920 */ 921 card = AP_QID_CARD(to_ap_queue(dev)->qid); 922 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 923 mutex_lock(&ap_perms_mutex); 924 devres = test_bit_inv(card, ap_perms.apm) && 925 test_bit_inv(queue, ap_perms.aqm); 926 mutex_unlock(&ap_perms_mutex); 927 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 928 if (!!devres != !!drvres) 929 goto out; 930 } 931 932 /* Add queue/card to list of active queues/cards */ 933 spin_lock_bh(&ap_queues_lock); 934 if (is_queue_dev(dev)) 935 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 936 to_ap_queue(dev)->qid); 937 spin_unlock_bh(&ap_queues_lock); 938 939 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 940 941 if (rc) { 942 spin_lock_bh(&ap_queues_lock); 943 if (is_queue_dev(dev)) 944 hash_del(&to_ap_queue(dev)->hnode); 945 spin_unlock_bh(&ap_queues_lock); 946 } 947 948 out: 949 if (rc) 950 put_device(dev); 951 return rc; 952 } 953 954 static void ap_device_remove(struct device *dev) 955 { 956 struct ap_device *ap_dev = to_ap_dev(dev); 957 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 958 959 /* prepare ap queue device removal */ 960 if (is_queue_dev(dev)) 961 ap_queue_prepare_remove(to_ap_queue(dev)); 962 963 /* driver's chance to clean up gracefully */ 964 if (ap_drv->remove) 965 ap_drv->remove(ap_dev); 966 967 /* now do the ap queue device remove */ 968 if (is_queue_dev(dev)) 969 ap_queue_remove(to_ap_queue(dev)); 970 971 /* Remove queue/card from list of active queues/cards */ 972 spin_lock_bh(&ap_queues_lock); 973 if (is_queue_dev(dev)) 974 hash_del(&to_ap_queue(dev)->hnode); 975 spin_unlock_bh(&ap_queues_lock); 976 977 put_device(dev); 978 } 979 980 struct ap_queue *ap_get_qdev(ap_qid_t qid) 981 { 982 int bkt; 983 struct ap_queue *aq; 984 985 spin_lock_bh(&ap_queues_lock); 986 hash_for_each(ap_queues, bkt, aq, hnode) { 987 if (aq->qid == qid) { 988 get_device(&aq->ap_dev.device); 989 spin_unlock_bh(&ap_queues_lock); 990 return aq; 991 } 992 } 993 spin_unlock_bh(&ap_queues_lock); 994 995 return NULL; 996 } 997 EXPORT_SYMBOL(ap_get_qdev); 998 999 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 1000 char *name) 1001 { 1002 struct device_driver *drv = &ap_drv->driver; 1003 1004 drv->bus = &ap_bus_type; 1005 drv->owner = owner; 1006 drv->name = name; 1007 return driver_register(drv); 1008 } 1009 EXPORT_SYMBOL(ap_driver_register); 1010 1011 void ap_driver_unregister(struct ap_driver *ap_drv) 1012 { 1013 driver_unregister(&ap_drv->driver); 1014 } 1015 EXPORT_SYMBOL(ap_driver_unregister); 1016 1017 /* 1018 * Enforce a synchronous AP bus rescan. 1019 * Returns true if the bus scan finds a change in the AP configuration 1020 * and AP devices have been added or deleted when this function returns. 1021 */ 1022 bool ap_bus_force_rescan(void) 1023 { 1024 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count); 1025 bool rc = false; 1026 1027 pr_debug(">%s scan counter=%lu\n", __func__, scan_counter); 1028 1029 /* Only trigger AP bus scans after the initial scan is done */ 1030 if (scan_counter <= 0) 1031 goto out; 1032 1033 /* Try to acquire the AP scan bus mutex */ 1034 if (mutex_trylock(&ap_scan_bus_mutex)) { 1035 /* mutex acquired, run the AP bus scan */ 1036 ap_scan_bus_result = ap_scan_bus(); 1037 rc = ap_scan_bus_result; 1038 mutex_unlock(&ap_scan_bus_mutex); 1039 goto out; 1040 } 1041 1042 /* 1043 * Mutex acquire failed. So there is currently another task 1044 * already running the AP bus scan. Then let's simple wait 1045 * for the lock which means the other task has finished and 1046 * stored the result in ap_scan_bus_result. 1047 */ 1048 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) { 1049 /* some error occurred, ignore and go out */ 1050 goto out; 1051 } 1052 rc = ap_scan_bus_result; 1053 mutex_unlock(&ap_scan_bus_mutex); 1054 1055 out: 1056 pr_debug("%s rc=%d\n", __func__, rc); 1057 return rc; 1058 } 1059 EXPORT_SYMBOL(ap_bus_force_rescan); 1060 1061 /* 1062 * A config change has happened, force an ap bus rescan. 1063 */ 1064 void ap_bus_cfg_chg(void) 1065 { 1066 pr_debug("%s config change, forcing bus rescan\n", __func__); 1067 1068 ap_bus_force_rescan(); 1069 } 1070 1071 /* 1072 * hex2bitmap() - parse hex mask string and set bitmap. 1073 * Valid strings are "0x012345678" with at least one valid hex number. 1074 * Rest of the bitmap to the right is padded with 0. No spaces allowed 1075 * within the string, the leading 0x may be omitted. 1076 * Returns the bitmask with exactly the bits set as given by the hex 1077 * string (both in big endian order). 1078 */ 1079 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1080 { 1081 int i, n, b; 1082 1083 /* bits needs to be a multiple of 8 */ 1084 if (bits & 0x07) 1085 return -EINVAL; 1086 1087 if (str[0] == '0' && str[1] == 'x') 1088 str++; 1089 if (*str == 'x') 1090 str++; 1091 1092 for (i = 0; isxdigit(*str) && i < bits; str++) { 1093 b = hex_to_bin(*str); 1094 for (n = 0; n < 4; n++) 1095 if (b & (0x08 >> n)) 1096 set_bit_inv(i + n, bitmap); 1097 i += 4; 1098 } 1099 1100 if (*str == '\n') 1101 str++; 1102 if (*str) 1103 return -EINVAL; 1104 return 0; 1105 } 1106 1107 /* 1108 * modify_bitmap() - parse bitmask argument and modify an existing 1109 * bit mask accordingly. A concatenation (done with ',') of these 1110 * terms is recognized: 1111 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1112 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1113 * 0...bits-1; the leading + or - is required. Here are some examples: 1114 * +0-15,+32,-128,-0xFF 1115 * -0-255,+1-16,+0x128 1116 * +1,+2,+3,+4,-5,-7-10 1117 * Returns the new bitmap after all changes have been applied. Every 1118 * positive value in the string will set a bit and every negative value 1119 * in the string will clear a bit. As a bit may be touched more than once, 1120 * the last 'operation' wins: 1121 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1122 * cleared again. All other bits are unmodified. 1123 */ 1124 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1125 { 1126 int a, i, z; 1127 char *np, sign; 1128 1129 /* bits needs to be a multiple of 8 */ 1130 if (bits & 0x07) 1131 return -EINVAL; 1132 1133 while (*str) { 1134 sign = *str++; 1135 if (sign != '+' && sign != '-') 1136 return -EINVAL; 1137 a = z = simple_strtoul(str, &np, 0); 1138 if (str == np || a >= bits) 1139 return -EINVAL; 1140 str = np; 1141 if (*str == '-') { 1142 z = simple_strtoul(++str, &np, 0); 1143 if (str == np || a > z || z >= bits) 1144 return -EINVAL; 1145 str = np; 1146 } 1147 for (i = a; i <= z; i++) 1148 if (sign == '+') 1149 set_bit_inv(i, bitmap); 1150 else 1151 clear_bit_inv(i, bitmap); 1152 while (*str == ',' || *str == '\n') 1153 str++; 1154 } 1155 1156 return 0; 1157 } 1158 1159 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1160 unsigned long *newmap) 1161 { 1162 unsigned long size; 1163 int rc; 1164 1165 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1166 if (*str == '+' || *str == '-') { 1167 memcpy(newmap, bitmap, size); 1168 rc = modify_bitmap(str, newmap, bits); 1169 } else { 1170 memset(newmap, 0, size); 1171 rc = hex2bitmap(str, newmap, bits); 1172 } 1173 return rc; 1174 } 1175 1176 int ap_parse_mask_str(const char *str, 1177 unsigned long *bitmap, int bits, 1178 struct mutex *lock) 1179 { 1180 unsigned long *newmap, size; 1181 int rc; 1182 1183 /* bits needs to be a multiple of 8 */ 1184 if (bits & 0x07) 1185 return -EINVAL; 1186 1187 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1188 newmap = kmalloc(size, GFP_KERNEL); 1189 if (!newmap) 1190 return -ENOMEM; 1191 if (mutex_lock_interruptible(lock)) { 1192 kfree(newmap); 1193 return -ERESTARTSYS; 1194 } 1195 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1196 if (rc == 0) 1197 memcpy(bitmap, newmap, size); 1198 mutex_unlock(lock); 1199 kfree(newmap); 1200 return rc; 1201 } 1202 EXPORT_SYMBOL(ap_parse_mask_str); 1203 1204 /* 1205 * AP bus attributes. 1206 */ 1207 1208 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf) 1209 { 1210 return sysfs_emit(buf, "%d\n", ap_domain_index); 1211 } 1212 1213 static ssize_t ap_domain_store(const struct bus_type *bus, 1214 const char *buf, size_t count) 1215 { 1216 int domain; 1217 1218 if (sscanf(buf, "%i\n", &domain) != 1 || 1219 domain < 0 || domain > ap_max_domain_id || 1220 !test_bit_inv(domain, ap_perms.aqm)) 1221 return -EINVAL; 1222 1223 spin_lock_bh(&ap_domain_lock); 1224 ap_domain_index = domain; 1225 spin_unlock_bh(&ap_domain_lock); 1226 1227 AP_DBF_INFO("%s stored new default domain=%d\n", 1228 __func__, domain); 1229 1230 return count; 1231 } 1232 1233 static BUS_ATTR_RW(ap_domain); 1234 1235 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf) 1236 { 1237 if (!ap_qci_info) /* QCI not supported */ 1238 return sysfs_emit(buf, "not supported\n"); 1239 1240 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1241 ap_qci_info->adm[0], ap_qci_info->adm[1], 1242 ap_qci_info->adm[2], ap_qci_info->adm[3], 1243 ap_qci_info->adm[4], ap_qci_info->adm[5], 1244 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1245 } 1246 1247 static BUS_ATTR_RO(ap_control_domain_mask); 1248 1249 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf) 1250 { 1251 if (!ap_qci_info) /* QCI not supported */ 1252 return sysfs_emit(buf, "not supported\n"); 1253 1254 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1255 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1256 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1257 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1258 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1259 } 1260 1261 static BUS_ATTR_RO(ap_usage_domain_mask); 1262 1263 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf) 1264 { 1265 if (!ap_qci_info) /* QCI not supported */ 1266 return sysfs_emit(buf, "not supported\n"); 1267 1268 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1269 ap_qci_info->apm[0], ap_qci_info->apm[1], 1270 ap_qci_info->apm[2], ap_qci_info->apm[3], 1271 ap_qci_info->apm[4], ap_qci_info->apm[5], 1272 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1273 } 1274 1275 static BUS_ATTR_RO(ap_adapter_mask); 1276 1277 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf) 1278 { 1279 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0); 1280 } 1281 1282 static BUS_ATTR_RO(ap_interrupts); 1283 1284 static ssize_t config_time_show(const struct bus_type *bus, char *buf) 1285 { 1286 return sysfs_emit(buf, "%d\n", ap_scan_bus_time); 1287 } 1288 1289 static ssize_t config_time_store(const struct bus_type *bus, 1290 const char *buf, size_t count) 1291 { 1292 int time; 1293 1294 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1295 return -EINVAL; 1296 ap_scan_bus_time = time; 1297 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 1298 return count; 1299 } 1300 1301 static BUS_ATTR_RW(config_time); 1302 1303 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf) 1304 { 1305 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0); 1306 } 1307 1308 static ssize_t poll_thread_store(const struct bus_type *bus, 1309 const char *buf, size_t count) 1310 { 1311 bool value; 1312 int rc; 1313 1314 rc = kstrtobool(buf, &value); 1315 if (rc) 1316 return rc; 1317 1318 if (value) { 1319 rc = ap_poll_thread_start(); 1320 if (rc) 1321 count = rc; 1322 } else { 1323 ap_poll_thread_stop(); 1324 } 1325 return count; 1326 } 1327 1328 static BUS_ATTR_RW(poll_thread); 1329 1330 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf) 1331 { 1332 return sysfs_emit(buf, "%lu\n", poll_high_timeout); 1333 } 1334 1335 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf, 1336 size_t count) 1337 { 1338 unsigned long value; 1339 ktime_t hr_time; 1340 int rc; 1341 1342 rc = kstrtoul(buf, 0, &value); 1343 if (rc) 1344 return rc; 1345 1346 /* 120 seconds = maximum poll interval */ 1347 if (value > 120000000000UL) 1348 return -EINVAL; 1349 poll_high_timeout = value; 1350 hr_time = poll_high_timeout; 1351 1352 spin_lock_bh(&ap_poll_timer_lock); 1353 hrtimer_cancel(&ap_poll_timer); 1354 hrtimer_set_expires(&ap_poll_timer, hr_time); 1355 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1356 spin_unlock_bh(&ap_poll_timer_lock); 1357 1358 return count; 1359 } 1360 1361 static BUS_ATTR_RW(poll_timeout); 1362 1363 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf) 1364 { 1365 return sysfs_emit(buf, "%d\n", ap_max_domain_id); 1366 } 1367 1368 static BUS_ATTR_RO(ap_max_domain_id); 1369 1370 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf) 1371 { 1372 return sysfs_emit(buf, "%d\n", ap_max_adapter_id); 1373 } 1374 1375 static BUS_ATTR_RO(ap_max_adapter_id); 1376 1377 static ssize_t apmask_show(const struct bus_type *bus, char *buf) 1378 { 1379 int rc; 1380 1381 if (mutex_lock_interruptible(&ap_perms_mutex)) 1382 return -ERESTARTSYS; 1383 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1384 ap_perms.apm[0], ap_perms.apm[1], 1385 ap_perms.apm[2], ap_perms.apm[3]); 1386 mutex_unlock(&ap_perms_mutex); 1387 1388 return rc; 1389 } 1390 1391 static int __verify_card_reservations(struct device_driver *drv, void *data) 1392 { 1393 int rc = 0; 1394 struct ap_driver *ap_drv = to_ap_drv(drv); 1395 unsigned long *newapm = (unsigned long *)data; 1396 1397 /* 1398 * increase the driver's module refcounter to be sure it is not 1399 * going away when we invoke the callback function. 1400 */ 1401 if (!try_module_get(drv->owner)) 1402 return 0; 1403 1404 if (ap_drv->in_use) { 1405 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1406 if (rc) 1407 rc = -EBUSY; 1408 } 1409 1410 /* release the driver's module */ 1411 module_put(drv->owner); 1412 1413 return rc; 1414 } 1415 1416 static int apmask_commit(unsigned long *newapm) 1417 { 1418 int rc; 1419 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1420 1421 /* 1422 * Check if any bits in the apmask have been set which will 1423 * result in queues being removed from non-default drivers 1424 */ 1425 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1426 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1427 __verify_card_reservations); 1428 if (rc) 1429 return rc; 1430 } 1431 1432 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1433 1434 return 0; 1435 } 1436 1437 static ssize_t apmask_store(const struct bus_type *bus, const char *buf, 1438 size_t count) 1439 { 1440 int rc, changes = 0; 1441 DECLARE_BITMAP(newapm, AP_DEVICES); 1442 1443 if (mutex_lock_interruptible(&ap_perms_mutex)) 1444 return -ERESTARTSYS; 1445 1446 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1447 if (rc) 1448 goto done; 1449 1450 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1451 if (changes) 1452 rc = apmask_commit(newapm); 1453 1454 done: 1455 mutex_unlock(&ap_perms_mutex); 1456 if (rc) 1457 return rc; 1458 1459 if (changes) { 1460 ap_bus_revise_bindings(); 1461 ap_send_mask_changed_uevent(newapm, NULL); 1462 } 1463 1464 return count; 1465 } 1466 1467 static BUS_ATTR_RW(apmask); 1468 1469 static ssize_t aqmask_show(const struct bus_type *bus, char *buf) 1470 { 1471 int rc; 1472 1473 if (mutex_lock_interruptible(&ap_perms_mutex)) 1474 return -ERESTARTSYS; 1475 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1476 ap_perms.aqm[0], ap_perms.aqm[1], 1477 ap_perms.aqm[2], ap_perms.aqm[3]); 1478 mutex_unlock(&ap_perms_mutex); 1479 1480 return rc; 1481 } 1482 1483 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1484 { 1485 int rc = 0; 1486 struct ap_driver *ap_drv = to_ap_drv(drv); 1487 unsigned long *newaqm = (unsigned long *)data; 1488 1489 /* 1490 * increase the driver's module refcounter to be sure it is not 1491 * going away when we invoke the callback function. 1492 */ 1493 if (!try_module_get(drv->owner)) 1494 return 0; 1495 1496 if (ap_drv->in_use) { 1497 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1498 if (rc) 1499 rc = -EBUSY; 1500 } 1501 1502 /* release the driver's module */ 1503 module_put(drv->owner); 1504 1505 return rc; 1506 } 1507 1508 static int aqmask_commit(unsigned long *newaqm) 1509 { 1510 int rc; 1511 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1512 1513 /* 1514 * Check if any bits in the aqmask have been set which will 1515 * result in queues being removed from non-default drivers 1516 */ 1517 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1518 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1519 __verify_queue_reservations); 1520 if (rc) 1521 return rc; 1522 } 1523 1524 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1525 1526 return 0; 1527 } 1528 1529 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf, 1530 size_t count) 1531 { 1532 int rc, changes = 0; 1533 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1534 1535 if (mutex_lock_interruptible(&ap_perms_mutex)) 1536 return -ERESTARTSYS; 1537 1538 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1539 if (rc) 1540 goto done; 1541 1542 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1543 if (changes) 1544 rc = aqmask_commit(newaqm); 1545 1546 done: 1547 mutex_unlock(&ap_perms_mutex); 1548 if (rc) 1549 return rc; 1550 1551 if (changes) { 1552 ap_bus_revise_bindings(); 1553 ap_send_mask_changed_uevent(NULL, newaqm); 1554 } 1555 1556 return count; 1557 } 1558 1559 static BUS_ATTR_RW(aqmask); 1560 1561 static ssize_t scans_show(const struct bus_type *bus, char *buf) 1562 { 1563 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count)); 1564 } 1565 1566 static ssize_t scans_store(const struct bus_type *bus, const char *buf, 1567 size_t count) 1568 { 1569 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1570 1571 ap_bus_force_rescan(); 1572 1573 return count; 1574 } 1575 1576 static BUS_ATTR_RW(scans); 1577 1578 static ssize_t bindings_show(const struct bus_type *bus, char *buf) 1579 { 1580 int rc; 1581 unsigned int apqns, n; 1582 1583 ap_calc_bound_apqns(&apqns, &n); 1584 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1585 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns); 1586 else 1587 rc = sysfs_emit(buf, "%u/%u\n", n, apqns); 1588 1589 return rc; 1590 } 1591 1592 static BUS_ATTR_RO(bindings); 1593 1594 static ssize_t features_show(const struct bus_type *bus, char *buf) 1595 { 1596 int n = 0; 1597 1598 if (!ap_qci_info) /* QCI not supported */ 1599 return sysfs_emit(buf, "-\n"); 1600 1601 if (ap_qci_info->apsc) 1602 n += sysfs_emit_at(buf, n, "APSC "); 1603 if (ap_qci_info->apxa) 1604 n += sysfs_emit_at(buf, n, "APXA "); 1605 if (ap_qci_info->qact) 1606 n += sysfs_emit_at(buf, n, "QACT "); 1607 if (ap_qci_info->rc8a) 1608 n += sysfs_emit_at(buf, n, "RC8A "); 1609 if (ap_qci_info->apsb) 1610 n += sysfs_emit_at(buf, n, "APSB "); 1611 1612 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n"); 1613 1614 return n; 1615 } 1616 1617 static BUS_ATTR_RO(features); 1618 1619 static struct attribute *ap_bus_attrs[] = { 1620 &bus_attr_ap_domain.attr, 1621 &bus_attr_ap_control_domain_mask.attr, 1622 &bus_attr_ap_usage_domain_mask.attr, 1623 &bus_attr_ap_adapter_mask.attr, 1624 &bus_attr_config_time.attr, 1625 &bus_attr_poll_thread.attr, 1626 &bus_attr_ap_interrupts.attr, 1627 &bus_attr_poll_timeout.attr, 1628 &bus_attr_ap_max_domain_id.attr, 1629 &bus_attr_ap_max_adapter_id.attr, 1630 &bus_attr_apmask.attr, 1631 &bus_attr_aqmask.attr, 1632 &bus_attr_scans.attr, 1633 &bus_attr_bindings.attr, 1634 &bus_attr_features.attr, 1635 NULL, 1636 }; 1637 ATTRIBUTE_GROUPS(ap_bus); 1638 1639 static const struct bus_type ap_bus_type = { 1640 .name = "ap", 1641 .bus_groups = ap_bus_groups, 1642 .match = &ap_bus_match, 1643 .uevent = &ap_uevent, 1644 .probe = ap_device_probe, 1645 .remove = ap_device_remove, 1646 }; 1647 1648 /** 1649 * ap_select_domain(): Select an AP domain if possible and we haven't 1650 * already done so before. 1651 */ 1652 static void ap_select_domain(void) 1653 { 1654 struct ap_queue_status status; 1655 int card, dom; 1656 1657 /* 1658 * Choose the default domain. Either the one specified with 1659 * the "domain=" parameter or the first domain with at least 1660 * one valid APQN. 1661 */ 1662 spin_lock_bh(&ap_domain_lock); 1663 if (ap_domain_index >= 0) { 1664 /* Domain has already been selected. */ 1665 goto out; 1666 } 1667 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1668 if (!ap_test_config_usage_domain(dom) || 1669 !test_bit_inv(dom, ap_perms.aqm)) 1670 continue; 1671 for (card = 0; card <= ap_max_adapter_id; card++) { 1672 if (!ap_test_config_card_id(card) || 1673 !test_bit_inv(card, ap_perms.apm)) 1674 continue; 1675 status = ap_test_queue(AP_MKQID(card, dom), 1676 ap_apft_available(), 1677 NULL); 1678 if (status.response_code == AP_RESPONSE_NORMAL) 1679 break; 1680 } 1681 if (card <= ap_max_adapter_id) 1682 break; 1683 } 1684 if (dom <= ap_max_domain_id) { 1685 ap_domain_index = dom; 1686 AP_DBF_INFO("%s new default domain is %d\n", 1687 __func__, ap_domain_index); 1688 } 1689 out: 1690 spin_unlock_bh(&ap_domain_lock); 1691 } 1692 1693 /* 1694 * This function checks the type and returns either 0 for not 1695 * supported or the highest compatible type value (which may 1696 * include the input type value). 1697 */ 1698 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1699 { 1700 int comp_type = 0; 1701 1702 /* < CEX4 is not supported */ 1703 if (rawtype < AP_DEVICE_TYPE_CEX4) { 1704 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1705 __func__, AP_QID_CARD(qid), 1706 AP_QID_QUEUE(qid), rawtype); 1707 return 0; 1708 } 1709 /* up to CEX8 known and fully supported */ 1710 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1711 return rawtype; 1712 /* 1713 * unknown new type > CEX8, check for compatibility 1714 * to the highest known and supported type which is 1715 * currently CEX8 with the help of the QACT function. 1716 */ 1717 if (ap_qact_available()) { 1718 struct ap_queue_status status; 1719 union ap_qact_ap_info apinfo = {0}; 1720 1721 apinfo.mode = (func >> 26) & 0x07; 1722 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1723 status = ap_qact(qid, 0, &apinfo); 1724 if (status.response_code == AP_RESPONSE_NORMAL && 1725 apinfo.cat >= AP_DEVICE_TYPE_CEX4 && 1726 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1727 comp_type = apinfo.cat; 1728 } 1729 if (!comp_type) 1730 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1731 __func__, AP_QID_CARD(qid), 1732 AP_QID_QUEUE(qid), rawtype); 1733 else if (comp_type != rawtype) 1734 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1735 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1736 rawtype, comp_type); 1737 return comp_type; 1738 } 1739 1740 /* 1741 * Helper function to be used with bus_find_dev 1742 * matches for the card device with the given id 1743 */ 1744 static int __match_card_device_with_id(struct device *dev, const void *data) 1745 { 1746 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1747 } 1748 1749 /* 1750 * Helper function to be used with bus_find_dev 1751 * matches for the queue device with a given qid 1752 */ 1753 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1754 { 1755 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1756 } 1757 1758 /* 1759 * Helper function to be used with bus_find_dev 1760 * matches any queue device with given queue id 1761 */ 1762 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1763 { 1764 return is_queue_dev(dev) && 1765 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1766 } 1767 1768 /* Helper function for notify_config_changed */ 1769 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1770 { 1771 struct ap_driver *ap_drv = to_ap_drv(drv); 1772 1773 if (try_module_get(drv->owner)) { 1774 if (ap_drv->on_config_changed) 1775 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1776 module_put(drv->owner); 1777 } 1778 1779 return 0; 1780 } 1781 1782 /* Notify all drivers about an qci config change */ 1783 static inline void notify_config_changed(void) 1784 { 1785 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1786 __drv_notify_config_changed); 1787 } 1788 1789 /* Helper function for notify_scan_complete */ 1790 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1791 { 1792 struct ap_driver *ap_drv = to_ap_drv(drv); 1793 1794 if (try_module_get(drv->owner)) { 1795 if (ap_drv->on_scan_complete) 1796 ap_drv->on_scan_complete(ap_qci_info, 1797 ap_qci_info_old); 1798 module_put(drv->owner); 1799 } 1800 1801 return 0; 1802 } 1803 1804 /* Notify all drivers about bus scan complete */ 1805 static inline void notify_scan_complete(void) 1806 { 1807 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1808 __drv_notify_scan_complete); 1809 } 1810 1811 /* 1812 * Helper function for ap_scan_bus(). 1813 * Remove card device and associated queue devices. 1814 */ 1815 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1816 { 1817 bus_for_each_dev(&ap_bus_type, NULL, 1818 (void *)(long)ac->id, 1819 __ap_queue_devices_with_id_unregister); 1820 device_unregister(&ac->ap_dev.device); 1821 } 1822 1823 /* 1824 * Helper function for ap_scan_bus(). 1825 * Does the scan bus job for all the domains within 1826 * a valid adapter given by an ap_card ptr. 1827 */ 1828 static inline void ap_scan_domains(struct ap_card *ac) 1829 { 1830 struct ap_tapq_hwinfo hwinfo; 1831 bool decfg, chkstop; 1832 struct ap_queue *aq; 1833 struct device *dev; 1834 ap_qid_t qid; 1835 int rc, dom; 1836 1837 /* 1838 * Go through the configuration for the domains and compare them 1839 * to the existing queue devices. Also take care of the config 1840 * and error state for the queue devices. 1841 */ 1842 1843 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1844 qid = AP_MKQID(ac->id, dom); 1845 dev = bus_find_device(&ap_bus_type, NULL, 1846 (void *)(long)qid, 1847 __match_queue_device_with_qid); 1848 aq = dev ? to_ap_queue(dev) : NULL; 1849 if (!ap_test_config_usage_domain(dom)) { 1850 if (dev) { 1851 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1852 __func__, ac->id, dom); 1853 device_unregister(dev); 1854 } 1855 goto put_dev_and_continue; 1856 } 1857 /* domain is valid, get info from this APQN */ 1858 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop); 1859 switch (rc) { 1860 case -1: 1861 if (dev) { 1862 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1863 __func__, ac->id, dom); 1864 device_unregister(dev); 1865 } 1866 fallthrough; 1867 case 0: 1868 goto put_dev_and_continue; 1869 default: 1870 break; 1871 } 1872 /* if no queue device exists, create a new one */ 1873 if (!aq) { 1874 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1875 if (!aq) { 1876 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1877 __func__, ac->id, dom); 1878 continue; 1879 } 1880 aq->card = ac; 1881 aq->config = !decfg; 1882 aq->chkstop = chkstop; 1883 aq->se_bstate = hwinfo.bs; 1884 dev = &aq->ap_dev.device; 1885 dev->bus = &ap_bus_type; 1886 dev->parent = &ac->ap_dev.device; 1887 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1888 /* register queue device */ 1889 rc = device_register(dev); 1890 if (rc) { 1891 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1892 __func__, ac->id, dom); 1893 goto put_dev_and_continue; 1894 } 1895 /* get it and thus adjust reference counter */ 1896 get_device(dev); 1897 if (decfg) { 1898 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1899 __func__, ac->id, dom); 1900 } else if (chkstop) { 1901 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1902 __func__, ac->id, dom); 1903 } else { 1904 /* nudge the queue's state machine */ 1905 ap_queue_init_state(aq); 1906 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1907 __func__, ac->id, dom); 1908 } 1909 goto put_dev_and_continue; 1910 } 1911 /* handle state changes on already existing queue device */ 1912 spin_lock_bh(&aq->lock); 1913 /* SE bind state */ 1914 aq->se_bstate = hwinfo.bs; 1915 /* checkstop state */ 1916 if (chkstop && !aq->chkstop) { 1917 /* checkstop on */ 1918 aq->chkstop = true; 1919 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1920 aq->dev_state = AP_DEV_STATE_ERROR; 1921 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1922 } 1923 spin_unlock_bh(&aq->lock); 1924 pr_debug("%s(%d,%d) queue dev checkstop on\n", 1925 __func__, ac->id, dom); 1926 /* 'receive' pending messages with -EAGAIN */ 1927 ap_flush_queue(aq); 1928 goto put_dev_and_continue; 1929 } else if (!chkstop && aq->chkstop) { 1930 /* checkstop off */ 1931 aq->chkstop = false; 1932 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1933 _ap_queue_init_state(aq); 1934 spin_unlock_bh(&aq->lock); 1935 pr_debug("%s(%d,%d) queue dev checkstop off\n", 1936 __func__, ac->id, dom); 1937 goto put_dev_and_continue; 1938 } 1939 /* config state change */ 1940 if (decfg && aq->config) { 1941 /* config off this queue device */ 1942 aq->config = false; 1943 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1944 aq->dev_state = AP_DEV_STATE_ERROR; 1945 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1946 } 1947 spin_unlock_bh(&aq->lock); 1948 pr_debug("%s(%d,%d) queue dev config off\n", 1949 __func__, ac->id, dom); 1950 ap_send_config_uevent(&aq->ap_dev, aq->config); 1951 /* 'receive' pending messages with -EAGAIN */ 1952 ap_flush_queue(aq); 1953 goto put_dev_and_continue; 1954 } else if (!decfg && !aq->config) { 1955 /* config on this queue device */ 1956 aq->config = true; 1957 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1958 _ap_queue_init_state(aq); 1959 spin_unlock_bh(&aq->lock); 1960 pr_debug("%s(%d,%d) queue dev config on\n", 1961 __func__, ac->id, dom); 1962 ap_send_config_uevent(&aq->ap_dev, aq->config); 1963 goto put_dev_and_continue; 1964 } 1965 /* handle other error states */ 1966 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1967 spin_unlock_bh(&aq->lock); 1968 /* 'receive' pending messages with -EAGAIN */ 1969 ap_flush_queue(aq); 1970 /* re-init (with reset) the queue device */ 1971 ap_queue_init_state(aq); 1972 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1973 __func__, ac->id, dom); 1974 goto put_dev_and_continue; 1975 } 1976 spin_unlock_bh(&aq->lock); 1977 put_dev_and_continue: 1978 put_device(dev); 1979 } 1980 } 1981 1982 /* 1983 * Helper function for ap_scan_bus(). 1984 * Does the scan bus job for the given adapter id. 1985 */ 1986 static inline void ap_scan_adapter(int ap) 1987 { 1988 struct ap_tapq_hwinfo hwinfo; 1989 int rc, dom, comp_type; 1990 bool decfg, chkstop; 1991 struct ap_card *ac; 1992 struct device *dev; 1993 ap_qid_t qid; 1994 1995 /* Is there currently a card device for this adapter ? */ 1996 dev = bus_find_device(&ap_bus_type, NULL, 1997 (void *)(long)ap, 1998 __match_card_device_with_id); 1999 ac = dev ? to_ap_card(dev) : NULL; 2000 2001 /* Adapter not in configuration ? */ 2002 if (!ap_test_config_card_id(ap)) { 2003 if (ac) { 2004 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 2005 __func__, ap); 2006 ap_scan_rm_card_dev_and_queue_devs(ac); 2007 put_device(dev); 2008 } 2009 return; 2010 } 2011 2012 /* 2013 * Adapter ap is valid in the current configuration. So do some checks: 2014 * If no card device exists, build one. If a card device exists, check 2015 * for type and functions changed. For all this we need to find a valid 2016 * APQN first. 2017 */ 2018 2019 for (dom = 0; dom <= ap_max_domain_id; dom++) 2020 if (ap_test_config_usage_domain(dom)) { 2021 qid = AP_MKQID(ap, dom); 2022 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0) 2023 break; 2024 } 2025 if (dom > ap_max_domain_id) { 2026 /* Could not find one valid APQN for this adapter */ 2027 if (ac) { 2028 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 2029 __func__, ap); 2030 ap_scan_rm_card_dev_and_queue_devs(ac); 2031 put_device(dev); 2032 } else { 2033 pr_debug("%s(%d) no type info (no APQN found), ignored\n", 2034 __func__, ap); 2035 } 2036 return; 2037 } 2038 if (!hwinfo.at) { 2039 /* No apdater type info available, an unusable adapter */ 2040 if (ac) { 2041 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 2042 __func__, ap); 2043 ap_scan_rm_card_dev_and_queue_devs(ac); 2044 put_device(dev); 2045 } else { 2046 pr_debug("%s(%d) no valid type (0) info, ignored\n", 2047 __func__, ap); 2048 } 2049 return; 2050 } 2051 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */ 2052 if (ac) { 2053 /* Check APQN against existing card device for changes */ 2054 if (ac->hwinfo.at != hwinfo.at) { 2055 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 2056 __func__, ap, hwinfo.at); 2057 ap_scan_rm_card_dev_and_queue_devs(ac); 2058 put_device(dev); 2059 ac = NULL; 2060 } else if (ac->hwinfo.fac != hwinfo.fac) { 2061 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 2062 __func__, ap, hwinfo.fac); 2063 ap_scan_rm_card_dev_and_queue_devs(ac); 2064 put_device(dev); 2065 ac = NULL; 2066 } else { 2067 /* handle checkstop state change */ 2068 if (chkstop && !ac->chkstop) { 2069 /* checkstop on */ 2070 ac->chkstop = true; 2071 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2072 __func__, ap); 2073 } else if (!chkstop && ac->chkstop) { 2074 /* checkstop off */ 2075 ac->chkstop = false; 2076 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2077 __func__, ap); 2078 } 2079 /* handle config state change */ 2080 if (decfg && ac->config) { 2081 ac->config = false; 2082 AP_DBF_INFO("%s(%d) card dev config off\n", 2083 __func__, ap); 2084 ap_send_config_uevent(&ac->ap_dev, ac->config); 2085 } else if (!decfg && !ac->config) { 2086 ac->config = true; 2087 AP_DBF_INFO("%s(%d) card dev config on\n", 2088 __func__, ap); 2089 ap_send_config_uevent(&ac->ap_dev, ac->config); 2090 } 2091 } 2092 } 2093 2094 if (!ac) { 2095 /* Build a new card device */ 2096 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac); 2097 if (!comp_type) { 2098 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2099 __func__, ap, hwinfo.at); 2100 return; 2101 } 2102 ac = ap_card_create(ap, hwinfo, comp_type); 2103 if (!ac) { 2104 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2105 __func__, ap); 2106 return; 2107 } 2108 ac->config = !decfg; 2109 ac->chkstop = chkstop; 2110 dev = &ac->ap_dev.device; 2111 dev->bus = &ap_bus_type; 2112 dev->parent = ap_root_device; 2113 dev_set_name(dev, "card%02x", ap); 2114 /* maybe enlarge ap_max_msg_size to support this card */ 2115 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2116 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2117 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2118 __func__, ap, 2119 atomic_read(&ap_max_msg_size)); 2120 } 2121 /* Register the new card device with AP bus */ 2122 rc = device_register(dev); 2123 if (rc) { 2124 AP_DBF_WARN("%s(%d) device_register() failed\n", 2125 __func__, ap); 2126 put_device(dev); 2127 return; 2128 } 2129 /* get it and thus adjust reference counter */ 2130 get_device(dev); 2131 if (decfg) 2132 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2133 __func__, ap, hwinfo.at, hwinfo.fac); 2134 else if (chkstop) 2135 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2136 __func__, ap, hwinfo.at, hwinfo.fac); 2137 else 2138 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2139 __func__, ap, hwinfo.at, hwinfo.fac); 2140 } 2141 2142 /* Verify the domains and the queue devices for this card */ 2143 ap_scan_domains(ac); 2144 2145 /* release the card device */ 2146 put_device(&ac->ap_dev.device); 2147 } 2148 2149 /** 2150 * ap_get_configuration - get the host AP configuration 2151 * 2152 * Stores the host AP configuration information returned from the previous call 2153 * to Query Configuration Information (QCI), then retrieves and stores the 2154 * current AP configuration returned from QCI. 2155 * 2156 * Return: true if the host AP configuration changed between calls to QCI; 2157 * otherwise, return false. 2158 */ 2159 static bool ap_get_configuration(void) 2160 { 2161 if (!ap_qci_info) /* QCI not supported */ 2162 return false; 2163 2164 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2165 ap_fetch_qci_info(ap_qci_info); 2166 2167 return memcmp(ap_qci_info, ap_qci_info_old, 2168 sizeof(struct ap_config_info)) != 0; 2169 } 2170 2171 /* 2172 * ap_config_has_new_aps - Check current against old qci info if 2173 * new adapters have appeared. Returns true if at least one new 2174 * adapter in the apm mask is showing up. Existing adapters or 2175 * receding adapters are not counted. 2176 */ 2177 static bool ap_config_has_new_aps(void) 2178 { 2179 2180 unsigned long m[BITS_TO_LONGS(AP_DEVICES)]; 2181 2182 if (!ap_qci_info) 2183 return false; 2184 2185 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm, 2186 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES); 2187 if (!bitmap_empty(m, AP_DEVICES)) 2188 return true; 2189 2190 return false; 2191 } 2192 2193 /* 2194 * ap_config_has_new_doms - Check current against old qci info if 2195 * new (usage) domains have appeared. Returns true if at least one 2196 * new domain in the aqm mask is showing up. Existing domains or 2197 * receding domains are not counted. 2198 */ 2199 static bool ap_config_has_new_doms(void) 2200 { 2201 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)]; 2202 2203 if (!ap_qci_info) 2204 return false; 2205 2206 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm, 2207 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS); 2208 if (!bitmap_empty(m, AP_DOMAINS)) 2209 return true; 2210 2211 return false; 2212 } 2213 2214 /** 2215 * ap_scan_bus(): Scan the AP bus for new devices 2216 * Always run under mutex ap_scan_bus_mutex protection 2217 * which needs to get locked/unlocked by the caller! 2218 * Returns true if any config change has been detected 2219 * during the scan, otherwise false. 2220 */ 2221 static bool ap_scan_bus(void) 2222 { 2223 bool config_changed; 2224 int ap; 2225 2226 pr_debug(">%s\n", __func__); 2227 2228 /* (re-)fetch configuration via QCI */ 2229 config_changed = ap_get_configuration(); 2230 if (config_changed) { 2231 if (ap_config_has_new_aps() || ap_config_has_new_doms()) { 2232 /* 2233 * Appearance of new adapters and/or domains need to 2234 * build new ap devices which need to get bound to an 2235 * device driver. Thus reset the APQN bindings complete 2236 * completion. 2237 */ 2238 reinit_completion(&ap_apqn_bindings_complete); 2239 } 2240 /* post a config change notify */ 2241 notify_config_changed(); 2242 } 2243 ap_select_domain(); 2244 2245 /* loop over all possible adapters */ 2246 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2247 ap_scan_adapter(ap); 2248 2249 /* scan complete notify */ 2250 if (config_changed) 2251 notify_scan_complete(); 2252 2253 /* check if there is at least one queue available with default domain */ 2254 if (ap_domain_index >= 0) { 2255 struct device *dev = 2256 bus_find_device(&ap_bus_type, NULL, 2257 (void *)(long)ap_domain_index, 2258 __match_queue_device_with_queue_id); 2259 if (dev) 2260 put_device(dev); 2261 else 2262 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2263 __func__, ap_domain_index); 2264 } 2265 2266 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2267 pr_debug("%s init scan complete\n", __func__); 2268 ap_send_init_scan_done_uevent(); 2269 } 2270 2271 ap_check_bindings_complete(); 2272 2273 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 2274 2275 pr_debug("<%s config_changed=%d\n", __func__, config_changed); 2276 2277 return config_changed; 2278 } 2279 2280 /* 2281 * Callback for the ap_scan_bus_timer 2282 * Runs periodically, workqueue timer (ap_scan_bus_time) 2283 */ 2284 static void ap_scan_bus_timer_callback(struct timer_list *unused) 2285 { 2286 /* 2287 * schedule work into the system long wq which when 2288 * the work is finally executed, calls the AP bus scan. 2289 */ 2290 queue_work(system_long_wq, &ap_scan_bus_work); 2291 } 2292 2293 /* 2294 * Callback for the ap_scan_bus_work 2295 */ 2296 static void ap_scan_bus_wq_callback(struct work_struct *unused) 2297 { 2298 /* 2299 * Try to invoke an ap_scan_bus(). If the mutex acquisition 2300 * fails there is currently another task already running the 2301 * AP scan bus and there is no need to wait and re-trigger the 2302 * scan again. Please note at the end of the scan bus function 2303 * the AP scan bus timer is re-armed which triggers then the 2304 * ap_scan_bus_timer_callback which enqueues a work into the 2305 * system_long_wq which invokes this function here again. 2306 */ 2307 if (mutex_trylock(&ap_scan_bus_mutex)) { 2308 ap_scan_bus_result = ap_scan_bus(); 2309 mutex_unlock(&ap_scan_bus_mutex); 2310 } 2311 } 2312 2313 static int __init ap_debug_init(void) 2314 { 2315 ap_dbf_info = debug_register("ap", 2, 1, 2316 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2317 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2318 debug_set_level(ap_dbf_info, DBF_ERR); 2319 2320 return 0; 2321 } 2322 2323 static void __init ap_perms_init(void) 2324 { 2325 /* all resources usable if no kernel parameter string given */ 2326 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2327 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2328 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2329 2330 /* apm kernel parameter string */ 2331 if (apm_str) { 2332 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2333 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2334 &ap_perms_mutex); 2335 } 2336 2337 /* aqm kernel parameter string */ 2338 if (aqm_str) { 2339 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2340 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2341 &ap_perms_mutex); 2342 } 2343 } 2344 2345 /** 2346 * ap_module_init(): The module initialization code. 2347 * 2348 * Initializes the module. 2349 */ 2350 static int __init ap_module_init(void) 2351 { 2352 int rc; 2353 2354 rc = ap_debug_init(); 2355 if (rc) 2356 return rc; 2357 2358 if (!ap_instructions_available()) { 2359 pr_warn("The hardware system does not support AP instructions\n"); 2360 return -ENODEV; 2361 } 2362 2363 /* init ap_queue hashtable */ 2364 hash_init(ap_queues); 2365 2366 /* set up the AP permissions (ioctls, ap and aq masks) */ 2367 ap_perms_init(); 2368 2369 /* Get AP configuration data if available */ 2370 ap_init_qci_info(); 2371 2372 /* check default domain setting */ 2373 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2374 (ap_domain_index >= 0 && 2375 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2376 pr_warn("%d is not a valid cryptographic domain\n", 2377 ap_domain_index); 2378 ap_domain_index = -1; 2379 } 2380 2381 /* enable interrupts if available */ 2382 if (ap_interrupts_available() && ap_useirq) { 2383 rc = register_adapter_interrupt(&ap_airq); 2384 ap_irq_flag = (rc == 0); 2385 } 2386 2387 /* Create /sys/bus/ap. */ 2388 rc = bus_register(&ap_bus_type); 2389 if (rc) 2390 goto out; 2391 2392 /* Create /sys/devices/ap. */ 2393 ap_root_device = root_device_register("ap"); 2394 rc = PTR_ERR_OR_ZERO(ap_root_device); 2395 if (rc) 2396 goto out_bus; 2397 ap_root_device->bus = &ap_bus_type; 2398 2399 /* Setup the AP bus rescan timer. */ 2400 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0); 2401 2402 /* 2403 * Setup the high resolution poll timer. 2404 * If we are running under z/VM adjust polling to z/VM polling rate. 2405 */ 2406 if (MACHINE_IS_VM) 2407 poll_high_timeout = 1500000; 2408 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2409 ap_poll_timer.function = ap_poll_timeout; 2410 2411 /* Start the low priority AP bus poll thread. */ 2412 if (ap_thread_flag) { 2413 rc = ap_poll_thread_start(); 2414 if (rc) 2415 goto out_work; 2416 } 2417 2418 queue_work(system_long_wq, &ap_scan_bus_work); 2419 2420 return 0; 2421 2422 out_work: 2423 hrtimer_cancel(&ap_poll_timer); 2424 root_device_unregister(ap_root_device); 2425 out_bus: 2426 bus_unregister(&ap_bus_type); 2427 out: 2428 if (ap_irq_flag) 2429 unregister_adapter_interrupt(&ap_airq); 2430 kfree(ap_qci_info); 2431 return rc; 2432 } 2433 device_initcall(ap_module_init); 2434