xref: /linux/drivers/s390/crypto/ap_bus.c (revision 3f85d1df26a9d9b0d1a5237c580e085c41d6bf50)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2021
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <linux/atomic.h>
31 #include <asm/isc.h>
32 #include <linux/hrtimer.h>
33 #include <linux/ktime.h>
34 #include <asm/facility.h>
35 #include <linux/crypto.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/debugfs.h>
38 #include <linux/ctype.h>
39 #include <linux/module.h>
40 
41 #include "ap_bus.h"
42 #include "ap_debug.h"
43 
44 /*
45  * Module parameters; note though this file itself isn't modular.
46  */
47 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
48 static DEFINE_SPINLOCK(ap_domain_lock);
49 module_param_named(domain, ap_domain_index, int, 0440);
50 MODULE_PARM_DESC(domain, "domain index for ap devices");
51 EXPORT_SYMBOL(ap_domain_index);
52 
53 static int ap_thread_flag;
54 module_param_named(poll_thread, ap_thread_flag, int, 0440);
55 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
56 
57 static char *apm_str;
58 module_param_named(apmask, apm_str, charp, 0440);
59 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
60 
61 static char *aqm_str;
62 module_param_named(aqmask, aqm_str, charp, 0440);
63 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
64 
65 static int ap_useirq = 1;
66 module_param_named(useirq, ap_useirq, int, 0440);
67 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
68 
69 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
70 EXPORT_SYMBOL(ap_max_msg_size);
71 
72 static struct device *ap_root_device;
73 
74 /* Hashtable of all queue devices on the AP bus */
75 DEFINE_HASHTABLE(ap_queues, 8);
76 /* lock used for the ap_queues hashtable */
77 DEFINE_SPINLOCK(ap_queues_lock);
78 
79 /* Default permissions (ioctl, card and domain masking) */
80 struct ap_perms ap_perms;
81 EXPORT_SYMBOL(ap_perms);
82 DEFINE_MUTEX(ap_perms_mutex);
83 EXPORT_SYMBOL(ap_perms_mutex);
84 
85 /* # of bus scans since init */
86 static atomic64_t ap_scan_bus_count;
87 
88 /* # of bindings complete since init */
89 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
90 
91 /* completion for initial APQN bindings complete */
92 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
93 
94 static struct ap_config_info *ap_qci_info;
95 static struct ap_config_info *ap_qci_info_old;
96 
97 /*
98  * AP bus related debug feature things.
99  */
100 debug_info_t *ap_dbf_info;
101 
102 /*
103  * Workqueue timer for bus rescan.
104  */
105 static struct timer_list ap_config_timer;
106 static int ap_config_time = AP_CONFIG_TIME;
107 static void ap_scan_bus(struct work_struct *);
108 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
109 
110 /*
111  * Tasklet & timer for AP request polling and interrupts
112  */
113 static void ap_tasklet_fn(unsigned long);
114 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
115 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
116 static struct task_struct *ap_poll_kthread;
117 static DEFINE_MUTEX(ap_poll_thread_mutex);
118 static DEFINE_SPINLOCK(ap_poll_timer_lock);
119 static struct hrtimer ap_poll_timer;
120 /*
121  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
122  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
123  */
124 static unsigned long long poll_timeout = 250000;
125 
126 /* Maximum domain id, if not given via qci */
127 static int ap_max_domain_id = 15;
128 /* Maximum adapter id, if not given via qci */
129 static int ap_max_adapter_id = 63;
130 
131 static struct bus_type ap_bus_type;
132 
133 /* Adapter interrupt definitions */
134 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
135 
136 static bool ap_irq_flag;
137 
138 static struct airq_struct ap_airq = {
139 	.handler = ap_interrupt_handler,
140 	.isc = AP_ISC,
141 };
142 
143 /**
144  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
145  *
146  * Returns the address of the local-summary-indicator of the adapter
147  * interrupt handler for AP, or NULL if adapter interrupts are not
148  * available.
149  */
150 void *ap_airq_ptr(void)
151 {
152 	if (ap_irq_flag)
153 		return ap_airq.lsi_ptr;
154 	return NULL;
155 }
156 
157 /**
158  * ap_interrupts_available(): Test if AP interrupts are available.
159  *
160  * Returns 1 if AP interrupts are available.
161  */
162 static int ap_interrupts_available(void)
163 {
164 	return test_facility(65);
165 }
166 
167 /**
168  * ap_qci_available(): Test if AP configuration
169  * information can be queried via QCI subfunction.
170  *
171  * Returns 1 if subfunction PQAP(QCI) is available.
172  */
173 static int ap_qci_available(void)
174 {
175 	return test_facility(12);
176 }
177 
178 /**
179  * ap_apft_available(): Test if AP facilities test (APFT)
180  * facility is available.
181  *
182  * Returns 1 if APFT is available.
183  */
184 static int ap_apft_available(void)
185 {
186 	return test_facility(15);
187 }
188 
189 /*
190  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
191  *
192  * Returns 1 if the QACT subfunction is available.
193  */
194 static inline int ap_qact_available(void)
195 {
196 	if (ap_qci_info)
197 		return ap_qci_info->qact;
198 	return 0;
199 }
200 
201 /*
202  * ap_fetch_qci_info(): Fetch cryptographic config info
203  *
204  * Returns the ap configuration info fetched via PQAP(QCI).
205  * On success 0 is returned, on failure a negative errno
206  * is returned, e.g. if the PQAP(QCI) instruction is not
207  * available, the return value will be -EOPNOTSUPP.
208  */
209 static inline int ap_fetch_qci_info(struct ap_config_info *info)
210 {
211 	if (!ap_qci_available())
212 		return -EOPNOTSUPP;
213 	if (!info)
214 		return -EINVAL;
215 	return ap_qci(info);
216 }
217 
218 /**
219  * ap_init_qci_info(): Allocate and query qci config info.
220  * Does also update the static variables ap_max_domain_id
221  * and ap_max_adapter_id if this info is available.
222  */
223 static void __init ap_init_qci_info(void)
224 {
225 	if (!ap_qci_available()) {
226 		AP_DBF_INFO("%s QCI not supported\n", __func__);
227 		return;
228 	}
229 
230 	ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
231 	if (!ap_qci_info)
232 		return;
233 	ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
234 	if (!ap_qci_info_old)
235 		return;
236 	if (ap_fetch_qci_info(ap_qci_info) != 0) {
237 		kfree(ap_qci_info);
238 		kfree(ap_qci_info_old);
239 		ap_qci_info = NULL;
240 		ap_qci_info_old = NULL;
241 		return;
242 	}
243 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
244 
245 	if (ap_qci_info->apxa) {
246 		if (ap_qci_info->Na) {
247 			ap_max_adapter_id = ap_qci_info->Na;
248 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
249 				    __func__, ap_max_adapter_id);
250 		}
251 		if (ap_qci_info->Nd) {
252 			ap_max_domain_id = ap_qci_info->Nd;
253 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
254 				    __func__, ap_max_domain_id);
255 		}
256 	}
257 
258 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
259 }
260 
261 /*
262  * ap_test_config(): helper function to extract the nrth bit
263  *		     within the unsigned int array field.
264  */
265 static inline int ap_test_config(unsigned int *field, unsigned int nr)
266 {
267 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
268 }
269 
270 /*
271  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
272  *
273  * Returns 0 if the card is not configured
274  *	   1 if the card is configured or
275  *	     if the configuration information is not available
276  */
277 static inline int ap_test_config_card_id(unsigned int id)
278 {
279 	if (id > ap_max_adapter_id)
280 		return 0;
281 	if (ap_qci_info)
282 		return ap_test_config(ap_qci_info->apm, id);
283 	return 1;
284 }
285 
286 /*
287  * ap_test_config_usage_domain(): Test, whether an AP usage domain
288  * is configured.
289  *
290  * Returns 0 if the usage domain is not configured
291  *	   1 if the usage domain is configured or
292  *	     if the configuration information is not available
293  */
294 int ap_test_config_usage_domain(unsigned int domain)
295 {
296 	if (domain > ap_max_domain_id)
297 		return 0;
298 	if (ap_qci_info)
299 		return ap_test_config(ap_qci_info->aqm, domain);
300 	return 1;
301 }
302 EXPORT_SYMBOL(ap_test_config_usage_domain);
303 
304 /*
305  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
306  * is configured.
307  * @domain AP control domain ID
308  *
309  * Returns 1 if the control domain is configured
310  *	   0 in all other cases
311  */
312 int ap_test_config_ctrl_domain(unsigned int domain)
313 {
314 	if (!ap_qci_info || domain > ap_max_domain_id)
315 		return 0;
316 	return ap_test_config(ap_qci_info->adm, domain);
317 }
318 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
319 
320 /*
321  * ap_queue_info(): Check and get AP queue info.
322  * Returns true if TAPQ succeeded and the info is filled or
323  * false otherwise.
324  */
325 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
326 			  int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
327 {
328 	struct ap_queue_status status;
329 	union {
330 		unsigned long value;
331 		struct {
332 			unsigned int fac   : 32; /* facility bits */
333 			unsigned int at	   :  8; /* ap type */
334 			unsigned int _res1 :  8;
335 			unsigned int _res2 :  4;
336 			unsigned int ml	   :  4; /* apxl ml */
337 			unsigned int _res3 :  4;
338 			unsigned int qd	   :  4; /* queue depth */
339 		} tapq_gr2;
340 	} tapq_info;
341 
342 	tapq_info.value = 0;
343 
344 	/* make sure we don't run into a specifiation exception */
345 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
346 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
347 		return false;
348 
349 	/* call TAPQ on this APQN */
350 	status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
351 	switch (status.response_code) {
352 	case AP_RESPONSE_NORMAL:
353 	case AP_RESPONSE_RESET_IN_PROGRESS:
354 	case AP_RESPONSE_DECONFIGURED:
355 	case AP_RESPONSE_CHECKSTOPPED:
356 	case AP_RESPONSE_BUSY:
357 		/*
358 		 * According to the architecture in all these cases the
359 		 * info should be filled. All bits 0 is not possible as
360 		 * there is at least one of the mode bits set.
361 		 */
362 		if (WARN_ON_ONCE(!tapq_info.value))
363 			return false;
364 		*q_type = tapq_info.tapq_gr2.at;
365 		*q_fac = tapq_info.tapq_gr2.fac;
366 		*q_depth = tapq_info.tapq_gr2.qd;
367 		*q_ml = tapq_info.tapq_gr2.ml;
368 		*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
369 		*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
370 		switch (*q_type) {
371 			/* For CEX2 and CEX3 the available functions
372 			 * are not reflected by the facilities bits.
373 			 * Instead it is coded into the type. So here
374 			 * modify the function bits based on the type.
375 			 */
376 		case AP_DEVICE_TYPE_CEX2A:
377 		case AP_DEVICE_TYPE_CEX3A:
378 			*q_fac |= 0x08000000;
379 			break;
380 		case AP_DEVICE_TYPE_CEX2C:
381 		case AP_DEVICE_TYPE_CEX3C:
382 			*q_fac |= 0x10000000;
383 			break;
384 		default:
385 			break;
386 		}
387 		return true;
388 	default:
389 		/*
390 		 * A response code which indicates, there is no info available.
391 		 */
392 		return false;
393 	}
394 }
395 
396 void ap_wait(enum ap_sm_wait wait)
397 {
398 	ktime_t hr_time;
399 
400 	switch (wait) {
401 	case AP_SM_WAIT_AGAIN:
402 	case AP_SM_WAIT_INTERRUPT:
403 		if (ap_irq_flag)
404 			break;
405 		if (ap_poll_kthread) {
406 			wake_up(&ap_poll_wait);
407 			break;
408 		}
409 		fallthrough;
410 	case AP_SM_WAIT_TIMEOUT:
411 		spin_lock_bh(&ap_poll_timer_lock);
412 		if (!hrtimer_is_queued(&ap_poll_timer)) {
413 			hr_time = poll_timeout;
414 			hrtimer_forward_now(&ap_poll_timer, hr_time);
415 			hrtimer_restart(&ap_poll_timer);
416 		}
417 		spin_unlock_bh(&ap_poll_timer_lock);
418 		break;
419 	case AP_SM_WAIT_NONE:
420 	default:
421 		break;
422 	}
423 }
424 
425 /**
426  * ap_request_timeout(): Handling of request timeouts
427  * @t: timer making this callback
428  *
429  * Handles request timeouts.
430  */
431 void ap_request_timeout(struct timer_list *t)
432 {
433 	struct ap_queue *aq = from_timer(aq, t, timeout);
434 
435 	spin_lock_bh(&aq->lock);
436 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
437 	spin_unlock_bh(&aq->lock);
438 }
439 
440 /**
441  * ap_poll_timeout(): AP receive polling for finished AP requests.
442  * @unused: Unused pointer.
443  *
444  * Schedules the AP tasklet using a high resolution timer.
445  */
446 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
447 {
448 	tasklet_schedule(&ap_tasklet);
449 	return HRTIMER_NORESTART;
450 }
451 
452 /**
453  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
454  * @airq: pointer to adapter interrupt descriptor
455  * @floating: ignored
456  */
457 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
458 {
459 	inc_irq_stat(IRQIO_APB);
460 	tasklet_schedule(&ap_tasklet);
461 }
462 
463 /**
464  * ap_tasklet_fn(): Tasklet to poll all AP devices.
465  * @dummy: Unused variable
466  *
467  * Poll all AP devices on the bus.
468  */
469 static void ap_tasklet_fn(unsigned long dummy)
470 {
471 	int bkt;
472 	struct ap_queue *aq;
473 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
474 
475 	/* Reset the indicator if interrupts are used. Thus new interrupts can
476 	 * be received. Doing it in the beginning of the tasklet is therefor
477 	 * important that no requests on any AP get lost.
478 	 */
479 	if (ap_irq_flag)
480 		xchg(ap_airq.lsi_ptr, 0);
481 
482 	spin_lock_bh(&ap_queues_lock);
483 	hash_for_each(ap_queues, bkt, aq, hnode) {
484 		spin_lock_bh(&aq->lock);
485 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
486 		spin_unlock_bh(&aq->lock);
487 	}
488 	spin_unlock_bh(&ap_queues_lock);
489 
490 	ap_wait(wait);
491 }
492 
493 static int ap_pending_requests(void)
494 {
495 	int bkt;
496 	struct ap_queue *aq;
497 
498 	spin_lock_bh(&ap_queues_lock);
499 	hash_for_each(ap_queues, bkt, aq, hnode) {
500 		if (aq->queue_count == 0)
501 			continue;
502 		spin_unlock_bh(&ap_queues_lock);
503 		return 1;
504 	}
505 	spin_unlock_bh(&ap_queues_lock);
506 	return 0;
507 }
508 
509 /**
510  * ap_poll_thread(): Thread that polls for finished requests.
511  * @data: Unused pointer
512  *
513  * AP bus poll thread. The purpose of this thread is to poll for
514  * finished requests in a loop if there is a "free" cpu - that is
515  * a cpu that doesn't have anything better to do. The polling stops
516  * as soon as there is another task or if all messages have been
517  * delivered.
518  */
519 static int ap_poll_thread(void *data)
520 {
521 	DECLARE_WAITQUEUE(wait, current);
522 
523 	set_user_nice(current, MAX_NICE);
524 	set_freezable();
525 	while (!kthread_should_stop()) {
526 		add_wait_queue(&ap_poll_wait, &wait);
527 		set_current_state(TASK_INTERRUPTIBLE);
528 		if (!ap_pending_requests()) {
529 			schedule();
530 			try_to_freeze();
531 		}
532 		set_current_state(TASK_RUNNING);
533 		remove_wait_queue(&ap_poll_wait, &wait);
534 		if (need_resched()) {
535 			schedule();
536 			try_to_freeze();
537 			continue;
538 		}
539 		ap_tasklet_fn(0);
540 	}
541 
542 	return 0;
543 }
544 
545 static int ap_poll_thread_start(void)
546 {
547 	int rc;
548 
549 	if (ap_irq_flag || ap_poll_kthread)
550 		return 0;
551 	mutex_lock(&ap_poll_thread_mutex);
552 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
553 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
554 	if (rc)
555 		ap_poll_kthread = NULL;
556 	mutex_unlock(&ap_poll_thread_mutex);
557 	return rc;
558 }
559 
560 static void ap_poll_thread_stop(void)
561 {
562 	if (!ap_poll_kthread)
563 		return;
564 	mutex_lock(&ap_poll_thread_mutex);
565 	kthread_stop(ap_poll_kthread);
566 	ap_poll_kthread = NULL;
567 	mutex_unlock(&ap_poll_thread_mutex);
568 }
569 
570 #define is_card_dev(x) ((x)->parent == ap_root_device)
571 #define is_queue_dev(x) ((x)->parent != ap_root_device)
572 
573 /**
574  * ap_bus_match()
575  * @dev: Pointer to device
576  * @drv: Pointer to device_driver
577  *
578  * AP bus driver registration/unregistration.
579  */
580 static int ap_bus_match(struct device *dev, struct device_driver *drv)
581 {
582 	struct ap_driver *ap_drv = to_ap_drv(drv);
583 	struct ap_device_id *id;
584 
585 	/*
586 	 * Compare device type of the device with the list of
587 	 * supported types of the device_driver.
588 	 */
589 	for (id = ap_drv->ids; id->match_flags; id++) {
590 		if (is_card_dev(dev) &&
591 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
592 		    id->dev_type == to_ap_dev(dev)->device_type)
593 			return 1;
594 		if (is_queue_dev(dev) &&
595 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
596 		    id->dev_type == to_ap_dev(dev)->device_type)
597 			return 1;
598 	}
599 	return 0;
600 }
601 
602 /**
603  * ap_uevent(): Uevent function for AP devices.
604  * @dev: Pointer to device
605  * @env: Pointer to kobj_uevent_env
606  *
607  * It sets up a single environment variable DEV_TYPE which contains the
608  * hardware device type.
609  */
610 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
611 {
612 	int rc = 0;
613 	struct ap_device *ap_dev = to_ap_dev(dev);
614 
615 	/* Uevents from ap bus core don't need extensions to the env */
616 	if (dev == ap_root_device)
617 		return 0;
618 
619 	if (is_card_dev(dev)) {
620 		struct ap_card *ac = to_ap_card(&ap_dev->device);
621 
622 		/* Set up DEV_TYPE environment variable. */
623 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
624 		if (rc)
625 			return rc;
626 		/* Add MODALIAS= */
627 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
628 		if (rc)
629 			return rc;
630 
631 		/* Add MODE=<accel|cca|ep11> */
632 		if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
633 			rc = add_uevent_var(env, "MODE=accel");
634 		else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
635 			rc = add_uevent_var(env, "MODE=cca");
636 		else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
637 			rc = add_uevent_var(env, "MODE=ep11");
638 		if (rc)
639 			return rc;
640 	} else {
641 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
642 
643 		/* Add MODE=<accel|cca|ep11> */
644 		if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
645 			rc = add_uevent_var(env, "MODE=accel");
646 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
647 			rc = add_uevent_var(env, "MODE=cca");
648 		else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
649 			rc = add_uevent_var(env, "MODE=ep11");
650 		if (rc)
651 			return rc;
652 	}
653 
654 	return 0;
655 }
656 
657 static void ap_send_init_scan_done_uevent(void)
658 {
659 	char *envp[] = { "INITSCAN=done", NULL };
660 
661 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
662 }
663 
664 static void ap_send_bindings_complete_uevent(void)
665 {
666 	char buf[32];
667 	char *envp[] = { "BINDINGS=complete", buf, NULL };
668 
669 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
670 		 atomic64_inc_return(&ap_bindings_complete_count));
671 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
672 }
673 
674 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
675 {
676 	char buf[16];
677 	char *envp[] = { buf, NULL };
678 
679 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
680 
681 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
682 }
683 EXPORT_SYMBOL(ap_send_config_uevent);
684 
685 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
686 {
687 	char buf[16];
688 	char *envp[] = { buf, NULL };
689 
690 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
691 
692 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
693 }
694 EXPORT_SYMBOL(ap_send_online_uevent);
695 
696 static void ap_send_mask_changed_uevent(unsigned long *newapm,
697 					unsigned long *newaqm)
698 {
699 	char buf[100];
700 	char *envp[] = { buf, NULL };
701 
702 	if (newapm)
703 		snprintf(buf, sizeof(buf),
704 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
705 			 newapm[0], newapm[1], newapm[2], newapm[3]);
706 	else
707 		snprintf(buf, sizeof(buf),
708 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
709 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
710 
711 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
712 }
713 
714 /*
715  * calc # of bound APQNs
716  */
717 
718 struct __ap_calc_ctrs {
719 	unsigned int apqns;
720 	unsigned int bound;
721 };
722 
723 static int __ap_calc_helper(struct device *dev, void *arg)
724 {
725 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
726 
727 	if (is_queue_dev(dev)) {
728 		pctrs->apqns++;
729 		if (dev->driver)
730 			pctrs->bound++;
731 	}
732 
733 	return 0;
734 }
735 
736 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
737 {
738 	struct __ap_calc_ctrs ctrs;
739 
740 	memset(&ctrs, 0, sizeof(ctrs));
741 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
742 
743 	*apqns = ctrs.apqns;
744 	*bound = ctrs.bound;
745 }
746 
747 /*
748  * After initial ap bus scan do check if all existing APQNs are
749  * bound to device drivers.
750  */
751 static void ap_check_bindings_complete(void)
752 {
753 	unsigned int apqns, bound;
754 
755 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
756 		ap_calc_bound_apqns(&apqns, &bound);
757 		if (bound == apqns) {
758 			if (!completion_done(&ap_init_apqn_bindings_complete)) {
759 				complete_all(&ap_init_apqn_bindings_complete);
760 				AP_DBF_INFO("%s complete\n", __func__);
761 			}
762 			ap_send_bindings_complete_uevent();
763 		}
764 	}
765 }
766 
767 /*
768  * Interface to wait for the AP bus to have done one initial ap bus
769  * scan and all detected APQNs have been bound to device drivers.
770  * If these both conditions are not fulfilled, this function blocks
771  * on a condition with wait_for_completion_interruptible_timeout().
772  * If these both conditions are fulfilled (before the timeout hits)
773  * the return value is 0. If the timeout (in jiffies) hits instead
774  * -ETIME is returned. On failures negative return values are
775  * returned to the caller.
776  */
777 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
778 {
779 	long l;
780 
781 	if (completion_done(&ap_init_apqn_bindings_complete))
782 		return 0;
783 
784 	if (timeout)
785 		l = wait_for_completion_interruptible_timeout(
786 			&ap_init_apqn_bindings_complete, timeout);
787 	else
788 		l = wait_for_completion_interruptible(
789 			&ap_init_apqn_bindings_complete);
790 	if (l < 0)
791 		return l == -ERESTARTSYS ? -EINTR : l;
792 	else if (l == 0 && timeout)
793 		return -ETIME;
794 
795 	return 0;
796 }
797 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
798 
799 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
800 {
801 	if (is_queue_dev(dev) &&
802 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
803 		device_unregister(dev);
804 	return 0;
805 }
806 
807 static int __ap_revise_reserved(struct device *dev, void *dummy)
808 {
809 	int rc, card, queue, devres, drvres;
810 
811 	if (is_queue_dev(dev)) {
812 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
813 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
814 		mutex_lock(&ap_perms_mutex);
815 		devres = test_bit_inv(card, ap_perms.apm) &&
816 			test_bit_inv(queue, ap_perms.aqm);
817 		mutex_unlock(&ap_perms_mutex);
818 		drvres = to_ap_drv(dev->driver)->flags
819 			& AP_DRIVER_FLAG_DEFAULT;
820 		if (!!devres != !!drvres) {
821 			AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
822 				   __func__, card, queue);
823 			rc = device_reprobe(dev);
824 			if (rc)
825 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
826 					    __func__, card, queue);
827 		}
828 	}
829 
830 	return 0;
831 }
832 
833 static void ap_bus_revise_bindings(void)
834 {
835 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
836 }
837 
838 /**
839  * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
840  *			default host driver or not.
841  * @card: the APID of the adapter card to check
842  * @queue: the APQI of the queue to check
843  *
844  * Note: the ap_perms_mutex must be locked by the caller of this function.
845  *
846  * Return: an int specifying whether the AP adapter is reserved for the host (1)
847  *	   or not (0).
848  */
849 int ap_owned_by_def_drv(int card, int queue)
850 {
851 	int rc = 0;
852 
853 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
854 		return -EINVAL;
855 
856 	if (test_bit_inv(card, ap_perms.apm) &&
857 	    test_bit_inv(queue, ap_perms.aqm))
858 		rc = 1;
859 
860 	return rc;
861 }
862 EXPORT_SYMBOL(ap_owned_by_def_drv);
863 
864 /**
865  * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
866  *				       a set is reserved for the host drivers
867  *				       or not.
868  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
869  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
870  *
871  * Note: the ap_perms_mutex must be locked by the caller of this function.
872  *
873  * Return: an int specifying whether each APQN is reserved for the host (1) or
874  *	   not (0)
875  */
876 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
877 				       unsigned long *aqm)
878 {
879 	int card, queue, rc = 0;
880 
881 	for (card = 0; !rc && card < AP_DEVICES; card++)
882 		if (test_bit_inv(card, apm) &&
883 		    test_bit_inv(card, ap_perms.apm))
884 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
885 				if (test_bit_inv(queue, aqm) &&
886 				    test_bit_inv(queue, ap_perms.aqm))
887 					rc = 1;
888 
889 	return rc;
890 }
891 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
892 
893 static int ap_device_probe(struct device *dev)
894 {
895 	struct ap_device *ap_dev = to_ap_dev(dev);
896 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
897 	int card, queue, devres, drvres, rc = -ENODEV;
898 
899 	if (!get_device(dev))
900 		return rc;
901 
902 	if (is_queue_dev(dev)) {
903 		/*
904 		 * If the apqn is marked as reserved/used by ap bus and
905 		 * default drivers, only probe with drivers with the default
906 		 * flag set. If it is not marked, only probe with drivers
907 		 * with the default flag not set.
908 		 */
909 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
910 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
911 		mutex_lock(&ap_perms_mutex);
912 		devres = test_bit_inv(card, ap_perms.apm) &&
913 			test_bit_inv(queue, ap_perms.aqm);
914 		mutex_unlock(&ap_perms_mutex);
915 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
916 		if (!!devres != !!drvres)
917 			goto out;
918 	}
919 
920 	/* Add queue/card to list of active queues/cards */
921 	spin_lock_bh(&ap_queues_lock);
922 	if (is_queue_dev(dev))
923 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
924 			 to_ap_queue(dev)->qid);
925 	spin_unlock_bh(&ap_queues_lock);
926 
927 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
928 
929 	if (rc) {
930 		spin_lock_bh(&ap_queues_lock);
931 		if (is_queue_dev(dev))
932 			hash_del(&to_ap_queue(dev)->hnode);
933 		spin_unlock_bh(&ap_queues_lock);
934 	} else {
935 		ap_check_bindings_complete();
936 	}
937 
938 out:
939 	if (rc)
940 		put_device(dev);
941 	return rc;
942 }
943 
944 static void ap_device_remove(struct device *dev)
945 {
946 	struct ap_device *ap_dev = to_ap_dev(dev);
947 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
948 
949 	/* prepare ap queue device removal */
950 	if (is_queue_dev(dev))
951 		ap_queue_prepare_remove(to_ap_queue(dev));
952 
953 	/* driver's chance to clean up gracefully */
954 	if (ap_drv->remove)
955 		ap_drv->remove(ap_dev);
956 
957 	/* now do the ap queue device remove */
958 	if (is_queue_dev(dev))
959 		ap_queue_remove(to_ap_queue(dev));
960 
961 	/* Remove queue/card from list of active queues/cards */
962 	spin_lock_bh(&ap_queues_lock);
963 	if (is_queue_dev(dev))
964 		hash_del(&to_ap_queue(dev)->hnode);
965 	spin_unlock_bh(&ap_queues_lock);
966 
967 	put_device(dev);
968 }
969 
970 struct ap_queue *ap_get_qdev(ap_qid_t qid)
971 {
972 	int bkt;
973 	struct ap_queue *aq;
974 
975 	spin_lock_bh(&ap_queues_lock);
976 	hash_for_each(ap_queues, bkt, aq, hnode) {
977 		if (aq->qid == qid) {
978 			get_device(&aq->ap_dev.device);
979 			spin_unlock_bh(&ap_queues_lock);
980 			return aq;
981 		}
982 	}
983 	spin_unlock_bh(&ap_queues_lock);
984 
985 	return NULL;
986 }
987 EXPORT_SYMBOL(ap_get_qdev);
988 
989 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
990 		       char *name)
991 {
992 	struct device_driver *drv = &ap_drv->driver;
993 
994 	drv->bus = &ap_bus_type;
995 	drv->owner = owner;
996 	drv->name = name;
997 	return driver_register(drv);
998 }
999 EXPORT_SYMBOL(ap_driver_register);
1000 
1001 void ap_driver_unregister(struct ap_driver *ap_drv)
1002 {
1003 	driver_unregister(&ap_drv->driver);
1004 }
1005 EXPORT_SYMBOL(ap_driver_unregister);
1006 
1007 void ap_bus_force_rescan(void)
1008 {
1009 	/* processing a asynchronous bus rescan */
1010 	del_timer(&ap_config_timer);
1011 	queue_work(system_long_wq, &ap_scan_work);
1012 	flush_work(&ap_scan_work);
1013 }
1014 EXPORT_SYMBOL(ap_bus_force_rescan);
1015 
1016 /*
1017  * A config change has happened, force an ap bus rescan.
1018  */
1019 void ap_bus_cfg_chg(void)
1020 {
1021 	AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1022 
1023 	ap_bus_force_rescan();
1024 }
1025 
1026 /*
1027  * hex2bitmap() - parse hex mask string and set bitmap.
1028  * Valid strings are "0x012345678" with at least one valid hex number.
1029  * Rest of the bitmap to the right is padded with 0. No spaces allowed
1030  * within the string, the leading 0x may be omitted.
1031  * Returns the bitmask with exactly the bits set as given by the hex
1032  * string (both in big endian order).
1033  */
1034 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1035 {
1036 	int i, n, b;
1037 
1038 	/* bits needs to be a multiple of 8 */
1039 	if (bits & 0x07)
1040 		return -EINVAL;
1041 
1042 	if (str[0] == '0' && str[1] == 'x')
1043 		str++;
1044 	if (*str == 'x')
1045 		str++;
1046 
1047 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1048 		b = hex_to_bin(*str);
1049 		for (n = 0; n < 4; n++)
1050 			if (b & (0x08 >> n))
1051 				set_bit_inv(i + n, bitmap);
1052 		i += 4;
1053 	}
1054 
1055 	if (*str == '\n')
1056 		str++;
1057 	if (*str)
1058 		return -EINVAL;
1059 	return 0;
1060 }
1061 
1062 /*
1063  * modify_bitmap() - parse bitmask argument and modify an existing
1064  * bit mask accordingly. A concatenation (done with ',') of these
1065  * terms is recognized:
1066  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1067  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1068  * 0...bits-1; the leading + or - is required. Here are some examples:
1069  *   +0-15,+32,-128,-0xFF
1070  *   -0-255,+1-16,+0x128
1071  *   +1,+2,+3,+4,-5,-7-10
1072  * Returns the new bitmap after all changes have been applied. Every
1073  * positive value in the string will set a bit and every negative value
1074  * in the string will clear a bit. As a bit may be touched more than once,
1075  * the last 'operation' wins:
1076  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1077  * cleared again. All other bits are unmodified.
1078  */
1079 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1080 {
1081 	int a, i, z;
1082 	char *np, sign;
1083 
1084 	/* bits needs to be a multiple of 8 */
1085 	if (bits & 0x07)
1086 		return -EINVAL;
1087 
1088 	while (*str) {
1089 		sign = *str++;
1090 		if (sign != '+' && sign != '-')
1091 			return -EINVAL;
1092 		a = z = simple_strtoul(str, &np, 0);
1093 		if (str == np || a >= bits)
1094 			return -EINVAL;
1095 		str = np;
1096 		if (*str == '-') {
1097 			z = simple_strtoul(++str, &np, 0);
1098 			if (str == np || a > z || z >= bits)
1099 				return -EINVAL;
1100 			str = np;
1101 		}
1102 		for (i = a; i <= z; i++)
1103 			if (sign == '+')
1104 				set_bit_inv(i, bitmap);
1105 			else
1106 				clear_bit_inv(i, bitmap);
1107 		while (*str == ',' || *str == '\n')
1108 			str++;
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1115 			       unsigned long *newmap)
1116 {
1117 	unsigned long size;
1118 	int rc;
1119 
1120 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1121 	if (*str == '+' || *str == '-') {
1122 		memcpy(newmap, bitmap, size);
1123 		rc = modify_bitmap(str, newmap, bits);
1124 	} else {
1125 		memset(newmap, 0, size);
1126 		rc = hex2bitmap(str, newmap, bits);
1127 	}
1128 	return rc;
1129 }
1130 
1131 int ap_parse_mask_str(const char *str,
1132 		      unsigned long *bitmap, int bits,
1133 		      struct mutex *lock)
1134 {
1135 	unsigned long *newmap, size;
1136 	int rc;
1137 
1138 	/* bits needs to be a multiple of 8 */
1139 	if (bits & 0x07)
1140 		return -EINVAL;
1141 
1142 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1143 	newmap = kmalloc(size, GFP_KERNEL);
1144 	if (!newmap)
1145 		return -ENOMEM;
1146 	if (mutex_lock_interruptible(lock)) {
1147 		kfree(newmap);
1148 		return -ERESTARTSYS;
1149 	}
1150 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1151 	if (rc == 0)
1152 		memcpy(bitmap, newmap, size);
1153 	mutex_unlock(lock);
1154 	kfree(newmap);
1155 	return rc;
1156 }
1157 EXPORT_SYMBOL(ap_parse_mask_str);
1158 
1159 /*
1160  * AP bus attributes.
1161  */
1162 
1163 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1164 {
1165 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1166 }
1167 
1168 static ssize_t ap_domain_store(struct bus_type *bus,
1169 			       const char *buf, size_t count)
1170 {
1171 	int domain;
1172 
1173 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1174 	    domain < 0 || domain > ap_max_domain_id ||
1175 	    !test_bit_inv(domain, ap_perms.aqm))
1176 		return -EINVAL;
1177 
1178 	spin_lock_bh(&ap_domain_lock);
1179 	ap_domain_index = domain;
1180 	spin_unlock_bh(&ap_domain_lock);
1181 
1182 	AP_DBF_INFO("%s stored new default domain=%d\n",
1183 		    __func__, domain);
1184 
1185 	return count;
1186 }
1187 
1188 static BUS_ATTR_RW(ap_domain);
1189 
1190 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1191 {
1192 	if (!ap_qci_info)	/* QCI not supported */
1193 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1194 
1195 	return scnprintf(buf, PAGE_SIZE,
1196 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1197 			 ap_qci_info->adm[0], ap_qci_info->adm[1],
1198 			 ap_qci_info->adm[2], ap_qci_info->adm[3],
1199 			 ap_qci_info->adm[4], ap_qci_info->adm[5],
1200 			 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1201 }
1202 
1203 static BUS_ATTR_RO(ap_control_domain_mask);
1204 
1205 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1206 {
1207 	if (!ap_qci_info)	/* QCI not supported */
1208 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1209 
1210 	return scnprintf(buf, PAGE_SIZE,
1211 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1212 			 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1213 			 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1214 			 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1215 			 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1216 }
1217 
1218 static BUS_ATTR_RO(ap_usage_domain_mask);
1219 
1220 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1221 {
1222 	if (!ap_qci_info)	/* QCI not supported */
1223 		return scnprintf(buf, PAGE_SIZE, "not supported\n");
1224 
1225 	return scnprintf(buf, PAGE_SIZE,
1226 			 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1227 			 ap_qci_info->apm[0], ap_qci_info->apm[1],
1228 			 ap_qci_info->apm[2], ap_qci_info->apm[3],
1229 			 ap_qci_info->apm[4], ap_qci_info->apm[5],
1230 			 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1231 }
1232 
1233 static BUS_ATTR_RO(ap_adapter_mask);
1234 
1235 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1236 {
1237 	return scnprintf(buf, PAGE_SIZE, "%d\n",
1238 			 ap_irq_flag ? 1 : 0);
1239 }
1240 
1241 static BUS_ATTR_RO(ap_interrupts);
1242 
1243 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1244 {
1245 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1246 }
1247 
1248 static ssize_t config_time_store(struct bus_type *bus,
1249 				 const char *buf, size_t count)
1250 {
1251 	int time;
1252 
1253 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1254 		return -EINVAL;
1255 	ap_config_time = time;
1256 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1257 	return count;
1258 }
1259 
1260 static BUS_ATTR_RW(config_time);
1261 
1262 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1263 {
1264 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1265 }
1266 
1267 static ssize_t poll_thread_store(struct bus_type *bus,
1268 				 const char *buf, size_t count)
1269 {
1270 	int flag, rc;
1271 
1272 	if (sscanf(buf, "%d\n", &flag) != 1)
1273 		return -EINVAL;
1274 	if (flag) {
1275 		rc = ap_poll_thread_start();
1276 		if (rc)
1277 			count = rc;
1278 	} else {
1279 		ap_poll_thread_stop();
1280 	}
1281 	return count;
1282 }
1283 
1284 static BUS_ATTR_RW(poll_thread);
1285 
1286 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1287 {
1288 	return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1289 }
1290 
1291 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1292 				  size_t count)
1293 {
1294 	unsigned long long time;
1295 	ktime_t hr_time;
1296 
1297 	/* 120 seconds = maximum poll interval */
1298 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1299 	    time > 120000000000ULL)
1300 		return -EINVAL;
1301 	poll_timeout = time;
1302 	hr_time = poll_timeout;
1303 
1304 	spin_lock_bh(&ap_poll_timer_lock);
1305 	hrtimer_cancel(&ap_poll_timer);
1306 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1307 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1308 	spin_unlock_bh(&ap_poll_timer_lock);
1309 
1310 	return count;
1311 }
1312 
1313 static BUS_ATTR_RW(poll_timeout);
1314 
1315 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1316 {
1317 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1318 }
1319 
1320 static BUS_ATTR_RO(ap_max_domain_id);
1321 
1322 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1323 {
1324 	return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1325 }
1326 
1327 static BUS_ATTR_RO(ap_max_adapter_id);
1328 
1329 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1330 {
1331 	int rc;
1332 
1333 	if (mutex_lock_interruptible(&ap_perms_mutex))
1334 		return -ERESTARTSYS;
1335 	rc = scnprintf(buf, PAGE_SIZE,
1336 		       "0x%016lx%016lx%016lx%016lx\n",
1337 		       ap_perms.apm[0], ap_perms.apm[1],
1338 		       ap_perms.apm[2], ap_perms.apm[3]);
1339 	mutex_unlock(&ap_perms_mutex);
1340 
1341 	return rc;
1342 }
1343 
1344 static int __verify_card_reservations(struct device_driver *drv, void *data)
1345 {
1346 	int rc = 0;
1347 	struct ap_driver *ap_drv = to_ap_drv(drv);
1348 	unsigned long *newapm = (unsigned long *)data;
1349 
1350 	/*
1351 	 * increase the driver's module refcounter to be sure it is not
1352 	 * going away when we invoke the callback function.
1353 	 */
1354 	if (!try_module_get(drv->owner))
1355 		return 0;
1356 
1357 	if (ap_drv->in_use) {
1358 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1359 		if (rc)
1360 			rc = -EBUSY;
1361 	}
1362 
1363 	/* release the driver's module */
1364 	module_put(drv->owner);
1365 
1366 	return rc;
1367 }
1368 
1369 static int apmask_commit(unsigned long *newapm)
1370 {
1371 	int rc;
1372 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1373 
1374 	/*
1375 	 * Check if any bits in the apmask have been set which will
1376 	 * result in queues being removed from non-default drivers
1377 	 */
1378 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1379 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1380 				      __verify_card_reservations);
1381 		if (rc)
1382 			return rc;
1383 	}
1384 
1385 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1386 
1387 	return 0;
1388 }
1389 
1390 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1391 			    size_t count)
1392 {
1393 	int rc, changes = 0;
1394 	DECLARE_BITMAP(newapm, AP_DEVICES);
1395 
1396 	if (mutex_lock_interruptible(&ap_perms_mutex))
1397 		return -ERESTARTSYS;
1398 
1399 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1400 	if (rc)
1401 		goto done;
1402 
1403 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1404 	if (changes)
1405 		rc = apmask_commit(newapm);
1406 
1407 done:
1408 	mutex_unlock(&ap_perms_mutex);
1409 	if (rc)
1410 		return rc;
1411 
1412 	if (changes) {
1413 		ap_bus_revise_bindings();
1414 		ap_send_mask_changed_uevent(newapm, NULL);
1415 	}
1416 
1417 	return count;
1418 }
1419 
1420 static BUS_ATTR_RW(apmask);
1421 
1422 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1423 {
1424 	int rc;
1425 
1426 	if (mutex_lock_interruptible(&ap_perms_mutex))
1427 		return -ERESTARTSYS;
1428 	rc = scnprintf(buf, PAGE_SIZE,
1429 		       "0x%016lx%016lx%016lx%016lx\n",
1430 		       ap_perms.aqm[0], ap_perms.aqm[1],
1431 		       ap_perms.aqm[2], ap_perms.aqm[3]);
1432 	mutex_unlock(&ap_perms_mutex);
1433 
1434 	return rc;
1435 }
1436 
1437 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1438 {
1439 	int rc = 0;
1440 	struct ap_driver *ap_drv = to_ap_drv(drv);
1441 	unsigned long *newaqm = (unsigned long *)data;
1442 
1443 	/*
1444 	 * increase the driver's module refcounter to be sure it is not
1445 	 * going away when we invoke the callback function.
1446 	 */
1447 	if (!try_module_get(drv->owner))
1448 		return 0;
1449 
1450 	if (ap_drv->in_use) {
1451 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1452 		if (rc)
1453 			return -EBUSY;
1454 	}
1455 
1456 	/* release the driver's module */
1457 	module_put(drv->owner);
1458 
1459 	return rc;
1460 }
1461 
1462 static int aqmask_commit(unsigned long *newaqm)
1463 {
1464 	int rc;
1465 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1466 
1467 	/*
1468 	 * Check if any bits in the aqmask have been set which will
1469 	 * result in queues being removed from non-default drivers
1470 	 */
1471 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1472 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1473 				      __verify_queue_reservations);
1474 		if (rc)
1475 			return rc;
1476 	}
1477 
1478 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1479 
1480 	return 0;
1481 }
1482 
1483 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1484 			    size_t count)
1485 {
1486 	int rc, changes = 0;
1487 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1488 
1489 	if (mutex_lock_interruptible(&ap_perms_mutex))
1490 		return -ERESTARTSYS;
1491 
1492 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1493 	if (rc)
1494 		goto done;
1495 
1496 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1497 	if (changes)
1498 		rc = aqmask_commit(newaqm);
1499 
1500 done:
1501 	mutex_unlock(&ap_perms_mutex);
1502 	if (rc)
1503 		return rc;
1504 
1505 	if (changes) {
1506 		ap_bus_revise_bindings();
1507 		ap_send_mask_changed_uevent(NULL, newaqm);
1508 	}
1509 
1510 	return count;
1511 }
1512 
1513 static BUS_ATTR_RW(aqmask);
1514 
1515 static ssize_t scans_show(struct bus_type *bus, char *buf)
1516 {
1517 	return scnprintf(buf, PAGE_SIZE, "%llu\n",
1518 			 atomic64_read(&ap_scan_bus_count));
1519 }
1520 
1521 static ssize_t scans_store(struct bus_type *bus, const char *buf,
1522 			   size_t count)
1523 {
1524 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1525 
1526 	ap_bus_force_rescan();
1527 
1528 	return count;
1529 }
1530 
1531 static BUS_ATTR_RW(scans);
1532 
1533 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1534 {
1535 	int rc;
1536 	unsigned int apqns, n;
1537 
1538 	ap_calc_bound_apqns(&apqns, &n);
1539 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1540 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1541 	else
1542 		rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1543 
1544 	return rc;
1545 }
1546 
1547 static BUS_ATTR_RO(bindings);
1548 
1549 static struct attribute *ap_bus_attrs[] = {
1550 	&bus_attr_ap_domain.attr,
1551 	&bus_attr_ap_control_domain_mask.attr,
1552 	&bus_attr_ap_usage_domain_mask.attr,
1553 	&bus_attr_ap_adapter_mask.attr,
1554 	&bus_attr_config_time.attr,
1555 	&bus_attr_poll_thread.attr,
1556 	&bus_attr_ap_interrupts.attr,
1557 	&bus_attr_poll_timeout.attr,
1558 	&bus_attr_ap_max_domain_id.attr,
1559 	&bus_attr_ap_max_adapter_id.attr,
1560 	&bus_attr_apmask.attr,
1561 	&bus_attr_aqmask.attr,
1562 	&bus_attr_scans.attr,
1563 	&bus_attr_bindings.attr,
1564 	NULL,
1565 };
1566 ATTRIBUTE_GROUPS(ap_bus);
1567 
1568 static struct bus_type ap_bus_type = {
1569 	.name = "ap",
1570 	.bus_groups = ap_bus_groups,
1571 	.match = &ap_bus_match,
1572 	.uevent = &ap_uevent,
1573 	.probe = ap_device_probe,
1574 	.remove = ap_device_remove,
1575 };
1576 
1577 /**
1578  * ap_select_domain(): Select an AP domain if possible and we haven't
1579  * already done so before.
1580  */
1581 static void ap_select_domain(void)
1582 {
1583 	struct ap_queue_status status;
1584 	int card, dom;
1585 
1586 	/*
1587 	 * Choose the default domain. Either the one specified with
1588 	 * the "domain=" parameter or the first domain with at least
1589 	 * one valid APQN.
1590 	 */
1591 	spin_lock_bh(&ap_domain_lock);
1592 	if (ap_domain_index >= 0) {
1593 		/* Domain has already been selected. */
1594 		goto out;
1595 	}
1596 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1597 		if (!ap_test_config_usage_domain(dom) ||
1598 		    !test_bit_inv(dom, ap_perms.aqm))
1599 			continue;
1600 		for (card = 0; card <= ap_max_adapter_id; card++) {
1601 			if (!ap_test_config_card_id(card) ||
1602 			    !test_bit_inv(card, ap_perms.apm))
1603 				continue;
1604 			status = ap_test_queue(AP_MKQID(card, dom),
1605 					       ap_apft_available(),
1606 					       NULL);
1607 			if (status.response_code == AP_RESPONSE_NORMAL)
1608 				break;
1609 		}
1610 		if (card <= ap_max_adapter_id)
1611 			break;
1612 	}
1613 	if (dom <= ap_max_domain_id) {
1614 		ap_domain_index = dom;
1615 		AP_DBF_INFO("%s new default domain is %d\n",
1616 			    __func__, ap_domain_index);
1617 	}
1618 out:
1619 	spin_unlock_bh(&ap_domain_lock);
1620 }
1621 
1622 /*
1623  * This function checks the type and returns either 0 for not
1624  * supported or the highest compatible type value (which may
1625  * include the input type value).
1626  */
1627 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1628 {
1629 	int comp_type = 0;
1630 
1631 	/* < CEX2A is not supported */
1632 	if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1633 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1634 			    __func__, AP_QID_CARD(qid),
1635 			    AP_QID_QUEUE(qid), rawtype);
1636 		return 0;
1637 	}
1638 	/* up to CEX8 known and fully supported */
1639 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1640 		return rawtype;
1641 	/*
1642 	 * unknown new type > CEX8, check for compatibility
1643 	 * to the highest known and supported type which is
1644 	 * currently CEX8 with the help of the QACT function.
1645 	 */
1646 	if (ap_qact_available()) {
1647 		struct ap_queue_status status;
1648 		union ap_qact_ap_info apinfo = {0};
1649 
1650 		apinfo.mode = (func >> 26) & 0x07;
1651 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1652 		status = ap_qact(qid, 0, &apinfo);
1653 		if (status.response_code == AP_RESPONSE_NORMAL &&
1654 		    apinfo.cat >= AP_DEVICE_TYPE_CEX2A &&
1655 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1656 			comp_type = apinfo.cat;
1657 	}
1658 	if (!comp_type)
1659 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1660 			    __func__, AP_QID_CARD(qid),
1661 			    AP_QID_QUEUE(qid), rawtype);
1662 	else if (comp_type != rawtype)
1663 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1664 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1665 			    rawtype, comp_type);
1666 	return comp_type;
1667 }
1668 
1669 /*
1670  * Helper function to be used with bus_find_dev
1671  * matches for the card device with the given id
1672  */
1673 static int __match_card_device_with_id(struct device *dev, const void *data)
1674 {
1675 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1676 }
1677 
1678 /*
1679  * Helper function to be used with bus_find_dev
1680  * matches for the queue device with a given qid
1681  */
1682 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1683 {
1684 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1685 }
1686 
1687 /*
1688  * Helper function to be used with bus_find_dev
1689  * matches any queue device with given queue id
1690  */
1691 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1692 {
1693 	return is_queue_dev(dev) &&
1694 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1695 }
1696 
1697 /* Helper function for notify_config_changed */
1698 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1699 {
1700 	struct ap_driver *ap_drv = to_ap_drv(drv);
1701 
1702 	if (try_module_get(drv->owner)) {
1703 		if (ap_drv->on_config_changed)
1704 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1705 		module_put(drv->owner);
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 /* Notify all drivers about an qci config change */
1712 static inline void notify_config_changed(void)
1713 {
1714 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1715 			 __drv_notify_config_changed);
1716 }
1717 
1718 /* Helper function for notify_scan_complete */
1719 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1720 {
1721 	struct ap_driver *ap_drv = to_ap_drv(drv);
1722 
1723 	if (try_module_get(drv->owner)) {
1724 		if (ap_drv->on_scan_complete)
1725 			ap_drv->on_scan_complete(ap_qci_info,
1726 						 ap_qci_info_old);
1727 		module_put(drv->owner);
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 /* Notify all drivers about bus scan complete */
1734 static inline void notify_scan_complete(void)
1735 {
1736 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1737 			 __drv_notify_scan_complete);
1738 }
1739 
1740 /*
1741  * Helper function for ap_scan_bus().
1742  * Remove card device and associated queue devices.
1743  */
1744 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1745 {
1746 	bus_for_each_dev(&ap_bus_type, NULL,
1747 			 (void *)(long)ac->id,
1748 			 __ap_queue_devices_with_id_unregister);
1749 	device_unregister(&ac->ap_dev.device);
1750 }
1751 
1752 /*
1753  * Helper function for ap_scan_bus().
1754  * Does the scan bus job for all the domains within
1755  * a valid adapter given by an ap_card ptr.
1756  */
1757 static inline void ap_scan_domains(struct ap_card *ac)
1758 {
1759 	bool decfg, chkstop;
1760 	ap_qid_t qid;
1761 	unsigned int func;
1762 	struct device *dev;
1763 	struct ap_queue *aq;
1764 	int rc, dom, depth, type, ml;
1765 
1766 	/*
1767 	 * Go through the configuration for the domains and compare them
1768 	 * to the existing queue devices. Also take care of the config
1769 	 * and error state for the queue devices.
1770 	 */
1771 
1772 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1773 		qid = AP_MKQID(ac->id, dom);
1774 		dev = bus_find_device(&ap_bus_type, NULL,
1775 				      (void *)(long)qid,
1776 				      __match_queue_device_with_qid);
1777 		aq = dev ? to_ap_queue(dev) : NULL;
1778 		if (!ap_test_config_usage_domain(dom)) {
1779 			if (dev) {
1780 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1781 					    __func__, ac->id, dom);
1782 				device_unregister(dev);
1783 				put_device(dev);
1784 			}
1785 			continue;
1786 		}
1787 		/* domain is valid, get info from this APQN */
1788 		if (!ap_queue_info(qid, &type, &func, &depth,
1789 				   &ml, &decfg, &chkstop)) {
1790 			if (aq) {
1791 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1792 					    __func__, ac->id, dom);
1793 				device_unregister(dev);
1794 				put_device(dev);
1795 			}
1796 			continue;
1797 		}
1798 		/* if no queue device exists, create a new one */
1799 		if (!aq) {
1800 			aq = ap_queue_create(qid, ac->ap_dev.device_type);
1801 			if (!aq) {
1802 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1803 					    __func__, ac->id, dom);
1804 				continue;
1805 			}
1806 			aq->card = ac;
1807 			aq->config = !decfg;
1808 			aq->chkstop = chkstop;
1809 			dev = &aq->ap_dev.device;
1810 			dev->bus = &ap_bus_type;
1811 			dev->parent = &ac->ap_dev.device;
1812 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1813 			/* register queue device */
1814 			rc = device_register(dev);
1815 			if (rc) {
1816 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1817 					    __func__, ac->id, dom);
1818 				goto put_dev_and_continue;
1819 			}
1820 			/* get it and thus adjust reference counter */
1821 			get_device(dev);
1822 			if (decfg)
1823 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1824 					    __func__, ac->id, dom);
1825 			else if (chkstop)
1826 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1827 					    __func__, ac->id, dom);
1828 			else
1829 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1830 					    __func__, ac->id, dom);
1831 			goto put_dev_and_continue;
1832 		}
1833 		/* handle state changes on already existing queue device */
1834 		spin_lock_bh(&aq->lock);
1835 		/* checkstop state */
1836 		if (chkstop && !aq->chkstop) {
1837 			/* checkstop on */
1838 			aq->chkstop = true;
1839 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1840 				aq->dev_state = AP_DEV_STATE_ERROR;
1841 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1842 			}
1843 			spin_unlock_bh(&aq->lock);
1844 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1845 				   __func__, ac->id, dom);
1846 			/* 'receive' pending messages with -EAGAIN */
1847 			ap_flush_queue(aq);
1848 			goto put_dev_and_continue;
1849 		} else if (!chkstop && aq->chkstop) {
1850 			/* checkstop off */
1851 			aq->chkstop = false;
1852 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1853 				aq->dev_state = AP_DEV_STATE_OPERATING;
1854 				aq->sm_state = AP_SM_STATE_RESET_START;
1855 			}
1856 			spin_unlock_bh(&aq->lock);
1857 			AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1858 				   __func__, ac->id, dom);
1859 			goto put_dev_and_continue;
1860 		}
1861 		/* config state change */
1862 		if (decfg && aq->config) {
1863 			/* config off this queue device */
1864 			aq->config = false;
1865 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1866 				aq->dev_state = AP_DEV_STATE_ERROR;
1867 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1868 			}
1869 			spin_unlock_bh(&aq->lock);
1870 			AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1871 				   __func__, ac->id, dom);
1872 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1873 			/* 'receive' pending messages with -EAGAIN */
1874 			ap_flush_queue(aq);
1875 			goto put_dev_and_continue;
1876 		} else if (!decfg && !aq->config) {
1877 			/* config on this queue device */
1878 			aq->config = true;
1879 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1880 				aq->dev_state = AP_DEV_STATE_OPERATING;
1881 				aq->sm_state = AP_SM_STATE_RESET_START;
1882 			}
1883 			spin_unlock_bh(&aq->lock);
1884 			AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1885 				   __func__, ac->id, dom);
1886 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1887 			goto put_dev_and_continue;
1888 		}
1889 		/* handle other error states */
1890 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1891 			spin_unlock_bh(&aq->lock);
1892 			/* 'receive' pending messages with -EAGAIN */
1893 			ap_flush_queue(aq);
1894 			/* re-init (with reset) the queue device */
1895 			ap_queue_init_state(aq);
1896 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1897 				    __func__, ac->id, dom);
1898 			goto put_dev_and_continue;
1899 		}
1900 		spin_unlock_bh(&aq->lock);
1901 put_dev_and_continue:
1902 		put_device(dev);
1903 	}
1904 }
1905 
1906 /*
1907  * Helper function for ap_scan_bus().
1908  * Does the scan bus job for the given adapter id.
1909  */
1910 static inline void ap_scan_adapter(int ap)
1911 {
1912 	bool decfg, chkstop;
1913 	ap_qid_t qid;
1914 	unsigned int func;
1915 	struct device *dev;
1916 	struct ap_card *ac;
1917 	int rc, dom, depth, type, comp_type, ml;
1918 
1919 	/* Is there currently a card device for this adapter ? */
1920 	dev = bus_find_device(&ap_bus_type, NULL,
1921 			      (void *)(long)ap,
1922 			      __match_card_device_with_id);
1923 	ac = dev ? to_ap_card(dev) : NULL;
1924 
1925 	/* Adapter not in configuration ? */
1926 	if (!ap_test_config_card_id(ap)) {
1927 		if (ac) {
1928 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1929 				    __func__, ap);
1930 			ap_scan_rm_card_dev_and_queue_devs(ac);
1931 			put_device(dev);
1932 		}
1933 		return;
1934 	}
1935 
1936 	/*
1937 	 * Adapter ap is valid in the current configuration. So do some checks:
1938 	 * If no card device exists, build one. If a card device exists, check
1939 	 * for type and functions changed. For all this we need to find a valid
1940 	 * APQN first.
1941 	 */
1942 
1943 	for (dom = 0; dom <= ap_max_domain_id; dom++)
1944 		if (ap_test_config_usage_domain(dom)) {
1945 			qid = AP_MKQID(ap, dom);
1946 			if (ap_queue_info(qid, &type, &func, &depth,
1947 					  &ml, &decfg, &chkstop))
1948 				break;
1949 		}
1950 	if (dom > ap_max_domain_id) {
1951 		/* Could not find a valid APQN for this adapter */
1952 		if (ac) {
1953 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1954 				    __func__, ap);
1955 			ap_scan_rm_card_dev_and_queue_devs(ac);
1956 			put_device(dev);
1957 		} else {
1958 			AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1959 				   __func__, ap);
1960 		}
1961 		return;
1962 	}
1963 	if (!type) {
1964 		/* No apdater type info available, an unusable adapter */
1965 		if (ac) {
1966 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
1967 				    __func__, ap);
1968 			ap_scan_rm_card_dev_and_queue_devs(ac);
1969 			put_device(dev);
1970 		} else {
1971 			AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1972 				   __func__, ap);
1973 		}
1974 		return;
1975 	}
1976 
1977 	if (ac) {
1978 		/* Check APQN against existing card device for changes */
1979 		if (ac->raw_hwtype != type) {
1980 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
1981 				    __func__, ap, type);
1982 			ap_scan_rm_card_dev_and_queue_devs(ac);
1983 			put_device(dev);
1984 			ac = NULL;
1985 		} else if (ac->functions != func) {
1986 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
1987 				    __func__, ap, type);
1988 			ap_scan_rm_card_dev_and_queue_devs(ac);
1989 			put_device(dev);
1990 			ac = NULL;
1991 		} else {
1992 			/* handle checkstop state change */
1993 			if (chkstop && !ac->chkstop) {
1994 				/* checkstop on */
1995 				ac->chkstop = true;
1996 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
1997 					    __func__, ap);
1998 			} else if (!chkstop && ac->chkstop) {
1999 				/* checkstop off */
2000 				ac->chkstop = false;
2001 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2002 					    __func__, ap);
2003 			}
2004 			/* handle config state change */
2005 			if (decfg && ac->config) {
2006 				ac->config = false;
2007 				AP_DBF_INFO("%s(%d) card dev config off\n",
2008 					    __func__, ap);
2009 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2010 			} else if (!decfg && !ac->config) {
2011 				ac->config = true;
2012 				AP_DBF_INFO("%s(%d) card dev config on\n",
2013 					    __func__, ap);
2014 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2015 			}
2016 		}
2017 	}
2018 
2019 	if (!ac) {
2020 		/* Build a new card device */
2021 		comp_type = ap_get_compatible_type(qid, type, func);
2022 		if (!comp_type) {
2023 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2024 				    __func__, ap, type);
2025 			return;
2026 		}
2027 		ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2028 		if (!ac) {
2029 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2030 				    __func__, ap);
2031 			return;
2032 		}
2033 		ac->config = !decfg;
2034 		ac->chkstop = chkstop;
2035 		dev = &ac->ap_dev.device;
2036 		dev->bus = &ap_bus_type;
2037 		dev->parent = ap_root_device;
2038 		dev_set_name(dev, "card%02x", ap);
2039 		/* maybe enlarge ap_max_msg_size to support this card */
2040 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2041 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2042 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2043 				    __func__, ap,
2044 				    atomic_read(&ap_max_msg_size));
2045 		}
2046 		/* Register the new card device with AP bus */
2047 		rc = device_register(dev);
2048 		if (rc) {
2049 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2050 				    __func__, ap);
2051 			put_device(dev);
2052 			return;
2053 		}
2054 		/* get it and thus adjust reference counter */
2055 		get_device(dev);
2056 		if (decfg)
2057 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2058 				    __func__, ap, type, func);
2059 		else if (chkstop)
2060 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2061 				    __func__, ap, type, func);
2062 		else
2063 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2064 				    __func__, ap, type, func);
2065 	}
2066 
2067 	/* Verify the domains and the queue devices for this card */
2068 	ap_scan_domains(ac);
2069 
2070 	/* release the card device */
2071 	put_device(&ac->ap_dev.device);
2072 }
2073 
2074 /**
2075  * ap_get_configuration - get the host AP configuration
2076  *
2077  * Stores the host AP configuration information returned from the previous call
2078  * to Query Configuration Information (QCI), then retrieves and stores the
2079  * current AP configuration returned from QCI.
2080  *
2081  * Return: true if the host AP configuration changed between calls to QCI;
2082  * otherwise, return false.
2083  */
2084 static bool ap_get_configuration(void)
2085 {
2086 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2087 	ap_fetch_qci_info(ap_qci_info);
2088 
2089 	return memcmp(ap_qci_info, ap_qci_info_old,
2090 		      sizeof(struct ap_config_info)) != 0;
2091 }
2092 
2093 /**
2094  * ap_scan_bus(): Scan the AP bus for new devices
2095  * Runs periodically, workqueue timer (ap_config_time)
2096  * @unused: Unused pointer.
2097  */
2098 static void ap_scan_bus(struct work_struct *unused)
2099 {
2100 	int ap, config_changed = 0;
2101 
2102 	/* config change notify */
2103 	config_changed = ap_get_configuration();
2104 	if (config_changed)
2105 		notify_config_changed();
2106 	ap_select_domain();
2107 
2108 	AP_DBF_DBG("%s running\n", __func__);
2109 
2110 	/* loop over all possible adapters */
2111 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2112 		ap_scan_adapter(ap);
2113 
2114 	/* scan complete notify */
2115 	if (config_changed)
2116 		notify_scan_complete();
2117 
2118 	/* check if there is at least one queue available with default domain */
2119 	if (ap_domain_index >= 0) {
2120 		struct device *dev =
2121 			bus_find_device(&ap_bus_type, NULL,
2122 					(void *)(long)ap_domain_index,
2123 					__match_queue_device_with_queue_id);
2124 		if (dev)
2125 			put_device(dev);
2126 		else
2127 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2128 				    __func__, ap_domain_index);
2129 	}
2130 
2131 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2132 		AP_DBF_DBG("%s init scan complete\n", __func__);
2133 		ap_send_init_scan_done_uevent();
2134 		ap_check_bindings_complete();
2135 	}
2136 
2137 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2138 }
2139 
2140 static void ap_config_timeout(struct timer_list *unused)
2141 {
2142 	queue_work(system_long_wq, &ap_scan_work);
2143 }
2144 
2145 static int __init ap_debug_init(void)
2146 {
2147 	ap_dbf_info = debug_register("ap", 2, 1,
2148 				     DBF_MAX_SPRINTF_ARGS * sizeof(long));
2149 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2150 	debug_set_level(ap_dbf_info, DBF_ERR);
2151 
2152 	return 0;
2153 }
2154 
2155 static void __init ap_perms_init(void)
2156 {
2157 	/* all resources usable if no kernel parameter string given */
2158 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2159 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2160 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2161 
2162 	/* apm kernel parameter string */
2163 	if (apm_str) {
2164 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2165 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2166 				  &ap_perms_mutex);
2167 	}
2168 
2169 	/* aqm kernel parameter string */
2170 	if (aqm_str) {
2171 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2172 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2173 				  &ap_perms_mutex);
2174 	}
2175 }
2176 
2177 /**
2178  * ap_module_init(): The module initialization code.
2179  *
2180  * Initializes the module.
2181  */
2182 static int __init ap_module_init(void)
2183 {
2184 	int rc;
2185 
2186 	rc = ap_debug_init();
2187 	if (rc)
2188 		return rc;
2189 
2190 	if (!ap_instructions_available()) {
2191 		pr_warn("The hardware system does not support AP instructions\n");
2192 		return -ENODEV;
2193 	}
2194 
2195 	/* init ap_queue hashtable */
2196 	hash_init(ap_queues);
2197 
2198 	/* set up the AP permissions (ioctls, ap and aq masks) */
2199 	ap_perms_init();
2200 
2201 	/* Get AP configuration data if available */
2202 	ap_init_qci_info();
2203 
2204 	/* check default domain setting */
2205 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2206 	    (ap_domain_index >= 0 &&
2207 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2208 		pr_warn("%d is not a valid cryptographic domain\n",
2209 			ap_domain_index);
2210 		ap_domain_index = -1;
2211 	}
2212 
2213 	/* enable interrupts if available */
2214 	if (ap_interrupts_available() && ap_useirq) {
2215 		rc = register_adapter_interrupt(&ap_airq);
2216 		ap_irq_flag = (rc == 0);
2217 	}
2218 
2219 	/* Create /sys/bus/ap. */
2220 	rc = bus_register(&ap_bus_type);
2221 	if (rc)
2222 		goto out;
2223 
2224 	/* Create /sys/devices/ap. */
2225 	ap_root_device = root_device_register("ap");
2226 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2227 	if (rc)
2228 		goto out_bus;
2229 	ap_root_device->bus = &ap_bus_type;
2230 
2231 	/* Setup the AP bus rescan timer. */
2232 	timer_setup(&ap_config_timer, ap_config_timeout, 0);
2233 
2234 	/*
2235 	 * Setup the high resultion poll timer.
2236 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2237 	 */
2238 	if (MACHINE_IS_VM)
2239 		poll_timeout = 1500000;
2240 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2241 	ap_poll_timer.function = ap_poll_timeout;
2242 
2243 	/* Start the low priority AP bus poll thread. */
2244 	if (ap_thread_flag) {
2245 		rc = ap_poll_thread_start();
2246 		if (rc)
2247 			goto out_work;
2248 	}
2249 
2250 	queue_work(system_long_wq, &ap_scan_work);
2251 
2252 	return 0;
2253 
2254 out_work:
2255 	hrtimer_cancel(&ap_poll_timer);
2256 	root_device_unregister(ap_root_device);
2257 out_bus:
2258 	bus_unregister(&ap_bus_type);
2259 out:
2260 	if (ap_irq_flag)
2261 		unregister_adapter_interrupt(&ap_airq);
2262 	kfree(ap_qci_info);
2263 	return rc;
2264 }
2265 device_initcall(ap_module_init);
2266