xref: /linux/drivers/s390/crypto/ap_bus.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2023
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41 
42 #include "ap_bus.h"
43 #include "ap_debug.h"
44 
45 /*
46  * Module parameters; note though this file itself isn't modular.
47  */
48 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
49 static DEFINE_SPINLOCK(ap_domain_lock);
50 module_param_named(domain, ap_domain_index, int, 0440);
51 MODULE_PARM_DESC(domain, "domain index for ap devices");
52 EXPORT_SYMBOL(ap_domain_index);
53 
54 static int ap_thread_flag;
55 module_param_named(poll_thread, ap_thread_flag, int, 0440);
56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57 
58 static char *apm_str;
59 module_param_named(apmask, apm_str, charp, 0440);
60 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61 
62 static char *aqm_str;
63 module_param_named(aqmask, aqm_str, charp, 0440);
64 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65 
66 static int ap_useirq = 1;
67 module_param_named(useirq, ap_useirq, int, 0440);
68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69 
70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71 EXPORT_SYMBOL(ap_max_msg_size);
72 
73 static struct device *ap_root_device;
74 
75 /* Hashtable of all queue devices on the AP bus */
76 DEFINE_HASHTABLE(ap_queues, 8);
77 /* lock used for the ap_queues hashtable */
78 DEFINE_SPINLOCK(ap_queues_lock);
79 
80 /* Default permissions (ioctl, card and domain masking) */
81 struct ap_perms ap_perms;
82 EXPORT_SYMBOL(ap_perms);
83 DEFINE_MUTEX(ap_perms_mutex);
84 EXPORT_SYMBOL(ap_perms_mutex);
85 
86 /* # of bus scans since init */
87 static atomic64_t ap_scan_bus_count;
88 
89 /* # of bindings complete since init */
90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91 
92 /* completion for initial APQN bindings complete */
93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94 
95 static struct ap_config_info *ap_qci_info;
96 static struct ap_config_info *ap_qci_info_old;
97 
98 /*
99  * AP bus related debug feature things.
100  */
101 debug_info_t *ap_dbf_info;
102 
103 /*
104  * Workqueue timer for bus rescan.
105  */
106 static struct timer_list ap_config_timer;
107 static int ap_config_time = AP_CONFIG_TIME;
108 static void ap_scan_bus(struct work_struct *);
109 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110 
111 /*
112  * Tasklet & timer for AP request polling and interrupts
113  */
114 static void ap_tasklet_fn(unsigned long);
115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117 static struct task_struct *ap_poll_kthread;
118 static DEFINE_MUTEX(ap_poll_thread_mutex);
119 static DEFINE_SPINLOCK(ap_poll_timer_lock);
120 static struct hrtimer ap_poll_timer;
121 /*
122  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124  */
125 static unsigned long poll_high_timeout = 250000UL;
126 
127 /*
128  * Some state machine states only require a low frequency polling.
129  * We use 25 Hz frequency for these.
130  */
131 static unsigned long poll_low_timeout = 40000000UL;
132 
133 /* Maximum domain id, if not given via qci */
134 static int ap_max_domain_id = 15;
135 /* Maximum adapter id, if not given via qci */
136 static int ap_max_adapter_id = 63;
137 
138 static struct bus_type ap_bus_type;
139 
140 /* Adapter interrupt definitions */
141 static void ap_interrupt_handler(struct airq_struct *airq,
142 				 struct tpi_info *tpi_info);
143 
144 static bool ap_irq_flag;
145 
146 static struct airq_struct ap_airq = {
147 	.handler = ap_interrupt_handler,
148 	.isc = AP_ISC,
149 };
150 
151 /**
152  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
153  *
154  * Returns the address of the local-summary-indicator of the adapter
155  * interrupt handler for AP, or NULL if adapter interrupts are not
156  * available.
157  */
158 void *ap_airq_ptr(void)
159 {
160 	if (ap_irq_flag)
161 		return ap_airq.lsi_ptr;
162 	return NULL;
163 }
164 
165 /**
166  * ap_interrupts_available(): Test if AP interrupts are available.
167  *
168  * Returns 1 if AP interrupts are available.
169  */
170 static int ap_interrupts_available(void)
171 {
172 	return test_facility(65);
173 }
174 
175 /**
176  * ap_qci_available(): Test if AP configuration
177  * information can be queried via QCI subfunction.
178  *
179  * Returns 1 if subfunction PQAP(QCI) is available.
180  */
181 static int ap_qci_available(void)
182 {
183 	return test_facility(12);
184 }
185 
186 /**
187  * ap_apft_available(): Test if AP facilities test (APFT)
188  * facility is available.
189  *
190  * Returns 1 if APFT is available.
191  */
192 static int ap_apft_available(void)
193 {
194 	return test_facility(15);
195 }
196 
197 /*
198  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
199  *
200  * Returns 1 if the QACT subfunction is available.
201  */
202 static inline int ap_qact_available(void)
203 {
204 	if (ap_qci_info)
205 		return ap_qci_info->qact;
206 	return 0;
207 }
208 
209 /*
210  * ap_sb_available(): Test if the AP secure binding facility is available.
211  *
212  * Returns 1 if secure binding facility is available.
213  */
214 int ap_sb_available(void)
215 {
216 	if (ap_qci_info)
217 		return ap_qci_info->apsb;
218 	return 0;
219 }
220 
221 /*
222  * ap_is_se_guest(): Check for SE guest with AP pass-through support.
223  */
224 bool ap_is_se_guest(void)
225 {
226 	return is_prot_virt_guest() && ap_sb_available();
227 }
228 EXPORT_SYMBOL(ap_is_se_guest);
229 
230 /*
231  * ap_fetch_qci_info(): Fetch cryptographic config info
232  *
233  * Returns the ap configuration info fetched via PQAP(QCI).
234  * On success 0 is returned, on failure a negative errno
235  * is returned, e.g. if the PQAP(QCI) instruction is not
236  * available, the return value will be -EOPNOTSUPP.
237  */
238 static inline int ap_fetch_qci_info(struct ap_config_info *info)
239 {
240 	if (!ap_qci_available())
241 		return -EOPNOTSUPP;
242 	if (!info)
243 		return -EINVAL;
244 	return ap_qci(info);
245 }
246 
247 /**
248  * ap_init_qci_info(): Allocate and query qci config info.
249  * Does also update the static variables ap_max_domain_id
250  * and ap_max_adapter_id if this info is available.
251  */
252 static void __init ap_init_qci_info(void)
253 {
254 	if (!ap_qci_available()) {
255 		AP_DBF_INFO("%s QCI not supported\n", __func__);
256 		return;
257 	}
258 
259 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
260 	if (!ap_qci_info)
261 		return;
262 	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
263 	if (!ap_qci_info_old) {
264 		kfree(ap_qci_info);
265 		ap_qci_info = NULL;
266 		return;
267 	}
268 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
269 		kfree(ap_qci_info);
270 		kfree(ap_qci_info_old);
271 		ap_qci_info = NULL;
272 		ap_qci_info_old = NULL;
273 		return;
274 	}
275 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
276 
277 	if (ap_qci_info->apxa) {
278 		if (ap_qci_info->na) {
279 			ap_max_adapter_id = ap_qci_info->na;
280 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
281 				    __func__, ap_max_adapter_id);
282 		}
283 		if (ap_qci_info->nd) {
284 			ap_max_domain_id = ap_qci_info->nd;
285 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
286 				    __func__, ap_max_domain_id);
287 		}
288 	}
289 
290 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
291 }
292 
293 /*
294  * ap_test_config(): helper function to extract the nrth bit
295  *		     within the unsigned int array field.
296  */
297 static inline int ap_test_config(unsigned int *field, unsigned int nr)
298 {
299 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
300 }
301 
302 /*
303  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
304  *
305  * Returns 0 if the card is not configured
306  *	   1 if the card is configured or
307  *	     if the configuration information is not available
308  */
309 static inline int ap_test_config_card_id(unsigned int id)
310 {
311 	if (id > ap_max_adapter_id)
312 		return 0;
313 	if (ap_qci_info)
314 		return ap_test_config(ap_qci_info->apm, id);
315 	return 1;
316 }
317 
318 /*
319  * ap_test_config_usage_domain(): Test, whether an AP usage domain
320  * is configured.
321  *
322  * Returns 0 if the usage domain is not configured
323  *	   1 if the usage domain is configured or
324  *	     if the configuration information is not available
325  */
326 int ap_test_config_usage_domain(unsigned int domain)
327 {
328 	if (domain > ap_max_domain_id)
329 		return 0;
330 	if (ap_qci_info)
331 		return ap_test_config(ap_qci_info->aqm, domain);
332 	return 1;
333 }
334 EXPORT_SYMBOL(ap_test_config_usage_domain);
335 
336 /*
337  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
338  * is configured.
339  * @domain AP control domain ID
340  *
341  * Returns 1 if the control domain is configured
342  *	   0 in all other cases
343  */
344 int ap_test_config_ctrl_domain(unsigned int domain)
345 {
346 	if (!ap_qci_info || domain > ap_max_domain_id)
347 		return 0;
348 	return ap_test_config(ap_qci_info->adm, domain);
349 }
350 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
351 
352 /*
353  * ap_queue_info(): Check and get AP queue info.
354  * Returns: 1 if APQN exists and info is filled,
355  *	    0 if APQN seems to exist but there is no info
356  *	      available (eg. caused by an asynch pending error)
357  *	   -1 invalid APQN, TAPQ error or AP queue status which
358  *	      indicates there is no APQN.
359  */
360 static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
361 			 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
362 {
363 	struct ap_queue_status status;
364 	struct ap_tapq_gr2 tapq_info;
365 
366 	tapq_info.value = 0;
367 
368 	/* make sure we don't run into a specifiation exception */
369 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
370 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
371 		return -1;
372 
373 	/* call TAPQ on this APQN */
374 	status = ap_test_queue(qid, ap_apft_available(), &tapq_info);
375 
376 	switch (status.response_code) {
377 	case AP_RESPONSE_NORMAL:
378 	case AP_RESPONSE_RESET_IN_PROGRESS:
379 	case AP_RESPONSE_DECONFIGURED:
380 	case AP_RESPONSE_CHECKSTOPPED:
381 	case AP_RESPONSE_BUSY:
382 		/* For all these RCs the tapq info should be available */
383 		break;
384 	default:
385 		/* On a pending async error the info should be available */
386 		if (!status.async)
387 			return -1;
388 		break;
389 	}
390 
391 	/* There should be at least one of the mode bits set */
392 	if (WARN_ON_ONCE(!tapq_info.value))
393 		return 0;
394 
395 	*q_type = tapq_info.at;
396 	*q_fac = tapq_info.fac;
397 	*q_depth = tapq_info.qd;
398 	*q_ml = tapq_info.ml;
399 	*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
400 	*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
401 
402 	return 1;
403 }
404 
405 void ap_wait(enum ap_sm_wait wait)
406 {
407 	ktime_t hr_time;
408 
409 	switch (wait) {
410 	case AP_SM_WAIT_AGAIN:
411 	case AP_SM_WAIT_INTERRUPT:
412 		if (ap_irq_flag)
413 			break;
414 		if (ap_poll_kthread) {
415 			wake_up(&ap_poll_wait);
416 			break;
417 		}
418 		fallthrough;
419 	case AP_SM_WAIT_LOW_TIMEOUT:
420 	case AP_SM_WAIT_HIGH_TIMEOUT:
421 		spin_lock_bh(&ap_poll_timer_lock);
422 		if (!hrtimer_is_queued(&ap_poll_timer)) {
423 			hr_time =
424 				wait == AP_SM_WAIT_LOW_TIMEOUT ?
425 				poll_low_timeout : poll_high_timeout;
426 			hrtimer_forward_now(&ap_poll_timer, hr_time);
427 			hrtimer_restart(&ap_poll_timer);
428 		}
429 		spin_unlock_bh(&ap_poll_timer_lock);
430 		break;
431 	case AP_SM_WAIT_NONE:
432 	default:
433 		break;
434 	}
435 }
436 
437 /**
438  * ap_request_timeout(): Handling of request timeouts
439  * @t: timer making this callback
440  *
441  * Handles request timeouts.
442  */
443 void ap_request_timeout(struct timer_list *t)
444 {
445 	struct ap_queue *aq = from_timer(aq, t, timeout);
446 
447 	spin_lock_bh(&aq->lock);
448 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
449 	spin_unlock_bh(&aq->lock);
450 }
451 
452 /**
453  * ap_poll_timeout(): AP receive polling for finished AP requests.
454  * @unused: Unused pointer.
455  *
456  * Schedules the AP tasklet using a high resolution timer.
457  */
458 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
459 {
460 	tasklet_schedule(&ap_tasklet);
461 	return HRTIMER_NORESTART;
462 }
463 
464 /**
465  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
466  * @airq: pointer to adapter interrupt descriptor
467  * @tpi_info: ignored
468  */
469 static void ap_interrupt_handler(struct airq_struct *airq,
470 				 struct tpi_info *tpi_info)
471 {
472 	inc_irq_stat(IRQIO_APB);
473 	tasklet_schedule(&ap_tasklet);
474 }
475 
476 /**
477  * ap_tasklet_fn(): Tasklet to poll all AP devices.
478  * @dummy: Unused variable
479  *
480  * Poll all AP devices on the bus.
481  */
482 static void ap_tasklet_fn(unsigned long dummy)
483 {
484 	int bkt;
485 	struct ap_queue *aq;
486 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
487 
488 	/* Reset the indicator if interrupts are used. Thus new interrupts can
489 	 * be received. Doing it in the beginning of the tasklet is therefore
490 	 * important that no requests on any AP get lost.
491 	 */
492 	if (ap_irq_flag)
493 		xchg(ap_airq.lsi_ptr, 0);
494 
495 	spin_lock_bh(&ap_queues_lock);
496 	hash_for_each(ap_queues, bkt, aq, hnode) {
497 		spin_lock_bh(&aq->lock);
498 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
499 		spin_unlock_bh(&aq->lock);
500 	}
501 	spin_unlock_bh(&ap_queues_lock);
502 
503 	ap_wait(wait);
504 }
505 
506 static int ap_pending_requests(void)
507 {
508 	int bkt;
509 	struct ap_queue *aq;
510 
511 	spin_lock_bh(&ap_queues_lock);
512 	hash_for_each(ap_queues, bkt, aq, hnode) {
513 		if (aq->queue_count == 0)
514 			continue;
515 		spin_unlock_bh(&ap_queues_lock);
516 		return 1;
517 	}
518 	spin_unlock_bh(&ap_queues_lock);
519 	return 0;
520 }
521 
522 /**
523  * ap_poll_thread(): Thread that polls for finished requests.
524  * @data: Unused pointer
525  *
526  * AP bus poll thread. The purpose of this thread is to poll for
527  * finished requests in a loop if there is a "free" cpu - that is
528  * a cpu that doesn't have anything better to do. The polling stops
529  * as soon as there is another task or if all messages have been
530  * delivered.
531  */
532 static int ap_poll_thread(void *data)
533 {
534 	DECLARE_WAITQUEUE(wait, current);
535 
536 	set_user_nice(current, MAX_NICE);
537 	set_freezable();
538 	while (!kthread_should_stop()) {
539 		add_wait_queue(&ap_poll_wait, &wait);
540 		set_current_state(TASK_INTERRUPTIBLE);
541 		if (!ap_pending_requests()) {
542 			schedule();
543 			try_to_freeze();
544 		}
545 		set_current_state(TASK_RUNNING);
546 		remove_wait_queue(&ap_poll_wait, &wait);
547 		if (need_resched()) {
548 			schedule();
549 			try_to_freeze();
550 			continue;
551 		}
552 		ap_tasklet_fn(0);
553 	}
554 
555 	return 0;
556 }
557 
558 static int ap_poll_thread_start(void)
559 {
560 	int rc;
561 
562 	if (ap_irq_flag || ap_poll_kthread)
563 		return 0;
564 	mutex_lock(&ap_poll_thread_mutex);
565 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
566 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
567 	if (rc)
568 		ap_poll_kthread = NULL;
569 	mutex_unlock(&ap_poll_thread_mutex);
570 	return rc;
571 }
572 
573 static void ap_poll_thread_stop(void)
574 {
575 	if (!ap_poll_kthread)
576 		return;
577 	mutex_lock(&ap_poll_thread_mutex);
578 	kthread_stop(ap_poll_kthread);
579 	ap_poll_kthread = NULL;
580 	mutex_unlock(&ap_poll_thread_mutex);
581 }
582 
583 #define is_card_dev(x) ((x)->parent == ap_root_device)
584 #define is_queue_dev(x) ((x)->parent != ap_root_device)
585 
586 /**
587  * ap_bus_match()
588  * @dev: Pointer to device
589  * @drv: Pointer to device_driver
590  *
591  * AP bus driver registration/unregistration.
592  */
593 static int ap_bus_match(struct device *dev, struct device_driver *drv)
594 {
595 	struct ap_driver *ap_drv = to_ap_drv(drv);
596 	struct ap_device_id *id;
597 
598 	/*
599 	 * Compare device type of the device with the list of
600 	 * supported types of the device_driver.
601 	 */
602 	for (id = ap_drv->ids; id->match_flags; id++) {
603 		if (is_card_dev(dev) &&
604 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
605 		    id->dev_type == to_ap_dev(dev)->device_type)
606 			return 1;
607 		if (is_queue_dev(dev) &&
608 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
609 		    id->dev_type == to_ap_dev(dev)->device_type)
610 			return 1;
611 	}
612 	return 0;
613 }
614 
615 /**
616  * ap_uevent(): Uevent function for AP devices.
617  * @dev: Pointer to device
618  * @env: Pointer to kobj_uevent_env
619  *
620  * It sets up a single environment variable DEV_TYPE which contains the
621  * hardware device type.
622  */
623 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
624 {
625 	int rc = 0;
626 	const struct ap_device *ap_dev = to_ap_dev(dev);
627 
628 	/* Uevents from ap bus core don't need extensions to the env */
629 	if (dev == ap_root_device)
630 		return 0;
631 
632 	if (is_card_dev(dev)) {
633 		struct ap_card *ac = to_ap_card(&ap_dev->device);
634 
635 		/* Set up DEV_TYPE environment variable. */
636 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
637 		if (rc)
638 			return rc;
639 		/* Add MODALIAS= */
640 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
641 		if (rc)
642 			return rc;
643 
644 		/* Add MODE=<accel|cca|ep11> */
645 		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
646 			rc = add_uevent_var(env, "MODE=accel");
647 		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
648 			rc = add_uevent_var(env, "MODE=cca");
649 		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
650 			rc = add_uevent_var(env, "MODE=ep11");
651 		if (rc)
652 			return rc;
653 	} else {
654 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
655 
656 		/* Add MODE=<accel|cca|ep11> */
657 		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
658 			rc = add_uevent_var(env, "MODE=accel");
659 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
660 			rc = add_uevent_var(env, "MODE=cca");
661 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
662 			rc = add_uevent_var(env, "MODE=ep11");
663 		if (rc)
664 			return rc;
665 	}
666 
667 	return 0;
668 }
669 
670 static void ap_send_init_scan_done_uevent(void)
671 {
672 	char *envp[] = { "INITSCAN=done", NULL };
673 
674 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
675 }
676 
677 static void ap_send_bindings_complete_uevent(void)
678 {
679 	char buf[32];
680 	char *envp[] = { "BINDINGS=complete", buf, NULL };
681 
682 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
683 		 atomic64_inc_return(&ap_bindings_complete_count));
684 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
685 }
686 
687 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
688 {
689 	char buf[16];
690 	char *envp[] = { buf, NULL };
691 
692 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
693 
694 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
695 }
696 EXPORT_SYMBOL(ap_send_config_uevent);
697 
698 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
699 {
700 	char buf[16];
701 	char *envp[] = { buf, NULL };
702 
703 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
704 
705 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
706 }
707 EXPORT_SYMBOL(ap_send_online_uevent);
708 
709 static void ap_send_mask_changed_uevent(unsigned long *newapm,
710 					unsigned long *newaqm)
711 {
712 	char buf[100];
713 	char *envp[] = { buf, NULL };
714 
715 	if (newapm)
716 		snprintf(buf, sizeof(buf),
717 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
718 			 newapm[0], newapm[1], newapm[2], newapm[3]);
719 	else
720 		snprintf(buf, sizeof(buf),
721 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
722 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
723 
724 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
725 }
726 
727 /*
728  * calc # of bound APQNs
729  */
730 
731 struct __ap_calc_ctrs {
732 	unsigned int apqns;
733 	unsigned int bound;
734 };
735 
736 static int __ap_calc_helper(struct device *dev, void *arg)
737 {
738 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
739 
740 	if (is_queue_dev(dev)) {
741 		pctrs->apqns++;
742 		if (dev->driver)
743 			pctrs->bound++;
744 	}
745 
746 	return 0;
747 }
748 
749 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
750 {
751 	struct __ap_calc_ctrs ctrs;
752 
753 	memset(&ctrs, 0, sizeof(ctrs));
754 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
755 
756 	*apqns = ctrs.apqns;
757 	*bound = ctrs.bound;
758 }
759 
760 /*
761  * After initial ap bus scan do check if all existing APQNs are
762  * bound to device drivers.
763  */
764 static void ap_check_bindings_complete(void)
765 {
766 	unsigned int apqns, bound;
767 
768 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
769 		ap_calc_bound_apqns(&apqns, &bound);
770 		if (bound == apqns) {
771 			if (!completion_done(&ap_init_apqn_bindings_complete)) {
772 				complete_all(&ap_init_apqn_bindings_complete);
773 				AP_DBF_INFO("%s complete\n", __func__);
774 			}
775 			ap_send_bindings_complete_uevent();
776 		}
777 	}
778 }
779 
780 /*
781  * Interface to wait for the AP bus to have done one initial ap bus
782  * scan and all detected APQNs have been bound to device drivers.
783  * If these both conditions are not fulfilled, this function blocks
784  * on a condition with wait_for_completion_interruptible_timeout().
785  * If these both conditions are fulfilled (before the timeout hits)
786  * the return value is 0. If the timeout (in jiffies) hits instead
787  * -ETIME is returned. On failures negative return values are
788  * returned to the caller.
789  */
790 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
791 {
792 	long l;
793 
794 	if (completion_done(&ap_init_apqn_bindings_complete))
795 		return 0;
796 
797 	if (timeout)
798 		l = wait_for_completion_interruptible_timeout(
799 			&ap_init_apqn_bindings_complete, timeout);
800 	else
801 		l = wait_for_completion_interruptible(
802 			&ap_init_apqn_bindings_complete);
803 	if (l < 0)
804 		return l == -ERESTARTSYS ? -EINTR : l;
805 	else if (l == 0 && timeout)
806 		return -ETIME;
807 
808 	return 0;
809 }
810 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
811 
812 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
813 {
814 	if (is_queue_dev(dev) &&
815 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
816 		device_unregister(dev);
817 	return 0;
818 }
819 
820 static int __ap_revise_reserved(struct device *dev, void *dummy)
821 {
822 	int rc, card, queue, devres, drvres;
823 
824 	if (is_queue_dev(dev)) {
825 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
826 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
827 		mutex_lock(&ap_perms_mutex);
828 		devres = test_bit_inv(card, ap_perms.apm) &&
829 			test_bit_inv(queue, ap_perms.aqm);
830 		mutex_unlock(&ap_perms_mutex);
831 		drvres = to_ap_drv(dev->driver)->flags
832 			& AP_DRIVER_FLAG_DEFAULT;
833 		if (!!devres != !!drvres) {
834 			AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
835 				   __func__, card, queue);
836 			rc = device_reprobe(dev);
837 			if (rc)
838 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
839 					    __func__, card, queue);
840 		}
841 	}
842 
843 	return 0;
844 }
845 
846 static void ap_bus_revise_bindings(void)
847 {
848 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
849 }
850 
851 /**
852  * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
853  *			default host driver or not.
854  * @card: the APID of the adapter card to check
855  * @queue: the APQI of the queue to check
856  *
857  * Note: the ap_perms_mutex must be locked by the caller of this function.
858  *
859  * Return: an int specifying whether the AP adapter is reserved for the host (1)
860  *	   or not (0).
861  */
862 int ap_owned_by_def_drv(int card, int queue)
863 {
864 	int rc = 0;
865 
866 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
867 		return -EINVAL;
868 
869 	if (test_bit_inv(card, ap_perms.apm) &&
870 	    test_bit_inv(queue, ap_perms.aqm))
871 		rc = 1;
872 
873 	return rc;
874 }
875 EXPORT_SYMBOL(ap_owned_by_def_drv);
876 
877 /**
878  * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
879  *				       a set is reserved for the host drivers
880  *				       or not.
881  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
882  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
883  *
884  * Note: the ap_perms_mutex must be locked by the caller of this function.
885  *
886  * Return: an int specifying whether each APQN is reserved for the host (1) or
887  *	   not (0)
888  */
889 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
890 				       unsigned long *aqm)
891 {
892 	int card, queue, rc = 0;
893 
894 	for (card = 0; !rc && card < AP_DEVICES; card++)
895 		if (test_bit_inv(card, apm) &&
896 		    test_bit_inv(card, ap_perms.apm))
897 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
898 				if (test_bit_inv(queue, aqm) &&
899 				    test_bit_inv(queue, ap_perms.aqm))
900 					rc = 1;
901 
902 	return rc;
903 }
904 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
905 
906 static int ap_device_probe(struct device *dev)
907 {
908 	struct ap_device *ap_dev = to_ap_dev(dev);
909 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
910 	int card, queue, devres, drvres, rc = -ENODEV;
911 
912 	if (!get_device(dev))
913 		return rc;
914 
915 	if (is_queue_dev(dev)) {
916 		/*
917 		 * If the apqn is marked as reserved/used by ap bus and
918 		 * default drivers, only probe with drivers with the default
919 		 * flag set. If it is not marked, only probe with drivers
920 		 * with the default flag not set.
921 		 */
922 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
923 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
924 		mutex_lock(&ap_perms_mutex);
925 		devres = test_bit_inv(card, ap_perms.apm) &&
926 			test_bit_inv(queue, ap_perms.aqm);
927 		mutex_unlock(&ap_perms_mutex);
928 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
929 		if (!!devres != !!drvres)
930 			goto out;
931 	}
932 
933 	/* Add queue/card to list of active queues/cards */
934 	spin_lock_bh(&ap_queues_lock);
935 	if (is_queue_dev(dev))
936 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
937 			 to_ap_queue(dev)->qid);
938 	spin_unlock_bh(&ap_queues_lock);
939 
940 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
941 
942 	if (rc) {
943 		spin_lock_bh(&ap_queues_lock);
944 		if (is_queue_dev(dev))
945 			hash_del(&to_ap_queue(dev)->hnode);
946 		spin_unlock_bh(&ap_queues_lock);
947 	} else {
948 		ap_check_bindings_complete();
949 	}
950 
951 out:
952 	if (rc)
953 		put_device(dev);
954 	return rc;
955 }
956 
957 static void ap_device_remove(struct device *dev)
958 {
959 	struct ap_device *ap_dev = to_ap_dev(dev);
960 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
961 
962 	/* prepare ap queue device removal */
963 	if (is_queue_dev(dev))
964 		ap_queue_prepare_remove(to_ap_queue(dev));
965 
966 	/* driver's chance to clean up gracefully */
967 	if (ap_drv->remove)
968 		ap_drv->remove(ap_dev);
969 
970 	/* now do the ap queue device remove */
971 	if (is_queue_dev(dev))
972 		ap_queue_remove(to_ap_queue(dev));
973 
974 	/* Remove queue/card from list of active queues/cards */
975 	spin_lock_bh(&ap_queues_lock);
976 	if (is_queue_dev(dev))
977 		hash_del(&to_ap_queue(dev)->hnode);
978 	spin_unlock_bh(&ap_queues_lock);
979 
980 	put_device(dev);
981 }
982 
983 struct ap_queue *ap_get_qdev(ap_qid_t qid)
984 {
985 	int bkt;
986 	struct ap_queue *aq;
987 
988 	spin_lock_bh(&ap_queues_lock);
989 	hash_for_each(ap_queues, bkt, aq, hnode) {
990 		if (aq->qid == qid) {
991 			get_device(&aq->ap_dev.device);
992 			spin_unlock_bh(&ap_queues_lock);
993 			return aq;
994 		}
995 	}
996 	spin_unlock_bh(&ap_queues_lock);
997 
998 	return NULL;
999 }
1000 EXPORT_SYMBOL(ap_get_qdev);
1001 
1002 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1003 		       char *name)
1004 {
1005 	struct device_driver *drv = &ap_drv->driver;
1006 
1007 	drv->bus = &ap_bus_type;
1008 	drv->owner = owner;
1009 	drv->name = name;
1010 	return driver_register(drv);
1011 }
1012 EXPORT_SYMBOL(ap_driver_register);
1013 
1014 void ap_driver_unregister(struct ap_driver *ap_drv)
1015 {
1016 	driver_unregister(&ap_drv->driver);
1017 }
1018 EXPORT_SYMBOL(ap_driver_unregister);
1019 
1020 void ap_bus_force_rescan(void)
1021 {
1022 	/* Only trigger AP bus scans after the initial scan is done */
1023 	if (atomic64_read(&ap_scan_bus_count) <= 0)
1024 		return;
1025 
1026 	/* processing a asynchronous bus rescan */
1027 	del_timer(&ap_config_timer);
1028 	queue_work(system_long_wq, &ap_scan_work);
1029 	flush_work(&ap_scan_work);
1030 }
1031 EXPORT_SYMBOL(ap_bus_force_rescan);
1032 
1033 /*
1034  * A config change has happened, force an ap bus rescan.
1035  */
1036 void ap_bus_cfg_chg(void)
1037 {
1038 	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1039 
1040 	ap_bus_force_rescan();
1041 }
1042 
1043 /*
1044  * hex2bitmap() - parse hex mask string and set bitmap.
1045  * Valid strings are "0x012345678" with at least one valid hex number.
1046  * Rest of the bitmap to the right is padded with 0. No spaces allowed
1047  * within the string, the leading 0x may be omitted.
1048  * Returns the bitmask with exactly the bits set as given by the hex
1049  * string (both in big endian order).
1050  */
1051 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1052 {
1053 	int i, n, b;
1054 
1055 	/* bits needs to be a multiple of 8 */
1056 	if (bits & 0x07)
1057 		return -EINVAL;
1058 
1059 	if (str[0] == '0' && str[1] == 'x')
1060 		str++;
1061 	if (*str == 'x')
1062 		str++;
1063 
1064 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1065 		b = hex_to_bin(*str);
1066 		for (n = 0; n < 4; n++)
1067 			if (b & (0x08 >> n))
1068 				set_bit_inv(i + n, bitmap);
1069 		i += 4;
1070 	}
1071 
1072 	if (*str == '\n')
1073 		str++;
1074 	if (*str)
1075 		return -EINVAL;
1076 	return 0;
1077 }
1078 
1079 /*
1080  * modify_bitmap() - parse bitmask argument and modify an existing
1081  * bit mask accordingly. A concatenation (done with ',') of these
1082  * terms is recognized:
1083  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1084  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1085  * 0...bits-1; the leading + or - is required. Here are some examples:
1086  *   +0-15,+32,-128,-0xFF
1087  *   -0-255,+1-16,+0x128
1088  *   +1,+2,+3,+4,-5,-7-10
1089  * Returns the new bitmap after all changes have been applied. Every
1090  * positive value in the string will set a bit and every negative value
1091  * in the string will clear a bit. As a bit may be touched more than once,
1092  * the last 'operation' wins:
1093  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1094  * cleared again. All other bits are unmodified.
1095  */
1096 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1097 {
1098 	int a, i, z;
1099 	char *np, sign;
1100 
1101 	/* bits needs to be a multiple of 8 */
1102 	if (bits & 0x07)
1103 		return -EINVAL;
1104 
1105 	while (*str) {
1106 		sign = *str++;
1107 		if (sign != '+' && sign != '-')
1108 			return -EINVAL;
1109 		a = z = simple_strtoul(str, &np, 0);
1110 		if (str == np || a >= bits)
1111 			return -EINVAL;
1112 		str = np;
1113 		if (*str == '-') {
1114 			z = simple_strtoul(++str, &np, 0);
1115 			if (str == np || a > z || z >= bits)
1116 				return -EINVAL;
1117 			str = np;
1118 		}
1119 		for (i = a; i <= z; i++)
1120 			if (sign == '+')
1121 				set_bit_inv(i, bitmap);
1122 			else
1123 				clear_bit_inv(i, bitmap);
1124 		while (*str == ',' || *str == '\n')
1125 			str++;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1132 			       unsigned long *newmap)
1133 {
1134 	unsigned long size;
1135 	int rc;
1136 
1137 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1138 	if (*str == '+' || *str == '-') {
1139 		memcpy(newmap, bitmap, size);
1140 		rc = modify_bitmap(str, newmap, bits);
1141 	} else {
1142 		memset(newmap, 0, size);
1143 		rc = hex2bitmap(str, newmap, bits);
1144 	}
1145 	return rc;
1146 }
1147 
1148 int ap_parse_mask_str(const char *str,
1149 		      unsigned long *bitmap, int bits,
1150 		      struct mutex *lock)
1151 {
1152 	unsigned long *newmap, size;
1153 	int rc;
1154 
1155 	/* bits needs to be a multiple of 8 */
1156 	if (bits & 0x07)
1157 		return -EINVAL;
1158 
1159 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1160 	newmap = kmalloc(size, GFP_KERNEL);
1161 	if (!newmap)
1162 		return -ENOMEM;
1163 	if (mutex_lock_interruptible(lock)) {
1164 		kfree(newmap);
1165 		return -ERESTARTSYS;
1166 	}
1167 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1168 	if (rc == 0)
1169 		memcpy(bitmap, newmap, size);
1170 	mutex_unlock(lock);
1171 	kfree(newmap);
1172 	return rc;
1173 }
1174 EXPORT_SYMBOL(ap_parse_mask_str);
1175 
1176 /*
1177  * AP bus attributes.
1178  */
1179 
1180 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1181 {
1182 	return sysfs_emit(buf, "%d\n", ap_domain_index);
1183 }
1184 
1185 static ssize_t ap_domain_store(const struct bus_type *bus,
1186 			       const char *buf, size_t count)
1187 {
1188 	int domain;
1189 
1190 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1191 	    domain < 0 || domain > ap_max_domain_id ||
1192 	    !test_bit_inv(domain, ap_perms.aqm))
1193 		return -EINVAL;
1194 
1195 	spin_lock_bh(&ap_domain_lock);
1196 	ap_domain_index = domain;
1197 	spin_unlock_bh(&ap_domain_lock);
1198 
1199 	AP_DBF_INFO("%s stored new default domain=%d\n",
1200 		    __func__, domain);
1201 
1202 	return count;
1203 }
1204 
1205 static BUS_ATTR_RW(ap_domain);
1206 
1207 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1208 {
1209 	if (!ap_qci_info)	/* QCI not supported */
1210 		return sysfs_emit(buf, "not supported\n");
1211 
1212 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1213 			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1214 			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1215 			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1216 			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1217 }
1218 
1219 static BUS_ATTR_RO(ap_control_domain_mask);
1220 
1221 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1222 {
1223 	if (!ap_qci_info)	/* QCI not supported */
1224 		return sysfs_emit(buf, "not supported\n");
1225 
1226 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1227 			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1228 			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1229 			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1230 			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1231 }
1232 
1233 static BUS_ATTR_RO(ap_usage_domain_mask);
1234 
1235 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1236 {
1237 	if (!ap_qci_info)	/* QCI not supported */
1238 		return sysfs_emit(buf, "not supported\n");
1239 
1240 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1241 			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1242 			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1243 			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1244 			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1245 }
1246 
1247 static BUS_ATTR_RO(ap_adapter_mask);
1248 
1249 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1250 {
1251 	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1252 }
1253 
1254 static BUS_ATTR_RO(ap_interrupts);
1255 
1256 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1257 {
1258 	return sysfs_emit(buf, "%d\n", ap_config_time);
1259 }
1260 
1261 static ssize_t config_time_store(const struct bus_type *bus,
1262 				 const char *buf, size_t count)
1263 {
1264 	int time;
1265 
1266 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1267 		return -EINVAL;
1268 	ap_config_time = time;
1269 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1270 	return count;
1271 }
1272 
1273 static BUS_ATTR_RW(config_time);
1274 
1275 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1276 {
1277 	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1278 }
1279 
1280 static ssize_t poll_thread_store(const struct bus_type *bus,
1281 				 const char *buf, size_t count)
1282 {
1283 	bool value;
1284 	int rc;
1285 
1286 	rc = kstrtobool(buf, &value);
1287 	if (rc)
1288 		return rc;
1289 
1290 	if (value) {
1291 		rc = ap_poll_thread_start();
1292 		if (rc)
1293 			count = rc;
1294 	} else {
1295 		ap_poll_thread_stop();
1296 	}
1297 	return count;
1298 }
1299 
1300 static BUS_ATTR_RW(poll_thread);
1301 
1302 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1303 {
1304 	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1305 }
1306 
1307 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1308 				  size_t count)
1309 {
1310 	unsigned long value;
1311 	ktime_t hr_time;
1312 	int rc;
1313 
1314 	rc = kstrtoul(buf, 0, &value);
1315 	if (rc)
1316 		return rc;
1317 
1318 	/* 120 seconds = maximum poll interval */
1319 	if (value > 120000000000UL)
1320 		return -EINVAL;
1321 	poll_high_timeout = value;
1322 	hr_time = poll_high_timeout;
1323 
1324 	spin_lock_bh(&ap_poll_timer_lock);
1325 	hrtimer_cancel(&ap_poll_timer);
1326 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1327 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1328 	spin_unlock_bh(&ap_poll_timer_lock);
1329 
1330 	return count;
1331 }
1332 
1333 static BUS_ATTR_RW(poll_timeout);
1334 
1335 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1336 {
1337 	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1338 }
1339 
1340 static BUS_ATTR_RO(ap_max_domain_id);
1341 
1342 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1343 {
1344 	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1345 }
1346 
1347 static BUS_ATTR_RO(ap_max_adapter_id);
1348 
1349 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1350 {
1351 	int rc;
1352 
1353 	if (mutex_lock_interruptible(&ap_perms_mutex))
1354 		return -ERESTARTSYS;
1355 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1356 			ap_perms.apm[0], ap_perms.apm[1],
1357 			ap_perms.apm[2], ap_perms.apm[3]);
1358 	mutex_unlock(&ap_perms_mutex);
1359 
1360 	return rc;
1361 }
1362 
1363 static int __verify_card_reservations(struct device_driver *drv, void *data)
1364 {
1365 	int rc = 0;
1366 	struct ap_driver *ap_drv = to_ap_drv(drv);
1367 	unsigned long *newapm = (unsigned long *)data;
1368 
1369 	/*
1370 	 * increase the driver's module refcounter to be sure it is not
1371 	 * going away when we invoke the callback function.
1372 	 */
1373 	if (!try_module_get(drv->owner))
1374 		return 0;
1375 
1376 	if (ap_drv->in_use) {
1377 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1378 		if (rc)
1379 			rc = -EBUSY;
1380 	}
1381 
1382 	/* release the driver's module */
1383 	module_put(drv->owner);
1384 
1385 	return rc;
1386 }
1387 
1388 static int apmask_commit(unsigned long *newapm)
1389 {
1390 	int rc;
1391 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1392 
1393 	/*
1394 	 * Check if any bits in the apmask have been set which will
1395 	 * result in queues being removed from non-default drivers
1396 	 */
1397 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1398 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1399 				      __verify_card_reservations);
1400 		if (rc)
1401 			return rc;
1402 	}
1403 
1404 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1405 
1406 	return 0;
1407 }
1408 
1409 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1410 			    size_t count)
1411 {
1412 	int rc, changes = 0;
1413 	DECLARE_BITMAP(newapm, AP_DEVICES);
1414 
1415 	if (mutex_lock_interruptible(&ap_perms_mutex))
1416 		return -ERESTARTSYS;
1417 
1418 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1419 	if (rc)
1420 		goto done;
1421 
1422 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1423 	if (changes)
1424 		rc = apmask_commit(newapm);
1425 
1426 done:
1427 	mutex_unlock(&ap_perms_mutex);
1428 	if (rc)
1429 		return rc;
1430 
1431 	if (changes) {
1432 		ap_bus_revise_bindings();
1433 		ap_send_mask_changed_uevent(newapm, NULL);
1434 	}
1435 
1436 	return count;
1437 }
1438 
1439 static BUS_ATTR_RW(apmask);
1440 
1441 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1442 {
1443 	int rc;
1444 
1445 	if (mutex_lock_interruptible(&ap_perms_mutex))
1446 		return -ERESTARTSYS;
1447 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1448 			ap_perms.aqm[0], ap_perms.aqm[1],
1449 			ap_perms.aqm[2], ap_perms.aqm[3]);
1450 	mutex_unlock(&ap_perms_mutex);
1451 
1452 	return rc;
1453 }
1454 
1455 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1456 {
1457 	int rc = 0;
1458 	struct ap_driver *ap_drv = to_ap_drv(drv);
1459 	unsigned long *newaqm = (unsigned long *)data;
1460 
1461 	/*
1462 	 * increase the driver's module refcounter to be sure it is not
1463 	 * going away when we invoke the callback function.
1464 	 */
1465 	if (!try_module_get(drv->owner))
1466 		return 0;
1467 
1468 	if (ap_drv->in_use) {
1469 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1470 		if (rc)
1471 			rc = -EBUSY;
1472 	}
1473 
1474 	/* release the driver's module */
1475 	module_put(drv->owner);
1476 
1477 	return rc;
1478 }
1479 
1480 static int aqmask_commit(unsigned long *newaqm)
1481 {
1482 	int rc;
1483 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1484 
1485 	/*
1486 	 * Check if any bits in the aqmask have been set which will
1487 	 * result in queues being removed from non-default drivers
1488 	 */
1489 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1490 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1491 				      __verify_queue_reservations);
1492 		if (rc)
1493 			return rc;
1494 	}
1495 
1496 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1497 
1498 	return 0;
1499 }
1500 
1501 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1502 			    size_t count)
1503 {
1504 	int rc, changes = 0;
1505 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1506 
1507 	if (mutex_lock_interruptible(&ap_perms_mutex))
1508 		return -ERESTARTSYS;
1509 
1510 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1511 	if (rc)
1512 		goto done;
1513 
1514 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1515 	if (changes)
1516 		rc = aqmask_commit(newaqm);
1517 
1518 done:
1519 	mutex_unlock(&ap_perms_mutex);
1520 	if (rc)
1521 		return rc;
1522 
1523 	if (changes) {
1524 		ap_bus_revise_bindings();
1525 		ap_send_mask_changed_uevent(NULL, newaqm);
1526 	}
1527 
1528 	return count;
1529 }
1530 
1531 static BUS_ATTR_RW(aqmask);
1532 
1533 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1534 {
1535 	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1536 }
1537 
1538 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1539 			   size_t count)
1540 {
1541 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1542 
1543 	ap_bus_force_rescan();
1544 
1545 	return count;
1546 }
1547 
1548 static BUS_ATTR_RW(scans);
1549 
1550 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1551 {
1552 	int rc;
1553 	unsigned int apqns, n;
1554 
1555 	ap_calc_bound_apqns(&apqns, &n);
1556 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1557 		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1558 	else
1559 		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1560 
1561 	return rc;
1562 }
1563 
1564 static BUS_ATTR_RO(bindings);
1565 
1566 static ssize_t features_show(const struct bus_type *bus, char *buf)
1567 {
1568 	int n = 0;
1569 
1570 	if (!ap_qci_info)	/* QCI not supported */
1571 		return sysfs_emit(buf, "-\n");
1572 
1573 	if (ap_qci_info->apsc)
1574 		n += sysfs_emit_at(buf, n, "APSC ");
1575 	if (ap_qci_info->apxa)
1576 		n += sysfs_emit_at(buf, n, "APXA ");
1577 	if (ap_qci_info->qact)
1578 		n += sysfs_emit_at(buf, n, "QACT ");
1579 	if (ap_qci_info->rc8a)
1580 		n += sysfs_emit_at(buf, n, "RC8A ");
1581 	if (ap_qci_info->apsb)
1582 		n += sysfs_emit_at(buf, n, "APSB ");
1583 
1584 	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1585 
1586 	return n;
1587 }
1588 
1589 static BUS_ATTR_RO(features);
1590 
1591 static struct attribute *ap_bus_attrs[] = {
1592 	&bus_attr_ap_domain.attr,
1593 	&bus_attr_ap_control_domain_mask.attr,
1594 	&bus_attr_ap_usage_domain_mask.attr,
1595 	&bus_attr_ap_adapter_mask.attr,
1596 	&bus_attr_config_time.attr,
1597 	&bus_attr_poll_thread.attr,
1598 	&bus_attr_ap_interrupts.attr,
1599 	&bus_attr_poll_timeout.attr,
1600 	&bus_attr_ap_max_domain_id.attr,
1601 	&bus_attr_ap_max_adapter_id.attr,
1602 	&bus_attr_apmask.attr,
1603 	&bus_attr_aqmask.attr,
1604 	&bus_attr_scans.attr,
1605 	&bus_attr_bindings.attr,
1606 	&bus_attr_features.attr,
1607 	NULL,
1608 };
1609 ATTRIBUTE_GROUPS(ap_bus);
1610 
1611 static struct bus_type ap_bus_type = {
1612 	.name = "ap",
1613 	.bus_groups = ap_bus_groups,
1614 	.match = &ap_bus_match,
1615 	.uevent = &ap_uevent,
1616 	.probe = ap_device_probe,
1617 	.remove = ap_device_remove,
1618 };
1619 
1620 /**
1621  * ap_select_domain(): Select an AP domain if possible and we haven't
1622  * already done so before.
1623  */
1624 static void ap_select_domain(void)
1625 {
1626 	struct ap_queue_status status;
1627 	int card, dom;
1628 
1629 	/*
1630 	 * Choose the default domain. Either the one specified with
1631 	 * the "domain=" parameter or the first domain with at least
1632 	 * one valid APQN.
1633 	 */
1634 	spin_lock_bh(&ap_domain_lock);
1635 	if (ap_domain_index >= 0) {
1636 		/* Domain has already been selected. */
1637 		goto out;
1638 	}
1639 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1640 		if (!ap_test_config_usage_domain(dom) ||
1641 		    !test_bit_inv(dom, ap_perms.aqm))
1642 			continue;
1643 		for (card = 0; card <= ap_max_adapter_id; card++) {
1644 			if (!ap_test_config_card_id(card) ||
1645 			    !test_bit_inv(card, ap_perms.apm))
1646 				continue;
1647 			status = ap_test_queue(AP_MKQID(card, dom),
1648 					       ap_apft_available(),
1649 					       NULL);
1650 			if (status.response_code == AP_RESPONSE_NORMAL)
1651 				break;
1652 		}
1653 		if (card <= ap_max_adapter_id)
1654 			break;
1655 	}
1656 	if (dom <= ap_max_domain_id) {
1657 		ap_domain_index = dom;
1658 		AP_DBF_INFO("%s new default domain is %d\n",
1659 			    __func__, ap_domain_index);
1660 	}
1661 out:
1662 	spin_unlock_bh(&ap_domain_lock);
1663 }
1664 
1665 /*
1666  * This function checks the type and returns either 0 for not
1667  * supported or the highest compatible type value (which may
1668  * include the input type value).
1669  */
1670 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1671 {
1672 	int comp_type = 0;
1673 
1674 	/* < CEX4 is not supported */
1675 	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1676 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1677 			    __func__, AP_QID_CARD(qid),
1678 			    AP_QID_QUEUE(qid), rawtype);
1679 		return 0;
1680 	}
1681 	/* up to CEX8 known and fully supported */
1682 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1683 		return rawtype;
1684 	/*
1685 	 * unknown new type > CEX8, check for compatibility
1686 	 * to the highest known and supported type which is
1687 	 * currently CEX8 with the help of the QACT function.
1688 	 */
1689 	if (ap_qact_available()) {
1690 		struct ap_queue_status status;
1691 		union ap_qact_ap_info apinfo = {0};
1692 
1693 		apinfo.mode = (func >> 26) & 0x07;
1694 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1695 		status = ap_qact(qid, 0, &apinfo);
1696 		if (status.response_code == AP_RESPONSE_NORMAL &&
1697 		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1698 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1699 			comp_type = apinfo.cat;
1700 	}
1701 	if (!comp_type)
1702 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1703 			    __func__, AP_QID_CARD(qid),
1704 			    AP_QID_QUEUE(qid), rawtype);
1705 	else if (comp_type != rawtype)
1706 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1707 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1708 			    rawtype, comp_type);
1709 	return comp_type;
1710 }
1711 
1712 /*
1713  * Helper function to be used with bus_find_dev
1714  * matches for the card device with the given id
1715  */
1716 static int __match_card_device_with_id(struct device *dev, const void *data)
1717 {
1718 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1719 }
1720 
1721 /*
1722  * Helper function to be used with bus_find_dev
1723  * matches for the queue device with a given qid
1724  */
1725 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1726 {
1727 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1728 }
1729 
1730 /*
1731  * Helper function to be used with bus_find_dev
1732  * matches any queue device with given queue id
1733  */
1734 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1735 {
1736 	return is_queue_dev(dev) &&
1737 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1738 }
1739 
1740 /* Helper function for notify_config_changed */
1741 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1742 {
1743 	struct ap_driver *ap_drv = to_ap_drv(drv);
1744 
1745 	if (try_module_get(drv->owner)) {
1746 		if (ap_drv->on_config_changed)
1747 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1748 		module_put(drv->owner);
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 /* Notify all drivers about an qci config change */
1755 static inline void notify_config_changed(void)
1756 {
1757 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1758 			 __drv_notify_config_changed);
1759 }
1760 
1761 /* Helper function for notify_scan_complete */
1762 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1763 {
1764 	struct ap_driver *ap_drv = to_ap_drv(drv);
1765 
1766 	if (try_module_get(drv->owner)) {
1767 		if (ap_drv->on_scan_complete)
1768 			ap_drv->on_scan_complete(ap_qci_info,
1769 						 ap_qci_info_old);
1770 		module_put(drv->owner);
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 /* Notify all drivers about bus scan complete */
1777 static inline void notify_scan_complete(void)
1778 {
1779 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1780 			 __drv_notify_scan_complete);
1781 }
1782 
1783 /*
1784  * Helper function for ap_scan_bus().
1785  * Remove card device and associated queue devices.
1786  */
1787 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1788 {
1789 	bus_for_each_dev(&ap_bus_type, NULL,
1790 			 (void *)(long)ac->id,
1791 			 __ap_queue_devices_with_id_unregister);
1792 	device_unregister(&ac->ap_dev.device);
1793 }
1794 
1795 /*
1796  * Helper function for ap_scan_bus().
1797  * Does the scan bus job for all the domains within
1798  * a valid adapter given by an ap_card ptr.
1799  */
1800 static inline void ap_scan_domains(struct ap_card *ac)
1801 {
1802 	int rc, dom, depth, type, ml;
1803 	bool decfg, chkstop;
1804 	struct ap_queue *aq;
1805 	struct device *dev;
1806 	unsigned int func;
1807 	ap_qid_t qid;
1808 
1809 	/*
1810 	 * Go through the configuration for the domains and compare them
1811 	 * to the existing queue devices. Also take care of the config
1812 	 * and error state for the queue devices.
1813 	 */
1814 
1815 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1816 		qid = AP_MKQID(ac->id, dom);
1817 		dev = bus_find_device(&ap_bus_type, NULL,
1818 				      (void *)(long)qid,
1819 				      __match_queue_device_with_qid);
1820 		aq = dev ? to_ap_queue(dev) : NULL;
1821 		if (!ap_test_config_usage_domain(dom)) {
1822 			if (dev) {
1823 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1824 					    __func__, ac->id, dom);
1825 				device_unregister(dev);
1826 			}
1827 			goto put_dev_and_continue;
1828 		}
1829 		/* domain is valid, get info from this APQN */
1830 		rc = ap_queue_info(qid, &type, &func, &depth,
1831 				   &ml, &decfg, &chkstop);
1832 		switch (rc) {
1833 		case -1:
1834 			if (dev) {
1835 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1836 					    __func__, ac->id, dom);
1837 				device_unregister(dev);
1838 			}
1839 			fallthrough;
1840 		case 0:
1841 			goto put_dev_and_continue;
1842 		default:
1843 			break;
1844 		}
1845 		/* if no queue device exists, create a new one */
1846 		if (!aq) {
1847 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1848 			if (!aq) {
1849 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1850 					    __func__, ac->id, dom);
1851 				continue;
1852 			}
1853 			aq->card = ac;
1854 			aq->config = !decfg;
1855 			aq->chkstop = chkstop;
1856 			dev = &aq->ap_dev.device;
1857 			dev->bus = &ap_bus_type;
1858 			dev->parent = &ac->ap_dev.device;
1859 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1860 			/* register queue device */
1861 			rc = device_register(dev);
1862 			if (rc) {
1863 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1864 					    __func__, ac->id, dom);
1865 				goto put_dev_and_continue;
1866 			}
1867 			/* get it and thus adjust reference counter */
1868 			get_device(dev);
1869 			if (decfg) {
1870 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1871 					    __func__, ac->id, dom);
1872 			} else if (chkstop) {
1873 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1874 					    __func__, ac->id, dom);
1875 			} else {
1876 				/* nudge the queue's state machine */
1877 				ap_queue_init_state(aq);
1878 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1879 					    __func__, ac->id, dom);
1880 			}
1881 			goto put_dev_and_continue;
1882 		}
1883 		/* handle state changes on already existing queue device */
1884 		spin_lock_bh(&aq->lock);
1885 		/* checkstop state */
1886 		if (chkstop && !aq->chkstop) {
1887 			/* checkstop on */
1888 			aq->chkstop = true;
1889 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1890 				aq->dev_state = AP_DEV_STATE_ERROR;
1891 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1892 			}
1893 			spin_unlock_bh(&aq->lock);
1894 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1895 				   __func__, ac->id, dom);
1896 			/* 'receive' pending messages with -EAGAIN */
1897 			ap_flush_queue(aq);
1898 			goto put_dev_and_continue;
1899 		} else if (!chkstop && aq->chkstop) {
1900 			/* checkstop off */
1901 			aq->chkstop = false;
1902 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1903 				_ap_queue_init_state(aq);
1904 			spin_unlock_bh(&aq->lock);
1905 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1906 				   __func__, ac->id, dom);
1907 			goto put_dev_and_continue;
1908 		}
1909 		/* config state change */
1910 		if (decfg && aq->config) {
1911 			/* config off this queue device */
1912 			aq->config = false;
1913 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1914 				aq->dev_state = AP_DEV_STATE_ERROR;
1915 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1916 			}
1917 			spin_unlock_bh(&aq->lock);
1918 			AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1919 				   __func__, ac->id, dom);
1920 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1921 			/* 'receive' pending messages with -EAGAIN */
1922 			ap_flush_queue(aq);
1923 			goto put_dev_and_continue;
1924 		} else if (!decfg && !aq->config) {
1925 			/* config on this queue device */
1926 			aq->config = true;
1927 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1928 				_ap_queue_init_state(aq);
1929 			spin_unlock_bh(&aq->lock);
1930 			AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1931 				   __func__, ac->id, dom);
1932 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1933 			goto put_dev_and_continue;
1934 		}
1935 		/* handle other error states */
1936 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1937 			spin_unlock_bh(&aq->lock);
1938 			/* 'receive' pending messages with -EAGAIN */
1939 			ap_flush_queue(aq);
1940 			/* re-init (with reset) the queue device */
1941 			ap_queue_init_state(aq);
1942 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1943 				    __func__, ac->id, dom);
1944 			goto put_dev_and_continue;
1945 		}
1946 		spin_unlock_bh(&aq->lock);
1947 put_dev_and_continue:
1948 		put_device(dev);
1949 	}
1950 }
1951 
1952 /*
1953  * Helper function for ap_scan_bus().
1954  * Does the scan bus job for the given adapter id.
1955  */
1956 static inline void ap_scan_adapter(int ap)
1957 {
1958 	int rc, dom, depth, type, comp_type, ml;
1959 	bool decfg, chkstop;
1960 	struct ap_card *ac;
1961 	struct device *dev;
1962 	unsigned int func;
1963 	ap_qid_t qid;
1964 
1965 	/* Is there currently a card device for this adapter ? */
1966 	dev = bus_find_device(&ap_bus_type, NULL,
1967 			      (void *)(long)ap,
1968 			      __match_card_device_with_id);
1969 	ac = dev ? to_ap_card(dev) : NULL;
1970 
1971 	/* Adapter not in configuration ? */
1972 	if (!ap_test_config_card_id(ap)) {
1973 		if (ac) {
1974 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1975 				    __func__, ap);
1976 			ap_scan_rm_card_dev_and_queue_devs(ac);
1977 			put_device(dev);
1978 		}
1979 		return;
1980 	}
1981 
1982 	/*
1983 	 * Adapter ap is valid in the current configuration. So do some checks:
1984 	 * If no card device exists, build one. If a card device exists, check
1985 	 * for type and functions changed. For all this we need to find a valid
1986 	 * APQN first.
1987 	 */
1988 
1989 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1990 		if (ap_test_config_usage_domain(dom)) {
1991 			qid = AP_MKQID(ap, dom);
1992 			if (ap_queue_info(qid, &type, &func, &depth,
1993 					  &ml, &decfg, &chkstop) > 0)
1994 				break;
1995 		}
1996 	if (dom > ap_max_domain_id) {
1997 		/* Could not find one valid APQN for this adapter */
1998 		if (ac) {
1999 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2000 				    __func__, ap);
2001 			ap_scan_rm_card_dev_and_queue_devs(ac);
2002 			put_device(dev);
2003 		} else {
2004 			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
2005 				   __func__, ap);
2006 		}
2007 		return;
2008 	}
2009 	if (!type) {
2010 		/* No apdater type info available, an unusable adapter */
2011 		if (ac) {
2012 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2013 				    __func__, ap);
2014 			ap_scan_rm_card_dev_and_queue_devs(ac);
2015 			put_device(dev);
2016 		} else {
2017 			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
2018 				   __func__, ap);
2019 		}
2020 		return;
2021 	}
2022 	if (ac) {
2023 		/* Check APQN against existing card device for changes */
2024 		if (ac->raw_hwtype != type) {
2025 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2026 				    __func__, ap, type);
2027 			ap_scan_rm_card_dev_and_queue_devs(ac);
2028 			put_device(dev);
2029 			ac = NULL;
2030 		} else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) !=
2031 			   (func & TAPQ_CARD_FUNC_CMP_MASK)) {
2032 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2033 				    __func__, ap, func);
2034 			ap_scan_rm_card_dev_and_queue_devs(ac);
2035 			put_device(dev);
2036 			ac = NULL;
2037 		} else {
2038 			/* handle checkstop state change */
2039 			if (chkstop && !ac->chkstop) {
2040 				/* checkstop on */
2041 				ac->chkstop = true;
2042 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2043 					    __func__, ap);
2044 			} else if (!chkstop && ac->chkstop) {
2045 				/* checkstop off */
2046 				ac->chkstop = false;
2047 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2048 					    __func__, ap);
2049 			}
2050 			/* handle config state change */
2051 			if (decfg && ac->config) {
2052 				ac->config = false;
2053 				AP_DBF_INFO("%s(%d) card dev config off\n",
2054 					    __func__, ap);
2055 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2056 			} else if (!decfg && !ac->config) {
2057 				ac->config = true;
2058 				AP_DBF_INFO("%s(%d) card dev config on\n",
2059 					    __func__, ap);
2060 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2061 			}
2062 		}
2063 	}
2064 
2065 	if (!ac) {
2066 		/* Build a new card device */
2067 		comp_type = ap_get_compatible_type(qid, type, func);
2068 		if (!comp_type) {
2069 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2070 				    __func__, ap, type);
2071 			return;
2072 		}
2073 		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2074 		if (!ac) {
2075 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2076 				    __func__, ap);
2077 			return;
2078 		}
2079 		ac->config = !decfg;
2080 		ac->chkstop = chkstop;
2081 		dev = &ac->ap_dev.device;
2082 		dev->bus = &ap_bus_type;
2083 		dev->parent = ap_root_device;
2084 		dev_set_name(dev, "card%02x", ap);
2085 		/* maybe enlarge ap_max_msg_size to support this card */
2086 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2087 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2088 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2089 				    __func__, ap,
2090 				    atomic_read(&ap_max_msg_size));
2091 		}
2092 		/* Register the new card device with AP bus */
2093 		rc = device_register(dev);
2094 		if (rc) {
2095 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2096 				    __func__, ap);
2097 			put_device(dev);
2098 			return;
2099 		}
2100 		/* get it and thus adjust reference counter */
2101 		get_device(dev);
2102 		if (decfg)
2103 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2104 				    __func__, ap, type, func);
2105 		else if (chkstop)
2106 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2107 				    __func__, ap, type, func);
2108 		else
2109 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2110 				    __func__, ap, type, func);
2111 	}
2112 
2113 	/* Verify the domains and the queue devices for this card */
2114 	ap_scan_domains(ac);
2115 
2116 	/* release the card device */
2117 	put_device(&ac->ap_dev.device);
2118 }
2119 
2120 /**
2121  * ap_get_configuration - get the host AP configuration
2122  *
2123  * Stores the host AP configuration information returned from the previous call
2124  * to Query Configuration Information (QCI), then retrieves and stores the
2125  * current AP configuration returned from QCI.
2126  *
2127  * Return: true if the host AP configuration changed between calls to QCI;
2128  * otherwise, return false.
2129  */
2130 static bool ap_get_configuration(void)
2131 {
2132 	if (!ap_qci_info)	/* QCI not supported */
2133 		return false;
2134 
2135 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2136 	ap_fetch_qci_info(ap_qci_info);
2137 
2138 	return memcmp(ap_qci_info, ap_qci_info_old,
2139 		      sizeof(struct ap_config_info)) != 0;
2140 }
2141 
2142 /**
2143  * ap_scan_bus(): Scan the AP bus for new devices
2144  * Runs periodically, workqueue timer (ap_config_time)
2145  * @unused: Unused pointer.
2146  */
2147 static void ap_scan_bus(struct work_struct *unused)
2148 {
2149 	int ap, config_changed = 0;
2150 
2151 	/* config change notify */
2152 	config_changed = ap_get_configuration();
2153 	if (config_changed)
2154 		notify_config_changed();
2155 	ap_select_domain();
2156 
2157 	AP_DBF_DBG("%s running\n", __func__);
2158 
2159 	/* loop over all possible adapters */
2160 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2161 		ap_scan_adapter(ap);
2162 
2163 	/* scan complete notify */
2164 	if (config_changed)
2165 		notify_scan_complete();
2166 
2167 	/* check if there is at least one queue available with default domain */
2168 	if (ap_domain_index >= 0) {
2169 		struct device *dev =
2170 			bus_find_device(&ap_bus_type, NULL,
2171 					(void *)(long)ap_domain_index,
2172 					__match_queue_device_with_queue_id);
2173 		if (dev)
2174 			put_device(dev);
2175 		else
2176 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2177 				    __func__, ap_domain_index);
2178 	}
2179 
2180 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2181 		AP_DBF_DBG("%s init scan complete\n", __func__);
2182 		ap_send_init_scan_done_uevent();
2183 		ap_check_bindings_complete();
2184 	}
2185 
2186 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2187 }
2188 
2189 static void ap_config_timeout(struct timer_list *unused)
2190 {
2191 	queue_work(system_long_wq, &ap_scan_work);
2192 }
2193 
2194 static int __init ap_debug_init(void)
2195 {
2196 	ap_dbf_info = debug_register("ap", 2, 1,
2197 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
2198 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2199 	debug_set_level(ap_dbf_info, DBF_ERR);
2200 
2201 	return 0;
2202 }
2203 
2204 static void __init ap_perms_init(void)
2205 {
2206 	/* all resources usable if no kernel parameter string given */
2207 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2208 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2209 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2210 
2211 	/* apm kernel parameter string */
2212 	if (apm_str) {
2213 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2214 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2215 				  &ap_perms_mutex);
2216 	}
2217 
2218 	/* aqm kernel parameter string */
2219 	if (aqm_str) {
2220 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2221 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2222 				  &ap_perms_mutex);
2223 	}
2224 }
2225 
2226 /**
2227  * ap_module_init(): The module initialization code.
2228  *
2229  * Initializes the module.
2230  */
2231 static int __init ap_module_init(void)
2232 {
2233 	int rc;
2234 
2235 	rc = ap_debug_init();
2236 	if (rc)
2237 		return rc;
2238 
2239 	if (!ap_instructions_available()) {
2240 		pr_warn("The hardware system does not support AP instructions\n");
2241 		return -ENODEV;
2242 	}
2243 
2244 	/* init ap_queue hashtable */
2245 	hash_init(ap_queues);
2246 
2247 	/* set up the AP permissions (ioctls, ap and aq masks) */
2248 	ap_perms_init();
2249 
2250 	/* Get AP configuration data if available */
2251 	ap_init_qci_info();
2252 
2253 	/* check default domain setting */
2254 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2255 	    (ap_domain_index >= 0 &&
2256 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2257 		pr_warn("%d is not a valid cryptographic domain\n",
2258 			ap_domain_index);
2259 		ap_domain_index = -1;
2260 	}
2261 
2262 	/* enable interrupts if available */
2263 	if (ap_interrupts_available() && ap_useirq) {
2264 		rc = register_adapter_interrupt(&ap_airq);
2265 		ap_irq_flag = (rc == 0);
2266 	}
2267 
2268 	/* Create /sys/bus/ap. */
2269 	rc = bus_register(&ap_bus_type);
2270 	if (rc)
2271 		goto out;
2272 
2273 	/* Create /sys/devices/ap. */
2274 	ap_root_device = root_device_register("ap");
2275 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2276 	if (rc)
2277 		goto out_bus;
2278 	ap_root_device->bus = &ap_bus_type;
2279 
2280 	/* Setup the AP bus rescan timer. */
2281 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
2282 
2283 	/*
2284 	 * Setup the high resolution poll timer.
2285 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2286 	 */
2287 	if (MACHINE_IS_VM)
2288 		poll_high_timeout = 1500000;
2289 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2290 	ap_poll_timer.function = ap_poll_timeout;
2291 
2292 	/* Start the low priority AP bus poll thread. */
2293 	if (ap_thread_flag) {
2294 		rc = ap_poll_thread_start();
2295 		if (rc)
2296 			goto out_work;
2297 	}
2298 
2299 	queue_work(system_long_wq, &ap_scan_work);
2300 
2301 	return 0;
2302 
2303 out_work:
2304 	hrtimer_cancel(&ap_poll_timer);
2305 	root_device_unregister(ap_root_device);
2306 out_bus:
2307 	bus_unregister(&ap_bus_type);
2308 out:
2309 	if (ap_irq_flag)
2310 		unregister_adapter_interrupt(&ap_airq);
2311 	kfree(ap_qci_info);
2312 	return rc;
2313 }
2314 device_initcall(ap_module_init);
2315