1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2023 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <asm/tpi.h> 31 #include <linux/atomic.h> 32 #include <asm/isc.h> 33 #include <linux/hrtimer.h> 34 #include <linux/ktime.h> 35 #include <asm/facility.h> 36 #include <linux/crypto.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/debugfs.h> 39 #include <linux/ctype.h> 40 #include <linux/module.h> 41 #include <asm/uv.h> 42 #include <asm/chsc.h> 43 44 #include "ap_bus.h" 45 #include "ap_debug.h" 46 47 MODULE_AUTHOR("IBM Corporation"); 48 MODULE_DESCRIPTION("Adjunct Processor Bus driver"); 49 MODULE_LICENSE("GPL"); 50 51 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 52 static DEFINE_SPINLOCK(ap_domain_lock); 53 module_param_named(domain, ap_domain_index, int, 0440); 54 MODULE_PARM_DESC(domain, "domain index for ap devices"); 55 EXPORT_SYMBOL(ap_domain_index); 56 57 static int ap_thread_flag; 58 module_param_named(poll_thread, ap_thread_flag, int, 0440); 59 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 60 61 static char *apm_str; 62 module_param_named(apmask, apm_str, charp, 0440); 63 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 64 65 static char *aqm_str; 66 module_param_named(aqmask, aqm_str, charp, 0440); 67 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 68 69 static int ap_useirq = 1; 70 module_param_named(useirq, ap_useirq, int, 0440); 71 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 72 73 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 74 EXPORT_SYMBOL(ap_max_msg_size); 75 76 static struct device *ap_root_device; 77 78 /* Hashtable of all queue devices on the AP bus */ 79 DEFINE_HASHTABLE(ap_queues, 8); 80 /* lock used for the ap_queues hashtable */ 81 DEFINE_SPINLOCK(ap_queues_lock); 82 83 /* Default permissions (ioctl, card and domain masking) */ 84 struct ap_perms ap_perms; 85 EXPORT_SYMBOL(ap_perms); 86 DEFINE_MUTEX(ap_perms_mutex); 87 EXPORT_SYMBOL(ap_perms_mutex); 88 89 /* # of bindings complete since init */ 90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 91 92 /* completion for APQN bindings complete */ 93 static DECLARE_COMPLETION(ap_apqn_bindings_complete); 94 95 static struct ap_config_info qci[2]; 96 static struct ap_config_info *const ap_qci_info = &qci[0]; 97 static struct ap_config_info *const ap_qci_info_old = &qci[1]; 98 99 /* 100 * AP bus related debug feature things. 101 */ 102 debug_info_t *ap_dbf_info; 103 104 /* 105 * AP bus rescan related things. 106 */ 107 static bool ap_scan_bus(void); 108 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */ 109 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */ 110 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */ 111 static int ap_scan_bus_time = AP_CONFIG_TIME; 112 static struct timer_list ap_scan_bus_timer; 113 static void ap_scan_bus_wq_callback(struct work_struct *); 114 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback); 115 116 /* 117 * Tasklet & timer for AP request polling and interrupts 118 */ 119 static void ap_tasklet_fn(unsigned long); 120 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 121 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 122 static struct task_struct *ap_poll_kthread; 123 static DEFINE_MUTEX(ap_poll_thread_mutex); 124 static DEFINE_SPINLOCK(ap_poll_timer_lock); 125 static struct hrtimer ap_poll_timer; 126 /* 127 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 128 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 129 */ 130 static unsigned long poll_high_timeout = 250000UL; 131 132 /* 133 * Some state machine states only require a low frequency polling. 134 * We use 25 Hz frequency for these. 135 */ 136 static unsigned long poll_low_timeout = 40000000UL; 137 138 /* Maximum domain id, if not given via qci */ 139 static int ap_max_domain_id = 15; 140 /* Maximum adapter id, if not given via qci */ 141 static int ap_max_adapter_id = 63; 142 143 static const struct bus_type ap_bus_type; 144 145 /* Adapter interrupt definitions */ 146 static void ap_interrupt_handler(struct airq_struct *airq, 147 struct tpi_info *tpi_info); 148 149 static bool ap_irq_flag; 150 151 static struct airq_struct ap_airq = { 152 .handler = ap_interrupt_handler, 153 .isc = AP_ISC, 154 }; 155 156 /** 157 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 158 * 159 * Returns the address of the local-summary-indicator of the adapter 160 * interrupt handler for AP, or NULL if adapter interrupts are not 161 * available. 162 */ 163 void *ap_airq_ptr(void) 164 { 165 if (ap_irq_flag) 166 return ap_airq.lsi_ptr; 167 return NULL; 168 } 169 170 /** 171 * ap_interrupts_available(): Test if AP interrupts are available. 172 * 173 * Returns 1 if AP interrupts are available. 174 */ 175 static int ap_interrupts_available(void) 176 { 177 return test_facility(65); 178 } 179 180 /** 181 * ap_qci_available(): Test if AP configuration 182 * information can be queried via QCI subfunction. 183 * 184 * Returns 1 if subfunction PQAP(QCI) is available. 185 */ 186 static int ap_qci_available(void) 187 { 188 return test_facility(12); 189 } 190 191 /** 192 * ap_apft_available(): Test if AP facilities test (APFT) 193 * facility is available. 194 * 195 * Returns 1 if APFT is available. 196 */ 197 static int ap_apft_available(void) 198 { 199 return test_facility(15); 200 } 201 202 /* 203 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 204 * 205 * Returns 1 if the QACT subfunction is available. 206 */ 207 static inline int ap_qact_available(void) 208 { 209 return ap_qci_info->qact; 210 } 211 212 /* 213 * ap_sb_available(): Test if the AP secure binding facility is available. 214 * 215 * Returns 1 if secure binding facility is available. 216 */ 217 int ap_sb_available(void) 218 { 219 return ap_qci_info->apsb; 220 } 221 222 /* 223 * ap_is_se_guest(): Check for SE guest with AP pass-through support. 224 */ 225 bool ap_is_se_guest(void) 226 { 227 return is_prot_virt_guest() && ap_sb_available(); 228 } 229 EXPORT_SYMBOL(ap_is_se_guest); 230 231 /** 232 * ap_init_qci_info(): Allocate and query qci config info. 233 * Does also update the static variables ap_max_domain_id 234 * and ap_max_adapter_id if this info is available. 235 */ 236 static void __init ap_init_qci_info(void) 237 { 238 if (!ap_qci_available() || 239 ap_qci(ap_qci_info)) { 240 AP_DBF_INFO("%s QCI not supported\n", __func__); 241 return; 242 } 243 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 244 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 245 246 if (ap_qci_info->apxa) { 247 if (ap_qci_info->na) { 248 ap_max_adapter_id = ap_qci_info->na; 249 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 250 __func__, ap_max_adapter_id); 251 } 252 if (ap_qci_info->nd) { 253 ap_max_domain_id = ap_qci_info->nd; 254 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 255 __func__, ap_max_domain_id); 256 } 257 } 258 } 259 260 /* 261 * ap_test_config(): helper function to extract the nrth bit 262 * within the unsigned int array field. 263 */ 264 static inline int ap_test_config(unsigned int *field, unsigned int nr) 265 { 266 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 267 } 268 269 /* 270 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 271 * 272 * Returns 0 if the card is not configured 273 * 1 if the card is configured or 274 * if the configuration information is not available 275 */ 276 static inline int ap_test_config_card_id(unsigned int id) 277 { 278 if (id > ap_max_adapter_id) 279 return 0; 280 if (ap_qci_info->flags) 281 return ap_test_config(ap_qci_info->apm, id); 282 return 1; 283 } 284 285 /* 286 * ap_test_config_usage_domain(): Test, whether an AP usage domain 287 * is configured. 288 * 289 * Returns 0 if the usage domain is not configured 290 * 1 if the usage domain is configured or 291 * if the configuration information is not available 292 */ 293 int ap_test_config_usage_domain(unsigned int domain) 294 { 295 if (domain > ap_max_domain_id) 296 return 0; 297 if (ap_qci_info->flags) 298 return ap_test_config(ap_qci_info->aqm, domain); 299 return 1; 300 } 301 EXPORT_SYMBOL(ap_test_config_usage_domain); 302 303 /* 304 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 305 * is configured. 306 * @domain AP control domain ID 307 * 308 * Returns 1 if the control domain is configured 309 * 0 in all other cases 310 */ 311 int ap_test_config_ctrl_domain(unsigned int domain) 312 { 313 if (!ap_qci_info || domain > ap_max_domain_id) 314 return 0; 315 return ap_test_config(ap_qci_info->adm, domain); 316 } 317 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 318 319 /* 320 * ap_queue_info(): Check and get AP queue info. 321 * Returns: 1 if APQN exists and info is filled, 322 * 0 if APQN seems to exist but there is no info 323 * available (eg. caused by an asynch pending error) 324 * -1 invalid APQN, TAPQ error or AP queue status which 325 * indicates there is no APQN. 326 */ 327 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo, 328 bool *decfg, bool *cstop) 329 { 330 struct ap_queue_status status; 331 332 hwinfo->value = 0; 333 334 /* make sure we don't run into a specifiation exception */ 335 if (AP_QID_CARD(qid) > ap_max_adapter_id || 336 AP_QID_QUEUE(qid) > ap_max_domain_id) 337 return -1; 338 339 /* call TAPQ on this APQN */ 340 status = ap_test_queue(qid, ap_apft_available(), hwinfo); 341 342 switch (status.response_code) { 343 case AP_RESPONSE_NORMAL: 344 case AP_RESPONSE_RESET_IN_PROGRESS: 345 case AP_RESPONSE_DECONFIGURED: 346 case AP_RESPONSE_CHECKSTOPPED: 347 case AP_RESPONSE_BUSY: 348 /* For all these RCs the tapq info should be available */ 349 break; 350 default: 351 /* On a pending async error the info should be available */ 352 if (!status.async) 353 return -1; 354 break; 355 } 356 357 /* There should be at least one of the mode bits set */ 358 if (WARN_ON_ONCE(!hwinfo->value)) 359 return 0; 360 361 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 362 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 363 364 return 1; 365 } 366 367 void ap_wait(enum ap_sm_wait wait) 368 { 369 ktime_t hr_time; 370 371 switch (wait) { 372 case AP_SM_WAIT_AGAIN: 373 case AP_SM_WAIT_INTERRUPT: 374 if (ap_irq_flag) 375 break; 376 if (ap_poll_kthread) { 377 wake_up(&ap_poll_wait); 378 break; 379 } 380 fallthrough; 381 case AP_SM_WAIT_LOW_TIMEOUT: 382 case AP_SM_WAIT_HIGH_TIMEOUT: 383 spin_lock_bh(&ap_poll_timer_lock); 384 if (!hrtimer_is_queued(&ap_poll_timer)) { 385 hr_time = 386 wait == AP_SM_WAIT_LOW_TIMEOUT ? 387 poll_low_timeout : poll_high_timeout; 388 hrtimer_forward_now(&ap_poll_timer, hr_time); 389 hrtimer_restart(&ap_poll_timer); 390 } 391 spin_unlock_bh(&ap_poll_timer_lock); 392 break; 393 case AP_SM_WAIT_NONE: 394 default: 395 break; 396 } 397 } 398 399 /** 400 * ap_request_timeout(): Handling of request timeouts 401 * @t: timer making this callback 402 * 403 * Handles request timeouts. 404 */ 405 void ap_request_timeout(struct timer_list *t) 406 { 407 struct ap_queue *aq = from_timer(aq, t, timeout); 408 409 spin_lock_bh(&aq->lock); 410 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 411 spin_unlock_bh(&aq->lock); 412 } 413 414 /** 415 * ap_poll_timeout(): AP receive polling for finished AP requests. 416 * @unused: Unused pointer. 417 * 418 * Schedules the AP tasklet using a high resolution timer. 419 */ 420 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 421 { 422 tasklet_schedule(&ap_tasklet); 423 return HRTIMER_NORESTART; 424 } 425 426 /** 427 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 428 * @airq: pointer to adapter interrupt descriptor 429 * @tpi_info: ignored 430 */ 431 static void ap_interrupt_handler(struct airq_struct *airq, 432 struct tpi_info *tpi_info) 433 { 434 inc_irq_stat(IRQIO_APB); 435 tasklet_schedule(&ap_tasklet); 436 } 437 438 /** 439 * ap_tasklet_fn(): Tasklet to poll all AP devices. 440 * @dummy: Unused variable 441 * 442 * Poll all AP devices on the bus. 443 */ 444 static void ap_tasklet_fn(unsigned long dummy) 445 { 446 int bkt; 447 struct ap_queue *aq; 448 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 449 450 /* Reset the indicator if interrupts are used. Thus new interrupts can 451 * be received. Doing it in the beginning of the tasklet is therefore 452 * important that no requests on any AP get lost. 453 */ 454 if (ap_irq_flag) 455 xchg(ap_airq.lsi_ptr, 0); 456 457 spin_lock_bh(&ap_queues_lock); 458 hash_for_each(ap_queues, bkt, aq, hnode) { 459 spin_lock_bh(&aq->lock); 460 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 461 spin_unlock_bh(&aq->lock); 462 } 463 spin_unlock_bh(&ap_queues_lock); 464 465 ap_wait(wait); 466 } 467 468 static int ap_pending_requests(void) 469 { 470 int bkt; 471 struct ap_queue *aq; 472 473 spin_lock_bh(&ap_queues_lock); 474 hash_for_each(ap_queues, bkt, aq, hnode) { 475 if (aq->queue_count == 0) 476 continue; 477 spin_unlock_bh(&ap_queues_lock); 478 return 1; 479 } 480 spin_unlock_bh(&ap_queues_lock); 481 return 0; 482 } 483 484 /** 485 * ap_poll_thread(): Thread that polls for finished requests. 486 * @data: Unused pointer 487 * 488 * AP bus poll thread. The purpose of this thread is to poll for 489 * finished requests in a loop if there is a "free" cpu - that is 490 * a cpu that doesn't have anything better to do. The polling stops 491 * as soon as there is another task or if all messages have been 492 * delivered. 493 */ 494 static int ap_poll_thread(void *data) 495 { 496 DECLARE_WAITQUEUE(wait, current); 497 498 set_user_nice(current, MAX_NICE); 499 set_freezable(); 500 while (!kthread_should_stop()) { 501 add_wait_queue(&ap_poll_wait, &wait); 502 set_current_state(TASK_INTERRUPTIBLE); 503 if (!ap_pending_requests()) { 504 schedule(); 505 try_to_freeze(); 506 } 507 set_current_state(TASK_RUNNING); 508 remove_wait_queue(&ap_poll_wait, &wait); 509 if (need_resched()) { 510 schedule(); 511 try_to_freeze(); 512 continue; 513 } 514 ap_tasklet_fn(0); 515 } 516 517 return 0; 518 } 519 520 static int ap_poll_thread_start(void) 521 { 522 int rc; 523 524 if (ap_irq_flag || ap_poll_kthread) 525 return 0; 526 mutex_lock(&ap_poll_thread_mutex); 527 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 528 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 529 if (rc) 530 ap_poll_kthread = NULL; 531 mutex_unlock(&ap_poll_thread_mutex); 532 return rc; 533 } 534 535 static void ap_poll_thread_stop(void) 536 { 537 if (!ap_poll_kthread) 538 return; 539 mutex_lock(&ap_poll_thread_mutex); 540 kthread_stop(ap_poll_kthread); 541 ap_poll_kthread = NULL; 542 mutex_unlock(&ap_poll_thread_mutex); 543 } 544 545 #define is_card_dev(x) ((x)->parent == ap_root_device) 546 #define is_queue_dev(x) ((x)->parent != ap_root_device) 547 548 /** 549 * ap_bus_match() 550 * @dev: Pointer to device 551 * @drv: Pointer to device_driver 552 * 553 * AP bus driver registration/unregistration. 554 */ 555 static int ap_bus_match(struct device *dev, struct device_driver *drv) 556 { 557 struct ap_driver *ap_drv = to_ap_drv(drv); 558 struct ap_device_id *id; 559 560 /* 561 * Compare device type of the device with the list of 562 * supported types of the device_driver. 563 */ 564 for (id = ap_drv->ids; id->match_flags; id++) { 565 if (is_card_dev(dev) && 566 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 567 id->dev_type == to_ap_dev(dev)->device_type) 568 return 1; 569 if (is_queue_dev(dev) && 570 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 571 id->dev_type == to_ap_dev(dev)->device_type) 572 return 1; 573 } 574 return 0; 575 } 576 577 /** 578 * ap_uevent(): Uevent function for AP devices. 579 * @dev: Pointer to device 580 * @env: Pointer to kobj_uevent_env 581 * 582 * It sets up a single environment variable DEV_TYPE which contains the 583 * hardware device type. 584 */ 585 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env) 586 { 587 int rc = 0; 588 const struct ap_device *ap_dev = to_ap_dev(dev); 589 590 /* Uevents from ap bus core don't need extensions to the env */ 591 if (dev == ap_root_device) 592 return 0; 593 594 if (is_card_dev(dev)) { 595 struct ap_card *ac = to_ap_card(&ap_dev->device); 596 597 /* Set up DEV_TYPE environment variable. */ 598 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 599 if (rc) 600 return rc; 601 /* Add MODALIAS= */ 602 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 603 if (rc) 604 return rc; 605 606 /* Add MODE=<accel|cca|ep11> */ 607 if (ac->hwinfo.accel) 608 rc = add_uevent_var(env, "MODE=accel"); 609 else if (ac->hwinfo.cca) 610 rc = add_uevent_var(env, "MODE=cca"); 611 else if (ac->hwinfo.ep11) 612 rc = add_uevent_var(env, "MODE=ep11"); 613 if (rc) 614 return rc; 615 } else { 616 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 617 618 /* Add MODE=<accel|cca|ep11> */ 619 if (aq->card->hwinfo.accel) 620 rc = add_uevent_var(env, "MODE=accel"); 621 else if (aq->card->hwinfo.cca) 622 rc = add_uevent_var(env, "MODE=cca"); 623 else if (aq->card->hwinfo.ep11) 624 rc = add_uevent_var(env, "MODE=ep11"); 625 if (rc) 626 return rc; 627 } 628 629 return 0; 630 } 631 632 static void ap_send_init_scan_done_uevent(void) 633 { 634 char *envp[] = { "INITSCAN=done", NULL }; 635 636 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 637 } 638 639 static void ap_send_bindings_complete_uevent(void) 640 { 641 char buf[32]; 642 char *envp[] = { "BINDINGS=complete", buf, NULL }; 643 644 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 645 atomic64_inc_return(&ap_bindings_complete_count)); 646 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 647 } 648 649 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 650 { 651 char buf[16]; 652 char *envp[] = { buf, NULL }; 653 654 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 655 656 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 657 } 658 EXPORT_SYMBOL(ap_send_config_uevent); 659 660 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 661 { 662 char buf[16]; 663 char *envp[] = { buf, NULL }; 664 665 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 666 667 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 668 } 669 EXPORT_SYMBOL(ap_send_online_uevent); 670 671 static void ap_send_mask_changed_uevent(unsigned long *newapm, 672 unsigned long *newaqm) 673 { 674 char buf[100]; 675 char *envp[] = { buf, NULL }; 676 677 if (newapm) 678 snprintf(buf, sizeof(buf), 679 "APMASK=0x%016lx%016lx%016lx%016lx\n", 680 newapm[0], newapm[1], newapm[2], newapm[3]); 681 else 682 snprintf(buf, sizeof(buf), 683 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 684 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 685 686 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 687 } 688 689 /* 690 * calc # of bound APQNs 691 */ 692 693 struct __ap_calc_ctrs { 694 unsigned int apqns; 695 unsigned int bound; 696 }; 697 698 static int __ap_calc_helper(struct device *dev, void *arg) 699 { 700 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 701 702 if (is_queue_dev(dev)) { 703 pctrs->apqns++; 704 if (dev->driver) 705 pctrs->bound++; 706 } 707 708 return 0; 709 } 710 711 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 712 { 713 struct __ap_calc_ctrs ctrs; 714 715 memset(&ctrs, 0, sizeof(ctrs)); 716 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 717 718 *apqns = ctrs.apqns; 719 *bound = ctrs.bound; 720 } 721 722 /* 723 * After ap bus scan do check if all existing APQNs are 724 * bound to device drivers. 725 */ 726 static void ap_check_bindings_complete(void) 727 { 728 unsigned int apqns, bound; 729 730 if (atomic64_read(&ap_scan_bus_count) >= 1) { 731 ap_calc_bound_apqns(&apqns, &bound); 732 if (bound == apqns) { 733 if (!completion_done(&ap_apqn_bindings_complete)) { 734 complete_all(&ap_apqn_bindings_complete); 735 ap_send_bindings_complete_uevent(); 736 pr_debug("%s all apqn bindings complete\n", __func__); 737 } 738 } 739 } 740 } 741 742 /* 743 * Interface to wait for the AP bus to have done one initial ap bus 744 * scan and all detected APQNs have been bound to device drivers. 745 * If these both conditions are not fulfilled, this function blocks 746 * on a condition with wait_for_completion_interruptible_timeout(). 747 * If these both conditions are fulfilled (before the timeout hits) 748 * the return value is 0. If the timeout (in jiffies) hits instead 749 * -ETIME is returned. On failures negative return values are 750 * returned to the caller. 751 */ 752 int ap_wait_apqn_bindings_complete(unsigned long timeout) 753 { 754 int rc = 0; 755 long l; 756 757 if (completion_done(&ap_apqn_bindings_complete)) 758 return 0; 759 760 if (timeout) 761 l = wait_for_completion_interruptible_timeout( 762 &ap_apqn_bindings_complete, timeout); 763 else 764 l = wait_for_completion_interruptible( 765 &ap_apqn_bindings_complete); 766 if (l < 0) 767 rc = l == -ERESTARTSYS ? -EINTR : l; 768 else if (l == 0 && timeout) 769 rc = -ETIME; 770 771 pr_debug("%s rc=%d\n", __func__, rc); 772 return rc; 773 } 774 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete); 775 776 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 777 { 778 if (is_queue_dev(dev) && 779 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 780 device_unregister(dev); 781 return 0; 782 } 783 784 static int __ap_revise_reserved(struct device *dev, void *dummy) 785 { 786 int rc, card, queue, devres, drvres; 787 788 if (is_queue_dev(dev)) { 789 card = AP_QID_CARD(to_ap_queue(dev)->qid); 790 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 791 mutex_lock(&ap_perms_mutex); 792 devres = test_bit_inv(card, ap_perms.apm) && 793 test_bit_inv(queue, ap_perms.aqm); 794 mutex_unlock(&ap_perms_mutex); 795 drvres = to_ap_drv(dev->driver)->flags 796 & AP_DRIVER_FLAG_DEFAULT; 797 if (!!devres != !!drvres) { 798 pr_debug("%s reprobing queue=%02x.%04x\n", 799 __func__, card, queue); 800 rc = device_reprobe(dev); 801 if (rc) 802 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 803 __func__, card, queue); 804 } 805 } 806 807 return 0; 808 } 809 810 static void ap_bus_revise_bindings(void) 811 { 812 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 813 } 814 815 /** 816 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 817 * default host driver or not. 818 * @card: the APID of the adapter card to check 819 * @queue: the APQI of the queue to check 820 * 821 * Note: the ap_perms_mutex must be locked by the caller of this function. 822 * 823 * Return: an int specifying whether the AP adapter is reserved for the host (1) 824 * or not (0). 825 */ 826 int ap_owned_by_def_drv(int card, int queue) 827 { 828 int rc = 0; 829 830 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 831 return -EINVAL; 832 833 if (test_bit_inv(card, ap_perms.apm) && 834 test_bit_inv(queue, ap_perms.aqm)) 835 rc = 1; 836 837 return rc; 838 } 839 EXPORT_SYMBOL(ap_owned_by_def_drv); 840 841 /** 842 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 843 * a set is reserved for the host drivers 844 * or not. 845 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 846 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 847 * 848 * Note: the ap_perms_mutex must be locked by the caller of this function. 849 * 850 * Return: an int specifying whether each APQN is reserved for the host (1) or 851 * not (0) 852 */ 853 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 854 unsigned long *aqm) 855 { 856 int card, queue, rc = 0; 857 858 for (card = 0; !rc && card < AP_DEVICES; card++) 859 if (test_bit_inv(card, apm) && 860 test_bit_inv(card, ap_perms.apm)) 861 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 862 if (test_bit_inv(queue, aqm) && 863 test_bit_inv(queue, ap_perms.aqm)) 864 rc = 1; 865 866 return rc; 867 } 868 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 869 870 static int ap_device_probe(struct device *dev) 871 { 872 struct ap_device *ap_dev = to_ap_dev(dev); 873 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 874 int card, queue, devres, drvres, rc = -ENODEV; 875 876 if (!get_device(dev)) 877 return rc; 878 879 if (is_queue_dev(dev)) { 880 /* 881 * If the apqn is marked as reserved/used by ap bus and 882 * default drivers, only probe with drivers with the default 883 * flag set. If it is not marked, only probe with drivers 884 * with the default flag not set. 885 */ 886 card = AP_QID_CARD(to_ap_queue(dev)->qid); 887 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 888 mutex_lock(&ap_perms_mutex); 889 devres = test_bit_inv(card, ap_perms.apm) && 890 test_bit_inv(queue, ap_perms.aqm); 891 mutex_unlock(&ap_perms_mutex); 892 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 893 if (!!devres != !!drvres) 894 goto out; 895 } 896 897 /* 898 * Rearm the bindings complete completion to trigger 899 * bindings complete when all devices are bound again 900 */ 901 reinit_completion(&ap_apqn_bindings_complete); 902 903 /* Add queue/card to list of active queues/cards */ 904 spin_lock_bh(&ap_queues_lock); 905 if (is_queue_dev(dev)) 906 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 907 to_ap_queue(dev)->qid); 908 spin_unlock_bh(&ap_queues_lock); 909 910 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 911 912 if (rc) { 913 spin_lock_bh(&ap_queues_lock); 914 if (is_queue_dev(dev)) 915 hash_del(&to_ap_queue(dev)->hnode); 916 spin_unlock_bh(&ap_queues_lock); 917 } 918 919 out: 920 if (rc) 921 put_device(dev); 922 return rc; 923 } 924 925 static void ap_device_remove(struct device *dev) 926 { 927 struct ap_device *ap_dev = to_ap_dev(dev); 928 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 929 930 /* prepare ap queue device removal */ 931 if (is_queue_dev(dev)) 932 ap_queue_prepare_remove(to_ap_queue(dev)); 933 934 /* driver's chance to clean up gracefully */ 935 if (ap_drv->remove) 936 ap_drv->remove(ap_dev); 937 938 /* now do the ap queue device remove */ 939 if (is_queue_dev(dev)) 940 ap_queue_remove(to_ap_queue(dev)); 941 942 /* Remove queue/card from list of active queues/cards */ 943 spin_lock_bh(&ap_queues_lock); 944 if (is_queue_dev(dev)) 945 hash_del(&to_ap_queue(dev)->hnode); 946 spin_unlock_bh(&ap_queues_lock); 947 948 put_device(dev); 949 } 950 951 struct ap_queue *ap_get_qdev(ap_qid_t qid) 952 { 953 int bkt; 954 struct ap_queue *aq; 955 956 spin_lock_bh(&ap_queues_lock); 957 hash_for_each(ap_queues, bkt, aq, hnode) { 958 if (aq->qid == qid) { 959 get_device(&aq->ap_dev.device); 960 spin_unlock_bh(&ap_queues_lock); 961 return aq; 962 } 963 } 964 spin_unlock_bh(&ap_queues_lock); 965 966 return NULL; 967 } 968 EXPORT_SYMBOL(ap_get_qdev); 969 970 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 971 char *name) 972 { 973 struct device_driver *drv = &ap_drv->driver; 974 975 drv->bus = &ap_bus_type; 976 drv->owner = owner; 977 drv->name = name; 978 return driver_register(drv); 979 } 980 EXPORT_SYMBOL(ap_driver_register); 981 982 void ap_driver_unregister(struct ap_driver *ap_drv) 983 { 984 driver_unregister(&ap_drv->driver); 985 } 986 EXPORT_SYMBOL(ap_driver_unregister); 987 988 /* 989 * Enforce a synchronous AP bus rescan. 990 * Returns true if the bus scan finds a change in the AP configuration 991 * and AP devices have been added or deleted when this function returns. 992 */ 993 bool ap_bus_force_rescan(void) 994 { 995 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count); 996 bool rc = false; 997 998 pr_debug(">%s scan counter=%lu\n", __func__, scan_counter); 999 1000 /* Only trigger AP bus scans after the initial scan is done */ 1001 if (scan_counter <= 0) 1002 goto out; 1003 1004 /* Try to acquire the AP scan bus mutex */ 1005 if (mutex_trylock(&ap_scan_bus_mutex)) { 1006 /* mutex acquired, run the AP bus scan */ 1007 ap_scan_bus_result = ap_scan_bus(); 1008 rc = ap_scan_bus_result; 1009 mutex_unlock(&ap_scan_bus_mutex); 1010 goto out; 1011 } 1012 1013 /* 1014 * Mutex acquire failed. So there is currently another task 1015 * already running the AP bus scan. Then let's simple wait 1016 * for the lock which means the other task has finished and 1017 * stored the result in ap_scan_bus_result. 1018 */ 1019 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) { 1020 /* some error occurred, ignore and go out */ 1021 goto out; 1022 } 1023 rc = ap_scan_bus_result; 1024 mutex_unlock(&ap_scan_bus_mutex); 1025 1026 out: 1027 pr_debug("%s rc=%d\n", __func__, rc); 1028 return rc; 1029 } 1030 EXPORT_SYMBOL(ap_bus_force_rescan); 1031 1032 /* 1033 * A config change has happened, force an ap bus rescan. 1034 */ 1035 static int ap_bus_cfg_chg(struct notifier_block *nb, 1036 unsigned long action, void *data) 1037 { 1038 if (action != CHSC_NOTIFY_AP_CFG) 1039 return NOTIFY_DONE; 1040 1041 pr_debug("%s config change, forcing bus rescan\n", __func__); 1042 1043 ap_bus_force_rescan(); 1044 1045 return NOTIFY_OK; 1046 } 1047 1048 static struct notifier_block ap_bus_nb = { 1049 .notifier_call = ap_bus_cfg_chg, 1050 }; 1051 1052 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1053 { 1054 int i, n, b; 1055 1056 /* bits needs to be a multiple of 8 */ 1057 if (bits & 0x07) 1058 return -EINVAL; 1059 1060 if (str[0] == '0' && str[1] == 'x') 1061 str++; 1062 if (*str == 'x') 1063 str++; 1064 1065 for (i = 0; isxdigit(*str) && i < bits; str++) { 1066 b = hex_to_bin(*str); 1067 for (n = 0; n < 4; n++) 1068 if (b & (0x08 >> n)) 1069 set_bit_inv(i + n, bitmap); 1070 i += 4; 1071 } 1072 1073 if (*str == '\n') 1074 str++; 1075 if (*str) 1076 return -EINVAL; 1077 return 0; 1078 } 1079 EXPORT_SYMBOL(ap_hex2bitmap); 1080 1081 /* 1082 * modify_bitmap() - parse bitmask argument and modify an existing 1083 * bit mask accordingly. A concatenation (done with ',') of these 1084 * terms is recognized: 1085 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1086 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1087 * 0...bits-1; the leading + or - is required. Here are some examples: 1088 * +0-15,+32,-128,-0xFF 1089 * -0-255,+1-16,+0x128 1090 * +1,+2,+3,+4,-5,-7-10 1091 * Returns the new bitmap after all changes have been applied. Every 1092 * positive value in the string will set a bit and every negative value 1093 * in the string will clear a bit. As a bit may be touched more than once, 1094 * the last 'operation' wins: 1095 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1096 * cleared again. All other bits are unmodified. 1097 */ 1098 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1099 { 1100 unsigned long a, i, z; 1101 char *np, sign; 1102 1103 /* bits needs to be a multiple of 8 */ 1104 if (bits & 0x07) 1105 return -EINVAL; 1106 1107 while (*str) { 1108 sign = *str++; 1109 if (sign != '+' && sign != '-') 1110 return -EINVAL; 1111 a = z = simple_strtoul(str, &np, 0); 1112 if (str == np || a >= bits) 1113 return -EINVAL; 1114 str = np; 1115 if (*str == '-') { 1116 z = simple_strtoul(++str, &np, 0); 1117 if (str == np || a > z || z >= bits) 1118 return -EINVAL; 1119 str = np; 1120 } 1121 for (i = a; i <= z; i++) 1122 if (sign == '+') 1123 set_bit_inv(i, bitmap); 1124 else 1125 clear_bit_inv(i, bitmap); 1126 while (*str == ',' || *str == '\n') 1127 str++; 1128 } 1129 1130 return 0; 1131 } 1132 1133 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1134 unsigned long *newmap) 1135 { 1136 unsigned long size; 1137 int rc; 1138 1139 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1140 if (*str == '+' || *str == '-') { 1141 memcpy(newmap, bitmap, size); 1142 rc = modify_bitmap(str, newmap, bits); 1143 } else { 1144 memset(newmap, 0, size); 1145 rc = ap_hex2bitmap(str, newmap, bits); 1146 } 1147 return rc; 1148 } 1149 1150 int ap_parse_mask_str(const char *str, 1151 unsigned long *bitmap, int bits, 1152 struct mutex *lock) 1153 { 1154 unsigned long *newmap, size; 1155 int rc; 1156 1157 /* bits needs to be a multiple of 8 */ 1158 if (bits & 0x07) 1159 return -EINVAL; 1160 1161 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1162 newmap = kmalloc(size, GFP_KERNEL); 1163 if (!newmap) 1164 return -ENOMEM; 1165 if (mutex_lock_interruptible(lock)) { 1166 kfree(newmap); 1167 return -ERESTARTSYS; 1168 } 1169 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1170 if (rc == 0) 1171 memcpy(bitmap, newmap, size); 1172 mutex_unlock(lock); 1173 kfree(newmap); 1174 return rc; 1175 } 1176 EXPORT_SYMBOL(ap_parse_mask_str); 1177 1178 /* 1179 * AP bus attributes. 1180 */ 1181 1182 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf) 1183 { 1184 return sysfs_emit(buf, "%d\n", ap_domain_index); 1185 } 1186 1187 static ssize_t ap_domain_store(const struct bus_type *bus, 1188 const char *buf, size_t count) 1189 { 1190 int domain; 1191 1192 if (sscanf(buf, "%i\n", &domain) != 1 || 1193 domain < 0 || domain > ap_max_domain_id || 1194 !test_bit_inv(domain, ap_perms.aqm)) 1195 return -EINVAL; 1196 1197 spin_lock_bh(&ap_domain_lock); 1198 ap_domain_index = domain; 1199 spin_unlock_bh(&ap_domain_lock); 1200 1201 AP_DBF_INFO("%s stored new default domain=%d\n", 1202 __func__, domain); 1203 1204 return count; 1205 } 1206 1207 static BUS_ATTR_RW(ap_domain); 1208 1209 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf) 1210 { 1211 if (!ap_qci_info->flags) /* QCI not supported */ 1212 return sysfs_emit(buf, "not supported\n"); 1213 1214 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1215 ap_qci_info->adm[0], ap_qci_info->adm[1], 1216 ap_qci_info->adm[2], ap_qci_info->adm[3], 1217 ap_qci_info->adm[4], ap_qci_info->adm[5], 1218 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1219 } 1220 1221 static BUS_ATTR_RO(ap_control_domain_mask); 1222 1223 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf) 1224 { 1225 if (!ap_qci_info->flags) /* QCI not supported */ 1226 return sysfs_emit(buf, "not supported\n"); 1227 1228 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1229 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1230 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1231 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1232 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1233 } 1234 1235 static BUS_ATTR_RO(ap_usage_domain_mask); 1236 1237 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf) 1238 { 1239 if (!ap_qci_info->flags) /* QCI not supported */ 1240 return sysfs_emit(buf, "not supported\n"); 1241 1242 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1243 ap_qci_info->apm[0], ap_qci_info->apm[1], 1244 ap_qci_info->apm[2], ap_qci_info->apm[3], 1245 ap_qci_info->apm[4], ap_qci_info->apm[5], 1246 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1247 } 1248 1249 static BUS_ATTR_RO(ap_adapter_mask); 1250 1251 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf) 1252 { 1253 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0); 1254 } 1255 1256 static BUS_ATTR_RO(ap_interrupts); 1257 1258 static ssize_t config_time_show(const struct bus_type *bus, char *buf) 1259 { 1260 return sysfs_emit(buf, "%d\n", ap_scan_bus_time); 1261 } 1262 1263 static ssize_t config_time_store(const struct bus_type *bus, 1264 const char *buf, size_t count) 1265 { 1266 int time; 1267 1268 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1269 return -EINVAL; 1270 ap_scan_bus_time = time; 1271 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 1272 return count; 1273 } 1274 1275 static BUS_ATTR_RW(config_time); 1276 1277 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf) 1278 { 1279 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0); 1280 } 1281 1282 static ssize_t poll_thread_store(const struct bus_type *bus, 1283 const char *buf, size_t count) 1284 { 1285 bool value; 1286 int rc; 1287 1288 rc = kstrtobool(buf, &value); 1289 if (rc) 1290 return rc; 1291 1292 if (value) { 1293 rc = ap_poll_thread_start(); 1294 if (rc) 1295 count = rc; 1296 } else { 1297 ap_poll_thread_stop(); 1298 } 1299 return count; 1300 } 1301 1302 static BUS_ATTR_RW(poll_thread); 1303 1304 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf) 1305 { 1306 return sysfs_emit(buf, "%lu\n", poll_high_timeout); 1307 } 1308 1309 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf, 1310 size_t count) 1311 { 1312 unsigned long value; 1313 ktime_t hr_time; 1314 int rc; 1315 1316 rc = kstrtoul(buf, 0, &value); 1317 if (rc) 1318 return rc; 1319 1320 /* 120 seconds = maximum poll interval */ 1321 if (value > 120000000000UL) 1322 return -EINVAL; 1323 poll_high_timeout = value; 1324 hr_time = poll_high_timeout; 1325 1326 spin_lock_bh(&ap_poll_timer_lock); 1327 hrtimer_cancel(&ap_poll_timer); 1328 hrtimer_set_expires(&ap_poll_timer, hr_time); 1329 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1330 spin_unlock_bh(&ap_poll_timer_lock); 1331 1332 return count; 1333 } 1334 1335 static BUS_ATTR_RW(poll_timeout); 1336 1337 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf) 1338 { 1339 return sysfs_emit(buf, "%d\n", ap_max_domain_id); 1340 } 1341 1342 static BUS_ATTR_RO(ap_max_domain_id); 1343 1344 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf) 1345 { 1346 return sysfs_emit(buf, "%d\n", ap_max_adapter_id); 1347 } 1348 1349 static BUS_ATTR_RO(ap_max_adapter_id); 1350 1351 static ssize_t apmask_show(const struct bus_type *bus, char *buf) 1352 { 1353 int rc; 1354 1355 if (mutex_lock_interruptible(&ap_perms_mutex)) 1356 return -ERESTARTSYS; 1357 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1358 ap_perms.apm[0], ap_perms.apm[1], 1359 ap_perms.apm[2], ap_perms.apm[3]); 1360 mutex_unlock(&ap_perms_mutex); 1361 1362 return rc; 1363 } 1364 1365 static int __verify_card_reservations(struct device_driver *drv, void *data) 1366 { 1367 int rc = 0; 1368 struct ap_driver *ap_drv = to_ap_drv(drv); 1369 unsigned long *newapm = (unsigned long *)data; 1370 1371 /* 1372 * increase the driver's module refcounter to be sure it is not 1373 * going away when we invoke the callback function. 1374 */ 1375 if (!try_module_get(drv->owner)) 1376 return 0; 1377 1378 if (ap_drv->in_use) { 1379 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1380 if (rc) 1381 rc = -EBUSY; 1382 } 1383 1384 /* release the driver's module */ 1385 module_put(drv->owner); 1386 1387 return rc; 1388 } 1389 1390 static int apmask_commit(unsigned long *newapm) 1391 { 1392 int rc; 1393 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1394 1395 /* 1396 * Check if any bits in the apmask have been set which will 1397 * result in queues being removed from non-default drivers 1398 */ 1399 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1400 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1401 __verify_card_reservations); 1402 if (rc) 1403 return rc; 1404 } 1405 1406 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1407 1408 return 0; 1409 } 1410 1411 static ssize_t apmask_store(const struct bus_type *bus, const char *buf, 1412 size_t count) 1413 { 1414 int rc, changes = 0; 1415 DECLARE_BITMAP(newapm, AP_DEVICES); 1416 1417 if (mutex_lock_interruptible(&ap_perms_mutex)) 1418 return -ERESTARTSYS; 1419 1420 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1421 if (rc) 1422 goto done; 1423 1424 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1425 if (changes) 1426 rc = apmask_commit(newapm); 1427 1428 done: 1429 mutex_unlock(&ap_perms_mutex); 1430 if (rc) 1431 return rc; 1432 1433 if (changes) { 1434 ap_bus_revise_bindings(); 1435 ap_send_mask_changed_uevent(newapm, NULL); 1436 } 1437 1438 return count; 1439 } 1440 1441 static BUS_ATTR_RW(apmask); 1442 1443 static ssize_t aqmask_show(const struct bus_type *bus, char *buf) 1444 { 1445 int rc; 1446 1447 if (mutex_lock_interruptible(&ap_perms_mutex)) 1448 return -ERESTARTSYS; 1449 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1450 ap_perms.aqm[0], ap_perms.aqm[1], 1451 ap_perms.aqm[2], ap_perms.aqm[3]); 1452 mutex_unlock(&ap_perms_mutex); 1453 1454 return rc; 1455 } 1456 1457 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1458 { 1459 int rc = 0; 1460 struct ap_driver *ap_drv = to_ap_drv(drv); 1461 unsigned long *newaqm = (unsigned long *)data; 1462 1463 /* 1464 * increase the driver's module refcounter to be sure it is not 1465 * going away when we invoke the callback function. 1466 */ 1467 if (!try_module_get(drv->owner)) 1468 return 0; 1469 1470 if (ap_drv->in_use) { 1471 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1472 if (rc) 1473 rc = -EBUSY; 1474 } 1475 1476 /* release the driver's module */ 1477 module_put(drv->owner); 1478 1479 return rc; 1480 } 1481 1482 static int aqmask_commit(unsigned long *newaqm) 1483 { 1484 int rc; 1485 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1486 1487 /* 1488 * Check if any bits in the aqmask have been set which will 1489 * result in queues being removed from non-default drivers 1490 */ 1491 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1492 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1493 __verify_queue_reservations); 1494 if (rc) 1495 return rc; 1496 } 1497 1498 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1499 1500 return 0; 1501 } 1502 1503 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf, 1504 size_t count) 1505 { 1506 int rc, changes = 0; 1507 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1508 1509 if (mutex_lock_interruptible(&ap_perms_mutex)) 1510 return -ERESTARTSYS; 1511 1512 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1513 if (rc) 1514 goto done; 1515 1516 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1517 if (changes) 1518 rc = aqmask_commit(newaqm); 1519 1520 done: 1521 mutex_unlock(&ap_perms_mutex); 1522 if (rc) 1523 return rc; 1524 1525 if (changes) { 1526 ap_bus_revise_bindings(); 1527 ap_send_mask_changed_uevent(NULL, newaqm); 1528 } 1529 1530 return count; 1531 } 1532 1533 static BUS_ATTR_RW(aqmask); 1534 1535 static ssize_t scans_show(const struct bus_type *bus, char *buf) 1536 { 1537 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count)); 1538 } 1539 1540 static ssize_t scans_store(const struct bus_type *bus, const char *buf, 1541 size_t count) 1542 { 1543 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1544 1545 ap_bus_force_rescan(); 1546 1547 return count; 1548 } 1549 1550 static BUS_ATTR_RW(scans); 1551 1552 static ssize_t bindings_show(const struct bus_type *bus, char *buf) 1553 { 1554 int rc; 1555 unsigned int apqns, n; 1556 1557 ap_calc_bound_apqns(&apqns, &n); 1558 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1559 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns); 1560 else 1561 rc = sysfs_emit(buf, "%u/%u\n", n, apqns); 1562 1563 return rc; 1564 } 1565 1566 static BUS_ATTR_RO(bindings); 1567 1568 static ssize_t features_show(const struct bus_type *bus, char *buf) 1569 { 1570 int n = 0; 1571 1572 if (!ap_qci_info->flags) /* QCI not supported */ 1573 return sysfs_emit(buf, "-\n"); 1574 1575 if (ap_qci_info->apsc) 1576 n += sysfs_emit_at(buf, n, "APSC "); 1577 if (ap_qci_info->apxa) 1578 n += sysfs_emit_at(buf, n, "APXA "); 1579 if (ap_qci_info->qact) 1580 n += sysfs_emit_at(buf, n, "QACT "); 1581 if (ap_qci_info->rc8a) 1582 n += sysfs_emit_at(buf, n, "RC8A "); 1583 if (ap_qci_info->apsb) 1584 n += sysfs_emit_at(buf, n, "APSB "); 1585 1586 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n"); 1587 1588 return n; 1589 } 1590 1591 static BUS_ATTR_RO(features); 1592 1593 static struct attribute *ap_bus_attrs[] = { 1594 &bus_attr_ap_domain.attr, 1595 &bus_attr_ap_control_domain_mask.attr, 1596 &bus_attr_ap_usage_domain_mask.attr, 1597 &bus_attr_ap_adapter_mask.attr, 1598 &bus_attr_config_time.attr, 1599 &bus_attr_poll_thread.attr, 1600 &bus_attr_ap_interrupts.attr, 1601 &bus_attr_poll_timeout.attr, 1602 &bus_attr_ap_max_domain_id.attr, 1603 &bus_attr_ap_max_adapter_id.attr, 1604 &bus_attr_apmask.attr, 1605 &bus_attr_aqmask.attr, 1606 &bus_attr_scans.attr, 1607 &bus_attr_bindings.attr, 1608 &bus_attr_features.attr, 1609 NULL, 1610 }; 1611 ATTRIBUTE_GROUPS(ap_bus); 1612 1613 static const struct bus_type ap_bus_type = { 1614 .name = "ap", 1615 .bus_groups = ap_bus_groups, 1616 .match = &ap_bus_match, 1617 .uevent = &ap_uevent, 1618 .probe = ap_device_probe, 1619 .remove = ap_device_remove, 1620 }; 1621 1622 /** 1623 * ap_select_domain(): Select an AP domain if possible and we haven't 1624 * already done so before. 1625 */ 1626 static void ap_select_domain(void) 1627 { 1628 struct ap_queue_status status; 1629 int card, dom; 1630 1631 /* 1632 * Choose the default domain. Either the one specified with 1633 * the "domain=" parameter or the first domain with at least 1634 * one valid APQN. 1635 */ 1636 spin_lock_bh(&ap_domain_lock); 1637 if (ap_domain_index >= 0) { 1638 /* Domain has already been selected. */ 1639 goto out; 1640 } 1641 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1642 if (!ap_test_config_usage_domain(dom) || 1643 !test_bit_inv(dom, ap_perms.aqm)) 1644 continue; 1645 for (card = 0; card <= ap_max_adapter_id; card++) { 1646 if (!ap_test_config_card_id(card) || 1647 !test_bit_inv(card, ap_perms.apm)) 1648 continue; 1649 status = ap_test_queue(AP_MKQID(card, dom), 1650 ap_apft_available(), 1651 NULL); 1652 if (status.response_code == AP_RESPONSE_NORMAL) 1653 break; 1654 } 1655 if (card <= ap_max_adapter_id) 1656 break; 1657 } 1658 if (dom <= ap_max_domain_id) { 1659 ap_domain_index = dom; 1660 AP_DBF_INFO("%s new default domain is %d\n", 1661 __func__, ap_domain_index); 1662 } 1663 out: 1664 spin_unlock_bh(&ap_domain_lock); 1665 } 1666 1667 /* 1668 * This function checks the type and returns either 0 for not 1669 * supported or the highest compatible type value (which may 1670 * include the input type value). 1671 */ 1672 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1673 { 1674 int comp_type = 0; 1675 1676 /* < CEX4 is not supported */ 1677 if (rawtype < AP_DEVICE_TYPE_CEX4) { 1678 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1679 __func__, AP_QID_CARD(qid), 1680 AP_QID_QUEUE(qid), rawtype); 1681 return 0; 1682 } 1683 /* up to CEX8 known and fully supported */ 1684 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1685 return rawtype; 1686 /* 1687 * unknown new type > CEX8, check for compatibility 1688 * to the highest known and supported type which is 1689 * currently CEX8 with the help of the QACT function. 1690 */ 1691 if (ap_qact_available()) { 1692 struct ap_queue_status status; 1693 union ap_qact_ap_info apinfo = {0}; 1694 1695 apinfo.mode = (func >> 26) & 0x07; 1696 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1697 status = ap_qact(qid, 0, &apinfo); 1698 if (status.response_code == AP_RESPONSE_NORMAL && 1699 apinfo.cat >= AP_DEVICE_TYPE_CEX4 && 1700 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1701 comp_type = apinfo.cat; 1702 } 1703 if (!comp_type) 1704 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1705 __func__, AP_QID_CARD(qid), 1706 AP_QID_QUEUE(qid), rawtype); 1707 else if (comp_type != rawtype) 1708 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1709 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1710 rawtype, comp_type); 1711 return comp_type; 1712 } 1713 1714 /* 1715 * Helper function to be used with bus_find_dev 1716 * matches for the card device with the given id 1717 */ 1718 static int __match_card_device_with_id(struct device *dev, const void *data) 1719 { 1720 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1721 } 1722 1723 /* 1724 * Helper function to be used with bus_find_dev 1725 * matches for the queue device with a given qid 1726 */ 1727 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1728 { 1729 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1730 } 1731 1732 /* 1733 * Helper function to be used with bus_find_dev 1734 * matches any queue device with given queue id 1735 */ 1736 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1737 { 1738 return is_queue_dev(dev) && 1739 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1740 } 1741 1742 /* Helper function for notify_config_changed */ 1743 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1744 { 1745 struct ap_driver *ap_drv = to_ap_drv(drv); 1746 1747 if (try_module_get(drv->owner)) { 1748 if (ap_drv->on_config_changed) 1749 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1750 module_put(drv->owner); 1751 } 1752 1753 return 0; 1754 } 1755 1756 /* Notify all drivers about an qci config change */ 1757 static inline void notify_config_changed(void) 1758 { 1759 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1760 __drv_notify_config_changed); 1761 } 1762 1763 /* Helper function for notify_scan_complete */ 1764 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1765 { 1766 struct ap_driver *ap_drv = to_ap_drv(drv); 1767 1768 if (try_module_get(drv->owner)) { 1769 if (ap_drv->on_scan_complete) 1770 ap_drv->on_scan_complete(ap_qci_info, 1771 ap_qci_info_old); 1772 module_put(drv->owner); 1773 } 1774 1775 return 0; 1776 } 1777 1778 /* Notify all drivers about bus scan complete */ 1779 static inline void notify_scan_complete(void) 1780 { 1781 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1782 __drv_notify_scan_complete); 1783 } 1784 1785 /* 1786 * Helper function for ap_scan_bus(). 1787 * Remove card device and associated queue devices. 1788 */ 1789 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1790 { 1791 bus_for_each_dev(&ap_bus_type, NULL, 1792 (void *)(long)ac->id, 1793 __ap_queue_devices_with_id_unregister); 1794 device_unregister(&ac->ap_dev.device); 1795 } 1796 1797 /* 1798 * Helper function for ap_scan_bus(). 1799 * Does the scan bus job for all the domains within 1800 * a valid adapter given by an ap_card ptr. 1801 */ 1802 static inline void ap_scan_domains(struct ap_card *ac) 1803 { 1804 struct ap_tapq_hwinfo hwinfo; 1805 bool decfg, chkstop; 1806 struct ap_queue *aq; 1807 struct device *dev; 1808 ap_qid_t qid; 1809 int rc, dom; 1810 1811 /* 1812 * Go through the configuration for the domains and compare them 1813 * to the existing queue devices. Also take care of the config 1814 * and error state for the queue devices. 1815 */ 1816 1817 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1818 qid = AP_MKQID(ac->id, dom); 1819 dev = bus_find_device(&ap_bus_type, NULL, 1820 (void *)(long)qid, 1821 __match_queue_device_with_qid); 1822 aq = dev ? to_ap_queue(dev) : NULL; 1823 if (!ap_test_config_usage_domain(dom)) { 1824 if (dev) { 1825 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1826 __func__, ac->id, dom); 1827 device_unregister(dev); 1828 } 1829 goto put_dev_and_continue; 1830 } 1831 /* domain is valid, get info from this APQN */ 1832 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop); 1833 switch (rc) { 1834 case -1: 1835 if (dev) { 1836 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1837 __func__, ac->id, dom); 1838 device_unregister(dev); 1839 } 1840 fallthrough; 1841 case 0: 1842 goto put_dev_and_continue; 1843 default: 1844 break; 1845 } 1846 /* if no queue device exists, create a new one */ 1847 if (!aq) { 1848 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1849 if (!aq) { 1850 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1851 __func__, ac->id, dom); 1852 continue; 1853 } 1854 aq->card = ac; 1855 aq->config = !decfg; 1856 aq->chkstop = chkstop; 1857 aq->se_bstate = hwinfo.bs; 1858 dev = &aq->ap_dev.device; 1859 dev->bus = &ap_bus_type; 1860 dev->parent = &ac->ap_dev.device; 1861 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1862 /* register queue device */ 1863 rc = device_register(dev); 1864 if (rc) { 1865 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1866 __func__, ac->id, dom); 1867 goto put_dev_and_continue; 1868 } 1869 /* get it and thus adjust reference counter */ 1870 get_device(dev); 1871 if (decfg) { 1872 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1873 __func__, ac->id, dom); 1874 } else if (chkstop) { 1875 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1876 __func__, ac->id, dom); 1877 } else { 1878 /* nudge the queue's state machine */ 1879 ap_queue_init_state(aq); 1880 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1881 __func__, ac->id, dom); 1882 } 1883 goto put_dev_and_continue; 1884 } 1885 /* handle state changes on already existing queue device */ 1886 spin_lock_bh(&aq->lock); 1887 /* SE bind state */ 1888 aq->se_bstate = hwinfo.bs; 1889 /* checkstop state */ 1890 if (chkstop && !aq->chkstop) { 1891 /* checkstop on */ 1892 aq->chkstop = true; 1893 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1894 aq->dev_state = AP_DEV_STATE_ERROR; 1895 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1896 } 1897 spin_unlock_bh(&aq->lock); 1898 pr_debug("%s(%d,%d) queue dev checkstop on\n", 1899 __func__, ac->id, dom); 1900 /* 'receive' pending messages with -EAGAIN */ 1901 ap_flush_queue(aq); 1902 goto put_dev_and_continue; 1903 } else if (!chkstop && aq->chkstop) { 1904 /* checkstop off */ 1905 aq->chkstop = false; 1906 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1907 _ap_queue_init_state(aq); 1908 spin_unlock_bh(&aq->lock); 1909 pr_debug("%s(%d,%d) queue dev checkstop off\n", 1910 __func__, ac->id, dom); 1911 goto put_dev_and_continue; 1912 } 1913 /* config state change */ 1914 if (decfg && aq->config) { 1915 /* config off this queue device */ 1916 aq->config = false; 1917 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1918 aq->dev_state = AP_DEV_STATE_ERROR; 1919 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1920 } 1921 spin_unlock_bh(&aq->lock); 1922 pr_debug("%s(%d,%d) queue dev config off\n", 1923 __func__, ac->id, dom); 1924 ap_send_config_uevent(&aq->ap_dev, aq->config); 1925 /* 'receive' pending messages with -EAGAIN */ 1926 ap_flush_queue(aq); 1927 goto put_dev_and_continue; 1928 } else if (!decfg && !aq->config) { 1929 /* config on this queue device */ 1930 aq->config = true; 1931 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1932 _ap_queue_init_state(aq); 1933 spin_unlock_bh(&aq->lock); 1934 pr_debug("%s(%d,%d) queue dev config on\n", 1935 __func__, ac->id, dom); 1936 ap_send_config_uevent(&aq->ap_dev, aq->config); 1937 goto put_dev_and_continue; 1938 } 1939 /* handle other error states */ 1940 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1941 spin_unlock_bh(&aq->lock); 1942 /* 'receive' pending messages with -EAGAIN */ 1943 ap_flush_queue(aq); 1944 /* re-init (with reset) the queue device */ 1945 ap_queue_init_state(aq); 1946 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1947 __func__, ac->id, dom); 1948 goto put_dev_and_continue; 1949 } 1950 spin_unlock_bh(&aq->lock); 1951 put_dev_and_continue: 1952 put_device(dev); 1953 } 1954 } 1955 1956 /* 1957 * Helper function for ap_scan_bus(). 1958 * Does the scan bus job for the given adapter id. 1959 */ 1960 static inline void ap_scan_adapter(int ap) 1961 { 1962 struct ap_tapq_hwinfo hwinfo; 1963 int rc, dom, comp_type; 1964 bool decfg, chkstop; 1965 struct ap_card *ac; 1966 struct device *dev; 1967 ap_qid_t qid; 1968 1969 /* Is there currently a card device for this adapter ? */ 1970 dev = bus_find_device(&ap_bus_type, NULL, 1971 (void *)(long)ap, 1972 __match_card_device_with_id); 1973 ac = dev ? to_ap_card(dev) : NULL; 1974 1975 /* Adapter not in configuration ? */ 1976 if (!ap_test_config_card_id(ap)) { 1977 if (ac) { 1978 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 1979 __func__, ap); 1980 ap_scan_rm_card_dev_and_queue_devs(ac); 1981 put_device(dev); 1982 } 1983 return; 1984 } 1985 1986 /* 1987 * Adapter ap is valid in the current configuration. So do some checks: 1988 * If no card device exists, build one. If a card device exists, check 1989 * for type and functions changed. For all this we need to find a valid 1990 * APQN first. 1991 */ 1992 1993 for (dom = 0; dom <= ap_max_domain_id; dom++) 1994 if (ap_test_config_usage_domain(dom)) { 1995 qid = AP_MKQID(ap, dom); 1996 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0) 1997 break; 1998 } 1999 if (dom > ap_max_domain_id) { 2000 /* Could not find one valid APQN for this adapter */ 2001 if (ac) { 2002 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 2003 __func__, ap); 2004 ap_scan_rm_card_dev_and_queue_devs(ac); 2005 put_device(dev); 2006 } else { 2007 pr_debug("%s(%d) no type info (no APQN found), ignored\n", 2008 __func__, ap); 2009 } 2010 return; 2011 } 2012 if (!hwinfo.at) { 2013 /* No apdater type info available, an unusable adapter */ 2014 if (ac) { 2015 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 2016 __func__, ap); 2017 ap_scan_rm_card_dev_and_queue_devs(ac); 2018 put_device(dev); 2019 } else { 2020 pr_debug("%s(%d) no valid type (0) info, ignored\n", 2021 __func__, ap); 2022 } 2023 return; 2024 } 2025 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */ 2026 if (ac) { 2027 /* Check APQN against existing card device for changes */ 2028 if (ac->hwinfo.at != hwinfo.at) { 2029 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 2030 __func__, ap, hwinfo.at); 2031 ap_scan_rm_card_dev_and_queue_devs(ac); 2032 put_device(dev); 2033 ac = NULL; 2034 } else if (ac->hwinfo.fac != hwinfo.fac) { 2035 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 2036 __func__, ap, hwinfo.fac); 2037 ap_scan_rm_card_dev_and_queue_devs(ac); 2038 put_device(dev); 2039 ac = NULL; 2040 } else { 2041 /* handle checkstop state change */ 2042 if (chkstop && !ac->chkstop) { 2043 /* checkstop on */ 2044 ac->chkstop = true; 2045 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2046 __func__, ap); 2047 } else if (!chkstop && ac->chkstop) { 2048 /* checkstop off */ 2049 ac->chkstop = false; 2050 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2051 __func__, ap); 2052 } 2053 /* handle config state change */ 2054 if (decfg && ac->config) { 2055 ac->config = false; 2056 AP_DBF_INFO("%s(%d) card dev config off\n", 2057 __func__, ap); 2058 ap_send_config_uevent(&ac->ap_dev, ac->config); 2059 } else if (!decfg && !ac->config) { 2060 ac->config = true; 2061 AP_DBF_INFO("%s(%d) card dev config on\n", 2062 __func__, ap); 2063 ap_send_config_uevent(&ac->ap_dev, ac->config); 2064 } 2065 } 2066 } 2067 2068 if (!ac) { 2069 /* Build a new card device */ 2070 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac); 2071 if (!comp_type) { 2072 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2073 __func__, ap, hwinfo.at); 2074 return; 2075 } 2076 ac = ap_card_create(ap, hwinfo, comp_type); 2077 if (!ac) { 2078 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2079 __func__, ap); 2080 return; 2081 } 2082 ac->config = !decfg; 2083 ac->chkstop = chkstop; 2084 dev = &ac->ap_dev.device; 2085 dev->bus = &ap_bus_type; 2086 dev->parent = ap_root_device; 2087 dev_set_name(dev, "card%02x", ap); 2088 /* maybe enlarge ap_max_msg_size to support this card */ 2089 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2090 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2091 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2092 __func__, ap, 2093 atomic_read(&ap_max_msg_size)); 2094 } 2095 /* Register the new card device with AP bus */ 2096 rc = device_register(dev); 2097 if (rc) { 2098 AP_DBF_WARN("%s(%d) device_register() failed\n", 2099 __func__, ap); 2100 put_device(dev); 2101 return; 2102 } 2103 /* get it and thus adjust reference counter */ 2104 get_device(dev); 2105 if (decfg) 2106 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2107 __func__, ap, hwinfo.at, hwinfo.fac); 2108 else if (chkstop) 2109 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2110 __func__, ap, hwinfo.at, hwinfo.fac); 2111 else 2112 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2113 __func__, ap, hwinfo.at, hwinfo.fac); 2114 } 2115 2116 /* Verify the domains and the queue devices for this card */ 2117 ap_scan_domains(ac); 2118 2119 /* release the card device */ 2120 put_device(&ac->ap_dev.device); 2121 } 2122 2123 /** 2124 * ap_get_configuration - get the host AP configuration 2125 * 2126 * Stores the host AP configuration information returned from the previous call 2127 * to Query Configuration Information (QCI), then retrieves and stores the 2128 * current AP configuration returned from QCI. 2129 * 2130 * Return: true if the host AP configuration changed between calls to QCI; 2131 * otherwise, return false. 2132 */ 2133 static bool ap_get_configuration(void) 2134 { 2135 if (!ap_qci_info->flags) /* QCI not supported */ 2136 return false; 2137 2138 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2139 ap_qci(ap_qci_info); 2140 2141 return memcmp(ap_qci_info, ap_qci_info_old, 2142 sizeof(struct ap_config_info)) != 0; 2143 } 2144 2145 /* 2146 * ap_config_has_new_aps - Check current against old qci info if 2147 * new adapters have appeared. Returns true if at least one new 2148 * adapter in the apm mask is showing up. Existing adapters or 2149 * receding adapters are not counted. 2150 */ 2151 static bool ap_config_has_new_aps(void) 2152 { 2153 2154 unsigned long m[BITS_TO_LONGS(AP_DEVICES)]; 2155 2156 if (!ap_qci_info->flags) 2157 return false; 2158 2159 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm, 2160 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES); 2161 if (!bitmap_empty(m, AP_DEVICES)) 2162 return true; 2163 2164 return false; 2165 } 2166 2167 /* 2168 * ap_config_has_new_doms - Check current against old qci info if 2169 * new (usage) domains have appeared. Returns true if at least one 2170 * new domain in the aqm mask is showing up. Existing domains or 2171 * receding domains are not counted. 2172 */ 2173 static bool ap_config_has_new_doms(void) 2174 { 2175 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)]; 2176 2177 if (!ap_qci_info->flags) 2178 return false; 2179 2180 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm, 2181 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS); 2182 if (!bitmap_empty(m, AP_DOMAINS)) 2183 return true; 2184 2185 return false; 2186 } 2187 2188 /** 2189 * ap_scan_bus(): Scan the AP bus for new devices 2190 * Always run under mutex ap_scan_bus_mutex protection 2191 * which needs to get locked/unlocked by the caller! 2192 * Returns true if any config change has been detected 2193 * during the scan, otherwise false. 2194 */ 2195 static bool ap_scan_bus(void) 2196 { 2197 bool config_changed; 2198 int ap; 2199 2200 pr_debug(">%s\n", __func__); 2201 2202 /* (re-)fetch configuration via QCI */ 2203 config_changed = ap_get_configuration(); 2204 if (config_changed) { 2205 if (ap_config_has_new_aps() || ap_config_has_new_doms()) { 2206 /* 2207 * Appearance of new adapters and/or domains need to 2208 * build new ap devices which need to get bound to an 2209 * device driver. Thus reset the APQN bindings complete 2210 * completion. 2211 */ 2212 reinit_completion(&ap_apqn_bindings_complete); 2213 } 2214 /* post a config change notify */ 2215 notify_config_changed(); 2216 } 2217 ap_select_domain(); 2218 2219 /* loop over all possible adapters */ 2220 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2221 ap_scan_adapter(ap); 2222 2223 /* scan complete notify */ 2224 if (config_changed) 2225 notify_scan_complete(); 2226 2227 /* check if there is at least one queue available with default domain */ 2228 if (ap_domain_index >= 0) { 2229 struct device *dev = 2230 bus_find_device(&ap_bus_type, NULL, 2231 (void *)(long)ap_domain_index, 2232 __match_queue_device_with_queue_id); 2233 if (dev) 2234 put_device(dev); 2235 else 2236 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2237 __func__, ap_domain_index); 2238 } 2239 2240 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2241 pr_debug("%s init scan complete\n", __func__); 2242 ap_send_init_scan_done_uevent(); 2243 } 2244 2245 ap_check_bindings_complete(); 2246 2247 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 2248 2249 pr_debug("<%s config_changed=%d\n", __func__, config_changed); 2250 2251 return config_changed; 2252 } 2253 2254 /* 2255 * Callback for the ap_scan_bus_timer 2256 * Runs periodically, workqueue timer (ap_scan_bus_time) 2257 */ 2258 static void ap_scan_bus_timer_callback(struct timer_list *unused) 2259 { 2260 /* 2261 * schedule work into the system long wq which when 2262 * the work is finally executed, calls the AP bus scan. 2263 */ 2264 queue_work(system_long_wq, &ap_scan_bus_work); 2265 } 2266 2267 /* 2268 * Callback for the ap_scan_bus_work 2269 */ 2270 static void ap_scan_bus_wq_callback(struct work_struct *unused) 2271 { 2272 /* 2273 * Try to invoke an ap_scan_bus(). If the mutex acquisition 2274 * fails there is currently another task already running the 2275 * AP scan bus and there is no need to wait and re-trigger the 2276 * scan again. Please note at the end of the scan bus function 2277 * the AP scan bus timer is re-armed which triggers then the 2278 * ap_scan_bus_timer_callback which enqueues a work into the 2279 * system_long_wq which invokes this function here again. 2280 */ 2281 if (mutex_trylock(&ap_scan_bus_mutex)) { 2282 ap_scan_bus_result = ap_scan_bus(); 2283 mutex_unlock(&ap_scan_bus_mutex); 2284 } 2285 } 2286 2287 static inline void __exit ap_async_exit(void) 2288 { 2289 if (ap_thread_flag) 2290 ap_poll_thread_stop(); 2291 chsc_notifier_unregister(&ap_bus_nb); 2292 cancel_work(&ap_scan_bus_work); 2293 hrtimer_cancel(&ap_poll_timer); 2294 timer_delete(&ap_scan_bus_timer); 2295 } 2296 2297 static inline int __init ap_async_init(void) 2298 { 2299 int rc; 2300 2301 /* Setup the AP bus rescan timer. */ 2302 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0); 2303 2304 /* 2305 * Setup the high resolution poll timer. 2306 * If we are running under z/VM adjust polling to z/VM polling rate. 2307 */ 2308 if (MACHINE_IS_VM) 2309 poll_high_timeout = 1500000; 2310 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2311 ap_poll_timer.function = ap_poll_timeout; 2312 2313 queue_work(system_long_wq, &ap_scan_bus_work); 2314 2315 rc = chsc_notifier_register(&ap_bus_nb); 2316 if (rc) 2317 goto out; 2318 2319 /* Start the low priority AP bus poll thread. */ 2320 if (!ap_thread_flag) 2321 return 0; 2322 2323 rc = ap_poll_thread_start(); 2324 if (rc) 2325 goto out_notifier; 2326 2327 return 0; 2328 2329 out_notifier: 2330 chsc_notifier_unregister(&ap_bus_nb); 2331 out: 2332 cancel_work(&ap_scan_bus_work); 2333 hrtimer_cancel(&ap_poll_timer); 2334 timer_delete(&ap_scan_bus_timer); 2335 return rc; 2336 } 2337 2338 static inline void ap_irq_exit(void) 2339 { 2340 if (ap_irq_flag) 2341 unregister_adapter_interrupt(&ap_airq); 2342 } 2343 2344 static inline int __init ap_irq_init(void) 2345 { 2346 int rc; 2347 2348 if (!ap_interrupts_available() || !ap_useirq) 2349 return 0; 2350 2351 rc = register_adapter_interrupt(&ap_airq); 2352 ap_irq_flag = (rc == 0); 2353 2354 return rc; 2355 } 2356 2357 static inline void ap_debug_exit(void) 2358 { 2359 debug_unregister(ap_dbf_info); 2360 } 2361 2362 static inline int __init ap_debug_init(void) 2363 { 2364 ap_dbf_info = debug_register("ap", 2, 1, 2365 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2366 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2367 debug_set_level(ap_dbf_info, DBF_ERR); 2368 2369 return 0; 2370 } 2371 2372 static void __init ap_perms_init(void) 2373 { 2374 /* all resources usable if no kernel parameter string given */ 2375 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2376 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2377 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2378 2379 /* apm kernel parameter string */ 2380 if (apm_str) { 2381 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2382 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2383 &ap_perms_mutex); 2384 } 2385 2386 /* aqm kernel parameter string */ 2387 if (aqm_str) { 2388 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2389 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2390 &ap_perms_mutex); 2391 } 2392 } 2393 2394 /** 2395 * ap_module_init(): The module initialization code. 2396 * 2397 * Initializes the module. 2398 */ 2399 static int __init ap_module_init(void) 2400 { 2401 int rc; 2402 2403 rc = ap_debug_init(); 2404 if (rc) 2405 return rc; 2406 2407 if (!ap_instructions_available()) { 2408 pr_warn("The hardware system does not support AP instructions\n"); 2409 return -ENODEV; 2410 } 2411 2412 /* init ap_queue hashtable */ 2413 hash_init(ap_queues); 2414 2415 /* set up the AP permissions (ioctls, ap and aq masks) */ 2416 ap_perms_init(); 2417 2418 /* Get AP configuration data if available */ 2419 ap_init_qci_info(); 2420 2421 /* check default domain setting */ 2422 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2423 (ap_domain_index >= 0 && 2424 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2425 pr_warn("%d is not a valid cryptographic domain\n", 2426 ap_domain_index); 2427 ap_domain_index = -1; 2428 } 2429 2430 /* Create /sys/bus/ap. */ 2431 rc = bus_register(&ap_bus_type); 2432 if (rc) 2433 goto out; 2434 2435 /* Create /sys/devices/ap. */ 2436 ap_root_device = root_device_register("ap"); 2437 rc = PTR_ERR_OR_ZERO(ap_root_device); 2438 if (rc) 2439 goto out_bus; 2440 ap_root_device->bus = &ap_bus_type; 2441 2442 /* enable interrupts if available */ 2443 rc = ap_irq_init(); 2444 if (rc) 2445 goto out_device; 2446 2447 /* Setup asynchronous work (timers, workqueue, etc). */ 2448 rc = ap_async_init(); 2449 if (rc) 2450 goto out_irq; 2451 2452 return 0; 2453 2454 out_irq: 2455 ap_irq_exit(); 2456 out_device: 2457 root_device_unregister(ap_root_device); 2458 out_bus: 2459 bus_unregister(&ap_bus_type); 2460 out: 2461 ap_debug_exit(); 2462 return rc; 2463 } 2464 2465 static void __exit ap_module_exit(void) 2466 { 2467 ap_async_exit(); 2468 ap_irq_exit(); 2469 root_device_unregister(ap_root_device); 2470 bus_unregister(&ap_bus_type); 2471 ap_debug_exit(); 2472 } 2473 2474 module_init(ap_module_init); 2475 module_exit(ap_module_exit); 2476