1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2023 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <asm/tpi.h> 31 #include <linux/atomic.h> 32 #include <asm/isc.h> 33 #include <linux/hrtimer.h> 34 #include <linux/ktime.h> 35 #include <asm/facility.h> 36 #include <linux/crypto.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/debugfs.h> 39 #include <linux/ctype.h> 40 #include <linux/module.h> 41 42 #include "ap_bus.h" 43 #include "ap_debug.h" 44 45 /* 46 * Module parameters; note though this file itself isn't modular. 47 */ 48 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 49 static DEFINE_SPINLOCK(ap_domain_lock); 50 module_param_named(domain, ap_domain_index, int, 0440); 51 MODULE_PARM_DESC(domain, "domain index for ap devices"); 52 EXPORT_SYMBOL(ap_domain_index); 53 54 static int ap_thread_flag; 55 module_param_named(poll_thread, ap_thread_flag, int, 0440); 56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 57 58 static char *apm_str; 59 module_param_named(apmask, apm_str, charp, 0440); 60 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 61 62 static char *aqm_str; 63 module_param_named(aqmask, aqm_str, charp, 0440); 64 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 65 66 static int ap_useirq = 1; 67 module_param_named(useirq, ap_useirq, int, 0440); 68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 69 70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 71 EXPORT_SYMBOL(ap_max_msg_size); 72 73 static struct device *ap_root_device; 74 75 /* Hashtable of all queue devices on the AP bus */ 76 DEFINE_HASHTABLE(ap_queues, 8); 77 /* lock used for the ap_queues hashtable */ 78 DEFINE_SPINLOCK(ap_queues_lock); 79 80 /* Default permissions (ioctl, card and domain masking) */ 81 struct ap_perms ap_perms; 82 EXPORT_SYMBOL(ap_perms); 83 DEFINE_MUTEX(ap_perms_mutex); 84 EXPORT_SYMBOL(ap_perms_mutex); 85 86 /* # of bus scans since init */ 87 static atomic64_t ap_scan_bus_count; 88 89 /* # of bindings complete since init */ 90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 91 92 /* completion for initial APQN bindings complete */ 93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 94 95 static struct ap_config_info *ap_qci_info; 96 static struct ap_config_info *ap_qci_info_old; 97 98 /* 99 * AP bus related debug feature things. 100 */ 101 debug_info_t *ap_dbf_info; 102 103 /* 104 * Workqueue timer for bus rescan. 105 */ 106 static struct timer_list ap_config_timer; 107 static int ap_config_time = AP_CONFIG_TIME; 108 static void ap_scan_bus(struct work_struct *); 109 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 110 111 /* 112 * Tasklet & timer for AP request polling and interrupts 113 */ 114 static void ap_tasklet_fn(unsigned long); 115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 117 static struct task_struct *ap_poll_kthread; 118 static DEFINE_MUTEX(ap_poll_thread_mutex); 119 static DEFINE_SPINLOCK(ap_poll_timer_lock); 120 static struct hrtimer ap_poll_timer; 121 /* 122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 124 */ 125 static unsigned long poll_high_timeout = 250000UL; 126 127 /* 128 * Some state machine states only require a low frequency polling. 129 * We use 25 Hz frequency for these. 130 */ 131 static unsigned long poll_low_timeout = 40000000UL; 132 133 /* Maximum domain id, if not given via qci */ 134 static int ap_max_domain_id = 15; 135 /* Maximum adapter id, if not given via qci */ 136 static int ap_max_adapter_id = 63; 137 138 static struct bus_type ap_bus_type; 139 140 /* Adapter interrupt definitions */ 141 static void ap_interrupt_handler(struct airq_struct *airq, 142 struct tpi_info *tpi_info); 143 144 static bool ap_irq_flag; 145 146 static struct airq_struct ap_airq = { 147 .handler = ap_interrupt_handler, 148 .isc = AP_ISC, 149 }; 150 151 /** 152 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 153 * 154 * Returns the address of the local-summary-indicator of the adapter 155 * interrupt handler for AP, or NULL if adapter interrupts are not 156 * available. 157 */ 158 void *ap_airq_ptr(void) 159 { 160 if (ap_irq_flag) 161 return ap_airq.lsi_ptr; 162 return NULL; 163 } 164 165 /** 166 * ap_interrupts_available(): Test if AP interrupts are available. 167 * 168 * Returns 1 if AP interrupts are available. 169 */ 170 static int ap_interrupts_available(void) 171 { 172 return test_facility(65); 173 } 174 175 /** 176 * ap_qci_available(): Test if AP configuration 177 * information can be queried via QCI subfunction. 178 * 179 * Returns 1 if subfunction PQAP(QCI) is available. 180 */ 181 static int ap_qci_available(void) 182 { 183 return test_facility(12); 184 } 185 186 /** 187 * ap_apft_available(): Test if AP facilities test (APFT) 188 * facility is available. 189 * 190 * Returns 1 if APFT is available. 191 */ 192 static int ap_apft_available(void) 193 { 194 return test_facility(15); 195 } 196 197 /* 198 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 199 * 200 * Returns 1 if the QACT subfunction is available. 201 */ 202 static inline int ap_qact_available(void) 203 { 204 if (ap_qci_info) 205 return ap_qci_info->qact; 206 return 0; 207 } 208 209 /* 210 * ap_sb_available(): Test if the AP secure binding facility is available. 211 * 212 * Returns 1 if secure binding facility is available. 213 */ 214 int ap_sb_available(void) 215 { 216 if (ap_qci_info) 217 return ap_qci_info->apsb; 218 return 0; 219 } 220 221 /* 222 * ap_is_se_guest(): Check for SE guest with AP pass-through support. 223 */ 224 bool ap_is_se_guest(void) 225 { 226 return is_prot_virt_guest() && ap_sb_available(); 227 } 228 EXPORT_SYMBOL(ap_is_se_guest); 229 230 /* 231 * ap_fetch_qci_info(): Fetch cryptographic config info 232 * 233 * Returns the ap configuration info fetched via PQAP(QCI). 234 * On success 0 is returned, on failure a negative errno 235 * is returned, e.g. if the PQAP(QCI) instruction is not 236 * available, the return value will be -EOPNOTSUPP. 237 */ 238 static inline int ap_fetch_qci_info(struct ap_config_info *info) 239 { 240 if (!ap_qci_available()) 241 return -EOPNOTSUPP; 242 if (!info) 243 return -EINVAL; 244 return ap_qci(info); 245 } 246 247 /** 248 * ap_init_qci_info(): Allocate and query qci config info. 249 * Does also update the static variables ap_max_domain_id 250 * and ap_max_adapter_id if this info is available. 251 */ 252 static void __init ap_init_qci_info(void) 253 { 254 if (!ap_qci_available()) { 255 AP_DBF_INFO("%s QCI not supported\n", __func__); 256 return; 257 } 258 259 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 260 if (!ap_qci_info) 261 return; 262 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL); 263 if (!ap_qci_info_old) { 264 kfree(ap_qci_info); 265 ap_qci_info = NULL; 266 return; 267 } 268 if (ap_fetch_qci_info(ap_qci_info) != 0) { 269 kfree(ap_qci_info); 270 kfree(ap_qci_info_old); 271 ap_qci_info = NULL; 272 ap_qci_info_old = NULL; 273 return; 274 } 275 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 276 277 if (ap_qci_info->apxa) { 278 if (ap_qci_info->na) { 279 ap_max_adapter_id = ap_qci_info->na; 280 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 281 __func__, ap_max_adapter_id); 282 } 283 if (ap_qci_info->nd) { 284 ap_max_domain_id = ap_qci_info->nd; 285 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 286 __func__, ap_max_domain_id); 287 } 288 } 289 290 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 291 } 292 293 /* 294 * ap_test_config(): helper function to extract the nrth bit 295 * within the unsigned int array field. 296 */ 297 static inline int ap_test_config(unsigned int *field, unsigned int nr) 298 { 299 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 300 } 301 302 /* 303 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 304 * 305 * Returns 0 if the card is not configured 306 * 1 if the card is configured or 307 * if the configuration information is not available 308 */ 309 static inline int ap_test_config_card_id(unsigned int id) 310 { 311 if (id > ap_max_adapter_id) 312 return 0; 313 if (ap_qci_info) 314 return ap_test_config(ap_qci_info->apm, id); 315 return 1; 316 } 317 318 /* 319 * ap_test_config_usage_domain(): Test, whether an AP usage domain 320 * is configured. 321 * 322 * Returns 0 if the usage domain is not configured 323 * 1 if the usage domain is configured or 324 * if the configuration information is not available 325 */ 326 int ap_test_config_usage_domain(unsigned int domain) 327 { 328 if (domain > ap_max_domain_id) 329 return 0; 330 if (ap_qci_info) 331 return ap_test_config(ap_qci_info->aqm, domain); 332 return 1; 333 } 334 EXPORT_SYMBOL(ap_test_config_usage_domain); 335 336 /* 337 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 338 * is configured. 339 * @domain AP control domain ID 340 * 341 * Returns 1 if the control domain is configured 342 * 0 in all other cases 343 */ 344 int ap_test_config_ctrl_domain(unsigned int domain) 345 { 346 if (!ap_qci_info || domain > ap_max_domain_id) 347 return 0; 348 return ap_test_config(ap_qci_info->adm, domain); 349 } 350 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 351 352 /* 353 * ap_queue_info(): Check and get AP queue info. 354 * Returns: 1 if APQN exists and info is filled, 355 * 0 if APQN seems to exist but there is no info 356 * available (eg. caused by an asynch pending error) 357 * -1 invalid APQN, TAPQ error or AP queue status which 358 * indicates there is no APQN. 359 */ 360 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo, 361 bool *decfg, bool *cstop) 362 { 363 struct ap_queue_status status; 364 365 hwinfo->value = 0; 366 367 /* make sure we don't run into a specifiation exception */ 368 if (AP_QID_CARD(qid) > ap_max_adapter_id || 369 AP_QID_QUEUE(qid) > ap_max_domain_id) 370 return -1; 371 372 /* call TAPQ on this APQN */ 373 status = ap_test_queue(qid, ap_apft_available(), hwinfo); 374 375 switch (status.response_code) { 376 case AP_RESPONSE_NORMAL: 377 case AP_RESPONSE_RESET_IN_PROGRESS: 378 case AP_RESPONSE_DECONFIGURED: 379 case AP_RESPONSE_CHECKSTOPPED: 380 case AP_RESPONSE_BUSY: 381 /* For all these RCs the tapq info should be available */ 382 break; 383 default: 384 /* On a pending async error the info should be available */ 385 if (!status.async) 386 return -1; 387 break; 388 } 389 390 /* There should be at least one of the mode bits set */ 391 if (WARN_ON_ONCE(!hwinfo->value)) 392 return 0; 393 394 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 395 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 396 397 return 1; 398 } 399 400 void ap_wait(enum ap_sm_wait wait) 401 { 402 ktime_t hr_time; 403 404 switch (wait) { 405 case AP_SM_WAIT_AGAIN: 406 case AP_SM_WAIT_INTERRUPT: 407 if (ap_irq_flag) 408 break; 409 if (ap_poll_kthread) { 410 wake_up(&ap_poll_wait); 411 break; 412 } 413 fallthrough; 414 case AP_SM_WAIT_LOW_TIMEOUT: 415 case AP_SM_WAIT_HIGH_TIMEOUT: 416 spin_lock_bh(&ap_poll_timer_lock); 417 if (!hrtimer_is_queued(&ap_poll_timer)) { 418 hr_time = 419 wait == AP_SM_WAIT_LOW_TIMEOUT ? 420 poll_low_timeout : poll_high_timeout; 421 hrtimer_forward_now(&ap_poll_timer, hr_time); 422 hrtimer_restart(&ap_poll_timer); 423 } 424 spin_unlock_bh(&ap_poll_timer_lock); 425 break; 426 case AP_SM_WAIT_NONE: 427 default: 428 break; 429 } 430 } 431 432 /** 433 * ap_request_timeout(): Handling of request timeouts 434 * @t: timer making this callback 435 * 436 * Handles request timeouts. 437 */ 438 void ap_request_timeout(struct timer_list *t) 439 { 440 struct ap_queue *aq = from_timer(aq, t, timeout); 441 442 spin_lock_bh(&aq->lock); 443 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 444 spin_unlock_bh(&aq->lock); 445 } 446 447 /** 448 * ap_poll_timeout(): AP receive polling for finished AP requests. 449 * @unused: Unused pointer. 450 * 451 * Schedules the AP tasklet using a high resolution timer. 452 */ 453 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 454 { 455 tasklet_schedule(&ap_tasklet); 456 return HRTIMER_NORESTART; 457 } 458 459 /** 460 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 461 * @airq: pointer to adapter interrupt descriptor 462 * @tpi_info: ignored 463 */ 464 static void ap_interrupt_handler(struct airq_struct *airq, 465 struct tpi_info *tpi_info) 466 { 467 inc_irq_stat(IRQIO_APB); 468 tasklet_schedule(&ap_tasklet); 469 } 470 471 /** 472 * ap_tasklet_fn(): Tasklet to poll all AP devices. 473 * @dummy: Unused variable 474 * 475 * Poll all AP devices on the bus. 476 */ 477 static void ap_tasklet_fn(unsigned long dummy) 478 { 479 int bkt; 480 struct ap_queue *aq; 481 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 482 483 /* Reset the indicator if interrupts are used. Thus new interrupts can 484 * be received. Doing it in the beginning of the tasklet is therefore 485 * important that no requests on any AP get lost. 486 */ 487 if (ap_irq_flag) 488 xchg(ap_airq.lsi_ptr, 0); 489 490 spin_lock_bh(&ap_queues_lock); 491 hash_for_each(ap_queues, bkt, aq, hnode) { 492 spin_lock_bh(&aq->lock); 493 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 494 spin_unlock_bh(&aq->lock); 495 } 496 spin_unlock_bh(&ap_queues_lock); 497 498 ap_wait(wait); 499 } 500 501 static int ap_pending_requests(void) 502 { 503 int bkt; 504 struct ap_queue *aq; 505 506 spin_lock_bh(&ap_queues_lock); 507 hash_for_each(ap_queues, bkt, aq, hnode) { 508 if (aq->queue_count == 0) 509 continue; 510 spin_unlock_bh(&ap_queues_lock); 511 return 1; 512 } 513 spin_unlock_bh(&ap_queues_lock); 514 return 0; 515 } 516 517 /** 518 * ap_poll_thread(): Thread that polls for finished requests. 519 * @data: Unused pointer 520 * 521 * AP bus poll thread. The purpose of this thread is to poll for 522 * finished requests in a loop if there is a "free" cpu - that is 523 * a cpu that doesn't have anything better to do. The polling stops 524 * as soon as there is another task or if all messages have been 525 * delivered. 526 */ 527 static int ap_poll_thread(void *data) 528 { 529 DECLARE_WAITQUEUE(wait, current); 530 531 set_user_nice(current, MAX_NICE); 532 set_freezable(); 533 while (!kthread_should_stop()) { 534 add_wait_queue(&ap_poll_wait, &wait); 535 set_current_state(TASK_INTERRUPTIBLE); 536 if (!ap_pending_requests()) { 537 schedule(); 538 try_to_freeze(); 539 } 540 set_current_state(TASK_RUNNING); 541 remove_wait_queue(&ap_poll_wait, &wait); 542 if (need_resched()) { 543 schedule(); 544 try_to_freeze(); 545 continue; 546 } 547 ap_tasklet_fn(0); 548 } 549 550 return 0; 551 } 552 553 static int ap_poll_thread_start(void) 554 { 555 int rc; 556 557 if (ap_irq_flag || ap_poll_kthread) 558 return 0; 559 mutex_lock(&ap_poll_thread_mutex); 560 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 561 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 562 if (rc) 563 ap_poll_kthread = NULL; 564 mutex_unlock(&ap_poll_thread_mutex); 565 return rc; 566 } 567 568 static void ap_poll_thread_stop(void) 569 { 570 if (!ap_poll_kthread) 571 return; 572 mutex_lock(&ap_poll_thread_mutex); 573 kthread_stop(ap_poll_kthread); 574 ap_poll_kthread = NULL; 575 mutex_unlock(&ap_poll_thread_mutex); 576 } 577 578 #define is_card_dev(x) ((x)->parent == ap_root_device) 579 #define is_queue_dev(x) ((x)->parent != ap_root_device) 580 581 /** 582 * ap_bus_match() 583 * @dev: Pointer to device 584 * @drv: Pointer to device_driver 585 * 586 * AP bus driver registration/unregistration. 587 */ 588 static int ap_bus_match(struct device *dev, struct device_driver *drv) 589 { 590 struct ap_driver *ap_drv = to_ap_drv(drv); 591 struct ap_device_id *id; 592 593 /* 594 * Compare device type of the device with the list of 595 * supported types of the device_driver. 596 */ 597 for (id = ap_drv->ids; id->match_flags; id++) { 598 if (is_card_dev(dev) && 599 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 600 id->dev_type == to_ap_dev(dev)->device_type) 601 return 1; 602 if (is_queue_dev(dev) && 603 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 604 id->dev_type == to_ap_dev(dev)->device_type) 605 return 1; 606 } 607 return 0; 608 } 609 610 /** 611 * ap_uevent(): Uevent function for AP devices. 612 * @dev: Pointer to device 613 * @env: Pointer to kobj_uevent_env 614 * 615 * It sets up a single environment variable DEV_TYPE which contains the 616 * hardware device type. 617 */ 618 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env) 619 { 620 int rc = 0; 621 const struct ap_device *ap_dev = to_ap_dev(dev); 622 623 /* Uevents from ap bus core don't need extensions to the env */ 624 if (dev == ap_root_device) 625 return 0; 626 627 if (is_card_dev(dev)) { 628 struct ap_card *ac = to_ap_card(&ap_dev->device); 629 630 /* Set up DEV_TYPE environment variable. */ 631 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 632 if (rc) 633 return rc; 634 /* Add MODALIAS= */ 635 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 636 if (rc) 637 return rc; 638 639 /* Add MODE=<accel|cca|ep11> */ 640 if (ac->hwinfo.accel) 641 rc = add_uevent_var(env, "MODE=accel"); 642 else if (ac->hwinfo.cca) 643 rc = add_uevent_var(env, "MODE=cca"); 644 else if (ac->hwinfo.ep11) 645 rc = add_uevent_var(env, "MODE=ep11"); 646 if (rc) 647 return rc; 648 } else { 649 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 650 651 /* Add MODE=<accel|cca|ep11> */ 652 if (aq->card->hwinfo.accel) 653 rc = add_uevent_var(env, "MODE=accel"); 654 else if (aq->card->hwinfo.cca) 655 rc = add_uevent_var(env, "MODE=cca"); 656 else if (aq->card->hwinfo.ep11) 657 rc = add_uevent_var(env, "MODE=ep11"); 658 if (rc) 659 return rc; 660 } 661 662 return 0; 663 } 664 665 static void ap_send_init_scan_done_uevent(void) 666 { 667 char *envp[] = { "INITSCAN=done", NULL }; 668 669 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 670 } 671 672 static void ap_send_bindings_complete_uevent(void) 673 { 674 char buf[32]; 675 char *envp[] = { "BINDINGS=complete", buf, NULL }; 676 677 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 678 atomic64_inc_return(&ap_bindings_complete_count)); 679 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 680 } 681 682 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 683 { 684 char buf[16]; 685 char *envp[] = { buf, NULL }; 686 687 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 688 689 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 690 } 691 EXPORT_SYMBOL(ap_send_config_uevent); 692 693 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 694 { 695 char buf[16]; 696 char *envp[] = { buf, NULL }; 697 698 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 699 700 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 701 } 702 EXPORT_SYMBOL(ap_send_online_uevent); 703 704 static void ap_send_mask_changed_uevent(unsigned long *newapm, 705 unsigned long *newaqm) 706 { 707 char buf[100]; 708 char *envp[] = { buf, NULL }; 709 710 if (newapm) 711 snprintf(buf, sizeof(buf), 712 "APMASK=0x%016lx%016lx%016lx%016lx\n", 713 newapm[0], newapm[1], newapm[2], newapm[3]); 714 else 715 snprintf(buf, sizeof(buf), 716 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 717 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 718 719 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 720 } 721 722 /* 723 * calc # of bound APQNs 724 */ 725 726 struct __ap_calc_ctrs { 727 unsigned int apqns; 728 unsigned int bound; 729 }; 730 731 static int __ap_calc_helper(struct device *dev, void *arg) 732 { 733 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 734 735 if (is_queue_dev(dev)) { 736 pctrs->apqns++; 737 if (dev->driver) 738 pctrs->bound++; 739 } 740 741 return 0; 742 } 743 744 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 745 { 746 struct __ap_calc_ctrs ctrs; 747 748 memset(&ctrs, 0, sizeof(ctrs)); 749 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 750 751 *apqns = ctrs.apqns; 752 *bound = ctrs.bound; 753 } 754 755 /* 756 * After initial ap bus scan do check if all existing APQNs are 757 * bound to device drivers. 758 */ 759 static void ap_check_bindings_complete(void) 760 { 761 unsigned int apqns, bound; 762 763 if (atomic64_read(&ap_scan_bus_count) >= 1) { 764 ap_calc_bound_apqns(&apqns, &bound); 765 if (bound == apqns) { 766 if (!completion_done(&ap_init_apqn_bindings_complete)) { 767 complete_all(&ap_init_apqn_bindings_complete); 768 AP_DBF_INFO("%s complete\n", __func__); 769 } 770 ap_send_bindings_complete_uevent(); 771 } 772 } 773 } 774 775 /* 776 * Interface to wait for the AP bus to have done one initial ap bus 777 * scan and all detected APQNs have been bound to device drivers. 778 * If these both conditions are not fulfilled, this function blocks 779 * on a condition with wait_for_completion_interruptible_timeout(). 780 * If these both conditions are fulfilled (before the timeout hits) 781 * the return value is 0. If the timeout (in jiffies) hits instead 782 * -ETIME is returned. On failures negative return values are 783 * returned to the caller. 784 */ 785 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 786 { 787 long l; 788 789 if (completion_done(&ap_init_apqn_bindings_complete)) 790 return 0; 791 792 if (timeout) 793 l = wait_for_completion_interruptible_timeout( 794 &ap_init_apqn_bindings_complete, timeout); 795 else 796 l = wait_for_completion_interruptible( 797 &ap_init_apqn_bindings_complete); 798 if (l < 0) 799 return l == -ERESTARTSYS ? -EINTR : l; 800 else if (l == 0 && timeout) 801 return -ETIME; 802 803 return 0; 804 } 805 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 806 807 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 808 { 809 if (is_queue_dev(dev) && 810 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 811 device_unregister(dev); 812 return 0; 813 } 814 815 static int __ap_revise_reserved(struct device *dev, void *dummy) 816 { 817 int rc, card, queue, devres, drvres; 818 819 if (is_queue_dev(dev)) { 820 card = AP_QID_CARD(to_ap_queue(dev)->qid); 821 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 822 mutex_lock(&ap_perms_mutex); 823 devres = test_bit_inv(card, ap_perms.apm) && 824 test_bit_inv(queue, ap_perms.aqm); 825 mutex_unlock(&ap_perms_mutex); 826 drvres = to_ap_drv(dev->driver)->flags 827 & AP_DRIVER_FLAG_DEFAULT; 828 if (!!devres != !!drvres) { 829 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n", 830 __func__, card, queue); 831 rc = device_reprobe(dev); 832 if (rc) 833 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 834 __func__, card, queue); 835 } 836 } 837 838 return 0; 839 } 840 841 static void ap_bus_revise_bindings(void) 842 { 843 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 844 } 845 846 /** 847 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 848 * default host driver or not. 849 * @card: the APID of the adapter card to check 850 * @queue: the APQI of the queue to check 851 * 852 * Note: the ap_perms_mutex must be locked by the caller of this function. 853 * 854 * Return: an int specifying whether the AP adapter is reserved for the host (1) 855 * or not (0). 856 */ 857 int ap_owned_by_def_drv(int card, int queue) 858 { 859 int rc = 0; 860 861 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 862 return -EINVAL; 863 864 if (test_bit_inv(card, ap_perms.apm) && 865 test_bit_inv(queue, ap_perms.aqm)) 866 rc = 1; 867 868 return rc; 869 } 870 EXPORT_SYMBOL(ap_owned_by_def_drv); 871 872 /** 873 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 874 * a set is reserved for the host drivers 875 * or not. 876 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 877 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 878 * 879 * Note: the ap_perms_mutex must be locked by the caller of this function. 880 * 881 * Return: an int specifying whether each APQN is reserved for the host (1) or 882 * not (0) 883 */ 884 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 885 unsigned long *aqm) 886 { 887 int card, queue, rc = 0; 888 889 for (card = 0; !rc && card < AP_DEVICES; card++) 890 if (test_bit_inv(card, apm) && 891 test_bit_inv(card, ap_perms.apm)) 892 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 893 if (test_bit_inv(queue, aqm) && 894 test_bit_inv(queue, ap_perms.aqm)) 895 rc = 1; 896 897 return rc; 898 } 899 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 900 901 static int ap_device_probe(struct device *dev) 902 { 903 struct ap_device *ap_dev = to_ap_dev(dev); 904 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 905 int card, queue, devres, drvres, rc = -ENODEV; 906 907 if (!get_device(dev)) 908 return rc; 909 910 if (is_queue_dev(dev)) { 911 /* 912 * If the apqn is marked as reserved/used by ap bus and 913 * default drivers, only probe with drivers with the default 914 * flag set. If it is not marked, only probe with drivers 915 * with the default flag not set. 916 */ 917 card = AP_QID_CARD(to_ap_queue(dev)->qid); 918 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 919 mutex_lock(&ap_perms_mutex); 920 devres = test_bit_inv(card, ap_perms.apm) && 921 test_bit_inv(queue, ap_perms.aqm); 922 mutex_unlock(&ap_perms_mutex); 923 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 924 if (!!devres != !!drvres) 925 goto out; 926 } 927 928 /* Add queue/card to list of active queues/cards */ 929 spin_lock_bh(&ap_queues_lock); 930 if (is_queue_dev(dev)) 931 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 932 to_ap_queue(dev)->qid); 933 spin_unlock_bh(&ap_queues_lock); 934 935 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 936 937 if (rc) { 938 spin_lock_bh(&ap_queues_lock); 939 if (is_queue_dev(dev)) 940 hash_del(&to_ap_queue(dev)->hnode); 941 spin_unlock_bh(&ap_queues_lock); 942 } else { 943 ap_check_bindings_complete(); 944 } 945 946 out: 947 if (rc) 948 put_device(dev); 949 return rc; 950 } 951 952 static void ap_device_remove(struct device *dev) 953 { 954 struct ap_device *ap_dev = to_ap_dev(dev); 955 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 956 957 /* prepare ap queue device removal */ 958 if (is_queue_dev(dev)) 959 ap_queue_prepare_remove(to_ap_queue(dev)); 960 961 /* driver's chance to clean up gracefully */ 962 if (ap_drv->remove) 963 ap_drv->remove(ap_dev); 964 965 /* now do the ap queue device remove */ 966 if (is_queue_dev(dev)) 967 ap_queue_remove(to_ap_queue(dev)); 968 969 /* Remove queue/card from list of active queues/cards */ 970 spin_lock_bh(&ap_queues_lock); 971 if (is_queue_dev(dev)) 972 hash_del(&to_ap_queue(dev)->hnode); 973 spin_unlock_bh(&ap_queues_lock); 974 975 put_device(dev); 976 } 977 978 struct ap_queue *ap_get_qdev(ap_qid_t qid) 979 { 980 int bkt; 981 struct ap_queue *aq; 982 983 spin_lock_bh(&ap_queues_lock); 984 hash_for_each(ap_queues, bkt, aq, hnode) { 985 if (aq->qid == qid) { 986 get_device(&aq->ap_dev.device); 987 spin_unlock_bh(&ap_queues_lock); 988 return aq; 989 } 990 } 991 spin_unlock_bh(&ap_queues_lock); 992 993 return NULL; 994 } 995 EXPORT_SYMBOL(ap_get_qdev); 996 997 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 998 char *name) 999 { 1000 struct device_driver *drv = &ap_drv->driver; 1001 1002 drv->bus = &ap_bus_type; 1003 drv->owner = owner; 1004 drv->name = name; 1005 return driver_register(drv); 1006 } 1007 EXPORT_SYMBOL(ap_driver_register); 1008 1009 void ap_driver_unregister(struct ap_driver *ap_drv) 1010 { 1011 driver_unregister(&ap_drv->driver); 1012 } 1013 EXPORT_SYMBOL(ap_driver_unregister); 1014 1015 void ap_bus_force_rescan(void) 1016 { 1017 /* Only trigger AP bus scans after the initial scan is done */ 1018 if (atomic64_read(&ap_scan_bus_count) <= 0) 1019 return; 1020 1021 /* processing a asynchronous bus rescan */ 1022 del_timer(&ap_config_timer); 1023 queue_work(system_long_wq, &ap_scan_work); 1024 flush_work(&ap_scan_work); 1025 } 1026 EXPORT_SYMBOL(ap_bus_force_rescan); 1027 1028 /* 1029 * A config change has happened, force an ap bus rescan. 1030 */ 1031 void ap_bus_cfg_chg(void) 1032 { 1033 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 1034 1035 ap_bus_force_rescan(); 1036 } 1037 1038 /* 1039 * hex2bitmap() - parse hex mask string and set bitmap. 1040 * Valid strings are "0x012345678" with at least one valid hex number. 1041 * Rest of the bitmap to the right is padded with 0. No spaces allowed 1042 * within the string, the leading 0x may be omitted. 1043 * Returns the bitmask with exactly the bits set as given by the hex 1044 * string (both in big endian order). 1045 */ 1046 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1047 { 1048 int i, n, b; 1049 1050 /* bits needs to be a multiple of 8 */ 1051 if (bits & 0x07) 1052 return -EINVAL; 1053 1054 if (str[0] == '0' && str[1] == 'x') 1055 str++; 1056 if (*str == 'x') 1057 str++; 1058 1059 for (i = 0; isxdigit(*str) && i < bits; str++) { 1060 b = hex_to_bin(*str); 1061 for (n = 0; n < 4; n++) 1062 if (b & (0x08 >> n)) 1063 set_bit_inv(i + n, bitmap); 1064 i += 4; 1065 } 1066 1067 if (*str == '\n') 1068 str++; 1069 if (*str) 1070 return -EINVAL; 1071 return 0; 1072 } 1073 1074 /* 1075 * modify_bitmap() - parse bitmask argument and modify an existing 1076 * bit mask accordingly. A concatenation (done with ',') of these 1077 * terms is recognized: 1078 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1079 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1080 * 0...bits-1; the leading + or - is required. Here are some examples: 1081 * +0-15,+32,-128,-0xFF 1082 * -0-255,+1-16,+0x128 1083 * +1,+2,+3,+4,-5,-7-10 1084 * Returns the new bitmap after all changes have been applied. Every 1085 * positive value in the string will set a bit and every negative value 1086 * in the string will clear a bit. As a bit may be touched more than once, 1087 * the last 'operation' wins: 1088 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1089 * cleared again. All other bits are unmodified. 1090 */ 1091 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1092 { 1093 int a, i, z; 1094 char *np, sign; 1095 1096 /* bits needs to be a multiple of 8 */ 1097 if (bits & 0x07) 1098 return -EINVAL; 1099 1100 while (*str) { 1101 sign = *str++; 1102 if (sign != '+' && sign != '-') 1103 return -EINVAL; 1104 a = z = simple_strtoul(str, &np, 0); 1105 if (str == np || a >= bits) 1106 return -EINVAL; 1107 str = np; 1108 if (*str == '-') { 1109 z = simple_strtoul(++str, &np, 0); 1110 if (str == np || a > z || z >= bits) 1111 return -EINVAL; 1112 str = np; 1113 } 1114 for (i = a; i <= z; i++) 1115 if (sign == '+') 1116 set_bit_inv(i, bitmap); 1117 else 1118 clear_bit_inv(i, bitmap); 1119 while (*str == ',' || *str == '\n') 1120 str++; 1121 } 1122 1123 return 0; 1124 } 1125 1126 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1127 unsigned long *newmap) 1128 { 1129 unsigned long size; 1130 int rc; 1131 1132 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1133 if (*str == '+' || *str == '-') { 1134 memcpy(newmap, bitmap, size); 1135 rc = modify_bitmap(str, newmap, bits); 1136 } else { 1137 memset(newmap, 0, size); 1138 rc = hex2bitmap(str, newmap, bits); 1139 } 1140 return rc; 1141 } 1142 1143 int ap_parse_mask_str(const char *str, 1144 unsigned long *bitmap, int bits, 1145 struct mutex *lock) 1146 { 1147 unsigned long *newmap, size; 1148 int rc; 1149 1150 /* bits needs to be a multiple of 8 */ 1151 if (bits & 0x07) 1152 return -EINVAL; 1153 1154 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1155 newmap = kmalloc(size, GFP_KERNEL); 1156 if (!newmap) 1157 return -ENOMEM; 1158 if (mutex_lock_interruptible(lock)) { 1159 kfree(newmap); 1160 return -ERESTARTSYS; 1161 } 1162 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1163 if (rc == 0) 1164 memcpy(bitmap, newmap, size); 1165 mutex_unlock(lock); 1166 kfree(newmap); 1167 return rc; 1168 } 1169 EXPORT_SYMBOL(ap_parse_mask_str); 1170 1171 /* 1172 * AP bus attributes. 1173 */ 1174 1175 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf) 1176 { 1177 return sysfs_emit(buf, "%d\n", ap_domain_index); 1178 } 1179 1180 static ssize_t ap_domain_store(const struct bus_type *bus, 1181 const char *buf, size_t count) 1182 { 1183 int domain; 1184 1185 if (sscanf(buf, "%i\n", &domain) != 1 || 1186 domain < 0 || domain > ap_max_domain_id || 1187 !test_bit_inv(domain, ap_perms.aqm)) 1188 return -EINVAL; 1189 1190 spin_lock_bh(&ap_domain_lock); 1191 ap_domain_index = domain; 1192 spin_unlock_bh(&ap_domain_lock); 1193 1194 AP_DBF_INFO("%s stored new default domain=%d\n", 1195 __func__, domain); 1196 1197 return count; 1198 } 1199 1200 static BUS_ATTR_RW(ap_domain); 1201 1202 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf) 1203 { 1204 if (!ap_qci_info) /* QCI not supported */ 1205 return sysfs_emit(buf, "not supported\n"); 1206 1207 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1208 ap_qci_info->adm[0], ap_qci_info->adm[1], 1209 ap_qci_info->adm[2], ap_qci_info->adm[3], 1210 ap_qci_info->adm[4], ap_qci_info->adm[5], 1211 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1212 } 1213 1214 static BUS_ATTR_RO(ap_control_domain_mask); 1215 1216 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf) 1217 { 1218 if (!ap_qci_info) /* QCI not supported */ 1219 return sysfs_emit(buf, "not supported\n"); 1220 1221 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1222 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1223 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1224 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1225 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1226 } 1227 1228 static BUS_ATTR_RO(ap_usage_domain_mask); 1229 1230 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf) 1231 { 1232 if (!ap_qci_info) /* QCI not supported */ 1233 return sysfs_emit(buf, "not supported\n"); 1234 1235 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1236 ap_qci_info->apm[0], ap_qci_info->apm[1], 1237 ap_qci_info->apm[2], ap_qci_info->apm[3], 1238 ap_qci_info->apm[4], ap_qci_info->apm[5], 1239 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1240 } 1241 1242 static BUS_ATTR_RO(ap_adapter_mask); 1243 1244 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf) 1245 { 1246 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0); 1247 } 1248 1249 static BUS_ATTR_RO(ap_interrupts); 1250 1251 static ssize_t config_time_show(const struct bus_type *bus, char *buf) 1252 { 1253 return sysfs_emit(buf, "%d\n", ap_config_time); 1254 } 1255 1256 static ssize_t config_time_store(const struct bus_type *bus, 1257 const char *buf, size_t count) 1258 { 1259 int time; 1260 1261 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1262 return -EINVAL; 1263 ap_config_time = time; 1264 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1265 return count; 1266 } 1267 1268 static BUS_ATTR_RW(config_time); 1269 1270 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf) 1271 { 1272 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0); 1273 } 1274 1275 static ssize_t poll_thread_store(const struct bus_type *bus, 1276 const char *buf, size_t count) 1277 { 1278 bool value; 1279 int rc; 1280 1281 rc = kstrtobool(buf, &value); 1282 if (rc) 1283 return rc; 1284 1285 if (value) { 1286 rc = ap_poll_thread_start(); 1287 if (rc) 1288 count = rc; 1289 } else { 1290 ap_poll_thread_stop(); 1291 } 1292 return count; 1293 } 1294 1295 static BUS_ATTR_RW(poll_thread); 1296 1297 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf) 1298 { 1299 return sysfs_emit(buf, "%lu\n", poll_high_timeout); 1300 } 1301 1302 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf, 1303 size_t count) 1304 { 1305 unsigned long value; 1306 ktime_t hr_time; 1307 int rc; 1308 1309 rc = kstrtoul(buf, 0, &value); 1310 if (rc) 1311 return rc; 1312 1313 /* 120 seconds = maximum poll interval */ 1314 if (value > 120000000000UL) 1315 return -EINVAL; 1316 poll_high_timeout = value; 1317 hr_time = poll_high_timeout; 1318 1319 spin_lock_bh(&ap_poll_timer_lock); 1320 hrtimer_cancel(&ap_poll_timer); 1321 hrtimer_set_expires(&ap_poll_timer, hr_time); 1322 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1323 spin_unlock_bh(&ap_poll_timer_lock); 1324 1325 return count; 1326 } 1327 1328 static BUS_ATTR_RW(poll_timeout); 1329 1330 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf) 1331 { 1332 return sysfs_emit(buf, "%d\n", ap_max_domain_id); 1333 } 1334 1335 static BUS_ATTR_RO(ap_max_domain_id); 1336 1337 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf) 1338 { 1339 return sysfs_emit(buf, "%d\n", ap_max_adapter_id); 1340 } 1341 1342 static BUS_ATTR_RO(ap_max_adapter_id); 1343 1344 static ssize_t apmask_show(const struct bus_type *bus, char *buf) 1345 { 1346 int rc; 1347 1348 if (mutex_lock_interruptible(&ap_perms_mutex)) 1349 return -ERESTARTSYS; 1350 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1351 ap_perms.apm[0], ap_perms.apm[1], 1352 ap_perms.apm[2], ap_perms.apm[3]); 1353 mutex_unlock(&ap_perms_mutex); 1354 1355 return rc; 1356 } 1357 1358 static int __verify_card_reservations(struct device_driver *drv, void *data) 1359 { 1360 int rc = 0; 1361 struct ap_driver *ap_drv = to_ap_drv(drv); 1362 unsigned long *newapm = (unsigned long *)data; 1363 1364 /* 1365 * increase the driver's module refcounter to be sure it is not 1366 * going away when we invoke the callback function. 1367 */ 1368 if (!try_module_get(drv->owner)) 1369 return 0; 1370 1371 if (ap_drv->in_use) { 1372 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1373 if (rc) 1374 rc = -EBUSY; 1375 } 1376 1377 /* release the driver's module */ 1378 module_put(drv->owner); 1379 1380 return rc; 1381 } 1382 1383 static int apmask_commit(unsigned long *newapm) 1384 { 1385 int rc; 1386 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1387 1388 /* 1389 * Check if any bits in the apmask have been set which will 1390 * result in queues being removed from non-default drivers 1391 */ 1392 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1393 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1394 __verify_card_reservations); 1395 if (rc) 1396 return rc; 1397 } 1398 1399 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1400 1401 return 0; 1402 } 1403 1404 static ssize_t apmask_store(const struct bus_type *bus, const char *buf, 1405 size_t count) 1406 { 1407 int rc, changes = 0; 1408 DECLARE_BITMAP(newapm, AP_DEVICES); 1409 1410 if (mutex_lock_interruptible(&ap_perms_mutex)) 1411 return -ERESTARTSYS; 1412 1413 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1414 if (rc) 1415 goto done; 1416 1417 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1418 if (changes) 1419 rc = apmask_commit(newapm); 1420 1421 done: 1422 mutex_unlock(&ap_perms_mutex); 1423 if (rc) 1424 return rc; 1425 1426 if (changes) { 1427 ap_bus_revise_bindings(); 1428 ap_send_mask_changed_uevent(newapm, NULL); 1429 } 1430 1431 return count; 1432 } 1433 1434 static BUS_ATTR_RW(apmask); 1435 1436 static ssize_t aqmask_show(const struct bus_type *bus, char *buf) 1437 { 1438 int rc; 1439 1440 if (mutex_lock_interruptible(&ap_perms_mutex)) 1441 return -ERESTARTSYS; 1442 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1443 ap_perms.aqm[0], ap_perms.aqm[1], 1444 ap_perms.aqm[2], ap_perms.aqm[3]); 1445 mutex_unlock(&ap_perms_mutex); 1446 1447 return rc; 1448 } 1449 1450 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1451 { 1452 int rc = 0; 1453 struct ap_driver *ap_drv = to_ap_drv(drv); 1454 unsigned long *newaqm = (unsigned long *)data; 1455 1456 /* 1457 * increase the driver's module refcounter to be sure it is not 1458 * going away when we invoke the callback function. 1459 */ 1460 if (!try_module_get(drv->owner)) 1461 return 0; 1462 1463 if (ap_drv->in_use) { 1464 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1465 if (rc) 1466 rc = -EBUSY; 1467 } 1468 1469 /* release the driver's module */ 1470 module_put(drv->owner); 1471 1472 return rc; 1473 } 1474 1475 static int aqmask_commit(unsigned long *newaqm) 1476 { 1477 int rc; 1478 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1479 1480 /* 1481 * Check if any bits in the aqmask have been set which will 1482 * result in queues being removed from non-default drivers 1483 */ 1484 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1485 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1486 __verify_queue_reservations); 1487 if (rc) 1488 return rc; 1489 } 1490 1491 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1492 1493 return 0; 1494 } 1495 1496 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf, 1497 size_t count) 1498 { 1499 int rc, changes = 0; 1500 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1501 1502 if (mutex_lock_interruptible(&ap_perms_mutex)) 1503 return -ERESTARTSYS; 1504 1505 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1506 if (rc) 1507 goto done; 1508 1509 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1510 if (changes) 1511 rc = aqmask_commit(newaqm); 1512 1513 done: 1514 mutex_unlock(&ap_perms_mutex); 1515 if (rc) 1516 return rc; 1517 1518 if (changes) { 1519 ap_bus_revise_bindings(); 1520 ap_send_mask_changed_uevent(NULL, newaqm); 1521 } 1522 1523 return count; 1524 } 1525 1526 static BUS_ATTR_RW(aqmask); 1527 1528 static ssize_t scans_show(const struct bus_type *bus, char *buf) 1529 { 1530 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count)); 1531 } 1532 1533 static ssize_t scans_store(const struct bus_type *bus, const char *buf, 1534 size_t count) 1535 { 1536 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1537 1538 ap_bus_force_rescan(); 1539 1540 return count; 1541 } 1542 1543 static BUS_ATTR_RW(scans); 1544 1545 static ssize_t bindings_show(const struct bus_type *bus, char *buf) 1546 { 1547 int rc; 1548 unsigned int apqns, n; 1549 1550 ap_calc_bound_apqns(&apqns, &n); 1551 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1552 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns); 1553 else 1554 rc = sysfs_emit(buf, "%u/%u\n", n, apqns); 1555 1556 return rc; 1557 } 1558 1559 static BUS_ATTR_RO(bindings); 1560 1561 static ssize_t features_show(const struct bus_type *bus, char *buf) 1562 { 1563 int n = 0; 1564 1565 if (!ap_qci_info) /* QCI not supported */ 1566 return sysfs_emit(buf, "-\n"); 1567 1568 if (ap_qci_info->apsc) 1569 n += sysfs_emit_at(buf, n, "APSC "); 1570 if (ap_qci_info->apxa) 1571 n += sysfs_emit_at(buf, n, "APXA "); 1572 if (ap_qci_info->qact) 1573 n += sysfs_emit_at(buf, n, "QACT "); 1574 if (ap_qci_info->rc8a) 1575 n += sysfs_emit_at(buf, n, "RC8A "); 1576 if (ap_qci_info->apsb) 1577 n += sysfs_emit_at(buf, n, "APSB "); 1578 1579 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n"); 1580 1581 return n; 1582 } 1583 1584 static BUS_ATTR_RO(features); 1585 1586 static struct attribute *ap_bus_attrs[] = { 1587 &bus_attr_ap_domain.attr, 1588 &bus_attr_ap_control_domain_mask.attr, 1589 &bus_attr_ap_usage_domain_mask.attr, 1590 &bus_attr_ap_adapter_mask.attr, 1591 &bus_attr_config_time.attr, 1592 &bus_attr_poll_thread.attr, 1593 &bus_attr_ap_interrupts.attr, 1594 &bus_attr_poll_timeout.attr, 1595 &bus_attr_ap_max_domain_id.attr, 1596 &bus_attr_ap_max_adapter_id.attr, 1597 &bus_attr_apmask.attr, 1598 &bus_attr_aqmask.attr, 1599 &bus_attr_scans.attr, 1600 &bus_attr_bindings.attr, 1601 &bus_attr_features.attr, 1602 NULL, 1603 }; 1604 ATTRIBUTE_GROUPS(ap_bus); 1605 1606 static struct bus_type ap_bus_type = { 1607 .name = "ap", 1608 .bus_groups = ap_bus_groups, 1609 .match = &ap_bus_match, 1610 .uevent = &ap_uevent, 1611 .probe = ap_device_probe, 1612 .remove = ap_device_remove, 1613 }; 1614 1615 /** 1616 * ap_select_domain(): Select an AP domain if possible and we haven't 1617 * already done so before. 1618 */ 1619 static void ap_select_domain(void) 1620 { 1621 struct ap_queue_status status; 1622 int card, dom; 1623 1624 /* 1625 * Choose the default domain. Either the one specified with 1626 * the "domain=" parameter or the first domain with at least 1627 * one valid APQN. 1628 */ 1629 spin_lock_bh(&ap_domain_lock); 1630 if (ap_domain_index >= 0) { 1631 /* Domain has already been selected. */ 1632 goto out; 1633 } 1634 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1635 if (!ap_test_config_usage_domain(dom) || 1636 !test_bit_inv(dom, ap_perms.aqm)) 1637 continue; 1638 for (card = 0; card <= ap_max_adapter_id; card++) { 1639 if (!ap_test_config_card_id(card) || 1640 !test_bit_inv(card, ap_perms.apm)) 1641 continue; 1642 status = ap_test_queue(AP_MKQID(card, dom), 1643 ap_apft_available(), 1644 NULL); 1645 if (status.response_code == AP_RESPONSE_NORMAL) 1646 break; 1647 } 1648 if (card <= ap_max_adapter_id) 1649 break; 1650 } 1651 if (dom <= ap_max_domain_id) { 1652 ap_domain_index = dom; 1653 AP_DBF_INFO("%s new default domain is %d\n", 1654 __func__, ap_domain_index); 1655 } 1656 out: 1657 spin_unlock_bh(&ap_domain_lock); 1658 } 1659 1660 /* 1661 * This function checks the type and returns either 0 for not 1662 * supported or the highest compatible type value (which may 1663 * include the input type value). 1664 */ 1665 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1666 { 1667 int comp_type = 0; 1668 1669 /* < CEX4 is not supported */ 1670 if (rawtype < AP_DEVICE_TYPE_CEX4) { 1671 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1672 __func__, AP_QID_CARD(qid), 1673 AP_QID_QUEUE(qid), rawtype); 1674 return 0; 1675 } 1676 /* up to CEX8 known and fully supported */ 1677 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1678 return rawtype; 1679 /* 1680 * unknown new type > CEX8, check for compatibility 1681 * to the highest known and supported type which is 1682 * currently CEX8 with the help of the QACT function. 1683 */ 1684 if (ap_qact_available()) { 1685 struct ap_queue_status status; 1686 union ap_qact_ap_info apinfo = {0}; 1687 1688 apinfo.mode = (func >> 26) & 0x07; 1689 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1690 status = ap_qact(qid, 0, &apinfo); 1691 if (status.response_code == AP_RESPONSE_NORMAL && 1692 apinfo.cat >= AP_DEVICE_TYPE_CEX4 && 1693 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1694 comp_type = apinfo.cat; 1695 } 1696 if (!comp_type) 1697 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1698 __func__, AP_QID_CARD(qid), 1699 AP_QID_QUEUE(qid), rawtype); 1700 else if (comp_type != rawtype) 1701 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1702 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1703 rawtype, comp_type); 1704 return comp_type; 1705 } 1706 1707 /* 1708 * Helper function to be used with bus_find_dev 1709 * matches for the card device with the given id 1710 */ 1711 static int __match_card_device_with_id(struct device *dev, const void *data) 1712 { 1713 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1714 } 1715 1716 /* 1717 * Helper function to be used with bus_find_dev 1718 * matches for the queue device with a given qid 1719 */ 1720 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1721 { 1722 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1723 } 1724 1725 /* 1726 * Helper function to be used with bus_find_dev 1727 * matches any queue device with given queue id 1728 */ 1729 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1730 { 1731 return is_queue_dev(dev) && 1732 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1733 } 1734 1735 /* Helper function for notify_config_changed */ 1736 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1737 { 1738 struct ap_driver *ap_drv = to_ap_drv(drv); 1739 1740 if (try_module_get(drv->owner)) { 1741 if (ap_drv->on_config_changed) 1742 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1743 module_put(drv->owner); 1744 } 1745 1746 return 0; 1747 } 1748 1749 /* Notify all drivers about an qci config change */ 1750 static inline void notify_config_changed(void) 1751 { 1752 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1753 __drv_notify_config_changed); 1754 } 1755 1756 /* Helper function for notify_scan_complete */ 1757 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1758 { 1759 struct ap_driver *ap_drv = to_ap_drv(drv); 1760 1761 if (try_module_get(drv->owner)) { 1762 if (ap_drv->on_scan_complete) 1763 ap_drv->on_scan_complete(ap_qci_info, 1764 ap_qci_info_old); 1765 module_put(drv->owner); 1766 } 1767 1768 return 0; 1769 } 1770 1771 /* Notify all drivers about bus scan complete */ 1772 static inline void notify_scan_complete(void) 1773 { 1774 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1775 __drv_notify_scan_complete); 1776 } 1777 1778 /* 1779 * Helper function for ap_scan_bus(). 1780 * Remove card device and associated queue devices. 1781 */ 1782 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1783 { 1784 bus_for_each_dev(&ap_bus_type, NULL, 1785 (void *)(long)ac->id, 1786 __ap_queue_devices_with_id_unregister); 1787 device_unregister(&ac->ap_dev.device); 1788 } 1789 1790 /* 1791 * Helper function for ap_scan_bus(). 1792 * Does the scan bus job for all the domains within 1793 * a valid adapter given by an ap_card ptr. 1794 */ 1795 static inline void ap_scan_domains(struct ap_card *ac) 1796 { 1797 struct ap_tapq_hwinfo hwinfo; 1798 bool decfg, chkstop; 1799 struct ap_queue *aq; 1800 struct device *dev; 1801 ap_qid_t qid; 1802 int rc, dom; 1803 1804 /* 1805 * Go through the configuration for the domains and compare them 1806 * to the existing queue devices. Also take care of the config 1807 * and error state for the queue devices. 1808 */ 1809 1810 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1811 qid = AP_MKQID(ac->id, dom); 1812 dev = bus_find_device(&ap_bus_type, NULL, 1813 (void *)(long)qid, 1814 __match_queue_device_with_qid); 1815 aq = dev ? to_ap_queue(dev) : NULL; 1816 if (!ap_test_config_usage_domain(dom)) { 1817 if (dev) { 1818 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1819 __func__, ac->id, dom); 1820 device_unregister(dev); 1821 } 1822 goto put_dev_and_continue; 1823 } 1824 /* domain is valid, get info from this APQN */ 1825 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop); 1826 switch (rc) { 1827 case -1: 1828 if (dev) { 1829 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1830 __func__, ac->id, dom); 1831 device_unregister(dev); 1832 } 1833 fallthrough; 1834 case 0: 1835 goto put_dev_and_continue; 1836 default: 1837 break; 1838 } 1839 /* if no queue device exists, create a new one */ 1840 if (!aq) { 1841 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1842 if (!aq) { 1843 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1844 __func__, ac->id, dom); 1845 continue; 1846 } 1847 aq->card = ac; 1848 aq->config = !decfg; 1849 aq->chkstop = chkstop; 1850 aq->se_bstate = hwinfo.bs; 1851 dev = &aq->ap_dev.device; 1852 dev->bus = &ap_bus_type; 1853 dev->parent = &ac->ap_dev.device; 1854 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1855 /* register queue device */ 1856 rc = device_register(dev); 1857 if (rc) { 1858 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1859 __func__, ac->id, dom); 1860 goto put_dev_and_continue; 1861 } 1862 /* get it and thus adjust reference counter */ 1863 get_device(dev); 1864 if (decfg) { 1865 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1866 __func__, ac->id, dom); 1867 } else if (chkstop) { 1868 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1869 __func__, ac->id, dom); 1870 } else { 1871 /* nudge the queue's state machine */ 1872 ap_queue_init_state(aq); 1873 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1874 __func__, ac->id, dom); 1875 } 1876 goto put_dev_and_continue; 1877 } 1878 /* handle state changes on already existing queue device */ 1879 spin_lock_bh(&aq->lock); 1880 /* SE bind state */ 1881 aq->se_bstate = hwinfo.bs; 1882 /* checkstop state */ 1883 if (chkstop && !aq->chkstop) { 1884 /* checkstop on */ 1885 aq->chkstop = true; 1886 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1887 aq->dev_state = AP_DEV_STATE_ERROR; 1888 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1889 } 1890 spin_unlock_bh(&aq->lock); 1891 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n", 1892 __func__, ac->id, dom); 1893 /* 'receive' pending messages with -EAGAIN */ 1894 ap_flush_queue(aq); 1895 goto put_dev_and_continue; 1896 } else if (!chkstop && aq->chkstop) { 1897 /* checkstop off */ 1898 aq->chkstop = false; 1899 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1900 _ap_queue_init_state(aq); 1901 spin_unlock_bh(&aq->lock); 1902 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n", 1903 __func__, ac->id, dom); 1904 goto put_dev_and_continue; 1905 } 1906 /* config state change */ 1907 if (decfg && aq->config) { 1908 /* config off this queue device */ 1909 aq->config = false; 1910 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1911 aq->dev_state = AP_DEV_STATE_ERROR; 1912 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1913 } 1914 spin_unlock_bh(&aq->lock); 1915 AP_DBF_DBG("%s(%d,%d) queue dev config off\n", 1916 __func__, ac->id, dom); 1917 ap_send_config_uevent(&aq->ap_dev, aq->config); 1918 /* 'receive' pending messages with -EAGAIN */ 1919 ap_flush_queue(aq); 1920 goto put_dev_and_continue; 1921 } else if (!decfg && !aq->config) { 1922 /* config on this queue device */ 1923 aq->config = true; 1924 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1925 _ap_queue_init_state(aq); 1926 spin_unlock_bh(&aq->lock); 1927 AP_DBF_DBG("%s(%d,%d) queue dev config on\n", 1928 __func__, ac->id, dom); 1929 ap_send_config_uevent(&aq->ap_dev, aq->config); 1930 goto put_dev_and_continue; 1931 } 1932 /* handle other error states */ 1933 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1934 spin_unlock_bh(&aq->lock); 1935 /* 'receive' pending messages with -EAGAIN */ 1936 ap_flush_queue(aq); 1937 /* re-init (with reset) the queue device */ 1938 ap_queue_init_state(aq); 1939 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1940 __func__, ac->id, dom); 1941 goto put_dev_and_continue; 1942 } 1943 spin_unlock_bh(&aq->lock); 1944 put_dev_and_continue: 1945 put_device(dev); 1946 } 1947 } 1948 1949 /* 1950 * Helper function for ap_scan_bus(). 1951 * Does the scan bus job for the given adapter id. 1952 */ 1953 static inline void ap_scan_adapter(int ap) 1954 { 1955 struct ap_tapq_hwinfo hwinfo; 1956 int rc, dom, comp_type; 1957 bool decfg, chkstop; 1958 struct ap_card *ac; 1959 struct device *dev; 1960 ap_qid_t qid; 1961 1962 /* Is there currently a card device for this adapter ? */ 1963 dev = bus_find_device(&ap_bus_type, NULL, 1964 (void *)(long)ap, 1965 __match_card_device_with_id); 1966 ac = dev ? to_ap_card(dev) : NULL; 1967 1968 /* Adapter not in configuration ? */ 1969 if (!ap_test_config_card_id(ap)) { 1970 if (ac) { 1971 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 1972 __func__, ap); 1973 ap_scan_rm_card_dev_and_queue_devs(ac); 1974 put_device(dev); 1975 } 1976 return; 1977 } 1978 1979 /* 1980 * Adapter ap is valid in the current configuration. So do some checks: 1981 * If no card device exists, build one. If a card device exists, check 1982 * for type and functions changed. For all this we need to find a valid 1983 * APQN first. 1984 */ 1985 1986 for (dom = 0; dom <= ap_max_domain_id; dom++) 1987 if (ap_test_config_usage_domain(dom)) { 1988 qid = AP_MKQID(ap, dom); 1989 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0) 1990 break; 1991 } 1992 if (dom > ap_max_domain_id) { 1993 /* Could not find one valid APQN for this adapter */ 1994 if (ac) { 1995 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 1996 __func__, ap); 1997 ap_scan_rm_card_dev_and_queue_devs(ac); 1998 put_device(dev); 1999 } else { 2000 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 2001 __func__, ap); 2002 } 2003 return; 2004 } 2005 if (!hwinfo.at) { 2006 /* No apdater type info available, an unusable adapter */ 2007 if (ac) { 2008 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 2009 __func__, ap); 2010 ap_scan_rm_card_dev_and_queue_devs(ac); 2011 put_device(dev); 2012 } else { 2013 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 2014 __func__, ap); 2015 } 2016 return; 2017 } 2018 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */ 2019 if (ac) { 2020 /* Check APQN against existing card device for changes */ 2021 if (ac->hwinfo.at != hwinfo.at) { 2022 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 2023 __func__, ap, hwinfo.at); 2024 ap_scan_rm_card_dev_and_queue_devs(ac); 2025 put_device(dev); 2026 ac = NULL; 2027 } else if (ac->hwinfo.fac != hwinfo.fac) { 2028 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 2029 __func__, ap, hwinfo.fac); 2030 ap_scan_rm_card_dev_and_queue_devs(ac); 2031 put_device(dev); 2032 ac = NULL; 2033 } else { 2034 /* handle checkstop state change */ 2035 if (chkstop && !ac->chkstop) { 2036 /* checkstop on */ 2037 ac->chkstop = true; 2038 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2039 __func__, ap); 2040 } else if (!chkstop && ac->chkstop) { 2041 /* checkstop off */ 2042 ac->chkstop = false; 2043 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2044 __func__, ap); 2045 } 2046 /* handle config state change */ 2047 if (decfg && ac->config) { 2048 ac->config = false; 2049 AP_DBF_INFO("%s(%d) card dev config off\n", 2050 __func__, ap); 2051 ap_send_config_uevent(&ac->ap_dev, ac->config); 2052 } else if (!decfg && !ac->config) { 2053 ac->config = true; 2054 AP_DBF_INFO("%s(%d) card dev config on\n", 2055 __func__, ap); 2056 ap_send_config_uevent(&ac->ap_dev, ac->config); 2057 } 2058 } 2059 } 2060 2061 if (!ac) { 2062 /* Build a new card device */ 2063 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac); 2064 if (!comp_type) { 2065 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2066 __func__, ap, hwinfo.at); 2067 return; 2068 } 2069 ac = ap_card_create(ap, hwinfo, comp_type); 2070 if (!ac) { 2071 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2072 __func__, ap); 2073 return; 2074 } 2075 ac->config = !decfg; 2076 ac->chkstop = chkstop; 2077 dev = &ac->ap_dev.device; 2078 dev->bus = &ap_bus_type; 2079 dev->parent = ap_root_device; 2080 dev_set_name(dev, "card%02x", ap); 2081 /* maybe enlarge ap_max_msg_size to support this card */ 2082 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2083 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2084 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2085 __func__, ap, 2086 atomic_read(&ap_max_msg_size)); 2087 } 2088 /* Register the new card device with AP bus */ 2089 rc = device_register(dev); 2090 if (rc) { 2091 AP_DBF_WARN("%s(%d) device_register() failed\n", 2092 __func__, ap); 2093 put_device(dev); 2094 return; 2095 } 2096 /* get it and thus adjust reference counter */ 2097 get_device(dev); 2098 if (decfg) 2099 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2100 __func__, ap, hwinfo.at, hwinfo.fac); 2101 else if (chkstop) 2102 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2103 __func__, ap, hwinfo.at, hwinfo.fac); 2104 else 2105 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2106 __func__, ap, hwinfo.at, hwinfo.fac); 2107 } 2108 2109 /* Verify the domains and the queue devices for this card */ 2110 ap_scan_domains(ac); 2111 2112 /* release the card device */ 2113 put_device(&ac->ap_dev.device); 2114 } 2115 2116 /** 2117 * ap_get_configuration - get the host AP configuration 2118 * 2119 * Stores the host AP configuration information returned from the previous call 2120 * to Query Configuration Information (QCI), then retrieves and stores the 2121 * current AP configuration returned from QCI. 2122 * 2123 * Return: true if the host AP configuration changed between calls to QCI; 2124 * otherwise, return false. 2125 */ 2126 static bool ap_get_configuration(void) 2127 { 2128 if (!ap_qci_info) /* QCI not supported */ 2129 return false; 2130 2131 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2132 ap_fetch_qci_info(ap_qci_info); 2133 2134 return memcmp(ap_qci_info, ap_qci_info_old, 2135 sizeof(struct ap_config_info)) != 0; 2136 } 2137 2138 /** 2139 * ap_scan_bus(): Scan the AP bus for new devices 2140 * Runs periodically, workqueue timer (ap_config_time) 2141 * @unused: Unused pointer. 2142 */ 2143 static void ap_scan_bus(struct work_struct *unused) 2144 { 2145 int ap, config_changed = 0; 2146 2147 /* config change notify */ 2148 config_changed = ap_get_configuration(); 2149 if (config_changed) 2150 notify_config_changed(); 2151 ap_select_domain(); 2152 2153 AP_DBF_DBG("%s running\n", __func__); 2154 2155 /* loop over all possible adapters */ 2156 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2157 ap_scan_adapter(ap); 2158 2159 /* scan complete notify */ 2160 if (config_changed) 2161 notify_scan_complete(); 2162 2163 /* check if there is at least one queue available with default domain */ 2164 if (ap_domain_index >= 0) { 2165 struct device *dev = 2166 bus_find_device(&ap_bus_type, NULL, 2167 (void *)(long)ap_domain_index, 2168 __match_queue_device_with_queue_id); 2169 if (dev) 2170 put_device(dev); 2171 else 2172 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2173 __func__, ap_domain_index); 2174 } 2175 2176 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2177 AP_DBF_DBG("%s init scan complete\n", __func__); 2178 ap_send_init_scan_done_uevent(); 2179 ap_check_bindings_complete(); 2180 } 2181 2182 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 2183 } 2184 2185 static void ap_config_timeout(struct timer_list *unused) 2186 { 2187 queue_work(system_long_wq, &ap_scan_work); 2188 } 2189 2190 static int __init ap_debug_init(void) 2191 { 2192 ap_dbf_info = debug_register("ap", 2, 1, 2193 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2194 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2195 debug_set_level(ap_dbf_info, DBF_ERR); 2196 2197 return 0; 2198 } 2199 2200 static void __init ap_perms_init(void) 2201 { 2202 /* all resources usable if no kernel parameter string given */ 2203 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2204 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2205 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2206 2207 /* apm kernel parameter string */ 2208 if (apm_str) { 2209 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2210 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2211 &ap_perms_mutex); 2212 } 2213 2214 /* aqm kernel parameter string */ 2215 if (aqm_str) { 2216 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2217 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2218 &ap_perms_mutex); 2219 } 2220 } 2221 2222 /** 2223 * ap_module_init(): The module initialization code. 2224 * 2225 * Initializes the module. 2226 */ 2227 static int __init ap_module_init(void) 2228 { 2229 int rc; 2230 2231 rc = ap_debug_init(); 2232 if (rc) 2233 return rc; 2234 2235 if (!ap_instructions_available()) { 2236 pr_warn("The hardware system does not support AP instructions\n"); 2237 return -ENODEV; 2238 } 2239 2240 /* init ap_queue hashtable */ 2241 hash_init(ap_queues); 2242 2243 /* set up the AP permissions (ioctls, ap and aq masks) */ 2244 ap_perms_init(); 2245 2246 /* Get AP configuration data if available */ 2247 ap_init_qci_info(); 2248 2249 /* check default domain setting */ 2250 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2251 (ap_domain_index >= 0 && 2252 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2253 pr_warn("%d is not a valid cryptographic domain\n", 2254 ap_domain_index); 2255 ap_domain_index = -1; 2256 } 2257 2258 /* enable interrupts if available */ 2259 if (ap_interrupts_available() && ap_useirq) { 2260 rc = register_adapter_interrupt(&ap_airq); 2261 ap_irq_flag = (rc == 0); 2262 } 2263 2264 /* Create /sys/bus/ap. */ 2265 rc = bus_register(&ap_bus_type); 2266 if (rc) 2267 goto out; 2268 2269 /* Create /sys/devices/ap. */ 2270 ap_root_device = root_device_register("ap"); 2271 rc = PTR_ERR_OR_ZERO(ap_root_device); 2272 if (rc) 2273 goto out_bus; 2274 ap_root_device->bus = &ap_bus_type; 2275 2276 /* Setup the AP bus rescan timer. */ 2277 timer_setup(&ap_config_timer, ap_config_timeout, 0); 2278 2279 /* 2280 * Setup the high resolution poll timer. 2281 * If we are running under z/VM adjust polling to z/VM polling rate. 2282 */ 2283 if (MACHINE_IS_VM) 2284 poll_high_timeout = 1500000; 2285 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2286 ap_poll_timer.function = ap_poll_timeout; 2287 2288 /* Start the low priority AP bus poll thread. */ 2289 if (ap_thread_flag) { 2290 rc = ap_poll_thread_start(); 2291 if (rc) 2292 goto out_work; 2293 } 2294 2295 queue_work(system_long_wq, &ap_scan_work); 2296 2297 return 0; 2298 2299 out_work: 2300 hrtimer_cancel(&ap_poll_timer); 2301 root_device_unregister(ap_root_device); 2302 out_bus: 2303 bus_unregister(&ap_bus_type); 2304 out: 2305 if (ap_irq_flag) 2306 unregister_adapter_interrupt(&ap_airq); 2307 kfree(ap_qci_info); 2308 return rc; 2309 } 2310 device_initcall(ap_module_init); 2311