xref: /linux/drivers/s390/crypto/ap_bus.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright IBM Corp. 2006, 2012
3  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
5  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
6  *	      Felix Beck <felix.beck@de.ibm.com>
7  *	      Holger Dengler <hd@linux.vnet.ibm.com>
8  *
9  * Adjunct processor bus.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28 
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49 
50 #include "ap_bus.h"
51 
52 /*
53  * Module description.
54  */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 		   "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60 
61 /*
62  * Module parameter
63  */
64 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68 
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72 
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77 static bool initialised;
78 
79 /*
80  * Workqueue timer for bus rescan.
81  */
82 static struct timer_list ap_config_timer;
83 static int ap_config_time = AP_CONFIG_TIME;
84 static void ap_scan_bus(struct work_struct *);
85 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
86 
87 /*
88  * Tasklet & timer for AP request polling and interrupts
89  */
90 static void ap_tasklet_fn(unsigned long);
91 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
92 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
93 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
94 static struct task_struct *ap_poll_kthread = NULL;
95 static DEFINE_MUTEX(ap_poll_thread_mutex);
96 static DEFINE_SPINLOCK(ap_poll_timer_lock);
97 static struct hrtimer ap_poll_timer;
98 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
99  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
100 static unsigned long long poll_timeout = 250000;
101 
102 /* Suspend flag */
103 static int ap_suspend_flag;
104 /* Maximum domain id */
105 static int ap_max_domain_id;
106 /* Flag to check if domain was set through module parameter domain=. This is
107  * important when supsend and resume is done in a z/VM environment where the
108  * domain might change. */
109 static int user_set_domain = 0;
110 static struct bus_type ap_bus_type;
111 
112 /* Adapter interrupt definitions */
113 static void ap_interrupt_handler(struct airq_struct *airq);
114 
115 static int ap_airq_flag;
116 
117 static struct airq_struct ap_airq = {
118 	.handler = ap_interrupt_handler,
119 	.isc = AP_ISC,
120 };
121 
122 /**
123  * ap_using_interrupts() - Returns non-zero if interrupt support is
124  * available.
125  */
126 static inline int ap_using_interrupts(void)
127 {
128 	return ap_airq_flag;
129 }
130 
131 /**
132  * ap_intructions_available() - Test if AP instructions are available.
133  *
134  * Returns 0 if the AP instructions are installed.
135  */
136 static inline int ap_instructions_available(void)
137 {
138 	register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
139 	register unsigned long reg1 asm ("1") = -ENODEV;
140 	register unsigned long reg2 asm ("2") = 0UL;
141 
142 	asm volatile(
143 		"   .long 0xb2af0000\n"		/* PQAP(TAPQ) */
144 		"0: la    %1,0\n"
145 		"1:\n"
146 		EX_TABLE(0b, 1b)
147 		: "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
148 	return reg1;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 /**
173  * ap_test_queue(): Test adjunct processor queue.
174  * @qid: The AP queue number
175  * @info: Pointer to queue descriptor
176  *
177  * Returns AP queue status structure.
178  */
179 static inline struct ap_queue_status
180 ap_test_queue(ap_qid_t qid, unsigned long *info)
181 {
182 	register unsigned long reg0 asm ("0") = qid;
183 	register struct ap_queue_status reg1 asm ("1");
184 	register unsigned long reg2 asm ("2") = 0UL;
185 
186 	if (test_facility(15))
187 		reg0 |= 1UL << 23;		/* set APFT T bit*/
188 	asm volatile(".long 0xb2af0000"		/* PQAP(TAPQ) */
189 		     : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
190 	if (info)
191 		*info = reg2;
192 	return reg1;
193 }
194 
195 /**
196  * ap_reset_queue(): Reset adjunct processor queue.
197  * @qid: The AP queue number
198  *
199  * Returns AP queue status structure.
200  */
201 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
202 {
203 	register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
204 	register struct ap_queue_status reg1 asm ("1");
205 	register unsigned long reg2 asm ("2") = 0UL;
206 
207 	asm volatile(
208 		".long 0xb2af0000"		/* PQAP(RAPQ) */
209 		: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
210 	return reg1;
211 }
212 
213 /**
214  * ap_queue_interruption_control(): Enable interruption for a specific AP.
215  * @qid: The AP queue number
216  * @ind: The notification indicator byte
217  *
218  * Returns AP queue status.
219  */
220 static inline struct ap_queue_status
221 ap_queue_interruption_control(ap_qid_t qid, void *ind)
222 {
223 	register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
224 	register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
225 	register struct ap_queue_status reg1_out asm ("1");
226 	register void *reg2 asm ("2") = ind;
227 	asm volatile(
228 		".long 0xb2af0000"		/* PQAP(AQIC) */
229 		: "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
230 		:
231 		: "cc" );
232 	return reg1_out;
233 }
234 
235 /**
236  * ap_query_configuration(): Get AP configuration data
237  *
238  * Returns 0 on success, or -EOPNOTSUPP.
239  */
240 static inline int ap_query_configuration(void)
241 {
242 	register unsigned long reg0 asm ("0") = 0x04000000UL;
243 	register unsigned long reg1 asm ("1") = -EINVAL;
244 	register void *reg2 asm ("2") = (void *) ap_configuration;
245 
246 	if (!ap_configuration)
247 		return -EOPNOTSUPP;
248 	asm volatile(
249 		".long 0xb2af0000\n"		/* PQAP(QCI) */
250 		"0: la    %1,0\n"
251 		"1:\n"
252 		EX_TABLE(0b, 1b)
253 		: "+d" (reg0), "+d" (reg1), "+d" (reg2)
254 		:
255 		: "cc");
256 
257 	return reg1;
258 }
259 
260 /**
261  * ap_init_configuration(): Allocate and query configuration array.
262  */
263 static void ap_init_configuration(void)
264 {
265 	if (!ap_configuration_available())
266 		return;
267 
268 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
269 	if (!ap_configuration)
270 		return;
271 	if (ap_query_configuration() != 0) {
272 		kfree(ap_configuration);
273 		ap_configuration = NULL;
274 		return;
275 	}
276 }
277 
278 /*
279  * ap_test_config(): helper function to extract the nrth bit
280  *		     within the unsigned int array field.
281  */
282 static inline int ap_test_config(unsigned int *field, unsigned int nr)
283 {
284 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
285 }
286 
287 /*
288  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
289  * @id AP card ID
290  *
291  * Returns 0 if the card is not configured
292  *	   1 if the card is configured or
293  *	     if the configuration information is not available
294  */
295 static inline int ap_test_config_card_id(unsigned int id)
296 {
297 	if (!ap_configuration)	/* QCI not supported */
298 		return 1;
299 	return ap_test_config(ap_configuration->apm, id);
300 }
301 
302 /*
303  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
304  * @domain AP usage domain ID
305  *
306  * Returns 0 if the usage domain is not configured
307  *	   1 if the usage domain is configured or
308  *	     if the configuration information is not available
309  */
310 static inline int ap_test_config_domain(unsigned int domain)
311 {
312 	if (!ap_configuration)	/* QCI not supported */
313 		return domain < 16;
314 	return ap_test_config(ap_configuration->aqm, domain);
315 }
316 
317 /**
318  * ap_queue_enable_interruption(): Enable interruption on an AP.
319  * @qid: The AP queue number
320  * @ind: the notification indicator byte
321  *
322  * Enables interruption on AP queue via ap_queue_interruption_control(). Based
323  * on the return value it waits a while and tests the AP queue if interrupts
324  * have been switched on using ap_test_queue().
325  */
326 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
327 {
328 	struct ap_queue_status status;
329 
330 	status = ap_queue_interruption_control(ap_dev->qid, ind);
331 	switch (status.response_code) {
332 	case AP_RESPONSE_NORMAL:
333 	case AP_RESPONSE_OTHERWISE_CHANGED:
334 		return 0;
335 	case AP_RESPONSE_Q_NOT_AVAIL:
336 	case AP_RESPONSE_DECONFIGURED:
337 	case AP_RESPONSE_CHECKSTOPPED:
338 	case AP_RESPONSE_INVALID_ADDRESS:
339 		pr_err("Registering adapter interrupts for AP %d failed\n",
340 		       AP_QID_DEVICE(ap_dev->qid));
341 		return -EOPNOTSUPP;
342 	case AP_RESPONSE_RESET_IN_PROGRESS:
343 	case AP_RESPONSE_BUSY:
344 	default:
345 		return -EBUSY;
346 	}
347 }
348 
349 /**
350  * __ap_send(): Send message to adjunct processor queue.
351  * @qid: The AP queue number
352  * @psmid: The program supplied message identifier
353  * @msg: The message text
354  * @length: The message length
355  * @special: Special Bit
356  *
357  * Returns AP queue status structure.
358  * Condition code 1 on NQAP can't happen because the L bit is 1.
359  * Condition code 2 on NQAP also means the send is incomplete,
360  * because a segment boundary was reached. The NQAP is repeated.
361  */
362 static inline struct ap_queue_status
363 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
364 	  unsigned int special)
365 {
366 	typedef struct { char _[length]; } msgblock;
367 	register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
368 	register struct ap_queue_status reg1 asm ("1");
369 	register unsigned long reg2 asm ("2") = (unsigned long) msg;
370 	register unsigned long reg3 asm ("3") = (unsigned long) length;
371 	register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
372 	register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
373 
374 	if (special == 1)
375 		reg0 |= 0x400000UL;
376 
377 	asm volatile (
378 		"0: .long 0xb2ad0042\n"		/* NQAP */
379 		"   brc   2,0b"
380 		: "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
381 		: "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
382 		: "cc" );
383 	return reg1;
384 }
385 
386 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
387 {
388 	struct ap_queue_status status;
389 
390 	status = __ap_send(qid, psmid, msg, length, 0);
391 	switch (status.response_code) {
392 	case AP_RESPONSE_NORMAL:
393 		return 0;
394 	case AP_RESPONSE_Q_FULL:
395 	case AP_RESPONSE_RESET_IN_PROGRESS:
396 		return -EBUSY;
397 	case AP_RESPONSE_REQ_FAC_NOT_INST:
398 		return -EINVAL;
399 	default:	/* Device is gone. */
400 		return -ENODEV;
401 	}
402 }
403 EXPORT_SYMBOL(ap_send);
404 
405 /**
406  * __ap_recv(): Receive message from adjunct processor queue.
407  * @qid: The AP queue number
408  * @psmid: Pointer to program supplied message identifier
409  * @msg: The message text
410  * @length: The message length
411  *
412  * Returns AP queue status structure.
413  * Condition code 1 on DQAP means the receive has taken place
414  * but only partially.	The response is incomplete, hence the
415  * DQAP is repeated.
416  * Condition code 2 on DQAP also means the receive is incomplete,
417  * this time because a segment boundary was reached. Again, the
418  * DQAP is repeated.
419  * Note that gpr2 is used by the DQAP instruction to keep track of
420  * any 'residual' length, in case the instruction gets interrupted.
421  * Hence it gets zeroed before the instruction.
422  */
423 static inline struct ap_queue_status
424 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
425 {
426 	typedef struct { char _[length]; } msgblock;
427 	register unsigned long reg0 asm("0") = qid | 0x80000000UL;
428 	register struct ap_queue_status reg1 asm ("1");
429 	register unsigned long reg2 asm("2") = 0UL;
430 	register unsigned long reg4 asm("4") = (unsigned long) msg;
431 	register unsigned long reg5 asm("5") = (unsigned long) length;
432 	register unsigned long reg6 asm("6") = 0UL;
433 	register unsigned long reg7 asm("7") = 0UL;
434 
435 
436 	asm volatile(
437 		"0: .long 0xb2ae0064\n"		/* DQAP */
438 		"   brc   6,0b\n"
439 		: "+d" (reg0), "=d" (reg1), "+d" (reg2),
440 		"+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
441 		"=m" (*(msgblock *) msg) : : "cc" );
442 	*psmid = (((unsigned long long) reg6) << 32) + reg7;
443 	return reg1;
444 }
445 
446 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
447 {
448 	struct ap_queue_status status;
449 
450 	status = __ap_recv(qid, psmid, msg, length);
451 	switch (status.response_code) {
452 	case AP_RESPONSE_NORMAL:
453 		return 0;
454 	case AP_RESPONSE_NO_PENDING_REPLY:
455 		if (status.queue_empty)
456 			return -ENOENT;
457 		return -EBUSY;
458 	case AP_RESPONSE_RESET_IN_PROGRESS:
459 		return -EBUSY;
460 	default:
461 		return -ENODEV;
462 	}
463 }
464 EXPORT_SYMBOL(ap_recv);
465 
466 /**
467  * ap_query_queue(): Check if an AP queue is available.
468  * @qid: The AP queue number
469  * @queue_depth: Pointer to queue depth value
470  * @device_type: Pointer to device type value
471  * @facilities: Pointer to facility indicator
472  */
473 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
474 			  unsigned int *facilities)
475 {
476 	struct ap_queue_status status;
477 	unsigned long info;
478 	int nd;
479 
480 	if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
481 		return -ENODEV;
482 
483 	status = ap_test_queue(qid, &info);
484 	switch (status.response_code) {
485 	case AP_RESPONSE_NORMAL:
486 		*queue_depth = (int)(info & 0xff);
487 		*device_type = (int)((info >> 24) & 0xff);
488 		*facilities = (unsigned int)(info >> 32);
489 		/* Update maximum domain id */
490 		nd = (info >> 16) & 0xff;
491 		if ((info & (1UL << 57)) && nd > 0)
492 			ap_max_domain_id = nd;
493 		return 0;
494 	case AP_RESPONSE_Q_NOT_AVAIL:
495 	case AP_RESPONSE_DECONFIGURED:
496 	case AP_RESPONSE_CHECKSTOPPED:
497 	case AP_RESPONSE_INVALID_ADDRESS:
498 		return -ENODEV;
499 	case AP_RESPONSE_RESET_IN_PROGRESS:
500 	case AP_RESPONSE_OTHERWISE_CHANGED:
501 	case AP_RESPONSE_BUSY:
502 		return -EBUSY;
503 	default:
504 		BUG();
505 	}
506 }
507 
508 /* State machine definitions and helpers */
509 
510 static void ap_sm_wait(enum ap_wait wait)
511 {
512 	ktime_t hr_time;
513 
514 	switch (wait) {
515 	case AP_WAIT_AGAIN:
516 	case AP_WAIT_INTERRUPT:
517 		if (ap_using_interrupts())
518 			break;
519 		if (ap_poll_kthread) {
520 			wake_up(&ap_poll_wait);
521 			break;
522 		}
523 		/* Fall through */
524 	case AP_WAIT_TIMEOUT:
525 		spin_lock_bh(&ap_poll_timer_lock);
526 		if (!hrtimer_is_queued(&ap_poll_timer)) {
527 			hr_time = ktime_set(0, poll_timeout);
528 			hrtimer_forward_now(&ap_poll_timer, hr_time);
529 			hrtimer_restart(&ap_poll_timer);
530 		}
531 		spin_unlock_bh(&ap_poll_timer_lock);
532 		break;
533 	case AP_WAIT_NONE:
534 	default:
535 		break;
536 	}
537 }
538 
539 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
540 {
541 	return AP_WAIT_NONE;
542 }
543 
544 /**
545  * ap_sm_recv(): Receive pending reply messages from an AP device but do
546  *	not change the state of the device.
547  * @ap_dev: pointer to the AP device
548  *
549  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
550  */
551 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
552 {
553 	struct ap_queue_status status;
554 	struct ap_message *ap_msg;
555 
556 	status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
557 			   ap_dev->reply->message, ap_dev->reply->length);
558 	switch (status.response_code) {
559 	case AP_RESPONSE_NORMAL:
560 		atomic_dec(&ap_poll_requests);
561 		ap_dev->queue_count--;
562 		if (ap_dev->queue_count > 0)
563 			mod_timer(&ap_dev->timeout,
564 				  jiffies + ap_dev->drv->request_timeout);
565 		list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
566 			if (ap_msg->psmid != ap_dev->reply->psmid)
567 				continue;
568 			list_del_init(&ap_msg->list);
569 			ap_dev->pendingq_count--;
570 			ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
571 			break;
572 		}
573 	case AP_RESPONSE_NO_PENDING_REPLY:
574 		if (!status.queue_empty || ap_dev->queue_count <= 0)
575 			break;
576 		/* The card shouldn't forget requests but who knows. */
577 		atomic_sub(ap_dev->queue_count, &ap_poll_requests);
578 		ap_dev->queue_count = 0;
579 		list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
580 		ap_dev->requestq_count += ap_dev->pendingq_count;
581 		ap_dev->pendingq_count = 0;
582 		break;
583 	default:
584 		break;
585 	}
586 	return status;
587 }
588 
589 /**
590  * ap_sm_read(): Receive pending reply messages from an AP device.
591  * @ap_dev: pointer to the AP device
592  *
593  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
594  */
595 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
596 {
597 	struct ap_queue_status status;
598 
599 	status = ap_sm_recv(ap_dev);
600 	switch (status.response_code) {
601 	case AP_RESPONSE_NORMAL:
602 		if (ap_dev->queue_count > 0) {
603 			ap_dev->state = AP_STATE_WORKING;
604 			return AP_WAIT_AGAIN;
605 		}
606 		ap_dev->state = AP_STATE_IDLE;
607 		return AP_WAIT_NONE;
608 	case AP_RESPONSE_NO_PENDING_REPLY:
609 		if (ap_dev->queue_count > 0)
610 			return AP_WAIT_INTERRUPT;
611 		ap_dev->state = AP_STATE_IDLE;
612 		return AP_WAIT_NONE;
613 	default:
614 		ap_dev->state = AP_STATE_BORKED;
615 		return AP_WAIT_NONE;
616 	}
617 }
618 
619 /**
620  * ap_sm_write(): Send messages from the request queue to an AP device.
621  * @ap_dev: pointer to the AP device
622  *
623  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
624  */
625 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
626 {
627 	struct ap_queue_status status;
628 	struct ap_message *ap_msg;
629 
630 	if (ap_dev->requestq_count <= 0)
631 		return AP_WAIT_NONE;
632 	/* Start the next request on the queue. */
633 	ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
634 	status = __ap_send(ap_dev->qid, ap_msg->psmid,
635 			   ap_msg->message, ap_msg->length, ap_msg->special);
636 	switch (status.response_code) {
637 	case AP_RESPONSE_NORMAL:
638 		atomic_inc(&ap_poll_requests);
639 		ap_dev->queue_count++;
640 		if (ap_dev->queue_count == 1)
641 			mod_timer(&ap_dev->timeout,
642 				  jiffies + ap_dev->drv->request_timeout);
643 		list_move_tail(&ap_msg->list, &ap_dev->pendingq);
644 		ap_dev->requestq_count--;
645 		ap_dev->pendingq_count++;
646 		if (ap_dev->queue_count < ap_dev->queue_depth) {
647 			ap_dev->state = AP_STATE_WORKING;
648 			return AP_WAIT_AGAIN;
649 		}
650 		/* fall through */
651 	case AP_RESPONSE_Q_FULL:
652 		ap_dev->state = AP_STATE_QUEUE_FULL;
653 		return AP_WAIT_INTERRUPT;
654 	case AP_RESPONSE_RESET_IN_PROGRESS:
655 		ap_dev->state = AP_STATE_RESET_WAIT;
656 		return AP_WAIT_TIMEOUT;
657 	case AP_RESPONSE_MESSAGE_TOO_BIG:
658 	case AP_RESPONSE_REQ_FAC_NOT_INST:
659 		list_del_init(&ap_msg->list);
660 		ap_dev->requestq_count--;
661 		ap_msg->rc = -EINVAL;
662 		ap_msg->receive(ap_dev, ap_msg, NULL);
663 		return AP_WAIT_AGAIN;
664 	default:
665 		ap_dev->state = AP_STATE_BORKED;
666 		return AP_WAIT_NONE;
667 	}
668 }
669 
670 /**
671  * ap_sm_read_write(): Send and receive messages to/from an AP device.
672  * @ap_dev: pointer to the AP device
673  *
674  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
675  */
676 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
677 {
678 	return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
679 }
680 
681 /**
682  * ap_sm_reset(): Reset an AP queue.
683  * @qid: The AP queue number
684  *
685  * Submit the Reset command to an AP queue.
686  */
687 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
688 {
689 	struct ap_queue_status status;
690 
691 	status = ap_reset_queue(ap_dev->qid);
692 	switch (status.response_code) {
693 	case AP_RESPONSE_NORMAL:
694 	case AP_RESPONSE_RESET_IN_PROGRESS:
695 		ap_dev->state = AP_STATE_RESET_WAIT;
696 		ap_dev->interrupt = AP_INTR_DISABLED;
697 		return AP_WAIT_TIMEOUT;
698 	case AP_RESPONSE_BUSY:
699 		return AP_WAIT_TIMEOUT;
700 	case AP_RESPONSE_Q_NOT_AVAIL:
701 	case AP_RESPONSE_DECONFIGURED:
702 	case AP_RESPONSE_CHECKSTOPPED:
703 	default:
704 		ap_dev->state = AP_STATE_BORKED;
705 		return AP_WAIT_NONE;
706 	}
707 }
708 
709 /**
710  * ap_sm_reset_wait(): Test queue for completion of the reset operation
711  * @ap_dev: pointer to the AP device
712  *
713  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
714  */
715 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
716 {
717 	struct ap_queue_status status;
718 	unsigned long info;
719 
720 	if (ap_dev->queue_count > 0)
721 		/* Try to read a completed message and get the status */
722 		status = ap_sm_recv(ap_dev);
723 	else
724 		/* Get the status with TAPQ */
725 		status = ap_test_queue(ap_dev->qid, &info);
726 
727 	switch (status.response_code) {
728 	case AP_RESPONSE_NORMAL:
729 		if (ap_using_interrupts() &&
730 		    ap_queue_enable_interruption(ap_dev,
731 						 ap_airq.lsi_ptr) == 0)
732 			ap_dev->state = AP_STATE_SETIRQ_WAIT;
733 		else
734 			ap_dev->state = (ap_dev->queue_count > 0) ?
735 				AP_STATE_WORKING : AP_STATE_IDLE;
736 		return AP_WAIT_AGAIN;
737 	case AP_RESPONSE_BUSY:
738 	case AP_RESPONSE_RESET_IN_PROGRESS:
739 		return AP_WAIT_TIMEOUT;
740 	case AP_RESPONSE_Q_NOT_AVAIL:
741 	case AP_RESPONSE_DECONFIGURED:
742 	case AP_RESPONSE_CHECKSTOPPED:
743 	default:
744 		ap_dev->state = AP_STATE_BORKED;
745 		return AP_WAIT_NONE;
746 	}
747 }
748 
749 /**
750  * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
751  * @ap_dev: pointer to the AP device
752  *
753  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
754  */
755 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
756 {
757 	struct ap_queue_status status;
758 	unsigned long info;
759 
760 	if (ap_dev->queue_count > 0)
761 		/* Try to read a completed message and get the status */
762 		status = ap_sm_recv(ap_dev);
763 	else
764 		/* Get the status with TAPQ */
765 		status = ap_test_queue(ap_dev->qid, &info);
766 
767 	if (status.int_enabled == 1) {
768 		/* Irqs are now enabled */
769 		ap_dev->interrupt = AP_INTR_ENABLED;
770 		ap_dev->state = (ap_dev->queue_count > 0) ?
771 			AP_STATE_WORKING : AP_STATE_IDLE;
772 	}
773 
774 	switch (status.response_code) {
775 	case AP_RESPONSE_NORMAL:
776 		if (ap_dev->queue_count > 0)
777 			return AP_WAIT_AGAIN;
778 		/* fallthrough */
779 	case AP_RESPONSE_NO_PENDING_REPLY:
780 		return AP_WAIT_TIMEOUT;
781 	default:
782 		ap_dev->state = AP_STATE_BORKED;
783 		return AP_WAIT_NONE;
784 	}
785 }
786 
787 /*
788  * AP state machine jump table
789  */
790 static ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
791 	[AP_STATE_RESET_START] = {
792 		[AP_EVENT_POLL] = ap_sm_reset,
793 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
794 	},
795 	[AP_STATE_RESET_WAIT] = {
796 		[AP_EVENT_POLL] = ap_sm_reset_wait,
797 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
798 	},
799 	[AP_STATE_SETIRQ_WAIT] = {
800 		[AP_EVENT_POLL] = ap_sm_setirq_wait,
801 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
802 	},
803 	[AP_STATE_IDLE] = {
804 		[AP_EVENT_POLL] = ap_sm_write,
805 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
806 	},
807 	[AP_STATE_WORKING] = {
808 		[AP_EVENT_POLL] = ap_sm_read_write,
809 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
810 	},
811 	[AP_STATE_QUEUE_FULL] = {
812 		[AP_EVENT_POLL] = ap_sm_read,
813 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
814 	},
815 	[AP_STATE_SUSPEND_WAIT] = {
816 		[AP_EVENT_POLL] = ap_sm_read,
817 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
818 	},
819 	[AP_STATE_BORKED] = {
820 		[AP_EVENT_POLL] = ap_sm_nop,
821 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
822 	},
823 };
824 
825 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
826 				       enum ap_event event)
827 {
828 	return ap_jumptable[ap_dev->state][event](ap_dev);
829 }
830 
831 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
832 					    enum ap_event event)
833 {
834 	enum ap_wait wait;
835 
836 	while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
837 		;
838 	return wait;
839 }
840 
841 /**
842  * ap_request_timeout(): Handling of request timeouts
843  * @data: Holds the AP device.
844  *
845  * Handles request timeouts.
846  */
847 static void ap_request_timeout(unsigned long data)
848 {
849 	struct ap_device *ap_dev = (struct ap_device *) data;
850 
851 	if (ap_suspend_flag)
852 		return;
853 	spin_lock_bh(&ap_dev->lock);
854 	ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
855 	spin_unlock_bh(&ap_dev->lock);
856 }
857 
858 /**
859  * ap_poll_timeout(): AP receive polling for finished AP requests.
860  * @unused: Unused pointer.
861  *
862  * Schedules the AP tasklet using a high resolution timer.
863  */
864 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
865 {
866 	if (!ap_suspend_flag)
867 		tasklet_schedule(&ap_tasklet);
868 	return HRTIMER_NORESTART;
869 }
870 
871 /**
872  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
873  * @airq: pointer to adapter interrupt descriptor
874  */
875 static void ap_interrupt_handler(struct airq_struct *airq)
876 {
877 	inc_irq_stat(IRQIO_APB);
878 	if (!ap_suspend_flag)
879 		tasklet_schedule(&ap_tasklet);
880 }
881 
882 /**
883  * ap_tasklet_fn(): Tasklet to poll all AP devices.
884  * @dummy: Unused variable
885  *
886  * Poll all AP devices on the bus.
887  */
888 static void ap_tasklet_fn(unsigned long dummy)
889 {
890 	struct ap_device *ap_dev;
891 	enum ap_wait wait = AP_WAIT_NONE;
892 
893 	/* Reset the indicator if interrupts are used. Thus new interrupts can
894 	 * be received. Doing it in the beginning of the tasklet is therefor
895 	 * important that no requests on any AP get lost.
896 	 */
897 	if (ap_using_interrupts())
898 		xchg(ap_airq.lsi_ptr, 0);
899 
900 	spin_lock(&ap_device_list_lock);
901 	list_for_each_entry(ap_dev, &ap_device_list, list) {
902 		spin_lock_bh(&ap_dev->lock);
903 		wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
904 		spin_unlock_bh(&ap_dev->lock);
905 	}
906 	spin_unlock(&ap_device_list_lock);
907 	ap_sm_wait(wait);
908 }
909 
910 /**
911  * ap_poll_thread(): Thread that polls for finished requests.
912  * @data: Unused pointer
913  *
914  * AP bus poll thread. The purpose of this thread is to poll for
915  * finished requests in a loop if there is a "free" cpu - that is
916  * a cpu that doesn't have anything better to do. The polling stops
917  * as soon as there is another task or if all messages have been
918  * delivered.
919  */
920 static int ap_poll_thread(void *data)
921 {
922 	DECLARE_WAITQUEUE(wait, current);
923 
924 	set_user_nice(current, MAX_NICE);
925 	set_freezable();
926 	while (!kthread_should_stop()) {
927 		add_wait_queue(&ap_poll_wait, &wait);
928 		set_current_state(TASK_INTERRUPTIBLE);
929 		if (ap_suspend_flag ||
930 		    atomic_read(&ap_poll_requests) <= 0) {
931 			schedule();
932 			try_to_freeze();
933 		}
934 		set_current_state(TASK_RUNNING);
935 		remove_wait_queue(&ap_poll_wait, &wait);
936 		if (need_resched()) {
937 			schedule();
938 			try_to_freeze();
939 			continue;
940 		}
941 		ap_tasklet_fn(0);
942 	} while (!kthread_should_stop());
943 	return 0;
944 }
945 
946 static int ap_poll_thread_start(void)
947 {
948 	int rc;
949 
950 	if (ap_using_interrupts() || ap_poll_kthread)
951 		return 0;
952 	mutex_lock(&ap_poll_thread_mutex);
953 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
954 	rc = PTR_RET(ap_poll_kthread);
955 	if (rc)
956 		ap_poll_kthread = NULL;
957 	mutex_unlock(&ap_poll_thread_mutex);
958 	return rc;
959 }
960 
961 static void ap_poll_thread_stop(void)
962 {
963 	if (!ap_poll_kthread)
964 		return;
965 	mutex_lock(&ap_poll_thread_mutex);
966 	kthread_stop(ap_poll_kthread);
967 	ap_poll_kthread = NULL;
968 	mutex_unlock(&ap_poll_thread_mutex);
969 }
970 
971 /**
972  * ap_queue_message(): Queue a request to an AP device.
973  * @ap_dev: The AP device to queue the message to
974  * @ap_msg: The message that is to be added
975  */
976 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
977 {
978 	/* For asynchronous message handling a valid receive-callback
979 	 * is required. */
980 	BUG_ON(!ap_msg->receive);
981 
982 	spin_lock_bh(&ap_dev->lock);
983 	/* Queue the message. */
984 	list_add_tail(&ap_msg->list, &ap_dev->requestq);
985 	ap_dev->requestq_count++;
986 	ap_dev->total_request_count++;
987 	/* Send/receive as many request from the queue as possible. */
988 	ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
989 	spin_unlock_bh(&ap_dev->lock);
990 }
991 EXPORT_SYMBOL(ap_queue_message);
992 
993 /**
994  * ap_cancel_message(): Cancel a crypto request.
995  * @ap_dev: The AP device that has the message queued
996  * @ap_msg: The message that is to be removed
997  *
998  * Cancel a crypto request. This is done by removing the request
999  * from the device pending or request queue. Note that the
1000  * request stays on the AP queue. When it finishes the message
1001  * reply will be discarded because the psmid can't be found.
1002  */
1003 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1004 {
1005 	struct ap_message *tmp;
1006 
1007 	spin_lock_bh(&ap_dev->lock);
1008 	if (!list_empty(&ap_msg->list)) {
1009 		list_for_each_entry(tmp, &ap_dev->pendingq, list)
1010 			if (tmp->psmid == ap_msg->psmid) {
1011 				ap_dev->pendingq_count--;
1012 				goto found;
1013 			}
1014 		ap_dev->requestq_count--;
1015 found:
1016 		list_del_init(&ap_msg->list);
1017 	}
1018 	spin_unlock_bh(&ap_dev->lock);
1019 }
1020 EXPORT_SYMBOL(ap_cancel_message);
1021 
1022 /*
1023  * AP device related attributes.
1024  */
1025 static ssize_t ap_hwtype_show(struct device *dev,
1026 			      struct device_attribute *attr, char *buf)
1027 {
1028 	struct ap_device *ap_dev = to_ap_dev(dev);
1029 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1030 }
1031 
1032 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1033 
1034 static ssize_t ap_raw_hwtype_show(struct device *dev,
1035 			      struct device_attribute *attr, char *buf)
1036 {
1037 	struct ap_device *ap_dev = to_ap_dev(dev);
1038 
1039 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1040 }
1041 
1042 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1043 
1044 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1045 			     char *buf)
1046 {
1047 	struct ap_device *ap_dev = to_ap_dev(dev);
1048 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1049 }
1050 
1051 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1052 static ssize_t ap_request_count_show(struct device *dev,
1053 				     struct device_attribute *attr,
1054 				     char *buf)
1055 {
1056 	struct ap_device *ap_dev = to_ap_dev(dev);
1057 	int rc;
1058 
1059 	spin_lock_bh(&ap_dev->lock);
1060 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1061 	spin_unlock_bh(&ap_dev->lock);
1062 	return rc;
1063 }
1064 
1065 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1066 
1067 static ssize_t ap_requestq_count_show(struct device *dev,
1068 				      struct device_attribute *attr, char *buf)
1069 {
1070 	struct ap_device *ap_dev = to_ap_dev(dev);
1071 	int rc;
1072 
1073 	spin_lock_bh(&ap_dev->lock);
1074 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1075 	spin_unlock_bh(&ap_dev->lock);
1076 	return rc;
1077 }
1078 
1079 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1080 
1081 static ssize_t ap_pendingq_count_show(struct device *dev,
1082 				      struct device_attribute *attr, char *buf)
1083 {
1084 	struct ap_device *ap_dev = to_ap_dev(dev);
1085 	int rc;
1086 
1087 	spin_lock_bh(&ap_dev->lock);
1088 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1089 	spin_unlock_bh(&ap_dev->lock);
1090 	return rc;
1091 }
1092 
1093 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1094 
1095 static ssize_t ap_reset_show(struct device *dev,
1096 				      struct device_attribute *attr, char *buf)
1097 {
1098 	struct ap_device *ap_dev = to_ap_dev(dev);
1099 	int rc = 0;
1100 
1101 	spin_lock_bh(&ap_dev->lock);
1102 	switch (ap_dev->state) {
1103 	case AP_STATE_RESET_START:
1104 	case AP_STATE_RESET_WAIT:
1105 		rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1106 		break;
1107 	case AP_STATE_WORKING:
1108 	case AP_STATE_QUEUE_FULL:
1109 		rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1110 		break;
1111 	default:
1112 		rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1113 	}
1114 	spin_unlock_bh(&ap_dev->lock);
1115 	return rc;
1116 }
1117 
1118 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1119 
1120 static ssize_t ap_interrupt_show(struct device *dev,
1121 				      struct device_attribute *attr, char *buf)
1122 {
1123 	struct ap_device *ap_dev = to_ap_dev(dev);
1124 	int rc = 0;
1125 
1126 	spin_lock_bh(&ap_dev->lock);
1127 	if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1128 		rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1129 	else if (ap_dev->interrupt == AP_INTR_ENABLED)
1130 		rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1131 	else
1132 		rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1133 	spin_unlock_bh(&ap_dev->lock);
1134 	return rc;
1135 }
1136 
1137 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1138 
1139 static ssize_t ap_modalias_show(struct device *dev,
1140 				struct device_attribute *attr, char *buf)
1141 {
1142 	return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1143 }
1144 
1145 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1146 
1147 static ssize_t ap_functions_show(struct device *dev,
1148 				 struct device_attribute *attr, char *buf)
1149 {
1150 	struct ap_device *ap_dev = to_ap_dev(dev);
1151 	return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1152 }
1153 
1154 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1155 
1156 static struct attribute *ap_dev_attrs[] = {
1157 	&dev_attr_hwtype.attr,
1158 	&dev_attr_raw_hwtype.attr,
1159 	&dev_attr_depth.attr,
1160 	&dev_attr_request_count.attr,
1161 	&dev_attr_requestq_count.attr,
1162 	&dev_attr_pendingq_count.attr,
1163 	&dev_attr_reset.attr,
1164 	&dev_attr_interrupt.attr,
1165 	&dev_attr_modalias.attr,
1166 	&dev_attr_ap_functions.attr,
1167 	NULL
1168 };
1169 static struct attribute_group ap_dev_attr_group = {
1170 	.attrs = ap_dev_attrs
1171 };
1172 
1173 /**
1174  * ap_bus_match()
1175  * @dev: Pointer to device
1176  * @drv: Pointer to device_driver
1177  *
1178  * AP bus driver registration/unregistration.
1179  */
1180 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1181 {
1182 	struct ap_device *ap_dev = to_ap_dev(dev);
1183 	struct ap_driver *ap_drv = to_ap_drv(drv);
1184 	struct ap_device_id *id;
1185 
1186 	/*
1187 	 * Compare device type of the device with the list of
1188 	 * supported types of the device_driver.
1189 	 */
1190 	for (id = ap_drv->ids; id->match_flags; id++) {
1191 		if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1192 		    (id->dev_type != ap_dev->device_type))
1193 			continue;
1194 		return 1;
1195 	}
1196 	return 0;
1197 }
1198 
1199 /**
1200  * ap_uevent(): Uevent function for AP devices.
1201  * @dev: Pointer to device
1202  * @env: Pointer to kobj_uevent_env
1203  *
1204  * It sets up a single environment variable DEV_TYPE which contains the
1205  * hardware device type.
1206  */
1207 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1208 {
1209 	struct ap_device *ap_dev = to_ap_dev(dev);
1210 	int retval = 0;
1211 
1212 	if (!ap_dev)
1213 		return -ENODEV;
1214 
1215 	/* Set up DEV_TYPE environment variable. */
1216 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1217 	if (retval)
1218 		return retval;
1219 
1220 	/* Add MODALIAS= */
1221 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1222 
1223 	return retval;
1224 }
1225 
1226 static int ap_dev_suspend(struct device *dev, pm_message_t state)
1227 {
1228 	struct ap_device *ap_dev = to_ap_dev(dev);
1229 
1230 	/* Poll on the device until all requests are finished. */
1231 	spin_lock_bh(&ap_dev->lock);
1232 	ap_dev->state = AP_STATE_SUSPEND_WAIT;
1233 	while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1234 		;
1235 	ap_dev->state = AP_STATE_BORKED;
1236 	spin_unlock_bh(&ap_dev->lock);
1237 	return 0;
1238 }
1239 
1240 static int ap_dev_resume(struct device *dev)
1241 {
1242 	return 0;
1243 }
1244 
1245 static void ap_bus_suspend(void)
1246 {
1247 	ap_suspend_flag = 1;
1248 	/*
1249 	 * Disable scanning for devices, thus we do not want to scan
1250 	 * for them after removing.
1251 	 */
1252 	flush_work(&ap_scan_work);
1253 	tasklet_disable(&ap_tasklet);
1254 }
1255 
1256 static int __ap_devices_unregister(struct device *dev, void *dummy)
1257 {
1258 	device_unregister(dev);
1259 	return 0;
1260 }
1261 
1262 static void ap_bus_resume(void)
1263 {
1264 	int rc;
1265 
1266 	/* Unconditionally remove all AP devices */
1267 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1268 	/* Reset thin interrupt setting */
1269 	if (ap_interrupts_available() && !ap_using_interrupts()) {
1270 		rc = register_adapter_interrupt(&ap_airq);
1271 		ap_airq_flag = (rc == 0);
1272 	}
1273 	if (!ap_interrupts_available() && ap_using_interrupts()) {
1274 		unregister_adapter_interrupt(&ap_airq);
1275 		ap_airq_flag = 0;
1276 	}
1277 	/* Reset domain */
1278 	if (!user_set_domain)
1279 		ap_domain_index = -1;
1280 	/* Get things going again */
1281 	ap_suspend_flag = 0;
1282 	if (ap_airq_flag)
1283 		xchg(ap_airq.lsi_ptr, 0);
1284 	tasklet_enable(&ap_tasklet);
1285 	queue_work(system_long_wq, &ap_scan_work);
1286 }
1287 
1288 static int ap_power_event(struct notifier_block *this, unsigned long event,
1289 			  void *ptr)
1290 {
1291 	switch (event) {
1292 	case PM_HIBERNATION_PREPARE:
1293 	case PM_SUSPEND_PREPARE:
1294 		ap_bus_suspend();
1295 		break;
1296 	case PM_POST_HIBERNATION:
1297 	case PM_POST_SUSPEND:
1298 		ap_bus_resume();
1299 		break;
1300 	default:
1301 		break;
1302 	}
1303 	return NOTIFY_DONE;
1304 }
1305 static struct notifier_block ap_power_notifier = {
1306 	.notifier_call = ap_power_event,
1307 };
1308 
1309 static struct bus_type ap_bus_type = {
1310 	.name = "ap",
1311 	.match = &ap_bus_match,
1312 	.uevent = &ap_uevent,
1313 	.suspend = ap_dev_suspend,
1314 	.resume = ap_dev_resume,
1315 };
1316 
1317 static int ap_device_probe(struct device *dev)
1318 {
1319 	struct ap_device *ap_dev = to_ap_dev(dev);
1320 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1321 	int rc;
1322 
1323 	ap_dev->drv = ap_drv;
1324 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1325 	if (rc)
1326 		ap_dev->drv = NULL;
1327 	return rc;
1328 }
1329 
1330 /**
1331  * __ap_flush_queue(): Flush requests.
1332  * @ap_dev: Pointer to the AP device
1333  *
1334  * Flush all requests from the request/pending queue of an AP device.
1335  */
1336 static void __ap_flush_queue(struct ap_device *ap_dev)
1337 {
1338 	struct ap_message *ap_msg, *next;
1339 
1340 	list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1341 		list_del_init(&ap_msg->list);
1342 		ap_dev->pendingq_count--;
1343 		ap_msg->rc = -EAGAIN;
1344 		ap_msg->receive(ap_dev, ap_msg, NULL);
1345 	}
1346 	list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1347 		list_del_init(&ap_msg->list);
1348 		ap_dev->requestq_count--;
1349 		ap_msg->rc = -EAGAIN;
1350 		ap_msg->receive(ap_dev, ap_msg, NULL);
1351 	}
1352 }
1353 
1354 void ap_flush_queue(struct ap_device *ap_dev)
1355 {
1356 	spin_lock_bh(&ap_dev->lock);
1357 	__ap_flush_queue(ap_dev);
1358 	spin_unlock_bh(&ap_dev->lock);
1359 }
1360 EXPORT_SYMBOL(ap_flush_queue);
1361 
1362 static int ap_device_remove(struct device *dev)
1363 {
1364 	struct ap_device *ap_dev = to_ap_dev(dev);
1365 	struct ap_driver *ap_drv = ap_dev->drv;
1366 
1367 	ap_flush_queue(ap_dev);
1368 	del_timer_sync(&ap_dev->timeout);
1369 	spin_lock_bh(&ap_device_list_lock);
1370 	list_del_init(&ap_dev->list);
1371 	spin_unlock_bh(&ap_device_list_lock);
1372 	if (ap_drv->remove)
1373 		ap_drv->remove(ap_dev);
1374 	spin_lock_bh(&ap_dev->lock);
1375 	atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1376 	spin_unlock_bh(&ap_dev->lock);
1377 	return 0;
1378 }
1379 
1380 static void ap_device_release(struct device *dev)
1381 {
1382 	kfree(to_ap_dev(dev));
1383 }
1384 
1385 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1386 		       char *name)
1387 {
1388 	struct device_driver *drv = &ap_drv->driver;
1389 
1390 	if (!initialised)
1391 		return -ENODEV;
1392 
1393 	drv->bus = &ap_bus_type;
1394 	drv->probe = ap_device_probe;
1395 	drv->remove = ap_device_remove;
1396 	drv->owner = owner;
1397 	drv->name = name;
1398 	return driver_register(drv);
1399 }
1400 EXPORT_SYMBOL(ap_driver_register);
1401 
1402 void ap_driver_unregister(struct ap_driver *ap_drv)
1403 {
1404 	driver_unregister(&ap_drv->driver);
1405 }
1406 EXPORT_SYMBOL(ap_driver_unregister);
1407 
1408 void ap_bus_force_rescan(void)
1409 {
1410 	if (ap_suspend_flag)
1411 		return;
1412 	/* processing a asynchronous bus rescan */
1413 	del_timer(&ap_config_timer);
1414 	queue_work(system_long_wq, &ap_scan_work);
1415 	flush_work(&ap_scan_work);
1416 }
1417 EXPORT_SYMBOL(ap_bus_force_rescan);
1418 
1419 /*
1420  * AP bus attributes.
1421  */
1422 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1423 {
1424 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1425 }
1426 
1427 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1428 
1429 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1430 {
1431 	if (!ap_configuration)	/* QCI not supported */
1432 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1433 	if (!test_facility(76))
1434 		/* format 0 - 16 bit domain field */
1435 		return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1436 				ap_configuration->adm[0],
1437 				ap_configuration->adm[1]);
1438 	/* format 1 - 256 bit domain field */
1439 	return snprintf(buf, PAGE_SIZE,
1440 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1441 			ap_configuration->adm[0], ap_configuration->adm[1],
1442 			ap_configuration->adm[2], ap_configuration->adm[3],
1443 			ap_configuration->adm[4], ap_configuration->adm[5],
1444 			ap_configuration->adm[6], ap_configuration->adm[7]);
1445 }
1446 
1447 static BUS_ATTR(ap_control_domain_mask, 0444,
1448 		ap_control_domain_mask_show, NULL);
1449 
1450 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1451 {
1452 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1453 }
1454 
1455 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1456 {
1457 	return snprintf(buf, PAGE_SIZE, "%d\n",
1458 			ap_using_interrupts() ? 1 : 0);
1459 }
1460 
1461 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1462 
1463 static ssize_t ap_config_time_store(struct bus_type *bus,
1464 				    const char *buf, size_t count)
1465 {
1466 	int time;
1467 
1468 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1469 		return -EINVAL;
1470 	ap_config_time = time;
1471 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1472 	return count;
1473 }
1474 
1475 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1476 
1477 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1478 {
1479 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1480 }
1481 
1482 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1483 				    const char *buf, size_t count)
1484 {
1485 	int flag, rc;
1486 
1487 	if (sscanf(buf, "%d\n", &flag) != 1)
1488 		return -EINVAL;
1489 	if (flag) {
1490 		rc = ap_poll_thread_start();
1491 		if (rc)
1492 			count = rc;
1493 	} else
1494 		ap_poll_thread_stop();
1495 	return count;
1496 }
1497 
1498 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1499 
1500 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1501 {
1502 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1503 }
1504 
1505 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1506 				  size_t count)
1507 {
1508 	unsigned long long time;
1509 	ktime_t hr_time;
1510 
1511 	/* 120 seconds = maximum poll interval */
1512 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1513 	    time > 120000000000ULL)
1514 		return -EINVAL;
1515 	poll_timeout = time;
1516 	hr_time = ktime_set(0, poll_timeout);
1517 
1518 	spin_lock_bh(&ap_poll_timer_lock);
1519 	hrtimer_cancel(&ap_poll_timer);
1520 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1521 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1522 	spin_unlock_bh(&ap_poll_timer_lock);
1523 
1524 	return count;
1525 }
1526 
1527 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1528 
1529 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1530 {
1531 	int max_domain_id;
1532 
1533 	if (ap_configuration)
1534 		max_domain_id = ap_max_domain_id ? : -1;
1535 	else
1536 		max_domain_id = 15;
1537 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1538 }
1539 
1540 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1541 
1542 static struct bus_attribute *const ap_bus_attrs[] = {
1543 	&bus_attr_ap_domain,
1544 	&bus_attr_ap_control_domain_mask,
1545 	&bus_attr_config_time,
1546 	&bus_attr_poll_thread,
1547 	&bus_attr_ap_interrupts,
1548 	&bus_attr_poll_timeout,
1549 	&bus_attr_ap_max_domain_id,
1550 	NULL,
1551 };
1552 
1553 /**
1554  * ap_select_domain(): Select an AP domain.
1555  *
1556  * Pick one of the 16 AP domains.
1557  */
1558 static int ap_select_domain(void)
1559 {
1560 	int count, max_count, best_domain;
1561 	struct ap_queue_status status;
1562 	int i, j;
1563 
1564 	/*
1565 	 * We want to use a single domain. Either the one specified with
1566 	 * the "domain=" parameter or the domain with the maximum number
1567 	 * of devices.
1568 	 */
1569 	if (ap_domain_index >= 0)
1570 		/* Domain has already been selected. */
1571 		return 0;
1572 	best_domain = -1;
1573 	max_count = 0;
1574 	for (i = 0; i < AP_DOMAINS; i++) {
1575 		if (!ap_test_config_domain(i))
1576 			continue;
1577 		count = 0;
1578 		for (j = 0; j < AP_DEVICES; j++) {
1579 			if (!ap_test_config_card_id(j))
1580 				continue;
1581 			status = ap_test_queue(AP_MKQID(j, i), NULL);
1582 			if (status.response_code != AP_RESPONSE_NORMAL)
1583 				continue;
1584 			count++;
1585 		}
1586 		if (count > max_count) {
1587 			max_count = count;
1588 			best_domain = i;
1589 		}
1590 	}
1591 	if (best_domain >= 0){
1592 		ap_domain_index = best_domain;
1593 		return 0;
1594 	}
1595 	return -ENODEV;
1596 }
1597 
1598 /**
1599  * __ap_scan_bus(): Scan the AP bus.
1600  * @dev: Pointer to device
1601  * @data: Pointer to data
1602  *
1603  * Scan the AP bus for new devices.
1604  */
1605 static int __ap_scan_bus(struct device *dev, void *data)
1606 {
1607 	return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1608 }
1609 
1610 static void ap_scan_bus(struct work_struct *unused)
1611 {
1612 	struct ap_device *ap_dev;
1613 	struct device *dev;
1614 	ap_qid_t qid;
1615 	int queue_depth = 0, device_type = 0;
1616 	unsigned int device_functions = 0;
1617 	int rc, i, borked;
1618 
1619 	ap_query_configuration();
1620 	if (ap_select_domain() != 0)
1621 		goto out;
1622 
1623 	for (i = 0; i < AP_DEVICES; i++) {
1624 		qid = AP_MKQID(i, ap_domain_index);
1625 		dev = bus_find_device(&ap_bus_type, NULL,
1626 				      (void *)(unsigned long)qid,
1627 				      __ap_scan_bus);
1628 		rc = ap_query_queue(qid, &queue_depth, &device_type,
1629 				    &device_functions);
1630 		if (dev) {
1631 			ap_dev = to_ap_dev(dev);
1632 			spin_lock_bh(&ap_dev->lock);
1633 			if (rc == -ENODEV)
1634 				ap_dev->state = AP_STATE_BORKED;
1635 			borked = ap_dev->state == AP_STATE_BORKED;
1636 			spin_unlock_bh(&ap_dev->lock);
1637 			if (borked)	/* Remove broken device */
1638 				device_unregister(dev);
1639 			put_device(dev);
1640 			if (!borked)
1641 				continue;
1642 		}
1643 		if (rc)
1644 			continue;
1645 		ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1646 		if (!ap_dev)
1647 			break;
1648 		ap_dev->qid = qid;
1649 		ap_dev->state = AP_STATE_RESET_START;
1650 		ap_dev->interrupt = AP_INTR_DISABLED;
1651 		ap_dev->queue_depth = queue_depth;
1652 		ap_dev->raw_hwtype = device_type;
1653 		ap_dev->device_type = device_type;
1654 		ap_dev->functions = device_functions;
1655 		spin_lock_init(&ap_dev->lock);
1656 		INIT_LIST_HEAD(&ap_dev->pendingq);
1657 		INIT_LIST_HEAD(&ap_dev->requestq);
1658 		INIT_LIST_HEAD(&ap_dev->list);
1659 		setup_timer(&ap_dev->timeout, ap_request_timeout,
1660 			    (unsigned long) ap_dev);
1661 
1662 		ap_dev->device.bus = &ap_bus_type;
1663 		ap_dev->device.parent = ap_root_device;
1664 		rc = dev_set_name(&ap_dev->device, "card%02x",
1665 				  AP_QID_DEVICE(ap_dev->qid));
1666 		if (rc) {
1667 			kfree(ap_dev);
1668 			continue;
1669 		}
1670 		/* Add to list of devices */
1671 		spin_lock_bh(&ap_device_list_lock);
1672 		list_add(&ap_dev->list, &ap_device_list);
1673 		spin_unlock_bh(&ap_device_list_lock);
1674 		/* Start with a device reset */
1675 		spin_lock_bh(&ap_dev->lock);
1676 		ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1677 		spin_unlock_bh(&ap_dev->lock);
1678 		/* Register device */
1679 		ap_dev->device.release = ap_device_release;
1680 		rc = device_register(&ap_dev->device);
1681 		if (rc) {
1682 			spin_lock_bh(&ap_dev->lock);
1683 			list_del_init(&ap_dev->list);
1684 			spin_unlock_bh(&ap_dev->lock);
1685 			put_device(&ap_dev->device);
1686 			continue;
1687 		}
1688 		/* Add device attributes. */
1689 		rc = sysfs_create_group(&ap_dev->device.kobj,
1690 					&ap_dev_attr_group);
1691 		if (rc) {
1692 			device_unregister(&ap_dev->device);
1693 			continue;
1694 		}
1695 	}
1696 out:
1697 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1698 }
1699 
1700 static void ap_config_timeout(unsigned long ptr)
1701 {
1702 	if (ap_suspend_flag)
1703 		return;
1704 	queue_work(system_long_wq, &ap_scan_work);
1705 }
1706 
1707 static void ap_reset_domain(void)
1708 {
1709 	int i;
1710 
1711 	if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1712 		return;
1713 	for (i = 0; i < AP_DEVICES; i++)
1714 		ap_reset_queue(AP_MKQID(i, ap_domain_index));
1715 }
1716 
1717 static void ap_reset_all(void)
1718 {
1719 	int i, j;
1720 
1721 	for (i = 0; i < AP_DOMAINS; i++) {
1722 		if (!ap_test_config_domain(i))
1723 			continue;
1724 		for (j = 0; j < AP_DEVICES; j++) {
1725 			if (!ap_test_config_card_id(j))
1726 				continue;
1727 			ap_reset_queue(AP_MKQID(j, i));
1728 		}
1729 	}
1730 }
1731 
1732 static struct reset_call ap_reset_call = {
1733 	.fn = ap_reset_all,
1734 };
1735 
1736 /**
1737  * ap_module_init(): The module initialization code.
1738  *
1739  * Initializes the module.
1740  */
1741 int __init ap_module_init(void)
1742 {
1743 	int max_domain_id;
1744 	int rc, i;
1745 
1746 	if (ap_instructions_available() != 0) {
1747 		pr_warn("The hardware system does not support AP instructions\n");
1748 		return -ENODEV;
1749 	}
1750 
1751 	/* Get AP configuration data if available */
1752 	ap_init_configuration();
1753 
1754 	if (ap_configuration)
1755 		max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1756 	else
1757 		max_domain_id = 15;
1758 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1759 		pr_warn("%d is not a valid cryptographic domain\n",
1760 			ap_domain_index);
1761 		return -EINVAL;
1762 	}
1763 	/* In resume callback we need to know if the user had set the domain.
1764 	 * If so, we can not just reset it.
1765 	 */
1766 	if (ap_domain_index >= 0)
1767 		user_set_domain = 1;
1768 
1769 	if (ap_interrupts_available()) {
1770 		rc = register_adapter_interrupt(&ap_airq);
1771 		ap_airq_flag = (rc == 0);
1772 	}
1773 
1774 	register_reset_call(&ap_reset_call);
1775 
1776 	/* Create /sys/bus/ap. */
1777 	rc = bus_register(&ap_bus_type);
1778 	if (rc)
1779 		goto out;
1780 	for (i = 0; ap_bus_attrs[i]; i++) {
1781 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1782 		if (rc)
1783 			goto out_bus;
1784 	}
1785 
1786 	/* Create /sys/devices/ap. */
1787 	ap_root_device = root_device_register("ap");
1788 	rc = PTR_RET(ap_root_device);
1789 	if (rc)
1790 		goto out_bus;
1791 
1792 	/* Setup the AP bus rescan timer. */
1793 	setup_timer(&ap_config_timer, ap_config_timeout, 0);
1794 
1795 	/*
1796 	 * Setup the high resultion poll timer.
1797 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1798 	 */
1799 	if (MACHINE_IS_VM)
1800 		poll_timeout = 1500000;
1801 	spin_lock_init(&ap_poll_timer_lock);
1802 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1803 	ap_poll_timer.function = ap_poll_timeout;
1804 
1805 	/* Start the low priority AP bus poll thread. */
1806 	if (ap_thread_flag) {
1807 		rc = ap_poll_thread_start();
1808 		if (rc)
1809 			goto out_work;
1810 	}
1811 
1812 	rc = register_pm_notifier(&ap_power_notifier);
1813 	if (rc)
1814 		goto out_pm;
1815 
1816 	queue_work(system_long_wq, &ap_scan_work);
1817 	initialised = true;
1818 
1819 	return 0;
1820 
1821 out_pm:
1822 	ap_poll_thread_stop();
1823 out_work:
1824 	hrtimer_cancel(&ap_poll_timer);
1825 	root_device_unregister(ap_root_device);
1826 out_bus:
1827 	while (i--)
1828 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1829 	bus_unregister(&ap_bus_type);
1830 out:
1831 	unregister_reset_call(&ap_reset_call);
1832 	if (ap_using_interrupts())
1833 		unregister_adapter_interrupt(&ap_airq);
1834 	kfree(ap_configuration);
1835 	return rc;
1836 }
1837 
1838 /**
1839  * ap_modules_exit(): The module termination code
1840  *
1841  * Terminates the module.
1842  */
1843 void ap_module_exit(void)
1844 {
1845 	int i;
1846 
1847 	initialised = false;
1848 	ap_reset_domain();
1849 	ap_poll_thread_stop();
1850 	del_timer_sync(&ap_config_timer);
1851 	hrtimer_cancel(&ap_poll_timer);
1852 	tasklet_kill(&ap_tasklet);
1853 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1854 	for (i = 0; ap_bus_attrs[i]; i++)
1855 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1856 	unregister_pm_notifier(&ap_power_notifier);
1857 	root_device_unregister(ap_root_device);
1858 	bus_unregister(&ap_bus_type);
1859 	kfree(ap_configuration);
1860 	unregister_reset_call(&ap_reset_call);
1861 	if (ap_using_interrupts())
1862 		unregister_adapter_interrupt(&ap_airq);
1863 }
1864 
1865 module_init(ap_module_init);
1866 module_exit(ap_module_exit);
1867