1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2023 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/export.h> 20 #include <linux/init.h> 21 #include <linux/delay.h> 22 #include <linux/err.h> 23 #include <linux/freezer.h> 24 #include <linux/interrupt.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/notifier.h> 28 #include <linux/kthread.h> 29 #include <linux/mutex.h> 30 #include <asm/machine.h> 31 #include <asm/airq.h> 32 #include <asm/tpi.h> 33 #include <linux/atomic.h> 34 #include <asm/isc.h> 35 #include <linux/hrtimer.h> 36 #include <linux/ktime.h> 37 #include <asm/facility.h> 38 #include <linux/crypto.h> 39 #include <linux/mod_devicetable.h> 40 #include <linux/debugfs.h> 41 #include <linux/ctype.h> 42 #include <linux/module.h> 43 #include <asm/uv.h> 44 #include <asm/chsc.h> 45 #include <linux/mempool.h> 46 47 #include "ap_bus.h" 48 #include "ap_debug.h" 49 50 MODULE_AUTHOR("IBM Corporation"); 51 MODULE_DESCRIPTION("Adjunct Processor Bus driver"); 52 MODULE_LICENSE("GPL"); 53 54 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 55 static DEFINE_SPINLOCK(ap_domain_lock); 56 module_param_named(domain, ap_domain_index, int, 0440); 57 MODULE_PARM_DESC(domain, "domain index for ap devices"); 58 EXPORT_SYMBOL(ap_domain_index); 59 60 static int ap_thread_flag; 61 module_param_named(poll_thread, ap_thread_flag, int, 0440); 62 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 63 64 static char *apm_str; 65 module_param_named(apmask, apm_str, charp, 0440); 66 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 67 68 static char *aqm_str; 69 module_param_named(aqmask, aqm_str, charp, 0440); 70 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 71 72 static int ap_useirq = 1; 73 module_param_named(useirq, ap_useirq, int, 0440); 74 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 75 76 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 77 EXPORT_SYMBOL(ap_max_msg_size); 78 79 static struct device *ap_root_device; 80 81 /* Hashtable of all queue devices on the AP bus */ 82 DEFINE_HASHTABLE(ap_queues, 8); 83 /* lock used for the ap_queues hashtable */ 84 DEFINE_SPINLOCK(ap_queues_lock); 85 86 /* Default permissions (ioctl, card and domain masking) */ 87 struct ap_perms ap_perms; 88 EXPORT_SYMBOL(ap_perms); 89 DEFINE_MUTEX(ap_perms_mutex); 90 EXPORT_SYMBOL(ap_perms_mutex); 91 92 /* # of bindings complete since init */ 93 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 94 95 /* completion for APQN bindings complete */ 96 static DECLARE_COMPLETION(ap_apqn_bindings_complete); 97 98 static struct ap_config_info qci[2]; 99 static struct ap_config_info *const ap_qci_info = &qci[0]; 100 static struct ap_config_info *const ap_qci_info_old = &qci[1]; 101 102 /* 103 * AP bus related debug feature things. 104 */ 105 debug_info_t *ap_dbf_info; 106 107 /* 108 * There is a need for a do-not-allocate-memory path through the AP bus 109 * layer. The pkey layer may be triggered via the in-kernel interface from 110 * a protected key crypto algorithm (namely PAES) to convert a secure key 111 * into a protected key. This happens in a workqueue context, so sleeping 112 * is allowed but memory allocations causing IO operations are not permitted. 113 * To accomplish this, an AP message memory pool with pre-allocated space 114 * is established. When ap_init_apmsg() with use_mempool set to true is 115 * called, instead of kmalloc() the ap message buffer is allocated from 116 * the ap_msg_pool. This pool only holds a limited amount of buffers: 117 * ap_msg_pool_min_items with the item size AP_DEFAULT_MAX_MSG_SIZE and 118 * exactly one of these items (if available) is returned if ap_init_apmsg() 119 * with the use_mempool arg set to true is called. When this pool is exhausted 120 * and use_mempool is set true, ap_init_apmsg() returns -ENOMEM without 121 * any attempt to allocate memory and the caller has to deal with that. 122 */ 123 static mempool_t *ap_msg_pool; 124 static unsigned int ap_msg_pool_min_items = 8; 125 module_param_named(msgpool_min_items, ap_msg_pool_min_items, uint, 0440); 126 MODULE_PARM_DESC(msgpool_min_items, "AP message pool minimal items"); 127 128 /* 129 * AP bus rescan related things. 130 */ 131 static bool ap_scan_bus(void); 132 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */ 133 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */ 134 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */ 135 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */ 136 static int ap_scan_bus_time = AP_CONFIG_TIME; 137 static struct timer_list ap_scan_bus_timer; 138 static void ap_scan_bus_wq_callback(struct work_struct *); 139 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback); 140 141 /* 142 * Tasklet & timer for AP request polling and interrupts 143 */ 144 static void ap_tasklet_fn(unsigned long); 145 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 146 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 147 static struct task_struct *ap_poll_kthread; 148 static DEFINE_MUTEX(ap_poll_thread_mutex); 149 static DEFINE_SPINLOCK(ap_poll_timer_lock); 150 static struct hrtimer ap_poll_timer; 151 /* 152 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 153 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 154 */ 155 static unsigned long poll_high_timeout = 250000UL; 156 157 /* 158 * Some state machine states only require a low frequency polling. 159 * We use 25 Hz frequency for these. 160 */ 161 static unsigned long poll_low_timeout = 40000000UL; 162 163 /* Maximum domain id, if not given via qci */ 164 static int ap_max_domain_id = 15; 165 /* Maximum adapter id, if not given via qci */ 166 static int ap_max_adapter_id = 63; 167 168 static const struct bus_type ap_bus_type; 169 170 /* Adapter interrupt definitions */ 171 static void ap_interrupt_handler(struct airq_struct *airq, 172 struct tpi_info *tpi_info); 173 174 static bool ap_irq_flag; 175 176 static struct airq_struct ap_airq = { 177 .handler = ap_interrupt_handler, 178 .isc = AP_ISC, 179 }; 180 181 /** 182 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 183 * 184 * Returns the address of the local-summary-indicator of the adapter 185 * interrupt handler for AP, or NULL if adapter interrupts are not 186 * available. 187 */ 188 void *ap_airq_ptr(void) 189 { 190 if (ap_irq_flag) 191 return ap_airq.lsi_ptr; 192 return NULL; 193 } 194 195 /** 196 * ap_interrupts_available(): Test if AP interrupts are available. 197 * 198 * Returns 1 if AP interrupts are available. 199 */ 200 static int ap_interrupts_available(void) 201 { 202 return test_facility(65); 203 } 204 205 /** 206 * ap_qci_available(): Test if AP configuration 207 * information can be queried via QCI subfunction. 208 * 209 * Returns 1 if subfunction PQAP(QCI) is available. 210 */ 211 static int ap_qci_available(void) 212 { 213 return test_facility(12); 214 } 215 216 /** 217 * ap_apft_available(): Test if AP facilities test (APFT) 218 * facility is available. 219 * 220 * Returns 1 if APFT is available. 221 */ 222 static int ap_apft_available(void) 223 { 224 return test_facility(15); 225 } 226 227 /* 228 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 229 * 230 * Returns 1 if the QACT subfunction is available. 231 */ 232 static inline int ap_qact_available(void) 233 { 234 return ap_qci_info->qact; 235 } 236 237 /* 238 * ap_sb_available(): Test if the AP secure binding facility is available. 239 * 240 * Returns 1 if secure binding facility is available. 241 */ 242 int ap_sb_available(void) 243 { 244 return ap_qci_info->apsb; 245 } 246 247 /* 248 * ap_is_se_guest(): Check for SE guest with AP pass-through support. 249 */ 250 bool ap_is_se_guest(void) 251 { 252 return is_prot_virt_guest() && ap_sb_available(); 253 } 254 EXPORT_SYMBOL(ap_is_se_guest); 255 256 /** 257 * ap_init_qci_info(): Allocate and query qci config info. 258 * Does also update the static variables ap_max_domain_id 259 * and ap_max_adapter_id if this info is available. 260 */ 261 static void __init ap_init_qci_info(void) 262 { 263 if (!ap_qci_available() || 264 ap_qci(ap_qci_info)) { 265 AP_DBF_INFO("%s QCI not supported\n", __func__); 266 return; 267 } 268 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 269 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 270 271 if (ap_qci_info->apxa) { 272 if (ap_qci_info->na) { 273 ap_max_adapter_id = ap_qci_info->na; 274 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 275 __func__, ap_max_adapter_id); 276 } 277 if (ap_qci_info->nd) { 278 ap_max_domain_id = ap_qci_info->nd; 279 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 280 __func__, ap_max_domain_id); 281 } 282 } 283 } 284 285 /* 286 * ap_test_config(): helper function to extract the nrth bit 287 * within the unsigned int array field. 288 */ 289 static inline int ap_test_config(unsigned int *field, unsigned int nr) 290 { 291 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 292 } 293 294 /* 295 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 296 * 297 * Returns 0 if the card is not configured 298 * 1 if the card is configured or 299 * if the configuration information is not available 300 */ 301 static inline int ap_test_config_card_id(unsigned int id) 302 { 303 if (id > ap_max_adapter_id) 304 return 0; 305 if (ap_qci_info->flags) 306 return ap_test_config(ap_qci_info->apm, id); 307 return 1; 308 } 309 310 /* 311 * ap_test_config_usage_domain(): Test, whether an AP usage domain 312 * is configured. 313 * 314 * Returns 0 if the usage domain is not configured 315 * 1 if the usage domain is configured or 316 * if the configuration information is not available 317 */ 318 int ap_test_config_usage_domain(unsigned int domain) 319 { 320 if (domain > ap_max_domain_id) 321 return 0; 322 if (ap_qci_info->flags) 323 return ap_test_config(ap_qci_info->aqm, domain); 324 return 1; 325 } 326 EXPORT_SYMBOL(ap_test_config_usage_domain); 327 328 /* 329 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 330 * is configured. 331 * @domain AP control domain ID 332 * 333 * Returns 1 if the control domain is configured 334 * 0 in all other cases 335 */ 336 int ap_test_config_ctrl_domain(unsigned int domain) 337 { 338 if (!ap_qci_info || domain > ap_max_domain_id) 339 return 0; 340 return ap_test_config(ap_qci_info->adm, domain); 341 } 342 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 343 344 /* 345 * ap_queue_info(): Check and get AP queue info. 346 * Returns: 1 if APQN exists and info is filled, 347 * 0 if APQN seems to exist but there is no info 348 * available (eg. caused by an asynch pending error) 349 * -1 invalid APQN, TAPQ error or AP queue status which 350 * indicates there is no APQN. 351 */ 352 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo, 353 bool *decfg, bool *cstop) 354 { 355 struct ap_queue_status status; 356 357 hwinfo->value = 0; 358 359 /* make sure we don't run into a specifiation exception */ 360 if (AP_QID_CARD(qid) > ap_max_adapter_id || 361 AP_QID_QUEUE(qid) > ap_max_domain_id) 362 return -1; 363 364 /* call TAPQ on this APQN */ 365 status = ap_test_queue(qid, ap_apft_available(), hwinfo); 366 367 switch (status.response_code) { 368 case AP_RESPONSE_NORMAL: 369 case AP_RESPONSE_RESET_IN_PROGRESS: 370 case AP_RESPONSE_DECONFIGURED: 371 case AP_RESPONSE_CHECKSTOPPED: 372 case AP_RESPONSE_BUSY: 373 /* For all these RCs the tapq info should be available */ 374 break; 375 default: 376 /* On a pending async error the info should be available */ 377 if (!status.async) 378 return -1; 379 break; 380 } 381 382 /* There should be at least one of the mode bits set */ 383 if (WARN_ON_ONCE(!hwinfo->value)) 384 return 0; 385 386 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 387 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 388 389 return 1; 390 } 391 392 void ap_wait(enum ap_sm_wait wait) 393 { 394 ktime_t hr_time; 395 396 switch (wait) { 397 case AP_SM_WAIT_AGAIN: 398 case AP_SM_WAIT_INTERRUPT: 399 if (ap_irq_flag) 400 break; 401 if (ap_poll_kthread) { 402 wake_up(&ap_poll_wait); 403 break; 404 } 405 fallthrough; 406 case AP_SM_WAIT_LOW_TIMEOUT: 407 case AP_SM_WAIT_HIGH_TIMEOUT: 408 spin_lock_bh(&ap_poll_timer_lock); 409 if (!hrtimer_is_queued(&ap_poll_timer)) { 410 hr_time = 411 wait == AP_SM_WAIT_LOW_TIMEOUT ? 412 poll_low_timeout : poll_high_timeout; 413 hrtimer_forward_now(&ap_poll_timer, hr_time); 414 hrtimer_restart(&ap_poll_timer); 415 } 416 spin_unlock_bh(&ap_poll_timer_lock); 417 break; 418 case AP_SM_WAIT_NONE: 419 default: 420 break; 421 } 422 } 423 424 /** 425 * ap_request_timeout(): Handling of request timeouts 426 * @t: timer making this callback 427 * 428 * Handles request timeouts. 429 */ 430 void ap_request_timeout(struct timer_list *t) 431 { 432 struct ap_queue *aq = timer_container_of(aq, t, timeout); 433 434 spin_lock_bh(&aq->lock); 435 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 436 spin_unlock_bh(&aq->lock); 437 } 438 439 /** 440 * ap_poll_timeout(): AP receive polling for finished AP requests. 441 * @unused: Unused pointer. 442 * 443 * Schedules the AP tasklet using a high resolution timer. 444 */ 445 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 446 { 447 tasklet_schedule(&ap_tasklet); 448 return HRTIMER_NORESTART; 449 } 450 451 /** 452 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 453 * @airq: pointer to adapter interrupt descriptor 454 * @tpi_info: ignored 455 */ 456 static void ap_interrupt_handler(struct airq_struct *airq, 457 struct tpi_info *tpi_info) 458 { 459 inc_irq_stat(IRQIO_APB); 460 tasklet_schedule(&ap_tasklet); 461 } 462 463 /** 464 * ap_tasklet_fn(): Tasklet to poll all AP devices. 465 * @dummy: Unused variable 466 * 467 * Poll all AP devices on the bus. 468 */ 469 static void ap_tasklet_fn(unsigned long dummy) 470 { 471 int bkt; 472 struct ap_queue *aq; 473 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 474 475 /* Reset the indicator if interrupts are used. Thus new interrupts can 476 * be received. Doing it in the beginning of the tasklet is therefore 477 * important that no requests on any AP get lost. 478 */ 479 if (ap_irq_flag) 480 WRITE_ONCE(*ap_airq.lsi_ptr, 0); 481 482 spin_lock_bh(&ap_queues_lock); 483 hash_for_each(ap_queues, bkt, aq, hnode) { 484 spin_lock_bh(&aq->lock); 485 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 486 spin_unlock_bh(&aq->lock); 487 } 488 spin_unlock_bh(&ap_queues_lock); 489 490 ap_wait(wait); 491 } 492 493 static int ap_pending_requests(void) 494 { 495 int bkt; 496 struct ap_queue *aq; 497 498 spin_lock_bh(&ap_queues_lock); 499 hash_for_each(ap_queues, bkt, aq, hnode) { 500 if (aq->queue_count == 0) 501 continue; 502 spin_unlock_bh(&ap_queues_lock); 503 return 1; 504 } 505 spin_unlock_bh(&ap_queues_lock); 506 return 0; 507 } 508 509 /** 510 * ap_poll_thread(): Thread that polls for finished requests. 511 * @data: Unused pointer 512 * 513 * AP bus poll thread. The purpose of this thread is to poll for 514 * finished requests in a loop if there is a "free" cpu - that is 515 * a cpu that doesn't have anything better to do. The polling stops 516 * as soon as there is another task or if all messages have been 517 * delivered. 518 */ 519 static int ap_poll_thread(void *data) 520 { 521 DECLARE_WAITQUEUE(wait, current); 522 523 set_user_nice(current, MAX_NICE); 524 set_freezable(); 525 while (!kthread_should_stop()) { 526 add_wait_queue(&ap_poll_wait, &wait); 527 set_current_state(TASK_INTERRUPTIBLE); 528 if (!ap_pending_requests()) { 529 schedule(); 530 try_to_freeze(); 531 } 532 set_current_state(TASK_RUNNING); 533 remove_wait_queue(&ap_poll_wait, &wait); 534 if (need_resched()) { 535 schedule(); 536 try_to_freeze(); 537 continue; 538 } 539 ap_tasklet_fn(0); 540 } 541 542 return 0; 543 } 544 545 static int ap_poll_thread_start(void) 546 { 547 int rc; 548 549 if (ap_irq_flag || ap_poll_kthread) 550 return 0; 551 mutex_lock(&ap_poll_thread_mutex); 552 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 553 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 554 if (rc) 555 ap_poll_kthread = NULL; 556 mutex_unlock(&ap_poll_thread_mutex); 557 return rc; 558 } 559 560 static void ap_poll_thread_stop(void) 561 { 562 if (!ap_poll_kthread) 563 return; 564 mutex_lock(&ap_poll_thread_mutex); 565 kthread_stop(ap_poll_kthread); 566 ap_poll_kthread = NULL; 567 mutex_unlock(&ap_poll_thread_mutex); 568 } 569 570 #define is_card_dev(x) ((x)->parent == ap_root_device) 571 #define is_queue_dev(x) ((x)->parent != ap_root_device) 572 573 /* 574 * ap_init_apmsg() - Initialize ap_message. 575 */ 576 int ap_init_apmsg(struct ap_message *ap_msg, u32 flags) 577 { 578 unsigned int maxmsgsize; 579 580 memset(ap_msg, 0, sizeof(*ap_msg)); 581 ap_msg->flags = flags; 582 583 if (flags & AP_MSG_FLAG_MEMPOOL) { 584 ap_msg->msg = mempool_alloc_preallocated(ap_msg_pool); 585 if (!ap_msg->msg) 586 return -ENOMEM; 587 ap_msg->bufsize = AP_DEFAULT_MAX_MSG_SIZE; 588 return 0; 589 } 590 591 maxmsgsize = atomic_read(&ap_max_msg_size); 592 ap_msg->msg = kmalloc(maxmsgsize, GFP_KERNEL); 593 if (!ap_msg->msg) 594 return -ENOMEM; 595 ap_msg->bufsize = maxmsgsize; 596 597 return 0; 598 } 599 EXPORT_SYMBOL(ap_init_apmsg); 600 601 /* 602 * ap_release_apmsg() - Release ap_message. 603 */ 604 void ap_release_apmsg(struct ap_message *ap_msg) 605 { 606 if (ap_msg->flags & AP_MSG_FLAG_MEMPOOL) { 607 memzero_explicit(ap_msg->msg, ap_msg->bufsize); 608 mempool_free(ap_msg->msg, ap_msg_pool); 609 } else { 610 kfree_sensitive(ap_msg->msg); 611 } 612 } 613 EXPORT_SYMBOL(ap_release_apmsg); 614 615 /** 616 * ap_bus_match() 617 * @dev: Pointer to device 618 * @drv: Pointer to device_driver 619 * 620 * AP bus driver registration/unregistration. 621 */ 622 static int ap_bus_match(struct device *dev, const struct device_driver *drv) 623 { 624 const struct ap_driver *ap_drv = to_ap_drv(drv); 625 struct ap_device_id *id; 626 627 /* 628 * Compare device type of the device with the list of 629 * supported types of the device_driver. 630 */ 631 for (id = ap_drv->ids; id->match_flags; id++) { 632 if (is_card_dev(dev) && 633 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 634 id->dev_type == to_ap_dev(dev)->device_type) 635 return 1; 636 if (is_queue_dev(dev) && 637 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 638 id->dev_type == to_ap_dev(dev)->device_type) 639 return 1; 640 } 641 return 0; 642 } 643 644 /** 645 * ap_uevent(): Uevent function for AP devices. 646 * @dev: Pointer to device 647 * @env: Pointer to kobj_uevent_env 648 * 649 * It sets up a single environment variable DEV_TYPE which contains the 650 * hardware device type. 651 */ 652 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env) 653 { 654 int rc = 0; 655 const struct ap_device *ap_dev = to_ap_dev(dev); 656 657 /* Uevents from ap bus core don't need extensions to the env */ 658 if (dev == ap_root_device) 659 return 0; 660 661 if (is_card_dev(dev)) { 662 struct ap_card *ac = to_ap_card(&ap_dev->device); 663 664 /* Set up DEV_TYPE environment variable. */ 665 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 666 if (rc) 667 return rc; 668 /* Add MODALIAS= */ 669 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 670 if (rc) 671 return rc; 672 673 /* Add MODE=<accel|cca|ep11> */ 674 if (ac->hwinfo.accel) 675 rc = add_uevent_var(env, "MODE=accel"); 676 else if (ac->hwinfo.cca) 677 rc = add_uevent_var(env, "MODE=cca"); 678 else if (ac->hwinfo.ep11) 679 rc = add_uevent_var(env, "MODE=ep11"); 680 if (rc) 681 return rc; 682 } else { 683 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 684 685 /* Add MODE=<accel|cca|ep11> */ 686 if (aq->card->hwinfo.accel) 687 rc = add_uevent_var(env, "MODE=accel"); 688 else if (aq->card->hwinfo.cca) 689 rc = add_uevent_var(env, "MODE=cca"); 690 else if (aq->card->hwinfo.ep11) 691 rc = add_uevent_var(env, "MODE=ep11"); 692 if (rc) 693 return rc; 694 } 695 696 return 0; 697 } 698 699 static void ap_send_init_scan_done_uevent(void) 700 { 701 char *envp[] = { "INITSCAN=done", NULL }; 702 703 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 704 } 705 706 static void ap_send_bindings_complete_uevent(void) 707 { 708 char buf[32]; 709 char *envp[] = { "BINDINGS=complete", buf, NULL }; 710 711 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 712 atomic64_inc_return(&ap_bindings_complete_count)); 713 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 714 } 715 716 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 717 { 718 char buf[16]; 719 char *envp[] = { buf, NULL }; 720 721 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 722 723 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 724 } 725 EXPORT_SYMBOL(ap_send_config_uevent); 726 727 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 728 { 729 char buf[16]; 730 char *envp[] = { buf, NULL }; 731 732 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 733 734 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 735 } 736 EXPORT_SYMBOL(ap_send_online_uevent); 737 738 static void ap_send_mask_changed_uevent(unsigned long *newapm, 739 unsigned long *newaqm) 740 { 741 char buf[100]; 742 char *envp[] = { buf, NULL }; 743 744 if (newapm) 745 snprintf(buf, sizeof(buf), 746 "APMASK=0x%016lx%016lx%016lx%016lx\n", 747 newapm[0], newapm[1], newapm[2], newapm[3]); 748 else 749 snprintf(buf, sizeof(buf), 750 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 751 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 752 753 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 754 } 755 756 /* 757 * calc # of bound APQNs 758 */ 759 760 struct __ap_calc_ctrs { 761 unsigned int apqns; 762 unsigned int bound; 763 }; 764 765 static int __ap_calc_helper(struct device *dev, void *arg) 766 { 767 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 768 769 if (is_queue_dev(dev)) { 770 pctrs->apqns++; 771 if (dev->driver) 772 pctrs->bound++; 773 } 774 775 return 0; 776 } 777 778 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 779 { 780 struct __ap_calc_ctrs ctrs; 781 782 memset(&ctrs, 0, sizeof(ctrs)); 783 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 784 785 *apqns = ctrs.apqns; 786 *bound = ctrs.bound; 787 } 788 789 /* 790 * After ap bus scan do check if all existing APQNs are 791 * bound to device drivers. 792 */ 793 static void ap_check_bindings_complete(void) 794 { 795 unsigned int apqns, bound; 796 797 if (atomic64_read(&ap_scan_bus_count) >= 1) { 798 ap_calc_bound_apqns(&apqns, &bound); 799 if (bound == apqns) { 800 if (!completion_done(&ap_apqn_bindings_complete)) { 801 complete_all(&ap_apqn_bindings_complete); 802 ap_send_bindings_complete_uevent(); 803 pr_debug("all apqn bindings complete\n"); 804 } 805 } 806 } 807 } 808 809 /* 810 * Interface to wait for the AP bus to have done one initial ap bus 811 * scan and all detected APQNs have been bound to device drivers. 812 * If these both conditions are not fulfilled, this function blocks 813 * on a condition with wait_for_completion_interruptible_timeout(). 814 * If these both conditions are fulfilled (before the timeout hits) 815 * the return value is 0. If the timeout (in jiffies) hits instead 816 * -ETIME is returned. On failures negative return values are 817 * returned to the caller. 818 */ 819 int ap_wait_apqn_bindings_complete(unsigned long timeout) 820 { 821 int rc = 0; 822 long l; 823 824 if (completion_done(&ap_apqn_bindings_complete)) 825 return 0; 826 827 if (timeout) 828 l = wait_for_completion_interruptible_timeout( 829 &ap_apqn_bindings_complete, timeout); 830 else 831 l = wait_for_completion_interruptible( 832 &ap_apqn_bindings_complete); 833 if (l < 0) 834 rc = l == -ERESTARTSYS ? -EINTR : l; 835 else if (l == 0 && timeout) 836 rc = -ETIME; 837 838 pr_debug("rc=%d\n", rc); 839 return rc; 840 } 841 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete); 842 843 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 844 { 845 if (is_queue_dev(dev) && 846 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 847 device_unregister(dev); 848 return 0; 849 } 850 851 static int __ap_revise_reserved(struct device *dev, void *dummy) 852 { 853 int rc, card, queue, devres, drvres; 854 855 if (is_queue_dev(dev)) { 856 card = AP_QID_CARD(to_ap_queue(dev)->qid); 857 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 858 mutex_lock(&ap_perms_mutex); 859 devres = test_bit_inv(card, ap_perms.apm) && 860 test_bit_inv(queue, ap_perms.aqm); 861 mutex_unlock(&ap_perms_mutex); 862 drvres = to_ap_drv(dev->driver)->flags 863 & AP_DRIVER_FLAG_DEFAULT; 864 if (!!devres != !!drvres) { 865 pr_debug("reprobing queue=%02x.%04x\n", card, queue); 866 rc = device_reprobe(dev); 867 if (rc) 868 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 869 __func__, card, queue); 870 } 871 } 872 873 return 0; 874 } 875 876 static void ap_bus_revise_bindings(void) 877 { 878 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 879 } 880 881 /** 882 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 883 * default host driver or not. 884 * @card: the APID of the adapter card to check 885 * @queue: the APQI of the queue to check 886 * 887 * Note: the ap_perms_mutex must be locked by the caller of this function. 888 * 889 * Return: an int specifying whether the AP adapter is reserved for the host (1) 890 * or not (0). 891 */ 892 int ap_owned_by_def_drv(int card, int queue) 893 { 894 int rc = 0; 895 896 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 897 return -EINVAL; 898 899 if (test_bit_inv(card, ap_perms.apm) && 900 test_bit_inv(queue, ap_perms.aqm)) 901 rc = 1; 902 903 return rc; 904 } 905 EXPORT_SYMBOL(ap_owned_by_def_drv); 906 907 /** 908 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 909 * a set is reserved for the host drivers 910 * or not. 911 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 912 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 913 * 914 * Note: the ap_perms_mutex must be locked by the caller of this function. 915 * 916 * Return: an int specifying whether each APQN is reserved for the host (1) or 917 * not (0) 918 */ 919 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 920 unsigned long *aqm) 921 { 922 int card, queue, rc = 0; 923 924 for (card = 0; !rc && card < AP_DEVICES; card++) 925 if (test_bit_inv(card, apm) && 926 test_bit_inv(card, ap_perms.apm)) 927 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 928 if (test_bit_inv(queue, aqm) && 929 test_bit_inv(queue, ap_perms.aqm)) 930 rc = 1; 931 932 return rc; 933 } 934 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 935 936 static int ap_device_probe(struct device *dev) 937 { 938 struct ap_device *ap_dev = to_ap_dev(dev); 939 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 940 int card, queue, devres, drvres, rc = -ENODEV; 941 942 if (!get_device(dev)) 943 return rc; 944 945 if (is_queue_dev(dev)) { 946 /* 947 * If the apqn is marked as reserved/used by ap bus and 948 * default drivers, only probe with drivers with the default 949 * flag set. If it is not marked, only probe with drivers 950 * with the default flag not set. 951 */ 952 card = AP_QID_CARD(to_ap_queue(dev)->qid); 953 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 954 mutex_lock(&ap_perms_mutex); 955 devres = test_bit_inv(card, ap_perms.apm) && 956 test_bit_inv(queue, ap_perms.aqm); 957 mutex_unlock(&ap_perms_mutex); 958 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 959 if (!!devres != !!drvres) 960 goto out; 961 } 962 963 /* 964 * Rearm the bindings complete completion to trigger 965 * bindings complete when all devices are bound again 966 */ 967 reinit_completion(&ap_apqn_bindings_complete); 968 969 /* Add queue/card to list of active queues/cards */ 970 spin_lock_bh(&ap_queues_lock); 971 if (is_queue_dev(dev)) 972 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 973 to_ap_queue(dev)->qid); 974 spin_unlock_bh(&ap_queues_lock); 975 976 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 977 978 if (rc) { 979 spin_lock_bh(&ap_queues_lock); 980 if (is_queue_dev(dev)) 981 hash_del(&to_ap_queue(dev)->hnode); 982 spin_unlock_bh(&ap_queues_lock); 983 } 984 985 out: 986 if (rc) 987 put_device(dev); 988 return rc; 989 } 990 991 static void ap_device_remove(struct device *dev) 992 { 993 struct ap_device *ap_dev = to_ap_dev(dev); 994 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 995 996 /* prepare ap queue device removal */ 997 if (is_queue_dev(dev)) 998 ap_queue_prepare_remove(to_ap_queue(dev)); 999 1000 /* driver's chance to clean up gracefully */ 1001 if (ap_drv->remove) 1002 ap_drv->remove(ap_dev); 1003 1004 /* now do the ap queue device remove */ 1005 if (is_queue_dev(dev)) 1006 ap_queue_remove(to_ap_queue(dev)); 1007 1008 /* Remove queue/card from list of active queues/cards */ 1009 spin_lock_bh(&ap_queues_lock); 1010 if (is_queue_dev(dev)) 1011 hash_del(&to_ap_queue(dev)->hnode); 1012 spin_unlock_bh(&ap_queues_lock); 1013 1014 put_device(dev); 1015 } 1016 1017 struct ap_queue *ap_get_qdev(ap_qid_t qid) 1018 { 1019 int bkt; 1020 struct ap_queue *aq; 1021 1022 spin_lock_bh(&ap_queues_lock); 1023 hash_for_each(ap_queues, bkt, aq, hnode) { 1024 if (aq->qid == qid) { 1025 get_device(&aq->ap_dev.device); 1026 spin_unlock_bh(&ap_queues_lock); 1027 return aq; 1028 } 1029 } 1030 spin_unlock_bh(&ap_queues_lock); 1031 1032 return NULL; 1033 } 1034 EXPORT_SYMBOL(ap_get_qdev); 1035 1036 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 1037 char *name) 1038 { 1039 struct device_driver *drv = &ap_drv->driver; 1040 int rc; 1041 1042 drv->bus = &ap_bus_type; 1043 drv->owner = owner; 1044 drv->name = name; 1045 rc = driver_register(drv); 1046 1047 ap_check_bindings_complete(); 1048 1049 return rc; 1050 } 1051 EXPORT_SYMBOL(ap_driver_register); 1052 1053 void ap_driver_unregister(struct ap_driver *ap_drv) 1054 { 1055 driver_unregister(&ap_drv->driver); 1056 } 1057 EXPORT_SYMBOL(ap_driver_unregister); 1058 1059 /* 1060 * Enforce a synchronous AP bus rescan. 1061 * Returns true if the bus scan finds a change in the AP configuration 1062 * and AP devices have been added or deleted when this function returns. 1063 */ 1064 bool ap_bus_force_rescan(void) 1065 { 1066 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count); 1067 bool rc = false; 1068 1069 pr_debug("> scan counter=%lu\n", scan_counter); 1070 1071 /* Only trigger AP bus scans after the initial scan is done */ 1072 if (scan_counter <= 0) 1073 goto out; 1074 1075 /* 1076 * There is one unlikely but nevertheless valid scenario where the 1077 * thread holding the mutex may try to send some crypto load but 1078 * all cards are offline so a rescan is triggered which causes 1079 * a recursive call of ap_bus_force_rescan(). A simple return if 1080 * the mutex is already locked by this thread solves this. 1081 */ 1082 if (mutex_is_locked(&ap_scan_bus_mutex)) { 1083 if (ap_scan_bus_task == current) 1084 goto out; 1085 } 1086 1087 /* Try to acquire the AP scan bus mutex */ 1088 if (mutex_trylock(&ap_scan_bus_mutex)) { 1089 /* mutex acquired, run the AP bus scan */ 1090 ap_scan_bus_task = current; 1091 ap_scan_bus_result = ap_scan_bus(); 1092 rc = ap_scan_bus_result; 1093 ap_scan_bus_task = NULL; 1094 mutex_unlock(&ap_scan_bus_mutex); 1095 goto out; 1096 } 1097 1098 /* 1099 * Mutex acquire failed. So there is currently another task 1100 * already running the AP bus scan. Then let's simple wait 1101 * for the lock which means the other task has finished and 1102 * stored the result in ap_scan_bus_result. 1103 */ 1104 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) { 1105 /* some error occurred, ignore and go out */ 1106 goto out; 1107 } 1108 rc = ap_scan_bus_result; 1109 mutex_unlock(&ap_scan_bus_mutex); 1110 1111 out: 1112 pr_debug("rc=%d\n", rc); 1113 return rc; 1114 } 1115 EXPORT_SYMBOL(ap_bus_force_rescan); 1116 1117 /* 1118 * A config change has happened, force an ap bus rescan. 1119 */ 1120 static int ap_bus_cfg_chg(struct notifier_block *nb, 1121 unsigned long action, void *data) 1122 { 1123 if (action != CHSC_NOTIFY_AP_CFG) 1124 return NOTIFY_DONE; 1125 1126 pr_debug("config change, forcing bus rescan\n"); 1127 1128 ap_bus_force_rescan(); 1129 1130 return NOTIFY_OK; 1131 } 1132 1133 static struct notifier_block ap_bus_nb = { 1134 .notifier_call = ap_bus_cfg_chg, 1135 }; 1136 1137 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1138 { 1139 int i, n, b; 1140 1141 /* bits needs to be a multiple of 8 */ 1142 if (bits & 0x07) 1143 return -EINVAL; 1144 1145 if (str[0] == '0' && str[1] == 'x') 1146 str++; 1147 if (*str == 'x') 1148 str++; 1149 1150 for (i = 0; isxdigit(*str) && i < bits; str++) { 1151 b = hex_to_bin(*str); 1152 for (n = 0; n < 4; n++) 1153 if (b & (0x08 >> n)) 1154 set_bit_inv(i + n, bitmap); 1155 i += 4; 1156 } 1157 1158 if (*str == '\n') 1159 str++; 1160 if (*str) 1161 return -EINVAL; 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(ap_hex2bitmap); 1165 1166 /* 1167 * modify_bitmap() - parse bitmask argument and modify an existing 1168 * bit mask accordingly. A concatenation (done with ',') of these 1169 * terms is recognized: 1170 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1171 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1172 * 0...bits-1; the leading + or - is required. Here are some examples: 1173 * +0-15,+32,-128,-0xFF 1174 * -0-255,+1-16,+0x128 1175 * +1,+2,+3,+4,-5,-7-10 1176 * Returns the new bitmap after all changes have been applied. Every 1177 * positive value in the string will set a bit and every negative value 1178 * in the string will clear a bit. As a bit may be touched more than once, 1179 * the last 'operation' wins: 1180 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1181 * cleared again. All other bits are unmodified. 1182 */ 1183 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1184 { 1185 unsigned long a, i, z; 1186 char *np, sign; 1187 1188 /* bits needs to be a multiple of 8 */ 1189 if (bits & 0x07) 1190 return -EINVAL; 1191 1192 while (*str) { 1193 sign = *str++; 1194 if (sign != '+' && sign != '-') 1195 return -EINVAL; 1196 a = z = simple_strtoul(str, &np, 0); 1197 if (str == np || a >= bits) 1198 return -EINVAL; 1199 str = np; 1200 if (*str == '-') { 1201 z = simple_strtoul(++str, &np, 0); 1202 if (str == np || a > z || z >= bits) 1203 return -EINVAL; 1204 str = np; 1205 } 1206 for (i = a; i <= z; i++) 1207 if (sign == '+') 1208 set_bit_inv(i, bitmap); 1209 else 1210 clear_bit_inv(i, bitmap); 1211 while (*str == ',' || *str == '\n') 1212 str++; 1213 } 1214 1215 return 0; 1216 } 1217 1218 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1219 unsigned long *newmap) 1220 { 1221 unsigned long size; 1222 int rc; 1223 1224 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1225 if (*str == '+' || *str == '-') { 1226 memcpy(newmap, bitmap, size); 1227 rc = modify_bitmap(str, newmap, bits); 1228 } else { 1229 memset(newmap, 0, size); 1230 rc = ap_hex2bitmap(str, newmap, bits); 1231 } 1232 return rc; 1233 } 1234 1235 int ap_parse_mask_str(const char *str, 1236 unsigned long *bitmap, int bits, 1237 struct mutex *lock) 1238 { 1239 unsigned long *newmap, size; 1240 int rc; 1241 1242 /* bits needs to be a multiple of 8 */ 1243 if (bits & 0x07) 1244 return -EINVAL; 1245 1246 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1247 newmap = kmalloc(size, GFP_KERNEL); 1248 if (!newmap) 1249 return -ENOMEM; 1250 if (mutex_lock_interruptible(lock)) { 1251 kfree(newmap); 1252 return -ERESTARTSYS; 1253 } 1254 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1255 if (rc == 0) 1256 memcpy(bitmap, newmap, size); 1257 mutex_unlock(lock); 1258 kfree(newmap); 1259 return rc; 1260 } 1261 EXPORT_SYMBOL(ap_parse_mask_str); 1262 1263 /* 1264 * AP bus attributes. 1265 */ 1266 1267 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf) 1268 { 1269 return sysfs_emit(buf, "%d\n", ap_domain_index); 1270 } 1271 1272 static ssize_t ap_domain_store(const struct bus_type *bus, 1273 const char *buf, size_t count) 1274 { 1275 int domain; 1276 1277 if (sscanf(buf, "%i\n", &domain) != 1 || 1278 domain < 0 || domain > ap_max_domain_id || 1279 !test_bit_inv(domain, ap_perms.aqm)) 1280 return -EINVAL; 1281 1282 spin_lock_bh(&ap_domain_lock); 1283 ap_domain_index = domain; 1284 spin_unlock_bh(&ap_domain_lock); 1285 1286 AP_DBF_INFO("%s stored new default domain=%d\n", 1287 __func__, domain); 1288 1289 return count; 1290 } 1291 1292 static BUS_ATTR_RW(ap_domain); 1293 1294 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf) 1295 { 1296 if (!ap_qci_info->flags) /* QCI not supported */ 1297 return sysfs_emit(buf, "not supported\n"); 1298 1299 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1300 ap_qci_info->adm[0], ap_qci_info->adm[1], 1301 ap_qci_info->adm[2], ap_qci_info->adm[3], 1302 ap_qci_info->adm[4], ap_qci_info->adm[5], 1303 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1304 } 1305 1306 static BUS_ATTR_RO(ap_control_domain_mask); 1307 1308 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf) 1309 { 1310 if (!ap_qci_info->flags) /* QCI not supported */ 1311 return sysfs_emit(buf, "not supported\n"); 1312 1313 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1314 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1315 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1316 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1317 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1318 } 1319 1320 static BUS_ATTR_RO(ap_usage_domain_mask); 1321 1322 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf) 1323 { 1324 if (!ap_qci_info->flags) /* QCI not supported */ 1325 return sysfs_emit(buf, "not supported\n"); 1326 1327 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1328 ap_qci_info->apm[0], ap_qci_info->apm[1], 1329 ap_qci_info->apm[2], ap_qci_info->apm[3], 1330 ap_qci_info->apm[4], ap_qci_info->apm[5], 1331 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1332 } 1333 1334 static BUS_ATTR_RO(ap_adapter_mask); 1335 1336 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf) 1337 { 1338 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0); 1339 } 1340 1341 static BUS_ATTR_RO(ap_interrupts); 1342 1343 static ssize_t config_time_show(const struct bus_type *bus, char *buf) 1344 { 1345 return sysfs_emit(buf, "%d\n", ap_scan_bus_time); 1346 } 1347 1348 static ssize_t config_time_store(const struct bus_type *bus, 1349 const char *buf, size_t count) 1350 { 1351 int time; 1352 1353 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1354 return -EINVAL; 1355 ap_scan_bus_time = time; 1356 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 1357 return count; 1358 } 1359 1360 static BUS_ATTR_RW(config_time); 1361 1362 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf) 1363 { 1364 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0); 1365 } 1366 1367 static ssize_t poll_thread_store(const struct bus_type *bus, 1368 const char *buf, size_t count) 1369 { 1370 bool value; 1371 int rc; 1372 1373 rc = kstrtobool(buf, &value); 1374 if (rc) 1375 return rc; 1376 1377 if (value) { 1378 rc = ap_poll_thread_start(); 1379 if (rc) 1380 count = rc; 1381 } else { 1382 ap_poll_thread_stop(); 1383 } 1384 return count; 1385 } 1386 1387 static BUS_ATTR_RW(poll_thread); 1388 1389 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf) 1390 { 1391 return sysfs_emit(buf, "%lu\n", poll_high_timeout); 1392 } 1393 1394 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf, 1395 size_t count) 1396 { 1397 unsigned long value; 1398 ktime_t hr_time; 1399 int rc; 1400 1401 rc = kstrtoul(buf, 0, &value); 1402 if (rc) 1403 return rc; 1404 1405 /* 120 seconds = maximum poll interval */ 1406 if (value > 120000000000UL) 1407 return -EINVAL; 1408 poll_high_timeout = value; 1409 hr_time = poll_high_timeout; 1410 1411 spin_lock_bh(&ap_poll_timer_lock); 1412 hrtimer_cancel(&ap_poll_timer); 1413 hrtimer_set_expires(&ap_poll_timer, hr_time); 1414 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1415 spin_unlock_bh(&ap_poll_timer_lock); 1416 1417 return count; 1418 } 1419 1420 static BUS_ATTR_RW(poll_timeout); 1421 1422 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf) 1423 { 1424 return sysfs_emit(buf, "%d\n", ap_max_domain_id); 1425 } 1426 1427 static BUS_ATTR_RO(ap_max_domain_id); 1428 1429 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf) 1430 { 1431 return sysfs_emit(buf, "%d\n", ap_max_adapter_id); 1432 } 1433 1434 static BUS_ATTR_RO(ap_max_adapter_id); 1435 1436 static ssize_t apmask_show(const struct bus_type *bus, char *buf) 1437 { 1438 int rc; 1439 1440 if (mutex_lock_interruptible(&ap_perms_mutex)) 1441 return -ERESTARTSYS; 1442 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1443 ap_perms.apm[0], ap_perms.apm[1], 1444 ap_perms.apm[2], ap_perms.apm[3]); 1445 mutex_unlock(&ap_perms_mutex); 1446 1447 return rc; 1448 } 1449 1450 static int __verify_card_reservations(struct device_driver *drv, void *data) 1451 { 1452 int rc = 0; 1453 struct ap_driver *ap_drv = to_ap_drv(drv); 1454 unsigned long *newapm = (unsigned long *)data; 1455 1456 /* 1457 * increase the driver's module refcounter to be sure it is not 1458 * going away when we invoke the callback function. 1459 */ 1460 if (!try_module_get(drv->owner)) 1461 return 0; 1462 1463 if (ap_drv->in_use) { 1464 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1465 if (rc) 1466 rc = -EBUSY; 1467 } 1468 1469 /* release the driver's module */ 1470 module_put(drv->owner); 1471 1472 return rc; 1473 } 1474 1475 static int apmask_commit(unsigned long *newapm) 1476 { 1477 int rc; 1478 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1479 1480 /* 1481 * Check if any bits in the apmask have been set which will 1482 * result in queues being removed from non-default drivers 1483 */ 1484 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1485 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1486 __verify_card_reservations); 1487 if (rc) 1488 return rc; 1489 } 1490 1491 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1492 1493 return 0; 1494 } 1495 1496 static ssize_t apmask_store(const struct bus_type *bus, const char *buf, 1497 size_t count) 1498 { 1499 int rc, changes = 0; 1500 DECLARE_BITMAP(newapm, AP_DEVICES); 1501 1502 if (mutex_lock_interruptible(&ap_perms_mutex)) 1503 return -ERESTARTSYS; 1504 1505 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1506 if (rc) 1507 goto done; 1508 1509 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1510 if (changes) 1511 rc = apmask_commit(newapm); 1512 1513 done: 1514 mutex_unlock(&ap_perms_mutex); 1515 if (rc) 1516 return rc; 1517 1518 if (changes) { 1519 ap_bus_revise_bindings(); 1520 ap_send_mask_changed_uevent(newapm, NULL); 1521 } 1522 1523 return count; 1524 } 1525 1526 static BUS_ATTR_RW(apmask); 1527 1528 static ssize_t aqmask_show(const struct bus_type *bus, char *buf) 1529 { 1530 int rc; 1531 1532 if (mutex_lock_interruptible(&ap_perms_mutex)) 1533 return -ERESTARTSYS; 1534 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1535 ap_perms.aqm[0], ap_perms.aqm[1], 1536 ap_perms.aqm[2], ap_perms.aqm[3]); 1537 mutex_unlock(&ap_perms_mutex); 1538 1539 return rc; 1540 } 1541 1542 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1543 { 1544 int rc = 0; 1545 struct ap_driver *ap_drv = to_ap_drv(drv); 1546 unsigned long *newaqm = (unsigned long *)data; 1547 1548 /* 1549 * increase the driver's module refcounter to be sure it is not 1550 * going away when we invoke the callback function. 1551 */ 1552 if (!try_module_get(drv->owner)) 1553 return 0; 1554 1555 if (ap_drv->in_use) { 1556 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1557 if (rc) 1558 rc = -EBUSY; 1559 } 1560 1561 /* release the driver's module */ 1562 module_put(drv->owner); 1563 1564 return rc; 1565 } 1566 1567 static int aqmask_commit(unsigned long *newaqm) 1568 { 1569 int rc; 1570 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1571 1572 /* 1573 * Check if any bits in the aqmask have been set which will 1574 * result in queues being removed from non-default drivers 1575 */ 1576 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1577 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1578 __verify_queue_reservations); 1579 if (rc) 1580 return rc; 1581 } 1582 1583 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1584 1585 return 0; 1586 } 1587 1588 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf, 1589 size_t count) 1590 { 1591 int rc, changes = 0; 1592 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1593 1594 if (mutex_lock_interruptible(&ap_perms_mutex)) 1595 return -ERESTARTSYS; 1596 1597 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1598 if (rc) 1599 goto done; 1600 1601 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1602 if (changes) 1603 rc = aqmask_commit(newaqm); 1604 1605 done: 1606 mutex_unlock(&ap_perms_mutex); 1607 if (rc) 1608 return rc; 1609 1610 if (changes) { 1611 ap_bus_revise_bindings(); 1612 ap_send_mask_changed_uevent(NULL, newaqm); 1613 } 1614 1615 return count; 1616 } 1617 1618 static BUS_ATTR_RW(aqmask); 1619 1620 static ssize_t scans_show(const struct bus_type *bus, char *buf) 1621 { 1622 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count)); 1623 } 1624 1625 static ssize_t scans_store(const struct bus_type *bus, const char *buf, 1626 size_t count) 1627 { 1628 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1629 1630 ap_bus_force_rescan(); 1631 1632 return count; 1633 } 1634 1635 static BUS_ATTR_RW(scans); 1636 1637 static ssize_t bindings_show(const struct bus_type *bus, char *buf) 1638 { 1639 int rc; 1640 unsigned int apqns, n; 1641 1642 ap_calc_bound_apqns(&apqns, &n); 1643 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1644 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns); 1645 else 1646 rc = sysfs_emit(buf, "%u/%u\n", n, apqns); 1647 1648 return rc; 1649 } 1650 1651 static BUS_ATTR_RO(bindings); 1652 1653 static ssize_t features_show(const struct bus_type *bus, char *buf) 1654 { 1655 int n = 0; 1656 1657 if (!ap_qci_info->flags) /* QCI not supported */ 1658 return sysfs_emit(buf, "-\n"); 1659 1660 if (ap_qci_info->apsc) 1661 n += sysfs_emit_at(buf, n, "APSC "); 1662 if (ap_qci_info->apxa) 1663 n += sysfs_emit_at(buf, n, "APXA "); 1664 if (ap_qci_info->qact) 1665 n += sysfs_emit_at(buf, n, "QACT "); 1666 if (ap_qci_info->rc8a) 1667 n += sysfs_emit_at(buf, n, "RC8A "); 1668 if (ap_qci_info->apsb) 1669 n += sysfs_emit_at(buf, n, "APSB "); 1670 1671 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n"); 1672 1673 return n; 1674 } 1675 1676 static BUS_ATTR_RO(features); 1677 1678 static struct attribute *ap_bus_attrs[] = { 1679 &bus_attr_ap_domain.attr, 1680 &bus_attr_ap_control_domain_mask.attr, 1681 &bus_attr_ap_usage_domain_mask.attr, 1682 &bus_attr_ap_adapter_mask.attr, 1683 &bus_attr_config_time.attr, 1684 &bus_attr_poll_thread.attr, 1685 &bus_attr_ap_interrupts.attr, 1686 &bus_attr_poll_timeout.attr, 1687 &bus_attr_ap_max_domain_id.attr, 1688 &bus_attr_ap_max_adapter_id.attr, 1689 &bus_attr_apmask.attr, 1690 &bus_attr_aqmask.attr, 1691 &bus_attr_scans.attr, 1692 &bus_attr_bindings.attr, 1693 &bus_attr_features.attr, 1694 NULL, 1695 }; 1696 ATTRIBUTE_GROUPS(ap_bus); 1697 1698 static const struct bus_type ap_bus_type = { 1699 .name = "ap", 1700 .bus_groups = ap_bus_groups, 1701 .match = &ap_bus_match, 1702 .uevent = &ap_uevent, 1703 .probe = ap_device_probe, 1704 .remove = ap_device_remove, 1705 }; 1706 1707 /** 1708 * ap_select_domain(): Select an AP domain if possible and we haven't 1709 * already done so before. 1710 */ 1711 static void ap_select_domain(void) 1712 { 1713 struct ap_queue_status status; 1714 int card, dom; 1715 1716 /* 1717 * Choose the default domain. Either the one specified with 1718 * the "domain=" parameter or the first domain with at least 1719 * one valid APQN. 1720 */ 1721 spin_lock_bh(&ap_domain_lock); 1722 if (ap_domain_index >= 0) { 1723 /* Domain has already been selected. */ 1724 goto out; 1725 } 1726 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1727 if (!ap_test_config_usage_domain(dom) || 1728 !test_bit_inv(dom, ap_perms.aqm)) 1729 continue; 1730 for (card = 0; card <= ap_max_adapter_id; card++) { 1731 if (!ap_test_config_card_id(card) || 1732 !test_bit_inv(card, ap_perms.apm)) 1733 continue; 1734 status = ap_test_queue(AP_MKQID(card, dom), 1735 ap_apft_available(), 1736 NULL); 1737 if (status.response_code == AP_RESPONSE_NORMAL) 1738 break; 1739 } 1740 if (card <= ap_max_adapter_id) 1741 break; 1742 } 1743 if (dom <= ap_max_domain_id) { 1744 ap_domain_index = dom; 1745 AP_DBF_INFO("%s new default domain is %d\n", 1746 __func__, ap_domain_index); 1747 } 1748 out: 1749 spin_unlock_bh(&ap_domain_lock); 1750 } 1751 1752 /* 1753 * This function checks the type and returns either 0 for not 1754 * supported or the highest compatible type value (which may 1755 * include the input type value). 1756 */ 1757 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1758 { 1759 int comp_type = 0; 1760 1761 /* < CEX4 is not supported */ 1762 if (rawtype < AP_DEVICE_TYPE_CEX4) { 1763 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1764 __func__, AP_QID_CARD(qid), 1765 AP_QID_QUEUE(qid), rawtype); 1766 return 0; 1767 } 1768 /* up to CEX8 known and fully supported */ 1769 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1770 return rawtype; 1771 /* 1772 * unknown new type > CEX8, check for compatibility 1773 * to the highest known and supported type which is 1774 * currently CEX8 with the help of the QACT function. 1775 */ 1776 if (ap_qact_available()) { 1777 struct ap_queue_status status; 1778 union ap_qact_ap_info apinfo = {0}; 1779 1780 apinfo.mode = (func >> 26) & 0x07; 1781 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1782 status = ap_qact(qid, 0, &apinfo); 1783 if (status.response_code == AP_RESPONSE_NORMAL && 1784 apinfo.cat >= AP_DEVICE_TYPE_CEX4 && 1785 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1786 comp_type = apinfo.cat; 1787 } 1788 if (!comp_type) 1789 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1790 __func__, AP_QID_CARD(qid), 1791 AP_QID_QUEUE(qid), rawtype); 1792 else if (comp_type != rawtype) 1793 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1794 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1795 rawtype, comp_type); 1796 return comp_type; 1797 } 1798 1799 /* 1800 * Helper function to be used with bus_find_dev 1801 * matches for the card device with the given id 1802 */ 1803 static int __match_card_device_with_id(struct device *dev, const void *data) 1804 { 1805 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1806 } 1807 1808 /* 1809 * Helper function to be used with bus_find_dev 1810 * matches for the queue device with a given qid 1811 */ 1812 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1813 { 1814 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1815 } 1816 1817 /* 1818 * Helper function to be used with bus_find_dev 1819 * matches any queue device with given queue id 1820 */ 1821 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1822 { 1823 return is_queue_dev(dev) && 1824 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1825 } 1826 1827 /* Helper function for notify_config_changed */ 1828 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1829 { 1830 struct ap_driver *ap_drv = to_ap_drv(drv); 1831 1832 if (try_module_get(drv->owner)) { 1833 if (ap_drv->on_config_changed) 1834 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1835 module_put(drv->owner); 1836 } 1837 1838 return 0; 1839 } 1840 1841 /* Notify all drivers about an qci config change */ 1842 static inline void notify_config_changed(void) 1843 { 1844 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1845 __drv_notify_config_changed); 1846 } 1847 1848 /* Helper function for notify_scan_complete */ 1849 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1850 { 1851 struct ap_driver *ap_drv = to_ap_drv(drv); 1852 1853 if (try_module_get(drv->owner)) { 1854 if (ap_drv->on_scan_complete) 1855 ap_drv->on_scan_complete(ap_qci_info, 1856 ap_qci_info_old); 1857 module_put(drv->owner); 1858 } 1859 1860 return 0; 1861 } 1862 1863 /* Notify all drivers about bus scan complete */ 1864 static inline void notify_scan_complete(void) 1865 { 1866 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1867 __drv_notify_scan_complete); 1868 } 1869 1870 /* 1871 * Helper function for ap_scan_bus(). 1872 * Remove card device and associated queue devices. 1873 */ 1874 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1875 { 1876 bus_for_each_dev(&ap_bus_type, NULL, 1877 (void *)(long)ac->id, 1878 __ap_queue_devices_with_id_unregister); 1879 device_unregister(&ac->ap_dev.device); 1880 } 1881 1882 /* 1883 * Helper function for ap_scan_bus(). 1884 * Does the scan bus job for all the domains within 1885 * a valid adapter given by an ap_card ptr. 1886 */ 1887 static inline void ap_scan_domains(struct ap_card *ac) 1888 { 1889 struct ap_tapq_hwinfo hwinfo; 1890 bool decfg, chkstop; 1891 struct ap_queue *aq; 1892 struct device *dev; 1893 ap_qid_t qid; 1894 int rc, dom; 1895 1896 /* 1897 * Go through the configuration for the domains and compare them 1898 * to the existing queue devices. Also take care of the config 1899 * and error state for the queue devices. 1900 */ 1901 1902 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1903 qid = AP_MKQID(ac->id, dom); 1904 dev = bus_find_device(&ap_bus_type, NULL, 1905 (void *)(long)qid, 1906 __match_queue_device_with_qid); 1907 aq = dev ? to_ap_queue(dev) : NULL; 1908 if (!ap_test_config_usage_domain(dom)) { 1909 if (dev) { 1910 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1911 __func__, ac->id, dom); 1912 device_unregister(dev); 1913 } 1914 goto put_dev_and_continue; 1915 } 1916 /* domain is valid, get info from this APQN */ 1917 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop); 1918 switch (rc) { 1919 case -1: 1920 if (dev) { 1921 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1922 __func__, ac->id, dom); 1923 device_unregister(dev); 1924 } 1925 fallthrough; 1926 case 0: 1927 goto put_dev_and_continue; 1928 default: 1929 break; 1930 } 1931 /* if no queue device exists, create a new one */ 1932 if (!aq) { 1933 aq = ap_queue_create(qid, ac); 1934 if (!aq) { 1935 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1936 __func__, ac->id, dom); 1937 continue; 1938 } 1939 aq->config = !decfg; 1940 aq->chkstop = chkstop; 1941 aq->se_bstate = hwinfo.bs; 1942 dev = &aq->ap_dev.device; 1943 dev->bus = &ap_bus_type; 1944 dev->parent = &ac->ap_dev.device; 1945 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1946 /* register queue device */ 1947 rc = device_register(dev); 1948 if (rc) { 1949 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1950 __func__, ac->id, dom); 1951 goto put_dev_and_continue; 1952 } 1953 /* get it and thus adjust reference counter */ 1954 get_device(dev); 1955 if (decfg) { 1956 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1957 __func__, ac->id, dom); 1958 } else if (chkstop) { 1959 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1960 __func__, ac->id, dom); 1961 } else { 1962 /* nudge the queue's state machine */ 1963 ap_queue_init_state(aq); 1964 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1965 __func__, ac->id, dom); 1966 } 1967 goto put_dev_and_continue; 1968 } 1969 /* handle state changes on already existing queue device */ 1970 spin_lock_bh(&aq->lock); 1971 /* SE bind state */ 1972 aq->se_bstate = hwinfo.bs; 1973 /* checkstop state */ 1974 if (chkstop && !aq->chkstop) { 1975 /* checkstop on */ 1976 aq->chkstop = true; 1977 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1978 aq->dev_state = AP_DEV_STATE_ERROR; 1979 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1980 } 1981 spin_unlock_bh(&aq->lock); 1982 pr_debug("(%d,%d) queue dev checkstop on\n", 1983 ac->id, dom); 1984 /* 'receive' pending messages with -EAGAIN */ 1985 ap_flush_queue(aq); 1986 goto put_dev_and_continue; 1987 } else if (!chkstop && aq->chkstop) { 1988 /* checkstop off */ 1989 aq->chkstop = false; 1990 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1991 _ap_queue_init_state(aq); 1992 spin_unlock_bh(&aq->lock); 1993 pr_debug("(%d,%d) queue dev checkstop off\n", 1994 ac->id, dom); 1995 goto put_dev_and_continue; 1996 } 1997 /* config state change */ 1998 if (decfg && aq->config) { 1999 /* config off this queue device */ 2000 aq->config = false; 2001 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 2002 aq->dev_state = AP_DEV_STATE_ERROR; 2003 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 2004 } 2005 spin_unlock_bh(&aq->lock); 2006 pr_debug("(%d,%d) queue dev config off\n", 2007 ac->id, dom); 2008 ap_send_config_uevent(&aq->ap_dev, aq->config); 2009 /* 'receive' pending messages with -EAGAIN */ 2010 ap_flush_queue(aq); 2011 goto put_dev_and_continue; 2012 } else if (!decfg && !aq->config) { 2013 /* config on this queue device */ 2014 aq->config = true; 2015 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 2016 _ap_queue_init_state(aq); 2017 spin_unlock_bh(&aq->lock); 2018 pr_debug("(%d,%d) queue dev config on\n", 2019 ac->id, dom); 2020 ap_send_config_uevent(&aq->ap_dev, aq->config); 2021 goto put_dev_and_continue; 2022 } 2023 /* handle other error states */ 2024 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 2025 spin_unlock_bh(&aq->lock); 2026 /* 'receive' pending messages with -EAGAIN */ 2027 ap_flush_queue(aq); 2028 /* re-init (with reset) the queue device */ 2029 ap_queue_init_state(aq); 2030 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 2031 __func__, ac->id, dom); 2032 goto put_dev_and_continue; 2033 } 2034 spin_unlock_bh(&aq->lock); 2035 put_dev_and_continue: 2036 put_device(dev); 2037 } 2038 } 2039 2040 /* 2041 * Helper function for ap_scan_bus(). 2042 * Does the scan bus job for the given adapter id. 2043 */ 2044 static inline void ap_scan_adapter(int ap) 2045 { 2046 struct ap_tapq_hwinfo hwinfo; 2047 int rc, dom, comp_type; 2048 bool decfg, chkstop; 2049 struct ap_card *ac; 2050 struct device *dev; 2051 ap_qid_t qid; 2052 2053 /* Is there currently a card device for this adapter ? */ 2054 dev = bus_find_device(&ap_bus_type, NULL, 2055 (void *)(long)ap, 2056 __match_card_device_with_id); 2057 ac = dev ? to_ap_card(dev) : NULL; 2058 2059 /* Adapter not in configuration ? */ 2060 if (!ap_test_config_card_id(ap)) { 2061 if (ac) { 2062 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 2063 __func__, ap); 2064 ap_scan_rm_card_dev_and_queue_devs(ac); 2065 put_device(dev); 2066 } 2067 return; 2068 } 2069 2070 /* 2071 * Adapter ap is valid in the current configuration. So do some checks: 2072 * If no card device exists, build one. If a card device exists, check 2073 * for type and functions changed. For all this we need to find a valid 2074 * APQN first. 2075 */ 2076 2077 for (dom = 0; dom <= ap_max_domain_id; dom++) 2078 if (ap_test_config_usage_domain(dom)) { 2079 qid = AP_MKQID(ap, dom); 2080 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0) 2081 break; 2082 } 2083 if (dom > ap_max_domain_id) { 2084 /* Could not find one valid APQN for this adapter */ 2085 if (ac) { 2086 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 2087 __func__, ap); 2088 ap_scan_rm_card_dev_and_queue_devs(ac); 2089 put_device(dev); 2090 } else { 2091 pr_debug("(%d) no type info (no APQN found), ignored\n", 2092 ap); 2093 } 2094 return; 2095 } 2096 if (!hwinfo.at) { 2097 /* No apdater type info available, an unusable adapter */ 2098 if (ac) { 2099 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 2100 __func__, ap); 2101 ap_scan_rm_card_dev_and_queue_devs(ac); 2102 put_device(dev); 2103 } else { 2104 pr_debug("(%d) no valid type (0) info, ignored\n", ap); 2105 } 2106 return; 2107 } 2108 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */ 2109 if (ac) { 2110 /* Check APQN against existing card device for changes */ 2111 if (ac->hwinfo.at != hwinfo.at) { 2112 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 2113 __func__, ap, hwinfo.at); 2114 ap_scan_rm_card_dev_and_queue_devs(ac); 2115 put_device(dev); 2116 ac = NULL; 2117 } else if (ac->hwinfo.fac != hwinfo.fac) { 2118 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 2119 __func__, ap, hwinfo.fac); 2120 ap_scan_rm_card_dev_and_queue_devs(ac); 2121 put_device(dev); 2122 ac = NULL; 2123 } else { 2124 /* handle checkstop state change */ 2125 if (chkstop && !ac->chkstop) { 2126 /* checkstop on */ 2127 ac->chkstop = true; 2128 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2129 __func__, ap); 2130 } else if (!chkstop && ac->chkstop) { 2131 /* checkstop off */ 2132 ac->chkstop = false; 2133 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2134 __func__, ap); 2135 } 2136 /* handle config state change */ 2137 if (decfg && ac->config) { 2138 ac->config = false; 2139 AP_DBF_INFO("%s(%d) card dev config off\n", 2140 __func__, ap); 2141 ap_send_config_uevent(&ac->ap_dev, ac->config); 2142 } else if (!decfg && !ac->config) { 2143 ac->config = true; 2144 AP_DBF_INFO("%s(%d) card dev config on\n", 2145 __func__, ap); 2146 ap_send_config_uevent(&ac->ap_dev, ac->config); 2147 } 2148 } 2149 } 2150 2151 if (!ac) { 2152 /* Build a new card device */ 2153 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac); 2154 if (!comp_type) { 2155 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2156 __func__, ap, hwinfo.at); 2157 return; 2158 } 2159 ac = ap_card_create(ap, hwinfo, comp_type); 2160 if (!ac) { 2161 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2162 __func__, ap); 2163 return; 2164 } 2165 ac->config = !decfg; 2166 ac->chkstop = chkstop; 2167 dev = &ac->ap_dev.device; 2168 dev->bus = &ap_bus_type; 2169 dev->parent = ap_root_device; 2170 dev_set_name(dev, "card%02x", ap); 2171 /* maybe enlarge ap_max_msg_size to support this card */ 2172 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2173 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2174 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2175 __func__, ap, 2176 atomic_read(&ap_max_msg_size)); 2177 } 2178 /* Register the new card device with AP bus */ 2179 rc = device_register(dev); 2180 if (rc) { 2181 AP_DBF_WARN("%s(%d) device_register() failed\n", 2182 __func__, ap); 2183 put_device(dev); 2184 return; 2185 } 2186 /* get it and thus adjust reference counter */ 2187 get_device(dev); 2188 if (decfg) 2189 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2190 __func__, ap, hwinfo.at, hwinfo.fac); 2191 else if (chkstop) 2192 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2193 __func__, ap, hwinfo.at, hwinfo.fac); 2194 else 2195 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2196 __func__, ap, hwinfo.at, hwinfo.fac); 2197 } 2198 2199 /* Verify the domains and the queue devices for this card */ 2200 ap_scan_domains(ac); 2201 2202 /* release the card device */ 2203 put_device(&ac->ap_dev.device); 2204 } 2205 2206 /** 2207 * ap_get_configuration - get the host AP configuration 2208 * 2209 * Stores the host AP configuration information returned from the previous call 2210 * to Query Configuration Information (QCI), then retrieves and stores the 2211 * current AP configuration returned from QCI. 2212 * 2213 * Return: true if the host AP configuration changed between calls to QCI; 2214 * otherwise, return false. 2215 */ 2216 static bool ap_get_configuration(void) 2217 { 2218 if (!ap_qci_info->flags) /* QCI not supported */ 2219 return false; 2220 2221 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2222 ap_qci(ap_qci_info); 2223 2224 return memcmp(ap_qci_info, ap_qci_info_old, 2225 sizeof(struct ap_config_info)) != 0; 2226 } 2227 2228 /* 2229 * ap_config_has_new_aps - Check current against old qci info if 2230 * new adapters have appeared. Returns true if at least one new 2231 * adapter in the apm mask is showing up. Existing adapters or 2232 * receding adapters are not counted. 2233 */ 2234 static bool ap_config_has_new_aps(void) 2235 { 2236 2237 unsigned long m[BITS_TO_LONGS(AP_DEVICES)]; 2238 2239 if (!ap_qci_info->flags) 2240 return false; 2241 2242 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm, 2243 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES); 2244 if (!bitmap_empty(m, AP_DEVICES)) 2245 return true; 2246 2247 return false; 2248 } 2249 2250 /* 2251 * ap_config_has_new_doms - Check current against old qci info if 2252 * new (usage) domains have appeared. Returns true if at least one 2253 * new domain in the aqm mask is showing up. Existing domains or 2254 * receding domains are not counted. 2255 */ 2256 static bool ap_config_has_new_doms(void) 2257 { 2258 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)]; 2259 2260 if (!ap_qci_info->flags) 2261 return false; 2262 2263 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm, 2264 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS); 2265 if (!bitmap_empty(m, AP_DOMAINS)) 2266 return true; 2267 2268 return false; 2269 } 2270 2271 /** 2272 * ap_scan_bus(): Scan the AP bus for new devices 2273 * Always run under mutex ap_scan_bus_mutex protection 2274 * which needs to get locked/unlocked by the caller! 2275 * Returns true if any config change has been detected 2276 * during the scan, otherwise false. 2277 */ 2278 static bool ap_scan_bus(void) 2279 { 2280 bool config_changed; 2281 int ap; 2282 2283 pr_debug(">\n"); 2284 2285 /* (re-)fetch configuration via QCI */ 2286 config_changed = ap_get_configuration(); 2287 if (config_changed) { 2288 if (ap_config_has_new_aps() || ap_config_has_new_doms()) { 2289 /* 2290 * Appearance of new adapters and/or domains need to 2291 * build new ap devices which need to get bound to an 2292 * device driver. Thus reset the APQN bindings complete 2293 * completion. 2294 */ 2295 reinit_completion(&ap_apqn_bindings_complete); 2296 } 2297 /* post a config change notify */ 2298 notify_config_changed(); 2299 } 2300 ap_select_domain(); 2301 2302 /* loop over all possible adapters */ 2303 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2304 ap_scan_adapter(ap); 2305 2306 /* scan complete notify */ 2307 if (config_changed) 2308 notify_scan_complete(); 2309 2310 /* check if there is at least one queue available with default domain */ 2311 if (ap_domain_index >= 0) { 2312 struct device *dev = 2313 bus_find_device(&ap_bus_type, NULL, 2314 (void *)(long)ap_domain_index, 2315 __match_queue_device_with_queue_id); 2316 if (dev) 2317 put_device(dev); 2318 else 2319 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2320 __func__, ap_domain_index); 2321 } 2322 2323 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2324 pr_debug("init scan complete\n"); 2325 ap_send_init_scan_done_uevent(); 2326 } 2327 2328 ap_check_bindings_complete(); 2329 2330 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 2331 2332 pr_debug("< config_changed=%d\n", config_changed); 2333 2334 return config_changed; 2335 } 2336 2337 /* 2338 * Callback for the ap_scan_bus_timer 2339 * Runs periodically, workqueue timer (ap_scan_bus_time) 2340 */ 2341 static void ap_scan_bus_timer_callback(struct timer_list *unused) 2342 { 2343 /* 2344 * schedule work into the system long wq which when 2345 * the work is finally executed, calls the AP bus scan. 2346 */ 2347 queue_work(system_long_wq, &ap_scan_bus_work); 2348 } 2349 2350 /* 2351 * Callback for the ap_scan_bus_work 2352 */ 2353 static void ap_scan_bus_wq_callback(struct work_struct *unused) 2354 { 2355 /* 2356 * Try to invoke an ap_scan_bus(). If the mutex acquisition 2357 * fails there is currently another task already running the 2358 * AP scan bus and there is no need to wait and re-trigger the 2359 * scan again. Please note at the end of the scan bus function 2360 * the AP scan bus timer is re-armed which triggers then the 2361 * ap_scan_bus_timer_callback which enqueues a work into the 2362 * system_long_wq which invokes this function here again. 2363 */ 2364 if (mutex_trylock(&ap_scan_bus_mutex)) { 2365 ap_scan_bus_task = current; 2366 ap_scan_bus_result = ap_scan_bus(); 2367 ap_scan_bus_task = NULL; 2368 mutex_unlock(&ap_scan_bus_mutex); 2369 } 2370 } 2371 2372 static inline void __exit ap_async_exit(void) 2373 { 2374 if (ap_thread_flag) 2375 ap_poll_thread_stop(); 2376 chsc_notifier_unregister(&ap_bus_nb); 2377 cancel_work(&ap_scan_bus_work); 2378 hrtimer_cancel(&ap_poll_timer); 2379 timer_delete(&ap_scan_bus_timer); 2380 } 2381 2382 static inline int __init ap_async_init(void) 2383 { 2384 int rc; 2385 2386 /* Setup the AP bus rescan timer. */ 2387 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0); 2388 2389 /* 2390 * Setup the high resolution poll timer. 2391 * If we are running under z/VM adjust polling to z/VM polling rate. 2392 */ 2393 if (machine_is_vm()) 2394 poll_high_timeout = 1500000; 2395 hrtimer_setup(&ap_poll_timer, ap_poll_timeout, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2396 2397 queue_work(system_long_wq, &ap_scan_bus_work); 2398 2399 rc = chsc_notifier_register(&ap_bus_nb); 2400 if (rc) 2401 goto out; 2402 2403 /* Start the low priority AP bus poll thread. */ 2404 if (!ap_thread_flag) 2405 return 0; 2406 2407 rc = ap_poll_thread_start(); 2408 if (rc) 2409 goto out_notifier; 2410 2411 return 0; 2412 2413 out_notifier: 2414 chsc_notifier_unregister(&ap_bus_nb); 2415 out: 2416 cancel_work(&ap_scan_bus_work); 2417 hrtimer_cancel(&ap_poll_timer); 2418 timer_delete(&ap_scan_bus_timer); 2419 return rc; 2420 } 2421 2422 static inline void ap_irq_exit(void) 2423 { 2424 if (ap_irq_flag) 2425 unregister_adapter_interrupt(&ap_airq); 2426 } 2427 2428 static inline int __init ap_irq_init(void) 2429 { 2430 int rc; 2431 2432 if (!ap_interrupts_available() || !ap_useirq) 2433 return 0; 2434 2435 rc = register_adapter_interrupt(&ap_airq); 2436 ap_irq_flag = (rc == 0); 2437 2438 return rc; 2439 } 2440 2441 static inline void ap_debug_exit(void) 2442 { 2443 debug_unregister(ap_dbf_info); 2444 } 2445 2446 static inline int __init ap_debug_init(void) 2447 { 2448 ap_dbf_info = debug_register("ap", 2, 1, 2449 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2450 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2451 debug_set_level(ap_dbf_info, DBF_ERR); 2452 2453 return 0; 2454 } 2455 2456 static void __init ap_perms_init(void) 2457 { 2458 /* all resources usable if no kernel parameter string given */ 2459 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2460 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2461 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2462 2463 /* apm kernel parameter string */ 2464 if (apm_str) { 2465 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2466 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2467 &ap_perms_mutex); 2468 } 2469 2470 /* aqm kernel parameter string */ 2471 if (aqm_str) { 2472 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2473 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2474 &ap_perms_mutex); 2475 } 2476 } 2477 2478 /** 2479 * ap_module_init(): The module initialization code. 2480 * 2481 * Initializes the module. 2482 */ 2483 static int __init ap_module_init(void) 2484 { 2485 int rc; 2486 2487 rc = ap_debug_init(); 2488 if (rc) 2489 return rc; 2490 2491 if (!ap_instructions_available()) { 2492 pr_warn("The hardware system does not support AP instructions\n"); 2493 return -ENODEV; 2494 } 2495 2496 /* init ap_queue hashtable */ 2497 hash_init(ap_queues); 2498 2499 /* create ap msg buffer memory pool */ 2500 ap_msg_pool = mempool_create_kmalloc_pool(ap_msg_pool_min_items, 2501 AP_DEFAULT_MAX_MSG_SIZE); 2502 if (!ap_msg_pool) { 2503 rc = -ENOMEM; 2504 goto out; 2505 } 2506 2507 /* set up the AP permissions (ioctls, ap and aq masks) */ 2508 ap_perms_init(); 2509 2510 /* Get AP configuration data if available */ 2511 ap_init_qci_info(); 2512 2513 /* check default domain setting */ 2514 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2515 (ap_domain_index >= 0 && 2516 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2517 pr_warn("%d is not a valid cryptographic domain\n", 2518 ap_domain_index); 2519 ap_domain_index = -1; 2520 } 2521 2522 /* Create /sys/bus/ap. */ 2523 rc = bus_register(&ap_bus_type); 2524 if (rc) 2525 goto out; 2526 2527 /* Create /sys/devices/ap. */ 2528 ap_root_device = root_device_register("ap"); 2529 rc = PTR_ERR_OR_ZERO(ap_root_device); 2530 if (rc) 2531 goto out_bus; 2532 ap_root_device->bus = &ap_bus_type; 2533 2534 /* enable interrupts if available */ 2535 rc = ap_irq_init(); 2536 if (rc) 2537 goto out_device; 2538 2539 /* Setup asynchronous work (timers, workqueue, etc). */ 2540 rc = ap_async_init(); 2541 if (rc) 2542 goto out_irq; 2543 2544 return 0; 2545 2546 out_irq: 2547 ap_irq_exit(); 2548 out_device: 2549 root_device_unregister(ap_root_device); 2550 out_bus: 2551 bus_unregister(&ap_bus_type); 2552 out: 2553 mempool_destroy(ap_msg_pool); 2554 ap_debug_exit(); 2555 return rc; 2556 } 2557 2558 static void __exit ap_module_exit(void) 2559 { 2560 ap_async_exit(); 2561 ap_irq_exit(); 2562 root_device_unregister(ap_root_device); 2563 bus_unregister(&ap_bus_type); 2564 mempool_destroy(ap_msg_pool); 2565 ap_debug_exit(); 2566 } 2567 2568 module_init(ap_module_init); 2569 module_exit(ap_module_exit); 2570