1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2023 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <asm/tpi.h> 31 #include <linux/atomic.h> 32 #include <asm/isc.h> 33 #include <linux/hrtimer.h> 34 #include <linux/ktime.h> 35 #include <asm/facility.h> 36 #include <linux/crypto.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/debugfs.h> 39 #include <linux/ctype.h> 40 #include <linux/module.h> 41 #include <asm/uv.h> 42 #include <asm/chsc.h> 43 44 #include "ap_bus.h" 45 #include "ap_debug.h" 46 47 MODULE_AUTHOR("IBM Corporation"); 48 MODULE_DESCRIPTION("Adjunct Processor Bus driver"); 49 MODULE_LICENSE("GPL"); 50 51 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 52 static DEFINE_SPINLOCK(ap_domain_lock); 53 module_param_named(domain, ap_domain_index, int, 0440); 54 MODULE_PARM_DESC(domain, "domain index for ap devices"); 55 EXPORT_SYMBOL(ap_domain_index); 56 57 static int ap_thread_flag; 58 module_param_named(poll_thread, ap_thread_flag, int, 0440); 59 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 60 61 static char *apm_str; 62 module_param_named(apmask, apm_str, charp, 0440); 63 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 64 65 static char *aqm_str; 66 module_param_named(aqmask, aqm_str, charp, 0440); 67 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 68 69 static int ap_useirq = 1; 70 module_param_named(useirq, ap_useirq, int, 0440); 71 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 72 73 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 74 EXPORT_SYMBOL(ap_max_msg_size); 75 76 static struct device *ap_root_device; 77 78 /* Hashtable of all queue devices on the AP bus */ 79 DEFINE_HASHTABLE(ap_queues, 8); 80 /* lock used for the ap_queues hashtable */ 81 DEFINE_SPINLOCK(ap_queues_lock); 82 83 /* Default permissions (ioctl, card and domain masking) */ 84 struct ap_perms ap_perms; 85 EXPORT_SYMBOL(ap_perms); 86 DEFINE_MUTEX(ap_perms_mutex); 87 EXPORT_SYMBOL(ap_perms_mutex); 88 89 /* # of bindings complete since init */ 90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 91 92 /* completion for APQN bindings complete */ 93 static DECLARE_COMPLETION(ap_apqn_bindings_complete); 94 95 static struct ap_config_info qci[2]; 96 static struct ap_config_info *const ap_qci_info = &qci[0]; 97 static struct ap_config_info *const ap_qci_info_old = &qci[1]; 98 99 /* 100 * AP bus related debug feature things. 101 */ 102 debug_info_t *ap_dbf_info; 103 104 /* 105 * AP bus rescan related things. 106 */ 107 static bool ap_scan_bus(void); 108 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */ 109 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */ 110 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */ 111 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */ 112 static int ap_scan_bus_time = AP_CONFIG_TIME; 113 static struct timer_list ap_scan_bus_timer; 114 static void ap_scan_bus_wq_callback(struct work_struct *); 115 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback); 116 117 /* 118 * Tasklet & timer for AP request polling and interrupts 119 */ 120 static void ap_tasklet_fn(unsigned long); 121 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 122 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 123 static struct task_struct *ap_poll_kthread; 124 static DEFINE_MUTEX(ap_poll_thread_mutex); 125 static DEFINE_SPINLOCK(ap_poll_timer_lock); 126 static struct hrtimer ap_poll_timer; 127 /* 128 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 129 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 130 */ 131 static unsigned long poll_high_timeout = 250000UL; 132 133 /* 134 * Some state machine states only require a low frequency polling. 135 * We use 25 Hz frequency for these. 136 */ 137 static unsigned long poll_low_timeout = 40000000UL; 138 139 /* Maximum domain id, if not given via qci */ 140 static int ap_max_domain_id = 15; 141 /* Maximum adapter id, if not given via qci */ 142 static int ap_max_adapter_id = 63; 143 144 static const struct bus_type ap_bus_type; 145 146 /* Adapter interrupt definitions */ 147 static void ap_interrupt_handler(struct airq_struct *airq, 148 struct tpi_info *tpi_info); 149 150 static bool ap_irq_flag; 151 152 static struct airq_struct ap_airq = { 153 .handler = ap_interrupt_handler, 154 .isc = AP_ISC, 155 }; 156 157 /** 158 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 159 * 160 * Returns the address of the local-summary-indicator of the adapter 161 * interrupt handler for AP, or NULL if adapter interrupts are not 162 * available. 163 */ 164 void *ap_airq_ptr(void) 165 { 166 if (ap_irq_flag) 167 return ap_airq.lsi_ptr; 168 return NULL; 169 } 170 171 /** 172 * ap_interrupts_available(): Test if AP interrupts are available. 173 * 174 * Returns 1 if AP interrupts are available. 175 */ 176 static int ap_interrupts_available(void) 177 { 178 return test_facility(65); 179 } 180 181 /** 182 * ap_qci_available(): Test if AP configuration 183 * information can be queried via QCI subfunction. 184 * 185 * Returns 1 if subfunction PQAP(QCI) is available. 186 */ 187 static int ap_qci_available(void) 188 { 189 return test_facility(12); 190 } 191 192 /** 193 * ap_apft_available(): Test if AP facilities test (APFT) 194 * facility is available. 195 * 196 * Returns 1 if APFT is available. 197 */ 198 static int ap_apft_available(void) 199 { 200 return test_facility(15); 201 } 202 203 /* 204 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 205 * 206 * Returns 1 if the QACT subfunction is available. 207 */ 208 static inline int ap_qact_available(void) 209 { 210 return ap_qci_info->qact; 211 } 212 213 /* 214 * ap_sb_available(): Test if the AP secure binding facility is available. 215 * 216 * Returns 1 if secure binding facility is available. 217 */ 218 int ap_sb_available(void) 219 { 220 return ap_qci_info->apsb; 221 } 222 223 /* 224 * ap_is_se_guest(): Check for SE guest with AP pass-through support. 225 */ 226 bool ap_is_se_guest(void) 227 { 228 return is_prot_virt_guest() && ap_sb_available(); 229 } 230 EXPORT_SYMBOL(ap_is_se_guest); 231 232 /** 233 * ap_init_qci_info(): Allocate and query qci config info. 234 * Does also update the static variables ap_max_domain_id 235 * and ap_max_adapter_id if this info is available. 236 */ 237 static void __init ap_init_qci_info(void) 238 { 239 if (!ap_qci_available() || 240 ap_qci(ap_qci_info)) { 241 AP_DBF_INFO("%s QCI not supported\n", __func__); 242 return; 243 } 244 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 245 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 246 247 if (ap_qci_info->apxa) { 248 if (ap_qci_info->na) { 249 ap_max_adapter_id = ap_qci_info->na; 250 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 251 __func__, ap_max_adapter_id); 252 } 253 if (ap_qci_info->nd) { 254 ap_max_domain_id = ap_qci_info->nd; 255 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 256 __func__, ap_max_domain_id); 257 } 258 } 259 } 260 261 /* 262 * ap_test_config(): helper function to extract the nrth bit 263 * within the unsigned int array field. 264 */ 265 static inline int ap_test_config(unsigned int *field, unsigned int nr) 266 { 267 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 268 } 269 270 /* 271 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 272 * 273 * Returns 0 if the card is not configured 274 * 1 if the card is configured or 275 * if the configuration information is not available 276 */ 277 static inline int ap_test_config_card_id(unsigned int id) 278 { 279 if (id > ap_max_adapter_id) 280 return 0; 281 if (ap_qci_info->flags) 282 return ap_test_config(ap_qci_info->apm, id); 283 return 1; 284 } 285 286 /* 287 * ap_test_config_usage_domain(): Test, whether an AP usage domain 288 * is configured. 289 * 290 * Returns 0 if the usage domain is not configured 291 * 1 if the usage domain is configured or 292 * if the configuration information is not available 293 */ 294 int ap_test_config_usage_domain(unsigned int domain) 295 { 296 if (domain > ap_max_domain_id) 297 return 0; 298 if (ap_qci_info->flags) 299 return ap_test_config(ap_qci_info->aqm, domain); 300 return 1; 301 } 302 EXPORT_SYMBOL(ap_test_config_usage_domain); 303 304 /* 305 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 306 * is configured. 307 * @domain AP control domain ID 308 * 309 * Returns 1 if the control domain is configured 310 * 0 in all other cases 311 */ 312 int ap_test_config_ctrl_domain(unsigned int domain) 313 { 314 if (!ap_qci_info || domain > ap_max_domain_id) 315 return 0; 316 return ap_test_config(ap_qci_info->adm, domain); 317 } 318 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 319 320 /* 321 * ap_queue_info(): Check and get AP queue info. 322 * Returns: 1 if APQN exists and info is filled, 323 * 0 if APQN seems to exist but there is no info 324 * available (eg. caused by an asynch pending error) 325 * -1 invalid APQN, TAPQ error or AP queue status which 326 * indicates there is no APQN. 327 */ 328 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo, 329 bool *decfg, bool *cstop) 330 { 331 struct ap_queue_status status; 332 333 hwinfo->value = 0; 334 335 /* make sure we don't run into a specifiation exception */ 336 if (AP_QID_CARD(qid) > ap_max_adapter_id || 337 AP_QID_QUEUE(qid) > ap_max_domain_id) 338 return -1; 339 340 /* call TAPQ on this APQN */ 341 status = ap_test_queue(qid, ap_apft_available(), hwinfo); 342 343 switch (status.response_code) { 344 case AP_RESPONSE_NORMAL: 345 case AP_RESPONSE_RESET_IN_PROGRESS: 346 case AP_RESPONSE_DECONFIGURED: 347 case AP_RESPONSE_CHECKSTOPPED: 348 case AP_RESPONSE_BUSY: 349 /* For all these RCs the tapq info should be available */ 350 break; 351 default: 352 /* On a pending async error the info should be available */ 353 if (!status.async) 354 return -1; 355 break; 356 } 357 358 /* There should be at least one of the mode bits set */ 359 if (WARN_ON_ONCE(!hwinfo->value)) 360 return 0; 361 362 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 363 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 364 365 return 1; 366 } 367 368 void ap_wait(enum ap_sm_wait wait) 369 { 370 ktime_t hr_time; 371 372 switch (wait) { 373 case AP_SM_WAIT_AGAIN: 374 case AP_SM_WAIT_INTERRUPT: 375 if (ap_irq_flag) 376 break; 377 if (ap_poll_kthread) { 378 wake_up(&ap_poll_wait); 379 break; 380 } 381 fallthrough; 382 case AP_SM_WAIT_LOW_TIMEOUT: 383 case AP_SM_WAIT_HIGH_TIMEOUT: 384 spin_lock_bh(&ap_poll_timer_lock); 385 if (!hrtimer_is_queued(&ap_poll_timer)) { 386 hr_time = 387 wait == AP_SM_WAIT_LOW_TIMEOUT ? 388 poll_low_timeout : poll_high_timeout; 389 hrtimer_forward_now(&ap_poll_timer, hr_time); 390 hrtimer_restart(&ap_poll_timer); 391 } 392 spin_unlock_bh(&ap_poll_timer_lock); 393 break; 394 case AP_SM_WAIT_NONE: 395 default: 396 break; 397 } 398 } 399 400 /** 401 * ap_request_timeout(): Handling of request timeouts 402 * @t: timer making this callback 403 * 404 * Handles request timeouts. 405 */ 406 void ap_request_timeout(struct timer_list *t) 407 { 408 struct ap_queue *aq = from_timer(aq, t, timeout); 409 410 spin_lock_bh(&aq->lock); 411 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 412 spin_unlock_bh(&aq->lock); 413 } 414 415 /** 416 * ap_poll_timeout(): AP receive polling for finished AP requests. 417 * @unused: Unused pointer. 418 * 419 * Schedules the AP tasklet using a high resolution timer. 420 */ 421 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 422 { 423 tasklet_schedule(&ap_tasklet); 424 return HRTIMER_NORESTART; 425 } 426 427 /** 428 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 429 * @airq: pointer to adapter interrupt descriptor 430 * @tpi_info: ignored 431 */ 432 static void ap_interrupt_handler(struct airq_struct *airq, 433 struct tpi_info *tpi_info) 434 { 435 inc_irq_stat(IRQIO_APB); 436 tasklet_schedule(&ap_tasklet); 437 } 438 439 /** 440 * ap_tasklet_fn(): Tasklet to poll all AP devices. 441 * @dummy: Unused variable 442 * 443 * Poll all AP devices on the bus. 444 */ 445 static void ap_tasklet_fn(unsigned long dummy) 446 { 447 int bkt; 448 struct ap_queue *aq; 449 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 450 451 /* Reset the indicator if interrupts are used. Thus new interrupts can 452 * be received. Doing it in the beginning of the tasklet is therefore 453 * important that no requests on any AP get lost. 454 */ 455 if (ap_irq_flag) 456 xchg(ap_airq.lsi_ptr, 0); 457 458 spin_lock_bh(&ap_queues_lock); 459 hash_for_each(ap_queues, bkt, aq, hnode) { 460 spin_lock_bh(&aq->lock); 461 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 462 spin_unlock_bh(&aq->lock); 463 } 464 spin_unlock_bh(&ap_queues_lock); 465 466 ap_wait(wait); 467 } 468 469 static int ap_pending_requests(void) 470 { 471 int bkt; 472 struct ap_queue *aq; 473 474 spin_lock_bh(&ap_queues_lock); 475 hash_for_each(ap_queues, bkt, aq, hnode) { 476 if (aq->queue_count == 0) 477 continue; 478 spin_unlock_bh(&ap_queues_lock); 479 return 1; 480 } 481 spin_unlock_bh(&ap_queues_lock); 482 return 0; 483 } 484 485 /** 486 * ap_poll_thread(): Thread that polls for finished requests. 487 * @data: Unused pointer 488 * 489 * AP bus poll thread. The purpose of this thread is to poll for 490 * finished requests in a loop if there is a "free" cpu - that is 491 * a cpu that doesn't have anything better to do. The polling stops 492 * as soon as there is another task or if all messages have been 493 * delivered. 494 */ 495 static int ap_poll_thread(void *data) 496 { 497 DECLARE_WAITQUEUE(wait, current); 498 499 set_user_nice(current, MAX_NICE); 500 set_freezable(); 501 while (!kthread_should_stop()) { 502 add_wait_queue(&ap_poll_wait, &wait); 503 set_current_state(TASK_INTERRUPTIBLE); 504 if (!ap_pending_requests()) { 505 schedule(); 506 try_to_freeze(); 507 } 508 set_current_state(TASK_RUNNING); 509 remove_wait_queue(&ap_poll_wait, &wait); 510 if (need_resched()) { 511 schedule(); 512 try_to_freeze(); 513 continue; 514 } 515 ap_tasklet_fn(0); 516 } 517 518 return 0; 519 } 520 521 static int ap_poll_thread_start(void) 522 { 523 int rc; 524 525 if (ap_irq_flag || ap_poll_kthread) 526 return 0; 527 mutex_lock(&ap_poll_thread_mutex); 528 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 529 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 530 if (rc) 531 ap_poll_kthread = NULL; 532 mutex_unlock(&ap_poll_thread_mutex); 533 return rc; 534 } 535 536 static void ap_poll_thread_stop(void) 537 { 538 if (!ap_poll_kthread) 539 return; 540 mutex_lock(&ap_poll_thread_mutex); 541 kthread_stop(ap_poll_kthread); 542 ap_poll_kthread = NULL; 543 mutex_unlock(&ap_poll_thread_mutex); 544 } 545 546 #define is_card_dev(x) ((x)->parent == ap_root_device) 547 #define is_queue_dev(x) ((x)->parent != ap_root_device) 548 549 /** 550 * ap_bus_match() 551 * @dev: Pointer to device 552 * @drv: Pointer to device_driver 553 * 554 * AP bus driver registration/unregistration. 555 */ 556 static int ap_bus_match(struct device *dev, const struct device_driver *drv) 557 { 558 const struct ap_driver *ap_drv = to_ap_drv(drv); 559 struct ap_device_id *id; 560 561 /* 562 * Compare device type of the device with the list of 563 * supported types of the device_driver. 564 */ 565 for (id = ap_drv->ids; id->match_flags; id++) { 566 if (is_card_dev(dev) && 567 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 568 id->dev_type == to_ap_dev(dev)->device_type) 569 return 1; 570 if (is_queue_dev(dev) && 571 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 572 id->dev_type == to_ap_dev(dev)->device_type) 573 return 1; 574 } 575 return 0; 576 } 577 578 /** 579 * ap_uevent(): Uevent function for AP devices. 580 * @dev: Pointer to device 581 * @env: Pointer to kobj_uevent_env 582 * 583 * It sets up a single environment variable DEV_TYPE which contains the 584 * hardware device type. 585 */ 586 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env) 587 { 588 int rc = 0; 589 const struct ap_device *ap_dev = to_ap_dev(dev); 590 591 /* Uevents from ap bus core don't need extensions to the env */ 592 if (dev == ap_root_device) 593 return 0; 594 595 if (is_card_dev(dev)) { 596 struct ap_card *ac = to_ap_card(&ap_dev->device); 597 598 /* Set up DEV_TYPE environment variable. */ 599 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 600 if (rc) 601 return rc; 602 /* Add MODALIAS= */ 603 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 604 if (rc) 605 return rc; 606 607 /* Add MODE=<accel|cca|ep11> */ 608 if (ac->hwinfo.accel) 609 rc = add_uevent_var(env, "MODE=accel"); 610 else if (ac->hwinfo.cca) 611 rc = add_uevent_var(env, "MODE=cca"); 612 else if (ac->hwinfo.ep11) 613 rc = add_uevent_var(env, "MODE=ep11"); 614 if (rc) 615 return rc; 616 } else { 617 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 618 619 /* Add MODE=<accel|cca|ep11> */ 620 if (aq->card->hwinfo.accel) 621 rc = add_uevent_var(env, "MODE=accel"); 622 else if (aq->card->hwinfo.cca) 623 rc = add_uevent_var(env, "MODE=cca"); 624 else if (aq->card->hwinfo.ep11) 625 rc = add_uevent_var(env, "MODE=ep11"); 626 if (rc) 627 return rc; 628 } 629 630 return 0; 631 } 632 633 static void ap_send_init_scan_done_uevent(void) 634 { 635 char *envp[] = { "INITSCAN=done", NULL }; 636 637 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 638 } 639 640 static void ap_send_bindings_complete_uevent(void) 641 { 642 char buf[32]; 643 char *envp[] = { "BINDINGS=complete", buf, NULL }; 644 645 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 646 atomic64_inc_return(&ap_bindings_complete_count)); 647 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 648 } 649 650 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 651 { 652 char buf[16]; 653 char *envp[] = { buf, NULL }; 654 655 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 656 657 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 658 } 659 EXPORT_SYMBOL(ap_send_config_uevent); 660 661 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 662 { 663 char buf[16]; 664 char *envp[] = { buf, NULL }; 665 666 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 667 668 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 669 } 670 EXPORT_SYMBOL(ap_send_online_uevent); 671 672 static void ap_send_mask_changed_uevent(unsigned long *newapm, 673 unsigned long *newaqm) 674 { 675 char buf[100]; 676 char *envp[] = { buf, NULL }; 677 678 if (newapm) 679 snprintf(buf, sizeof(buf), 680 "APMASK=0x%016lx%016lx%016lx%016lx\n", 681 newapm[0], newapm[1], newapm[2], newapm[3]); 682 else 683 snprintf(buf, sizeof(buf), 684 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 685 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 686 687 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 688 } 689 690 /* 691 * calc # of bound APQNs 692 */ 693 694 struct __ap_calc_ctrs { 695 unsigned int apqns; 696 unsigned int bound; 697 }; 698 699 static int __ap_calc_helper(struct device *dev, void *arg) 700 { 701 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 702 703 if (is_queue_dev(dev)) { 704 pctrs->apqns++; 705 if (dev->driver) 706 pctrs->bound++; 707 } 708 709 return 0; 710 } 711 712 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 713 { 714 struct __ap_calc_ctrs ctrs; 715 716 memset(&ctrs, 0, sizeof(ctrs)); 717 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 718 719 *apqns = ctrs.apqns; 720 *bound = ctrs.bound; 721 } 722 723 /* 724 * After ap bus scan do check if all existing APQNs are 725 * bound to device drivers. 726 */ 727 static void ap_check_bindings_complete(void) 728 { 729 unsigned int apqns, bound; 730 731 if (atomic64_read(&ap_scan_bus_count) >= 1) { 732 ap_calc_bound_apqns(&apqns, &bound); 733 if (bound == apqns) { 734 if (!completion_done(&ap_apqn_bindings_complete)) { 735 complete_all(&ap_apqn_bindings_complete); 736 ap_send_bindings_complete_uevent(); 737 pr_debug("all apqn bindings complete\n"); 738 } 739 } 740 } 741 } 742 743 /* 744 * Interface to wait for the AP bus to have done one initial ap bus 745 * scan and all detected APQNs have been bound to device drivers. 746 * If these both conditions are not fulfilled, this function blocks 747 * on a condition with wait_for_completion_interruptible_timeout(). 748 * If these both conditions are fulfilled (before the timeout hits) 749 * the return value is 0. If the timeout (in jiffies) hits instead 750 * -ETIME is returned. On failures negative return values are 751 * returned to the caller. 752 */ 753 int ap_wait_apqn_bindings_complete(unsigned long timeout) 754 { 755 int rc = 0; 756 long l; 757 758 if (completion_done(&ap_apqn_bindings_complete)) 759 return 0; 760 761 if (timeout) 762 l = wait_for_completion_interruptible_timeout( 763 &ap_apqn_bindings_complete, timeout); 764 else 765 l = wait_for_completion_interruptible( 766 &ap_apqn_bindings_complete); 767 if (l < 0) 768 rc = l == -ERESTARTSYS ? -EINTR : l; 769 else if (l == 0 && timeout) 770 rc = -ETIME; 771 772 pr_debug("rc=%d\n", rc); 773 return rc; 774 } 775 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete); 776 777 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 778 { 779 if (is_queue_dev(dev) && 780 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 781 device_unregister(dev); 782 return 0; 783 } 784 785 static int __ap_revise_reserved(struct device *dev, void *dummy) 786 { 787 int rc, card, queue, devres, drvres; 788 789 if (is_queue_dev(dev)) { 790 card = AP_QID_CARD(to_ap_queue(dev)->qid); 791 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 792 mutex_lock(&ap_perms_mutex); 793 devres = test_bit_inv(card, ap_perms.apm) && 794 test_bit_inv(queue, ap_perms.aqm); 795 mutex_unlock(&ap_perms_mutex); 796 drvres = to_ap_drv(dev->driver)->flags 797 & AP_DRIVER_FLAG_DEFAULT; 798 if (!!devres != !!drvres) { 799 pr_debug("reprobing queue=%02x.%04x\n", card, queue); 800 rc = device_reprobe(dev); 801 if (rc) 802 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 803 __func__, card, queue); 804 } 805 } 806 807 return 0; 808 } 809 810 static void ap_bus_revise_bindings(void) 811 { 812 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 813 } 814 815 /** 816 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 817 * default host driver or not. 818 * @card: the APID of the adapter card to check 819 * @queue: the APQI of the queue to check 820 * 821 * Note: the ap_perms_mutex must be locked by the caller of this function. 822 * 823 * Return: an int specifying whether the AP adapter is reserved for the host (1) 824 * or not (0). 825 */ 826 int ap_owned_by_def_drv(int card, int queue) 827 { 828 int rc = 0; 829 830 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 831 return -EINVAL; 832 833 if (test_bit_inv(card, ap_perms.apm) && 834 test_bit_inv(queue, ap_perms.aqm)) 835 rc = 1; 836 837 return rc; 838 } 839 EXPORT_SYMBOL(ap_owned_by_def_drv); 840 841 /** 842 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 843 * a set is reserved for the host drivers 844 * or not. 845 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 846 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 847 * 848 * Note: the ap_perms_mutex must be locked by the caller of this function. 849 * 850 * Return: an int specifying whether each APQN is reserved for the host (1) or 851 * not (0) 852 */ 853 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 854 unsigned long *aqm) 855 { 856 int card, queue, rc = 0; 857 858 for (card = 0; !rc && card < AP_DEVICES; card++) 859 if (test_bit_inv(card, apm) && 860 test_bit_inv(card, ap_perms.apm)) 861 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 862 if (test_bit_inv(queue, aqm) && 863 test_bit_inv(queue, ap_perms.aqm)) 864 rc = 1; 865 866 return rc; 867 } 868 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 869 870 static int ap_device_probe(struct device *dev) 871 { 872 struct ap_device *ap_dev = to_ap_dev(dev); 873 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 874 int card, queue, devres, drvres, rc = -ENODEV; 875 876 if (!get_device(dev)) 877 return rc; 878 879 if (is_queue_dev(dev)) { 880 /* 881 * If the apqn is marked as reserved/used by ap bus and 882 * default drivers, only probe with drivers with the default 883 * flag set. If it is not marked, only probe with drivers 884 * with the default flag not set. 885 */ 886 card = AP_QID_CARD(to_ap_queue(dev)->qid); 887 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 888 mutex_lock(&ap_perms_mutex); 889 devres = test_bit_inv(card, ap_perms.apm) && 890 test_bit_inv(queue, ap_perms.aqm); 891 mutex_unlock(&ap_perms_mutex); 892 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 893 if (!!devres != !!drvres) 894 goto out; 895 } 896 897 /* 898 * Rearm the bindings complete completion to trigger 899 * bindings complete when all devices are bound again 900 */ 901 reinit_completion(&ap_apqn_bindings_complete); 902 903 /* Add queue/card to list of active queues/cards */ 904 spin_lock_bh(&ap_queues_lock); 905 if (is_queue_dev(dev)) 906 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 907 to_ap_queue(dev)->qid); 908 spin_unlock_bh(&ap_queues_lock); 909 910 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 911 912 if (rc) { 913 spin_lock_bh(&ap_queues_lock); 914 if (is_queue_dev(dev)) 915 hash_del(&to_ap_queue(dev)->hnode); 916 spin_unlock_bh(&ap_queues_lock); 917 } 918 919 out: 920 if (rc) 921 put_device(dev); 922 return rc; 923 } 924 925 static void ap_device_remove(struct device *dev) 926 { 927 struct ap_device *ap_dev = to_ap_dev(dev); 928 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 929 930 /* prepare ap queue device removal */ 931 if (is_queue_dev(dev)) 932 ap_queue_prepare_remove(to_ap_queue(dev)); 933 934 /* driver's chance to clean up gracefully */ 935 if (ap_drv->remove) 936 ap_drv->remove(ap_dev); 937 938 /* now do the ap queue device remove */ 939 if (is_queue_dev(dev)) 940 ap_queue_remove(to_ap_queue(dev)); 941 942 /* Remove queue/card from list of active queues/cards */ 943 spin_lock_bh(&ap_queues_lock); 944 if (is_queue_dev(dev)) 945 hash_del(&to_ap_queue(dev)->hnode); 946 spin_unlock_bh(&ap_queues_lock); 947 948 put_device(dev); 949 } 950 951 struct ap_queue *ap_get_qdev(ap_qid_t qid) 952 { 953 int bkt; 954 struct ap_queue *aq; 955 956 spin_lock_bh(&ap_queues_lock); 957 hash_for_each(ap_queues, bkt, aq, hnode) { 958 if (aq->qid == qid) { 959 get_device(&aq->ap_dev.device); 960 spin_unlock_bh(&ap_queues_lock); 961 return aq; 962 } 963 } 964 spin_unlock_bh(&ap_queues_lock); 965 966 return NULL; 967 } 968 EXPORT_SYMBOL(ap_get_qdev); 969 970 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 971 char *name) 972 { 973 struct device_driver *drv = &ap_drv->driver; 974 int rc; 975 976 drv->bus = &ap_bus_type; 977 drv->owner = owner; 978 drv->name = name; 979 rc = driver_register(drv); 980 981 ap_check_bindings_complete(); 982 983 return rc; 984 } 985 EXPORT_SYMBOL(ap_driver_register); 986 987 void ap_driver_unregister(struct ap_driver *ap_drv) 988 { 989 driver_unregister(&ap_drv->driver); 990 } 991 EXPORT_SYMBOL(ap_driver_unregister); 992 993 /* 994 * Enforce a synchronous AP bus rescan. 995 * Returns true if the bus scan finds a change in the AP configuration 996 * and AP devices have been added or deleted when this function returns. 997 */ 998 bool ap_bus_force_rescan(void) 999 { 1000 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count); 1001 bool rc = false; 1002 1003 pr_debug("> scan counter=%lu\n", scan_counter); 1004 1005 /* Only trigger AP bus scans after the initial scan is done */ 1006 if (scan_counter <= 0) 1007 goto out; 1008 1009 /* 1010 * There is one unlikely but nevertheless valid scenario where the 1011 * thread holding the mutex may try to send some crypto load but 1012 * all cards are offline so a rescan is triggered which causes 1013 * a recursive call of ap_bus_force_rescan(). A simple return if 1014 * the mutex is already locked by this thread solves this. 1015 */ 1016 if (mutex_is_locked(&ap_scan_bus_mutex)) { 1017 if (ap_scan_bus_task == current) 1018 goto out; 1019 } 1020 1021 /* Try to acquire the AP scan bus mutex */ 1022 if (mutex_trylock(&ap_scan_bus_mutex)) { 1023 /* mutex acquired, run the AP bus scan */ 1024 ap_scan_bus_task = current; 1025 ap_scan_bus_result = ap_scan_bus(); 1026 rc = ap_scan_bus_result; 1027 ap_scan_bus_task = NULL; 1028 mutex_unlock(&ap_scan_bus_mutex); 1029 goto out; 1030 } 1031 1032 /* 1033 * Mutex acquire failed. So there is currently another task 1034 * already running the AP bus scan. Then let's simple wait 1035 * for the lock which means the other task has finished and 1036 * stored the result in ap_scan_bus_result. 1037 */ 1038 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) { 1039 /* some error occurred, ignore and go out */ 1040 goto out; 1041 } 1042 rc = ap_scan_bus_result; 1043 mutex_unlock(&ap_scan_bus_mutex); 1044 1045 out: 1046 pr_debug("rc=%d\n", rc); 1047 return rc; 1048 } 1049 EXPORT_SYMBOL(ap_bus_force_rescan); 1050 1051 /* 1052 * A config change has happened, force an ap bus rescan. 1053 */ 1054 static int ap_bus_cfg_chg(struct notifier_block *nb, 1055 unsigned long action, void *data) 1056 { 1057 if (action != CHSC_NOTIFY_AP_CFG) 1058 return NOTIFY_DONE; 1059 1060 pr_debug("config change, forcing bus rescan\n"); 1061 1062 ap_bus_force_rescan(); 1063 1064 return NOTIFY_OK; 1065 } 1066 1067 static struct notifier_block ap_bus_nb = { 1068 .notifier_call = ap_bus_cfg_chg, 1069 }; 1070 1071 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1072 { 1073 int i, n, b; 1074 1075 /* bits needs to be a multiple of 8 */ 1076 if (bits & 0x07) 1077 return -EINVAL; 1078 1079 if (str[0] == '0' && str[1] == 'x') 1080 str++; 1081 if (*str == 'x') 1082 str++; 1083 1084 for (i = 0; isxdigit(*str) && i < bits; str++) { 1085 b = hex_to_bin(*str); 1086 for (n = 0; n < 4; n++) 1087 if (b & (0x08 >> n)) 1088 set_bit_inv(i + n, bitmap); 1089 i += 4; 1090 } 1091 1092 if (*str == '\n') 1093 str++; 1094 if (*str) 1095 return -EINVAL; 1096 return 0; 1097 } 1098 EXPORT_SYMBOL(ap_hex2bitmap); 1099 1100 /* 1101 * modify_bitmap() - parse bitmask argument and modify an existing 1102 * bit mask accordingly. A concatenation (done with ',') of these 1103 * terms is recognized: 1104 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1105 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1106 * 0...bits-1; the leading + or - is required. Here are some examples: 1107 * +0-15,+32,-128,-0xFF 1108 * -0-255,+1-16,+0x128 1109 * +1,+2,+3,+4,-5,-7-10 1110 * Returns the new bitmap after all changes have been applied. Every 1111 * positive value in the string will set a bit and every negative value 1112 * in the string will clear a bit. As a bit may be touched more than once, 1113 * the last 'operation' wins: 1114 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1115 * cleared again. All other bits are unmodified. 1116 */ 1117 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1118 { 1119 unsigned long a, i, z; 1120 char *np, sign; 1121 1122 /* bits needs to be a multiple of 8 */ 1123 if (bits & 0x07) 1124 return -EINVAL; 1125 1126 while (*str) { 1127 sign = *str++; 1128 if (sign != '+' && sign != '-') 1129 return -EINVAL; 1130 a = z = simple_strtoul(str, &np, 0); 1131 if (str == np || a >= bits) 1132 return -EINVAL; 1133 str = np; 1134 if (*str == '-') { 1135 z = simple_strtoul(++str, &np, 0); 1136 if (str == np || a > z || z >= bits) 1137 return -EINVAL; 1138 str = np; 1139 } 1140 for (i = a; i <= z; i++) 1141 if (sign == '+') 1142 set_bit_inv(i, bitmap); 1143 else 1144 clear_bit_inv(i, bitmap); 1145 while (*str == ',' || *str == '\n') 1146 str++; 1147 } 1148 1149 return 0; 1150 } 1151 1152 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1153 unsigned long *newmap) 1154 { 1155 unsigned long size; 1156 int rc; 1157 1158 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1159 if (*str == '+' || *str == '-') { 1160 memcpy(newmap, bitmap, size); 1161 rc = modify_bitmap(str, newmap, bits); 1162 } else { 1163 memset(newmap, 0, size); 1164 rc = ap_hex2bitmap(str, newmap, bits); 1165 } 1166 return rc; 1167 } 1168 1169 int ap_parse_mask_str(const char *str, 1170 unsigned long *bitmap, int bits, 1171 struct mutex *lock) 1172 { 1173 unsigned long *newmap, size; 1174 int rc; 1175 1176 /* bits needs to be a multiple of 8 */ 1177 if (bits & 0x07) 1178 return -EINVAL; 1179 1180 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1181 newmap = kmalloc(size, GFP_KERNEL); 1182 if (!newmap) 1183 return -ENOMEM; 1184 if (mutex_lock_interruptible(lock)) { 1185 kfree(newmap); 1186 return -ERESTARTSYS; 1187 } 1188 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1189 if (rc == 0) 1190 memcpy(bitmap, newmap, size); 1191 mutex_unlock(lock); 1192 kfree(newmap); 1193 return rc; 1194 } 1195 EXPORT_SYMBOL(ap_parse_mask_str); 1196 1197 /* 1198 * AP bus attributes. 1199 */ 1200 1201 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf) 1202 { 1203 return sysfs_emit(buf, "%d\n", ap_domain_index); 1204 } 1205 1206 static ssize_t ap_domain_store(const struct bus_type *bus, 1207 const char *buf, size_t count) 1208 { 1209 int domain; 1210 1211 if (sscanf(buf, "%i\n", &domain) != 1 || 1212 domain < 0 || domain > ap_max_domain_id || 1213 !test_bit_inv(domain, ap_perms.aqm)) 1214 return -EINVAL; 1215 1216 spin_lock_bh(&ap_domain_lock); 1217 ap_domain_index = domain; 1218 spin_unlock_bh(&ap_domain_lock); 1219 1220 AP_DBF_INFO("%s stored new default domain=%d\n", 1221 __func__, domain); 1222 1223 return count; 1224 } 1225 1226 static BUS_ATTR_RW(ap_domain); 1227 1228 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf) 1229 { 1230 if (!ap_qci_info->flags) /* QCI not supported */ 1231 return sysfs_emit(buf, "not supported\n"); 1232 1233 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1234 ap_qci_info->adm[0], ap_qci_info->adm[1], 1235 ap_qci_info->adm[2], ap_qci_info->adm[3], 1236 ap_qci_info->adm[4], ap_qci_info->adm[5], 1237 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1238 } 1239 1240 static BUS_ATTR_RO(ap_control_domain_mask); 1241 1242 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf) 1243 { 1244 if (!ap_qci_info->flags) /* QCI not supported */ 1245 return sysfs_emit(buf, "not supported\n"); 1246 1247 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1248 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1249 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1250 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1251 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1252 } 1253 1254 static BUS_ATTR_RO(ap_usage_domain_mask); 1255 1256 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf) 1257 { 1258 if (!ap_qci_info->flags) /* QCI not supported */ 1259 return sysfs_emit(buf, "not supported\n"); 1260 1261 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1262 ap_qci_info->apm[0], ap_qci_info->apm[1], 1263 ap_qci_info->apm[2], ap_qci_info->apm[3], 1264 ap_qci_info->apm[4], ap_qci_info->apm[5], 1265 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1266 } 1267 1268 static BUS_ATTR_RO(ap_adapter_mask); 1269 1270 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf) 1271 { 1272 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0); 1273 } 1274 1275 static BUS_ATTR_RO(ap_interrupts); 1276 1277 static ssize_t config_time_show(const struct bus_type *bus, char *buf) 1278 { 1279 return sysfs_emit(buf, "%d\n", ap_scan_bus_time); 1280 } 1281 1282 static ssize_t config_time_store(const struct bus_type *bus, 1283 const char *buf, size_t count) 1284 { 1285 int time; 1286 1287 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1288 return -EINVAL; 1289 ap_scan_bus_time = time; 1290 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 1291 return count; 1292 } 1293 1294 static BUS_ATTR_RW(config_time); 1295 1296 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf) 1297 { 1298 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0); 1299 } 1300 1301 static ssize_t poll_thread_store(const struct bus_type *bus, 1302 const char *buf, size_t count) 1303 { 1304 bool value; 1305 int rc; 1306 1307 rc = kstrtobool(buf, &value); 1308 if (rc) 1309 return rc; 1310 1311 if (value) { 1312 rc = ap_poll_thread_start(); 1313 if (rc) 1314 count = rc; 1315 } else { 1316 ap_poll_thread_stop(); 1317 } 1318 return count; 1319 } 1320 1321 static BUS_ATTR_RW(poll_thread); 1322 1323 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf) 1324 { 1325 return sysfs_emit(buf, "%lu\n", poll_high_timeout); 1326 } 1327 1328 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf, 1329 size_t count) 1330 { 1331 unsigned long value; 1332 ktime_t hr_time; 1333 int rc; 1334 1335 rc = kstrtoul(buf, 0, &value); 1336 if (rc) 1337 return rc; 1338 1339 /* 120 seconds = maximum poll interval */ 1340 if (value > 120000000000UL) 1341 return -EINVAL; 1342 poll_high_timeout = value; 1343 hr_time = poll_high_timeout; 1344 1345 spin_lock_bh(&ap_poll_timer_lock); 1346 hrtimer_cancel(&ap_poll_timer); 1347 hrtimer_set_expires(&ap_poll_timer, hr_time); 1348 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1349 spin_unlock_bh(&ap_poll_timer_lock); 1350 1351 return count; 1352 } 1353 1354 static BUS_ATTR_RW(poll_timeout); 1355 1356 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf) 1357 { 1358 return sysfs_emit(buf, "%d\n", ap_max_domain_id); 1359 } 1360 1361 static BUS_ATTR_RO(ap_max_domain_id); 1362 1363 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf) 1364 { 1365 return sysfs_emit(buf, "%d\n", ap_max_adapter_id); 1366 } 1367 1368 static BUS_ATTR_RO(ap_max_adapter_id); 1369 1370 static ssize_t apmask_show(const struct bus_type *bus, char *buf) 1371 { 1372 int rc; 1373 1374 if (mutex_lock_interruptible(&ap_perms_mutex)) 1375 return -ERESTARTSYS; 1376 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1377 ap_perms.apm[0], ap_perms.apm[1], 1378 ap_perms.apm[2], ap_perms.apm[3]); 1379 mutex_unlock(&ap_perms_mutex); 1380 1381 return rc; 1382 } 1383 1384 static int __verify_card_reservations(struct device_driver *drv, void *data) 1385 { 1386 int rc = 0; 1387 struct ap_driver *ap_drv = to_ap_drv(drv); 1388 unsigned long *newapm = (unsigned long *)data; 1389 1390 /* 1391 * increase the driver's module refcounter to be sure it is not 1392 * going away when we invoke the callback function. 1393 */ 1394 if (!try_module_get(drv->owner)) 1395 return 0; 1396 1397 if (ap_drv->in_use) { 1398 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1399 if (rc) 1400 rc = -EBUSY; 1401 } 1402 1403 /* release the driver's module */ 1404 module_put(drv->owner); 1405 1406 return rc; 1407 } 1408 1409 static int apmask_commit(unsigned long *newapm) 1410 { 1411 int rc; 1412 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1413 1414 /* 1415 * Check if any bits in the apmask have been set which will 1416 * result in queues being removed from non-default drivers 1417 */ 1418 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1419 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1420 __verify_card_reservations); 1421 if (rc) 1422 return rc; 1423 } 1424 1425 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1426 1427 return 0; 1428 } 1429 1430 static ssize_t apmask_store(const struct bus_type *bus, const char *buf, 1431 size_t count) 1432 { 1433 int rc, changes = 0; 1434 DECLARE_BITMAP(newapm, AP_DEVICES); 1435 1436 if (mutex_lock_interruptible(&ap_perms_mutex)) 1437 return -ERESTARTSYS; 1438 1439 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1440 if (rc) 1441 goto done; 1442 1443 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1444 if (changes) 1445 rc = apmask_commit(newapm); 1446 1447 done: 1448 mutex_unlock(&ap_perms_mutex); 1449 if (rc) 1450 return rc; 1451 1452 if (changes) { 1453 ap_bus_revise_bindings(); 1454 ap_send_mask_changed_uevent(newapm, NULL); 1455 } 1456 1457 return count; 1458 } 1459 1460 static BUS_ATTR_RW(apmask); 1461 1462 static ssize_t aqmask_show(const struct bus_type *bus, char *buf) 1463 { 1464 int rc; 1465 1466 if (mutex_lock_interruptible(&ap_perms_mutex)) 1467 return -ERESTARTSYS; 1468 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1469 ap_perms.aqm[0], ap_perms.aqm[1], 1470 ap_perms.aqm[2], ap_perms.aqm[3]); 1471 mutex_unlock(&ap_perms_mutex); 1472 1473 return rc; 1474 } 1475 1476 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1477 { 1478 int rc = 0; 1479 struct ap_driver *ap_drv = to_ap_drv(drv); 1480 unsigned long *newaqm = (unsigned long *)data; 1481 1482 /* 1483 * increase the driver's module refcounter to be sure it is not 1484 * going away when we invoke the callback function. 1485 */ 1486 if (!try_module_get(drv->owner)) 1487 return 0; 1488 1489 if (ap_drv->in_use) { 1490 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1491 if (rc) 1492 rc = -EBUSY; 1493 } 1494 1495 /* release the driver's module */ 1496 module_put(drv->owner); 1497 1498 return rc; 1499 } 1500 1501 static int aqmask_commit(unsigned long *newaqm) 1502 { 1503 int rc; 1504 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1505 1506 /* 1507 * Check if any bits in the aqmask have been set which will 1508 * result in queues being removed from non-default drivers 1509 */ 1510 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1511 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1512 __verify_queue_reservations); 1513 if (rc) 1514 return rc; 1515 } 1516 1517 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1518 1519 return 0; 1520 } 1521 1522 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf, 1523 size_t count) 1524 { 1525 int rc, changes = 0; 1526 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1527 1528 if (mutex_lock_interruptible(&ap_perms_mutex)) 1529 return -ERESTARTSYS; 1530 1531 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1532 if (rc) 1533 goto done; 1534 1535 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1536 if (changes) 1537 rc = aqmask_commit(newaqm); 1538 1539 done: 1540 mutex_unlock(&ap_perms_mutex); 1541 if (rc) 1542 return rc; 1543 1544 if (changes) { 1545 ap_bus_revise_bindings(); 1546 ap_send_mask_changed_uevent(NULL, newaqm); 1547 } 1548 1549 return count; 1550 } 1551 1552 static BUS_ATTR_RW(aqmask); 1553 1554 static ssize_t scans_show(const struct bus_type *bus, char *buf) 1555 { 1556 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count)); 1557 } 1558 1559 static ssize_t scans_store(const struct bus_type *bus, const char *buf, 1560 size_t count) 1561 { 1562 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1563 1564 ap_bus_force_rescan(); 1565 1566 return count; 1567 } 1568 1569 static BUS_ATTR_RW(scans); 1570 1571 static ssize_t bindings_show(const struct bus_type *bus, char *buf) 1572 { 1573 int rc; 1574 unsigned int apqns, n; 1575 1576 ap_calc_bound_apqns(&apqns, &n); 1577 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1578 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns); 1579 else 1580 rc = sysfs_emit(buf, "%u/%u\n", n, apqns); 1581 1582 return rc; 1583 } 1584 1585 static BUS_ATTR_RO(bindings); 1586 1587 static ssize_t features_show(const struct bus_type *bus, char *buf) 1588 { 1589 int n = 0; 1590 1591 if (!ap_qci_info->flags) /* QCI not supported */ 1592 return sysfs_emit(buf, "-\n"); 1593 1594 if (ap_qci_info->apsc) 1595 n += sysfs_emit_at(buf, n, "APSC "); 1596 if (ap_qci_info->apxa) 1597 n += sysfs_emit_at(buf, n, "APXA "); 1598 if (ap_qci_info->qact) 1599 n += sysfs_emit_at(buf, n, "QACT "); 1600 if (ap_qci_info->rc8a) 1601 n += sysfs_emit_at(buf, n, "RC8A "); 1602 if (ap_qci_info->apsb) 1603 n += sysfs_emit_at(buf, n, "APSB "); 1604 1605 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n"); 1606 1607 return n; 1608 } 1609 1610 static BUS_ATTR_RO(features); 1611 1612 static struct attribute *ap_bus_attrs[] = { 1613 &bus_attr_ap_domain.attr, 1614 &bus_attr_ap_control_domain_mask.attr, 1615 &bus_attr_ap_usage_domain_mask.attr, 1616 &bus_attr_ap_adapter_mask.attr, 1617 &bus_attr_config_time.attr, 1618 &bus_attr_poll_thread.attr, 1619 &bus_attr_ap_interrupts.attr, 1620 &bus_attr_poll_timeout.attr, 1621 &bus_attr_ap_max_domain_id.attr, 1622 &bus_attr_ap_max_adapter_id.attr, 1623 &bus_attr_apmask.attr, 1624 &bus_attr_aqmask.attr, 1625 &bus_attr_scans.attr, 1626 &bus_attr_bindings.attr, 1627 &bus_attr_features.attr, 1628 NULL, 1629 }; 1630 ATTRIBUTE_GROUPS(ap_bus); 1631 1632 static const struct bus_type ap_bus_type = { 1633 .name = "ap", 1634 .bus_groups = ap_bus_groups, 1635 .match = &ap_bus_match, 1636 .uevent = &ap_uevent, 1637 .probe = ap_device_probe, 1638 .remove = ap_device_remove, 1639 }; 1640 1641 /** 1642 * ap_select_domain(): Select an AP domain if possible and we haven't 1643 * already done so before. 1644 */ 1645 static void ap_select_domain(void) 1646 { 1647 struct ap_queue_status status; 1648 int card, dom; 1649 1650 /* 1651 * Choose the default domain. Either the one specified with 1652 * the "domain=" parameter or the first domain with at least 1653 * one valid APQN. 1654 */ 1655 spin_lock_bh(&ap_domain_lock); 1656 if (ap_domain_index >= 0) { 1657 /* Domain has already been selected. */ 1658 goto out; 1659 } 1660 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1661 if (!ap_test_config_usage_domain(dom) || 1662 !test_bit_inv(dom, ap_perms.aqm)) 1663 continue; 1664 for (card = 0; card <= ap_max_adapter_id; card++) { 1665 if (!ap_test_config_card_id(card) || 1666 !test_bit_inv(card, ap_perms.apm)) 1667 continue; 1668 status = ap_test_queue(AP_MKQID(card, dom), 1669 ap_apft_available(), 1670 NULL); 1671 if (status.response_code == AP_RESPONSE_NORMAL) 1672 break; 1673 } 1674 if (card <= ap_max_adapter_id) 1675 break; 1676 } 1677 if (dom <= ap_max_domain_id) { 1678 ap_domain_index = dom; 1679 AP_DBF_INFO("%s new default domain is %d\n", 1680 __func__, ap_domain_index); 1681 } 1682 out: 1683 spin_unlock_bh(&ap_domain_lock); 1684 } 1685 1686 /* 1687 * This function checks the type and returns either 0 for not 1688 * supported or the highest compatible type value (which may 1689 * include the input type value). 1690 */ 1691 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1692 { 1693 int comp_type = 0; 1694 1695 /* < CEX4 is not supported */ 1696 if (rawtype < AP_DEVICE_TYPE_CEX4) { 1697 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1698 __func__, AP_QID_CARD(qid), 1699 AP_QID_QUEUE(qid), rawtype); 1700 return 0; 1701 } 1702 /* up to CEX8 known and fully supported */ 1703 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1704 return rawtype; 1705 /* 1706 * unknown new type > CEX8, check for compatibility 1707 * to the highest known and supported type which is 1708 * currently CEX8 with the help of the QACT function. 1709 */ 1710 if (ap_qact_available()) { 1711 struct ap_queue_status status; 1712 union ap_qact_ap_info apinfo = {0}; 1713 1714 apinfo.mode = (func >> 26) & 0x07; 1715 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1716 status = ap_qact(qid, 0, &apinfo); 1717 if (status.response_code == AP_RESPONSE_NORMAL && 1718 apinfo.cat >= AP_DEVICE_TYPE_CEX4 && 1719 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1720 comp_type = apinfo.cat; 1721 } 1722 if (!comp_type) 1723 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1724 __func__, AP_QID_CARD(qid), 1725 AP_QID_QUEUE(qid), rawtype); 1726 else if (comp_type != rawtype) 1727 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1728 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1729 rawtype, comp_type); 1730 return comp_type; 1731 } 1732 1733 /* 1734 * Helper function to be used with bus_find_dev 1735 * matches for the card device with the given id 1736 */ 1737 static int __match_card_device_with_id(struct device *dev, const void *data) 1738 { 1739 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1740 } 1741 1742 /* 1743 * Helper function to be used with bus_find_dev 1744 * matches for the queue device with a given qid 1745 */ 1746 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1747 { 1748 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1749 } 1750 1751 /* 1752 * Helper function to be used with bus_find_dev 1753 * matches any queue device with given queue id 1754 */ 1755 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1756 { 1757 return is_queue_dev(dev) && 1758 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1759 } 1760 1761 /* Helper function for notify_config_changed */ 1762 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1763 { 1764 struct ap_driver *ap_drv = to_ap_drv(drv); 1765 1766 if (try_module_get(drv->owner)) { 1767 if (ap_drv->on_config_changed) 1768 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1769 module_put(drv->owner); 1770 } 1771 1772 return 0; 1773 } 1774 1775 /* Notify all drivers about an qci config change */ 1776 static inline void notify_config_changed(void) 1777 { 1778 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1779 __drv_notify_config_changed); 1780 } 1781 1782 /* Helper function for notify_scan_complete */ 1783 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1784 { 1785 struct ap_driver *ap_drv = to_ap_drv(drv); 1786 1787 if (try_module_get(drv->owner)) { 1788 if (ap_drv->on_scan_complete) 1789 ap_drv->on_scan_complete(ap_qci_info, 1790 ap_qci_info_old); 1791 module_put(drv->owner); 1792 } 1793 1794 return 0; 1795 } 1796 1797 /* Notify all drivers about bus scan complete */ 1798 static inline void notify_scan_complete(void) 1799 { 1800 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1801 __drv_notify_scan_complete); 1802 } 1803 1804 /* 1805 * Helper function for ap_scan_bus(). 1806 * Remove card device and associated queue devices. 1807 */ 1808 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1809 { 1810 bus_for_each_dev(&ap_bus_type, NULL, 1811 (void *)(long)ac->id, 1812 __ap_queue_devices_with_id_unregister); 1813 device_unregister(&ac->ap_dev.device); 1814 } 1815 1816 /* 1817 * Helper function for ap_scan_bus(). 1818 * Does the scan bus job for all the domains within 1819 * a valid adapter given by an ap_card ptr. 1820 */ 1821 static inline void ap_scan_domains(struct ap_card *ac) 1822 { 1823 struct ap_tapq_hwinfo hwinfo; 1824 bool decfg, chkstop; 1825 struct ap_queue *aq; 1826 struct device *dev; 1827 ap_qid_t qid; 1828 int rc, dom; 1829 1830 /* 1831 * Go through the configuration for the domains and compare them 1832 * to the existing queue devices. Also take care of the config 1833 * and error state for the queue devices. 1834 */ 1835 1836 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1837 qid = AP_MKQID(ac->id, dom); 1838 dev = bus_find_device(&ap_bus_type, NULL, 1839 (void *)(long)qid, 1840 __match_queue_device_with_qid); 1841 aq = dev ? to_ap_queue(dev) : NULL; 1842 if (!ap_test_config_usage_domain(dom)) { 1843 if (dev) { 1844 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1845 __func__, ac->id, dom); 1846 device_unregister(dev); 1847 } 1848 goto put_dev_and_continue; 1849 } 1850 /* domain is valid, get info from this APQN */ 1851 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop); 1852 switch (rc) { 1853 case -1: 1854 if (dev) { 1855 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1856 __func__, ac->id, dom); 1857 device_unregister(dev); 1858 } 1859 fallthrough; 1860 case 0: 1861 goto put_dev_and_continue; 1862 default: 1863 break; 1864 } 1865 /* if no queue device exists, create a new one */ 1866 if (!aq) { 1867 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1868 if (!aq) { 1869 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1870 __func__, ac->id, dom); 1871 continue; 1872 } 1873 aq->card = ac; 1874 aq->config = !decfg; 1875 aq->chkstop = chkstop; 1876 aq->se_bstate = hwinfo.bs; 1877 dev = &aq->ap_dev.device; 1878 dev->bus = &ap_bus_type; 1879 dev->parent = &ac->ap_dev.device; 1880 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1881 /* register queue device */ 1882 rc = device_register(dev); 1883 if (rc) { 1884 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1885 __func__, ac->id, dom); 1886 goto put_dev_and_continue; 1887 } 1888 /* get it and thus adjust reference counter */ 1889 get_device(dev); 1890 if (decfg) { 1891 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1892 __func__, ac->id, dom); 1893 } else if (chkstop) { 1894 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1895 __func__, ac->id, dom); 1896 } else { 1897 /* nudge the queue's state machine */ 1898 ap_queue_init_state(aq); 1899 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1900 __func__, ac->id, dom); 1901 } 1902 goto put_dev_and_continue; 1903 } 1904 /* handle state changes on already existing queue device */ 1905 spin_lock_bh(&aq->lock); 1906 /* SE bind state */ 1907 aq->se_bstate = hwinfo.bs; 1908 /* checkstop state */ 1909 if (chkstop && !aq->chkstop) { 1910 /* checkstop on */ 1911 aq->chkstop = true; 1912 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1913 aq->dev_state = AP_DEV_STATE_ERROR; 1914 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1915 } 1916 spin_unlock_bh(&aq->lock); 1917 pr_debug("(%d,%d) queue dev checkstop on\n", 1918 ac->id, dom); 1919 /* 'receive' pending messages with -EAGAIN */ 1920 ap_flush_queue(aq); 1921 goto put_dev_and_continue; 1922 } else if (!chkstop && aq->chkstop) { 1923 /* checkstop off */ 1924 aq->chkstop = false; 1925 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1926 _ap_queue_init_state(aq); 1927 spin_unlock_bh(&aq->lock); 1928 pr_debug("(%d,%d) queue dev checkstop off\n", 1929 ac->id, dom); 1930 goto put_dev_and_continue; 1931 } 1932 /* config state change */ 1933 if (decfg && aq->config) { 1934 /* config off this queue device */ 1935 aq->config = false; 1936 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1937 aq->dev_state = AP_DEV_STATE_ERROR; 1938 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1939 } 1940 spin_unlock_bh(&aq->lock); 1941 pr_debug("(%d,%d) queue dev config off\n", 1942 ac->id, dom); 1943 ap_send_config_uevent(&aq->ap_dev, aq->config); 1944 /* 'receive' pending messages with -EAGAIN */ 1945 ap_flush_queue(aq); 1946 goto put_dev_and_continue; 1947 } else if (!decfg && !aq->config) { 1948 /* config on this queue device */ 1949 aq->config = true; 1950 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1951 _ap_queue_init_state(aq); 1952 spin_unlock_bh(&aq->lock); 1953 pr_debug("(%d,%d) queue dev config on\n", 1954 ac->id, dom); 1955 ap_send_config_uevent(&aq->ap_dev, aq->config); 1956 goto put_dev_and_continue; 1957 } 1958 /* handle other error states */ 1959 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1960 spin_unlock_bh(&aq->lock); 1961 /* 'receive' pending messages with -EAGAIN */ 1962 ap_flush_queue(aq); 1963 /* re-init (with reset) the queue device */ 1964 ap_queue_init_state(aq); 1965 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1966 __func__, ac->id, dom); 1967 goto put_dev_and_continue; 1968 } 1969 spin_unlock_bh(&aq->lock); 1970 put_dev_and_continue: 1971 put_device(dev); 1972 } 1973 } 1974 1975 /* 1976 * Helper function for ap_scan_bus(). 1977 * Does the scan bus job for the given adapter id. 1978 */ 1979 static inline void ap_scan_adapter(int ap) 1980 { 1981 struct ap_tapq_hwinfo hwinfo; 1982 int rc, dom, comp_type; 1983 bool decfg, chkstop; 1984 struct ap_card *ac; 1985 struct device *dev; 1986 ap_qid_t qid; 1987 1988 /* Is there currently a card device for this adapter ? */ 1989 dev = bus_find_device(&ap_bus_type, NULL, 1990 (void *)(long)ap, 1991 __match_card_device_with_id); 1992 ac = dev ? to_ap_card(dev) : NULL; 1993 1994 /* Adapter not in configuration ? */ 1995 if (!ap_test_config_card_id(ap)) { 1996 if (ac) { 1997 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 1998 __func__, ap); 1999 ap_scan_rm_card_dev_and_queue_devs(ac); 2000 put_device(dev); 2001 } 2002 return; 2003 } 2004 2005 /* 2006 * Adapter ap is valid in the current configuration. So do some checks: 2007 * If no card device exists, build one. If a card device exists, check 2008 * for type and functions changed. For all this we need to find a valid 2009 * APQN first. 2010 */ 2011 2012 for (dom = 0; dom <= ap_max_domain_id; dom++) 2013 if (ap_test_config_usage_domain(dom)) { 2014 qid = AP_MKQID(ap, dom); 2015 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0) 2016 break; 2017 } 2018 if (dom > ap_max_domain_id) { 2019 /* Could not find one valid APQN for this adapter */ 2020 if (ac) { 2021 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 2022 __func__, ap); 2023 ap_scan_rm_card_dev_and_queue_devs(ac); 2024 put_device(dev); 2025 } else { 2026 pr_debug("(%d) no type info (no APQN found), ignored\n", 2027 ap); 2028 } 2029 return; 2030 } 2031 if (!hwinfo.at) { 2032 /* No apdater type info available, an unusable adapter */ 2033 if (ac) { 2034 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 2035 __func__, ap); 2036 ap_scan_rm_card_dev_and_queue_devs(ac); 2037 put_device(dev); 2038 } else { 2039 pr_debug("(%d) no valid type (0) info, ignored\n", ap); 2040 } 2041 return; 2042 } 2043 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */ 2044 if (ac) { 2045 /* Check APQN against existing card device for changes */ 2046 if (ac->hwinfo.at != hwinfo.at) { 2047 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 2048 __func__, ap, hwinfo.at); 2049 ap_scan_rm_card_dev_and_queue_devs(ac); 2050 put_device(dev); 2051 ac = NULL; 2052 } else if (ac->hwinfo.fac != hwinfo.fac) { 2053 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 2054 __func__, ap, hwinfo.fac); 2055 ap_scan_rm_card_dev_and_queue_devs(ac); 2056 put_device(dev); 2057 ac = NULL; 2058 } else { 2059 /* handle checkstop state change */ 2060 if (chkstop && !ac->chkstop) { 2061 /* checkstop on */ 2062 ac->chkstop = true; 2063 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2064 __func__, ap); 2065 } else if (!chkstop && ac->chkstop) { 2066 /* checkstop off */ 2067 ac->chkstop = false; 2068 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2069 __func__, ap); 2070 } 2071 /* handle config state change */ 2072 if (decfg && ac->config) { 2073 ac->config = false; 2074 AP_DBF_INFO("%s(%d) card dev config off\n", 2075 __func__, ap); 2076 ap_send_config_uevent(&ac->ap_dev, ac->config); 2077 } else if (!decfg && !ac->config) { 2078 ac->config = true; 2079 AP_DBF_INFO("%s(%d) card dev config on\n", 2080 __func__, ap); 2081 ap_send_config_uevent(&ac->ap_dev, ac->config); 2082 } 2083 } 2084 } 2085 2086 if (!ac) { 2087 /* Build a new card device */ 2088 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac); 2089 if (!comp_type) { 2090 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2091 __func__, ap, hwinfo.at); 2092 return; 2093 } 2094 ac = ap_card_create(ap, hwinfo, comp_type); 2095 if (!ac) { 2096 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2097 __func__, ap); 2098 return; 2099 } 2100 ac->config = !decfg; 2101 ac->chkstop = chkstop; 2102 dev = &ac->ap_dev.device; 2103 dev->bus = &ap_bus_type; 2104 dev->parent = ap_root_device; 2105 dev_set_name(dev, "card%02x", ap); 2106 /* maybe enlarge ap_max_msg_size to support this card */ 2107 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2108 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2109 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2110 __func__, ap, 2111 atomic_read(&ap_max_msg_size)); 2112 } 2113 /* Register the new card device with AP bus */ 2114 rc = device_register(dev); 2115 if (rc) { 2116 AP_DBF_WARN("%s(%d) device_register() failed\n", 2117 __func__, ap); 2118 put_device(dev); 2119 return; 2120 } 2121 /* get it and thus adjust reference counter */ 2122 get_device(dev); 2123 if (decfg) 2124 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2125 __func__, ap, hwinfo.at, hwinfo.fac); 2126 else if (chkstop) 2127 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2128 __func__, ap, hwinfo.at, hwinfo.fac); 2129 else 2130 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2131 __func__, ap, hwinfo.at, hwinfo.fac); 2132 } 2133 2134 /* Verify the domains and the queue devices for this card */ 2135 ap_scan_domains(ac); 2136 2137 /* release the card device */ 2138 put_device(&ac->ap_dev.device); 2139 } 2140 2141 /** 2142 * ap_get_configuration - get the host AP configuration 2143 * 2144 * Stores the host AP configuration information returned from the previous call 2145 * to Query Configuration Information (QCI), then retrieves and stores the 2146 * current AP configuration returned from QCI. 2147 * 2148 * Return: true if the host AP configuration changed between calls to QCI; 2149 * otherwise, return false. 2150 */ 2151 static bool ap_get_configuration(void) 2152 { 2153 if (!ap_qci_info->flags) /* QCI not supported */ 2154 return false; 2155 2156 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2157 ap_qci(ap_qci_info); 2158 2159 return memcmp(ap_qci_info, ap_qci_info_old, 2160 sizeof(struct ap_config_info)) != 0; 2161 } 2162 2163 /* 2164 * ap_config_has_new_aps - Check current against old qci info if 2165 * new adapters have appeared. Returns true if at least one new 2166 * adapter in the apm mask is showing up. Existing adapters or 2167 * receding adapters are not counted. 2168 */ 2169 static bool ap_config_has_new_aps(void) 2170 { 2171 2172 unsigned long m[BITS_TO_LONGS(AP_DEVICES)]; 2173 2174 if (!ap_qci_info->flags) 2175 return false; 2176 2177 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm, 2178 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES); 2179 if (!bitmap_empty(m, AP_DEVICES)) 2180 return true; 2181 2182 return false; 2183 } 2184 2185 /* 2186 * ap_config_has_new_doms - Check current against old qci info if 2187 * new (usage) domains have appeared. Returns true if at least one 2188 * new domain in the aqm mask is showing up. Existing domains or 2189 * receding domains are not counted. 2190 */ 2191 static bool ap_config_has_new_doms(void) 2192 { 2193 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)]; 2194 2195 if (!ap_qci_info->flags) 2196 return false; 2197 2198 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm, 2199 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS); 2200 if (!bitmap_empty(m, AP_DOMAINS)) 2201 return true; 2202 2203 return false; 2204 } 2205 2206 /** 2207 * ap_scan_bus(): Scan the AP bus for new devices 2208 * Always run under mutex ap_scan_bus_mutex protection 2209 * which needs to get locked/unlocked by the caller! 2210 * Returns true if any config change has been detected 2211 * during the scan, otherwise false. 2212 */ 2213 static bool ap_scan_bus(void) 2214 { 2215 bool config_changed; 2216 int ap; 2217 2218 pr_debug(">\n"); 2219 2220 /* (re-)fetch configuration via QCI */ 2221 config_changed = ap_get_configuration(); 2222 if (config_changed) { 2223 if (ap_config_has_new_aps() || ap_config_has_new_doms()) { 2224 /* 2225 * Appearance of new adapters and/or domains need to 2226 * build new ap devices which need to get bound to an 2227 * device driver. Thus reset the APQN bindings complete 2228 * completion. 2229 */ 2230 reinit_completion(&ap_apqn_bindings_complete); 2231 } 2232 /* post a config change notify */ 2233 notify_config_changed(); 2234 } 2235 ap_select_domain(); 2236 2237 /* loop over all possible adapters */ 2238 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2239 ap_scan_adapter(ap); 2240 2241 /* scan complete notify */ 2242 if (config_changed) 2243 notify_scan_complete(); 2244 2245 /* check if there is at least one queue available with default domain */ 2246 if (ap_domain_index >= 0) { 2247 struct device *dev = 2248 bus_find_device(&ap_bus_type, NULL, 2249 (void *)(long)ap_domain_index, 2250 __match_queue_device_with_queue_id); 2251 if (dev) 2252 put_device(dev); 2253 else 2254 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2255 __func__, ap_domain_index); 2256 } 2257 2258 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2259 pr_debug("init scan complete\n"); 2260 ap_send_init_scan_done_uevent(); 2261 } 2262 2263 ap_check_bindings_complete(); 2264 2265 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ); 2266 2267 pr_debug("< config_changed=%d\n", config_changed); 2268 2269 return config_changed; 2270 } 2271 2272 /* 2273 * Callback for the ap_scan_bus_timer 2274 * Runs periodically, workqueue timer (ap_scan_bus_time) 2275 */ 2276 static void ap_scan_bus_timer_callback(struct timer_list *unused) 2277 { 2278 /* 2279 * schedule work into the system long wq which when 2280 * the work is finally executed, calls the AP bus scan. 2281 */ 2282 queue_work(system_long_wq, &ap_scan_bus_work); 2283 } 2284 2285 /* 2286 * Callback for the ap_scan_bus_work 2287 */ 2288 static void ap_scan_bus_wq_callback(struct work_struct *unused) 2289 { 2290 /* 2291 * Try to invoke an ap_scan_bus(). If the mutex acquisition 2292 * fails there is currently another task already running the 2293 * AP scan bus and there is no need to wait and re-trigger the 2294 * scan again. Please note at the end of the scan bus function 2295 * the AP scan bus timer is re-armed which triggers then the 2296 * ap_scan_bus_timer_callback which enqueues a work into the 2297 * system_long_wq which invokes this function here again. 2298 */ 2299 if (mutex_trylock(&ap_scan_bus_mutex)) { 2300 ap_scan_bus_task = current; 2301 ap_scan_bus_result = ap_scan_bus(); 2302 ap_scan_bus_task = NULL; 2303 mutex_unlock(&ap_scan_bus_mutex); 2304 } 2305 } 2306 2307 static inline void __exit ap_async_exit(void) 2308 { 2309 if (ap_thread_flag) 2310 ap_poll_thread_stop(); 2311 chsc_notifier_unregister(&ap_bus_nb); 2312 cancel_work(&ap_scan_bus_work); 2313 hrtimer_cancel(&ap_poll_timer); 2314 timer_delete(&ap_scan_bus_timer); 2315 } 2316 2317 static inline int __init ap_async_init(void) 2318 { 2319 int rc; 2320 2321 /* Setup the AP bus rescan timer. */ 2322 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0); 2323 2324 /* 2325 * Setup the high resolution poll timer. 2326 * If we are running under z/VM adjust polling to z/VM polling rate. 2327 */ 2328 if (MACHINE_IS_VM) 2329 poll_high_timeout = 1500000; 2330 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2331 ap_poll_timer.function = ap_poll_timeout; 2332 2333 queue_work(system_long_wq, &ap_scan_bus_work); 2334 2335 rc = chsc_notifier_register(&ap_bus_nb); 2336 if (rc) 2337 goto out; 2338 2339 /* Start the low priority AP bus poll thread. */ 2340 if (!ap_thread_flag) 2341 return 0; 2342 2343 rc = ap_poll_thread_start(); 2344 if (rc) 2345 goto out_notifier; 2346 2347 return 0; 2348 2349 out_notifier: 2350 chsc_notifier_unregister(&ap_bus_nb); 2351 out: 2352 cancel_work(&ap_scan_bus_work); 2353 hrtimer_cancel(&ap_poll_timer); 2354 timer_delete(&ap_scan_bus_timer); 2355 return rc; 2356 } 2357 2358 static inline void ap_irq_exit(void) 2359 { 2360 if (ap_irq_flag) 2361 unregister_adapter_interrupt(&ap_airq); 2362 } 2363 2364 static inline int __init ap_irq_init(void) 2365 { 2366 int rc; 2367 2368 if (!ap_interrupts_available() || !ap_useirq) 2369 return 0; 2370 2371 rc = register_adapter_interrupt(&ap_airq); 2372 ap_irq_flag = (rc == 0); 2373 2374 return rc; 2375 } 2376 2377 static inline void ap_debug_exit(void) 2378 { 2379 debug_unregister(ap_dbf_info); 2380 } 2381 2382 static inline int __init ap_debug_init(void) 2383 { 2384 ap_dbf_info = debug_register("ap", 2, 1, 2385 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2386 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2387 debug_set_level(ap_dbf_info, DBF_ERR); 2388 2389 return 0; 2390 } 2391 2392 static void __init ap_perms_init(void) 2393 { 2394 /* all resources usable if no kernel parameter string given */ 2395 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2396 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2397 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2398 2399 /* apm kernel parameter string */ 2400 if (apm_str) { 2401 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2402 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2403 &ap_perms_mutex); 2404 } 2405 2406 /* aqm kernel parameter string */ 2407 if (aqm_str) { 2408 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2409 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2410 &ap_perms_mutex); 2411 } 2412 } 2413 2414 /** 2415 * ap_module_init(): The module initialization code. 2416 * 2417 * Initializes the module. 2418 */ 2419 static int __init ap_module_init(void) 2420 { 2421 int rc; 2422 2423 rc = ap_debug_init(); 2424 if (rc) 2425 return rc; 2426 2427 if (!ap_instructions_available()) { 2428 pr_warn("The hardware system does not support AP instructions\n"); 2429 return -ENODEV; 2430 } 2431 2432 /* init ap_queue hashtable */ 2433 hash_init(ap_queues); 2434 2435 /* set up the AP permissions (ioctls, ap and aq masks) */ 2436 ap_perms_init(); 2437 2438 /* Get AP configuration data if available */ 2439 ap_init_qci_info(); 2440 2441 /* check default domain setting */ 2442 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2443 (ap_domain_index >= 0 && 2444 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2445 pr_warn("%d is not a valid cryptographic domain\n", 2446 ap_domain_index); 2447 ap_domain_index = -1; 2448 } 2449 2450 /* Create /sys/bus/ap. */ 2451 rc = bus_register(&ap_bus_type); 2452 if (rc) 2453 goto out; 2454 2455 /* Create /sys/devices/ap. */ 2456 ap_root_device = root_device_register("ap"); 2457 rc = PTR_ERR_OR_ZERO(ap_root_device); 2458 if (rc) 2459 goto out_bus; 2460 ap_root_device->bus = &ap_bus_type; 2461 2462 /* enable interrupts if available */ 2463 rc = ap_irq_init(); 2464 if (rc) 2465 goto out_device; 2466 2467 /* Setup asynchronous work (timers, workqueue, etc). */ 2468 rc = ap_async_init(); 2469 if (rc) 2470 goto out_irq; 2471 2472 return 0; 2473 2474 out_irq: 2475 ap_irq_exit(); 2476 out_device: 2477 root_device_unregister(ap_root_device); 2478 out_bus: 2479 bus_unregister(&ap_bus_type); 2480 out: 2481 ap_debug_exit(); 2482 return rc; 2483 } 2484 2485 static void __exit ap_module_exit(void) 2486 { 2487 ap_async_exit(); 2488 ap_irq_exit(); 2489 root_device_unregister(ap_root_device); 2490 bus_unregister(&ap_bus_type); 2491 ap_debug_exit(); 2492 } 2493 2494 module_init(ap_module_init); 2495 module_exit(ap_module_exit); 2496