1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * channel program interfaces 4 * 5 * Copyright IBM Corp. 2017 6 * 7 * Author(s): Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com> 8 * Xiao Feng Ren <renxiaof@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/ratelimit.h> 12 #include <linux/mm.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/iommu.h> 16 #include <linux/vfio.h> 17 #include <asm/idals.h> 18 19 #include "vfio_ccw_cp.h" 20 #include "vfio_ccw_private.h" 21 22 struct page_array { 23 /* Array that stores pages need to pin. */ 24 dma_addr_t *pa_iova; 25 /* Array that receives the pinned pages. */ 26 struct page **pa_page; 27 /* Number of pages pinned from @pa_iova. */ 28 int pa_nr; 29 }; 30 31 struct ccwchain { 32 struct list_head next; 33 struct ccw1 *ch_ccw; 34 /* Guest physical address of the current chain. */ 35 u64 ch_iova; 36 /* Count of the valid ccws in chain. */ 37 int ch_len; 38 /* Pinned PAGEs for the original data. */ 39 struct page_array *ch_pa; 40 }; 41 42 /* 43 * page_array_alloc() - alloc memory for page array 44 * @pa: page_array on which to perform the operation 45 * @len: number of pages that should be pinned from @iova 46 * 47 * Attempt to allocate memory for page array. 48 * 49 * Usage of page_array: 50 * We expect (pa_nr == 0) and (pa_iova == NULL), any field in 51 * this structure will be filled in by this function. 52 * 53 * Returns: 54 * 0 if page array is allocated 55 * -EINVAL if pa->pa_nr is not initially zero, or pa->pa_iova is not NULL 56 * -ENOMEM if alloc failed 57 */ 58 static int page_array_alloc(struct page_array *pa, unsigned int len) 59 { 60 if (pa->pa_nr || pa->pa_iova) 61 return -EINVAL; 62 63 if (len == 0) 64 return -EINVAL; 65 66 pa->pa_nr = len; 67 68 pa->pa_iova = kcalloc(len, sizeof(*pa->pa_iova), GFP_KERNEL); 69 if (!pa->pa_iova) 70 return -ENOMEM; 71 72 pa->pa_page = kcalloc(len, sizeof(*pa->pa_page), GFP_KERNEL); 73 if (!pa->pa_page) { 74 kfree(pa->pa_iova); 75 return -ENOMEM; 76 } 77 78 return 0; 79 } 80 81 /* 82 * page_array_unpin() - Unpin user pages in memory 83 * @pa: page_array on which to perform the operation 84 * @vdev: the vfio device to perform the operation 85 * @pa_nr: number of user pages to unpin 86 * @unaligned: were pages unaligned on the pin request 87 * 88 * Only unpin if any pages were pinned to begin with, i.e. pa_nr > 0, 89 * otherwise only clear pa->pa_nr 90 */ 91 static void page_array_unpin(struct page_array *pa, 92 struct vfio_device *vdev, int pa_nr, bool unaligned) 93 { 94 int unpinned = 0, npage = 1; 95 96 while (unpinned < pa_nr) { 97 dma_addr_t *first = &pa->pa_iova[unpinned]; 98 dma_addr_t *last = &first[npage]; 99 100 if (unpinned + npage < pa_nr && 101 *first + npage * PAGE_SIZE == *last && 102 !unaligned) { 103 npage++; 104 continue; 105 } 106 107 vfio_unpin_pages(vdev, *first, npage); 108 unpinned += npage; 109 npage = 1; 110 } 111 112 pa->pa_nr = 0; 113 } 114 115 /* 116 * page_array_pin() - Pin user pages in memory 117 * @pa: page_array on which to perform the operation 118 * @vdev: the vfio device to perform pin operations 119 * @unaligned: are pages aligned to 4K boundary? 120 * 121 * Returns number of pages pinned upon success. 122 * If the pin request partially succeeds, or fails completely, 123 * all pages are left unpinned and a negative error value is returned. 124 * 125 * Requests to pin "aligned" pages can be coalesced into a single 126 * vfio_pin_pages request for the sake of efficiency, based on the 127 * expectation of 4K page requests. Unaligned requests are probably 128 * dealing with 2K "pages", and cannot be coalesced without 129 * reworking this logic to incorporate that math. 130 */ 131 static int page_array_pin(struct page_array *pa, struct vfio_device *vdev, bool unaligned) 132 { 133 int pinned = 0, npage = 1; 134 int ret = 0; 135 136 while (pinned < pa->pa_nr) { 137 dma_addr_t *first = &pa->pa_iova[pinned]; 138 dma_addr_t *last = &first[npage]; 139 140 if (pinned + npage < pa->pa_nr && 141 *first + npage * PAGE_SIZE == *last && 142 !unaligned) { 143 npage++; 144 continue; 145 } 146 147 ret = vfio_pin_pages(vdev, *first, npage, 148 IOMMU_READ | IOMMU_WRITE, 149 &pa->pa_page[pinned]); 150 if (ret < 0) { 151 goto err_out; 152 } else if (ret > 0 && ret != npage) { 153 pinned += ret; 154 ret = -EINVAL; 155 goto err_out; 156 } 157 pinned += npage; 158 npage = 1; 159 } 160 161 return ret; 162 163 err_out: 164 page_array_unpin(pa, vdev, pinned, unaligned); 165 return ret; 166 } 167 168 /* Unpin the pages before releasing the memory. */ 169 static void page_array_unpin_free(struct page_array *pa, struct vfio_device *vdev, bool unaligned) 170 { 171 page_array_unpin(pa, vdev, pa->pa_nr, unaligned); 172 kfree(pa->pa_page); 173 kfree(pa->pa_iova); 174 } 175 176 static bool page_array_iova_pinned(struct page_array *pa, u64 iova, u64 length) 177 { 178 u64 iova_pfn_start = iova >> PAGE_SHIFT; 179 u64 iova_pfn_end = (iova + length - 1) >> PAGE_SHIFT; 180 u64 pfn; 181 int i; 182 183 for (i = 0; i < pa->pa_nr; i++) { 184 pfn = pa->pa_iova[i] >> PAGE_SHIFT; 185 if (pfn >= iova_pfn_start && pfn <= iova_pfn_end) 186 return true; 187 } 188 189 return false; 190 } 191 /* Create the list of IDAL words for a page_array. */ 192 static inline void page_array_idal_create_words(struct page_array *pa, 193 dma64_t *idaws) 194 { 195 int i; 196 197 /* 198 * Idal words (execept the first one) rely on the memory being 4k 199 * aligned. If a user virtual address is 4K aligned, then it's 200 * corresponding kernel physical address will also be 4K aligned. Thus 201 * there will be no problem here to simply use the phys to create an 202 * idaw. 203 */ 204 205 for (i = 0; i < pa->pa_nr; i++) { 206 idaws[i] = virt_to_dma64(page_to_virt(pa->pa_page[i])); 207 208 /* Incorporate any offset from each starting address */ 209 idaws[i] = dma64_add(idaws[i], pa->pa_iova[i] & ~PAGE_MASK); 210 } 211 } 212 213 static void convert_ccw0_to_ccw1(struct ccw1 *source, unsigned long len) 214 { 215 struct ccw0 ccw0; 216 struct ccw1 *pccw1 = source; 217 int i; 218 219 for (i = 0; i < len; i++) { 220 ccw0 = *(struct ccw0 *)pccw1; 221 if ((pccw1->cmd_code & 0x0f) == CCW_CMD_TIC) { 222 pccw1->cmd_code = CCW_CMD_TIC; 223 pccw1->flags = 0; 224 pccw1->count = 0; 225 } else { 226 pccw1->cmd_code = ccw0.cmd_code; 227 pccw1->flags = ccw0.flags; 228 pccw1->count = ccw0.count; 229 } 230 pccw1->cda = u32_to_dma32(ccw0.cda); 231 pccw1++; 232 } 233 } 234 235 #define idal_is_2k(_cp) (!(_cp)->orb.cmd.c64 || (_cp)->orb.cmd.i2k) 236 237 /* 238 * Helpers to operate ccwchain. 239 */ 240 #define ccw_is_read(_ccw) (((_ccw)->cmd_code & 0x03) == 0x02) 241 #define ccw_is_read_backward(_ccw) (((_ccw)->cmd_code & 0x0F) == 0x0C) 242 #define ccw_is_sense(_ccw) (((_ccw)->cmd_code & 0x0F) == CCW_CMD_BASIC_SENSE) 243 244 #define ccw_is_noop(_ccw) ((_ccw)->cmd_code == CCW_CMD_NOOP) 245 246 #define ccw_is_tic(_ccw) ((_ccw)->cmd_code == CCW_CMD_TIC) 247 248 #define ccw_is_idal(_ccw) ((_ccw)->flags & CCW_FLAG_IDA) 249 #define ccw_is_skip(_ccw) ((_ccw)->flags & CCW_FLAG_SKIP) 250 251 #define ccw_is_chain(_ccw) ((_ccw)->flags & (CCW_FLAG_CC | CCW_FLAG_DC)) 252 253 /* 254 * ccw_does_data_transfer() 255 * 256 * Determine whether a CCW will move any data, such that the guest pages 257 * would need to be pinned before performing the I/O. 258 * 259 * Returns 1 if yes, 0 if no. 260 */ 261 static inline int ccw_does_data_transfer(struct ccw1 *ccw) 262 { 263 /* If the count field is zero, then no data will be transferred */ 264 if (ccw->count == 0) 265 return 0; 266 267 /* If the command is a NOP, then no data will be transferred */ 268 if (ccw_is_noop(ccw)) 269 return 0; 270 271 /* If the skip flag is off, then data will be transferred */ 272 if (!ccw_is_skip(ccw)) 273 return 1; 274 275 /* 276 * If the skip flag is on, it is only meaningful if the command 277 * code is a read, read backward, sense, or sense ID. In those 278 * cases, no data will be transferred. 279 */ 280 if (ccw_is_read(ccw) || ccw_is_read_backward(ccw)) 281 return 0; 282 283 if (ccw_is_sense(ccw)) 284 return 0; 285 286 /* The skip flag is on, but it is ignored for this command code. */ 287 return 1; 288 } 289 290 /* 291 * is_cpa_within_range() 292 * 293 * @cpa: channel program address being questioned 294 * @head: address of the beginning of a CCW chain 295 * @len: number of CCWs within the chain 296 * 297 * Determine whether the address of a CCW (whether a new chain, 298 * or the target of a TIC) falls within a range (including the end points). 299 * 300 * Returns 1 if yes, 0 if no. 301 */ 302 static inline int is_cpa_within_range(dma32_t cpa, u32 head, int len) 303 { 304 u32 tail = head + (len - 1) * sizeof(struct ccw1); 305 u32 gcpa = dma32_to_u32(cpa); 306 307 return head <= gcpa && gcpa <= tail; 308 } 309 310 static inline int is_tic_within_range(struct ccw1 *ccw, u32 head, int len) 311 { 312 if (!ccw_is_tic(ccw)) 313 return 0; 314 315 return is_cpa_within_range(ccw->cda, head, len); 316 } 317 318 static struct ccwchain *ccwchain_alloc(struct channel_program *cp, int len) 319 { 320 struct ccwchain *chain; 321 322 chain = kzalloc(sizeof(*chain), GFP_KERNEL); 323 if (!chain) 324 return NULL; 325 326 chain->ch_ccw = kcalloc(len, sizeof(*chain->ch_ccw), GFP_DMA | GFP_KERNEL); 327 if (!chain->ch_ccw) 328 goto out_err; 329 330 chain->ch_pa = kcalloc(len, sizeof(*chain->ch_pa), GFP_KERNEL); 331 if (!chain->ch_pa) 332 goto out_err; 333 334 list_add_tail(&chain->next, &cp->ccwchain_list); 335 336 return chain; 337 338 out_err: 339 kfree(chain->ch_ccw); 340 kfree(chain); 341 return NULL; 342 } 343 344 static void ccwchain_free(struct ccwchain *chain) 345 { 346 list_del(&chain->next); 347 kfree(chain->ch_pa); 348 kfree(chain->ch_ccw); 349 kfree(chain); 350 } 351 352 /* Free resource for a ccw that allocated memory for its cda. */ 353 static void ccwchain_cda_free(struct ccwchain *chain, int idx) 354 { 355 struct ccw1 *ccw = &chain->ch_ccw[idx]; 356 357 if (ccw_is_tic(ccw)) 358 return; 359 360 kfree(dma32_to_virt(ccw->cda)); 361 } 362 363 /** 364 * ccwchain_calc_length - calculate the length of the ccw chain. 365 * @iova: guest physical address of the target ccw chain 366 * @cp: channel_program on which to perform the operation 367 * 368 * This is the chain length not considering any TICs. 369 * You need to do a new round for each TIC target. 370 * 371 * The program is also validated for absence of not yet supported 372 * indirect data addressing scenarios. 373 * 374 * Returns: the length of the ccw chain or -errno. 375 */ 376 static int ccwchain_calc_length(u64 iova, struct channel_program *cp) 377 { 378 struct ccw1 *ccw = cp->guest_cp; 379 int cnt = 0; 380 381 do { 382 cnt++; 383 384 /* 385 * We want to keep counting if the current CCW has the 386 * command-chaining flag enabled, or if it is a TIC CCW 387 * that loops back into the current chain. The latter 388 * is used for device orientation, where the CCW PRIOR to 389 * the TIC can either jump to the TIC or a CCW immediately 390 * after the TIC, depending on the results of its operation. 391 */ 392 if (!ccw_is_chain(ccw) && !is_tic_within_range(ccw, iova, cnt)) 393 break; 394 395 ccw++; 396 } while (cnt < CCWCHAIN_LEN_MAX + 1); 397 398 if (cnt == CCWCHAIN_LEN_MAX + 1) 399 cnt = -EINVAL; 400 401 return cnt; 402 } 403 404 static int tic_target_chain_exists(struct ccw1 *tic, struct channel_program *cp) 405 { 406 struct ccwchain *chain; 407 u32 ccw_head; 408 409 list_for_each_entry(chain, &cp->ccwchain_list, next) { 410 ccw_head = chain->ch_iova; 411 if (is_cpa_within_range(tic->cda, ccw_head, chain->ch_len)) 412 return 1; 413 } 414 415 return 0; 416 } 417 418 static int ccwchain_loop_tic(struct ccwchain *chain, 419 struct channel_program *cp); 420 421 static int ccwchain_handle_ccw(dma32_t cda, struct channel_program *cp) 422 { 423 struct vfio_device *vdev = 424 &container_of(cp, struct vfio_ccw_private, cp)->vdev; 425 struct ccwchain *chain; 426 int len, ret; 427 u32 gcda; 428 429 gcda = dma32_to_u32(cda); 430 /* Copy 2K (the most we support today) of possible CCWs */ 431 ret = vfio_dma_rw(vdev, gcda, cp->guest_cp, CCWCHAIN_LEN_MAX * sizeof(struct ccw1), false); 432 if (ret) 433 return ret; 434 435 /* Convert any Format-0 CCWs to Format-1 */ 436 if (!cp->orb.cmd.fmt) 437 convert_ccw0_to_ccw1(cp->guest_cp, CCWCHAIN_LEN_MAX); 438 439 /* Count the CCWs in the current chain */ 440 len = ccwchain_calc_length(gcda, cp); 441 if (len < 0) 442 return len; 443 444 /* Need alloc a new chain for this one. */ 445 chain = ccwchain_alloc(cp, len); 446 if (!chain) 447 return -ENOMEM; 448 449 chain->ch_len = len; 450 chain->ch_iova = gcda; 451 452 /* Copy the actual CCWs into the new chain */ 453 memcpy(chain->ch_ccw, cp->guest_cp, len * sizeof(struct ccw1)); 454 455 /* Loop for tics on this new chain. */ 456 ret = ccwchain_loop_tic(chain, cp); 457 458 if (ret) 459 ccwchain_free(chain); 460 461 return ret; 462 } 463 464 /* Loop for TICs. */ 465 static int ccwchain_loop_tic(struct ccwchain *chain, struct channel_program *cp) 466 { 467 struct ccw1 *tic; 468 int i, ret; 469 470 for (i = 0; i < chain->ch_len; i++) { 471 tic = &chain->ch_ccw[i]; 472 473 if (!ccw_is_tic(tic)) 474 continue; 475 476 /* May transfer to an existing chain. */ 477 if (tic_target_chain_exists(tic, cp)) 478 continue; 479 480 /* Build a ccwchain for the next segment */ 481 ret = ccwchain_handle_ccw(tic->cda, cp); 482 if (ret) 483 return ret; 484 } 485 486 return 0; 487 } 488 489 static int ccwchain_fetch_tic(struct ccw1 *ccw, 490 struct channel_program *cp) 491 { 492 struct ccwchain *iter; 493 u32 cda, ccw_head; 494 495 list_for_each_entry(iter, &cp->ccwchain_list, next) { 496 ccw_head = iter->ch_iova; 497 if (is_cpa_within_range(ccw->cda, ccw_head, iter->ch_len)) { 498 cda = (u64)iter->ch_ccw + dma32_to_u32(ccw->cda) - ccw_head; 499 ccw->cda = u32_to_dma32(cda); 500 return 0; 501 } 502 } 503 504 return -EFAULT; 505 } 506 507 static dma64_t *get_guest_idal(struct ccw1 *ccw, struct channel_program *cp, int idaw_nr) 508 { 509 struct vfio_device *vdev = 510 &container_of(cp, struct vfio_ccw_private, cp)->vdev; 511 dma64_t *idaws; 512 dma32_t *idaws_f1; 513 int idal_len = idaw_nr * sizeof(*idaws); 514 int idaw_size = idal_is_2k(cp) ? PAGE_SIZE / 2 : PAGE_SIZE; 515 int idaw_mask = ~(idaw_size - 1); 516 int i, ret; 517 518 idaws = kcalloc(idaw_nr, sizeof(*idaws), GFP_DMA | GFP_KERNEL); 519 if (!idaws) 520 return ERR_PTR(-ENOMEM); 521 522 if (ccw_is_idal(ccw)) { 523 /* Copy IDAL from guest */ 524 ret = vfio_dma_rw(vdev, dma32_to_u32(ccw->cda), idaws, idal_len, false); 525 if (ret) { 526 kfree(idaws); 527 return ERR_PTR(ret); 528 } 529 } else { 530 /* Fabricate an IDAL based off CCW data address */ 531 if (cp->orb.cmd.c64) { 532 idaws[0] = u64_to_dma64(dma32_to_u32(ccw->cda)); 533 for (i = 1; i < idaw_nr; i++) { 534 idaws[i] = dma64_add(idaws[i - 1], idaw_size); 535 idaws[i] = dma64_and(idaws[i], idaw_mask); 536 } 537 } else { 538 idaws_f1 = (dma32_t *)idaws; 539 idaws_f1[0] = ccw->cda; 540 for (i = 1; i < idaw_nr; i++) { 541 idaws_f1[i] = dma32_add(idaws_f1[i - 1], idaw_size); 542 idaws_f1[i] = dma32_and(idaws_f1[i], idaw_mask); 543 } 544 } 545 } 546 547 return idaws; 548 } 549 550 /* 551 * ccw_count_idaws() - Calculate the number of IDAWs needed to transfer 552 * a specified amount of data 553 * 554 * @ccw: The Channel Command Word being translated 555 * @cp: Channel Program being processed 556 * 557 * The ORB is examined, since it specifies what IDAWs could actually be 558 * used by any CCW in the channel program, regardless of whether or not 559 * the CCW actually does. An ORB that does not specify Format-2-IDAW 560 * Control could still contain a CCW with an IDAL, which would be 561 * Format-1 and thus only move 2K with each IDAW. Thus all CCWs within 562 * the channel program must follow the same size requirements. 563 */ 564 static int ccw_count_idaws(struct ccw1 *ccw, 565 struct channel_program *cp) 566 { 567 struct vfio_device *vdev = 568 &container_of(cp, struct vfio_ccw_private, cp)->vdev; 569 u64 iova; 570 int size = cp->orb.cmd.c64 ? sizeof(u64) : sizeof(u32); 571 int ret; 572 int bytes = 1; 573 574 if (ccw->count) 575 bytes = ccw->count; 576 577 if (ccw_is_idal(ccw)) { 578 /* Read first IDAW to check its starting address. */ 579 /* All subsequent IDAWs will be 2K- or 4K-aligned. */ 580 ret = vfio_dma_rw(vdev, dma32_to_u32(ccw->cda), &iova, size, false); 581 if (ret) 582 return ret; 583 584 /* 585 * Format-1 IDAWs only occupy the first 32 bits, 586 * and bit 0 is always off. 587 */ 588 if (!cp->orb.cmd.c64) 589 iova = iova >> 32; 590 } else { 591 iova = dma32_to_u32(ccw->cda); 592 } 593 594 /* Format-1 IDAWs operate on 2K each */ 595 if (!cp->orb.cmd.c64) 596 return idal_2k_nr_words((void *)iova, bytes); 597 598 /* Using the 2K variant of Format-2 IDAWs? */ 599 if (cp->orb.cmd.i2k) 600 return idal_2k_nr_words((void *)iova, bytes); 601 602 /* The 'usual' case is 4K Format-2 IDAWs */ 603 return idal_nr_words((void *)iova, bytes); 604 } 605 606 static int ccwchain_fetch_ccw(struct ccw1 *ccw, 607 struct page_array *pa, 608 struct channel_program *cp) 609 { 610 struct vfio_device *vdev = 611 &container_of(cp, struct vfio_ccw_private, cp)->vdev; 612 dma64_t *idaws; 613 dma32_t *idaws_f1; 614 int ret; 615 int idaw_nr; 616 int i; 617 618 /* Calculate size of IDAL */ 619 idaw_nr = ccw_count_idaws(ccw, cp); 620 if (idaw_nr < 0) 621 return idaw_nr; 622 623 /* Allocate an IDAL from host storage */ 624 idaws = get_guest_idal(ccw, cp, idaw_nr); 625 if (IS_ERR(idaws)) { 626 ret = PTR_ERR(idaws); 627 goto out_init; 628 } 629 630 /* 631 * Allocate an array of pages to pin/translate. 632 * The number of pages is actually the count of the idaws 633 * required for the data transfer, since we only only support 634 * 4K IDAWs today. 635 */ 636 ret = page_array_alloc(pa, idaw_nr); 637 if (ret < 0) 638 goto out_free_idaws; 639 640 /* 641 * Copy guest IDAWs into page_array, in case the memory they 642 * occupy is not contiguous. 643 */ 644 idaws_f1 = (dma32_t *)idaws; 645 for (i = 0; i < idaw_nr; i++) { 646 if (cp->orb.cmd.c64) 647 pa->pa_iova[i] = dma64_to_u64(idaws[i]); 648 else 649 pa->pa_iova[i] = dma32_to_u32(idaws_f1[i]); 650 } 651 652 if (ccw_does_data_transfer(ccw)) { 653 ret = page_array_pin(pa, vdev, idal_is_2k(cp)); 654 if (ret < 0) 655 goto out_unpin; 656 } else { 657 pa->pa_nr = 0; 658 } 659 660 ccw->cda = virt_to_dma32(idaws); 661 ccw->flags |= CCW_FLAG_IDA; 662 663 /* Populate the IDAL with pinned/translated addresses from page */ 664 page_array_idal_create_words(pa, idaws); 665 666 return 0; 667 668 out_unpin: 669 page_array_unpin_free(pa, vdev, idal_is_2k(cp)); 670 out_free_idaws: 671 kfree(idaws); 672 out_init: 673 ccw->cda = 0; 674 return ret; 675 } 676 677 /* 678 * Fetch one ccw. 679 * To reduce memory copy, we'll pin the cda page in memory, 680 * and to get rid of the cda 2G limitation of ccw1, we'll translate 681 * direct ccws to idal ccws. 682 */ 683 static int ccwchain_fetch_one(struct ccw1 *ccw, 684 struct page_array *pa, 685 struct channel_program *cp) 686 687 { 688 if (ccw_is_tic(ccw)) 689 return ccwchain_fetch_tic(ccw, cp); 690 691 return ccwchain_fetch_ccw(ccw, pa, cp); 692 } 693 694 /** 695 * cp_init() - allocate ccwchains for a channel program. 696 * @cp: channel_program on which to perform the operation 697 * @orb: control block for the channel program from the guest 698 * 699 * This creates one or more ccwchain(s), and copies the raw data of 700 * the target channel program from @orb->cmd.iova to the new ccwchain(s). 701 * 702 * Limitations: 703 * 1. Supports idal(c64) ccw chaining. 704 * 2. Supports 4k idaw. 705 * 706 * Returns: 707 * %0 on success and a negative error value on failure. 708 */ 709 int cp_init(struct channel_program *cp, union orb *orb) 710 { 711 struct vfio_device *vdev = 712 &container_of(cp, struct vfio_ccw_private, cp)->vdev; 713 /* custom ratelimit used to avoid flood during guest IPL */ 714 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 1); 715 int ret; 716 717 /* this is an error in the caller */ 718 if (cp->initialized) 719 return -EBUSY; 720 721 /* 722 * We only support prefetching the channel program. We assume all channel 723 * programs executed by supported guests likewise support prefetching. 724 * Executing a channel program that does not specify prefetching will 725 * typically not cause an error, but a warning is issued to help identify 726 * the problem if something does break. 727 */ 728 if (!orb->cmd.pfch && __ratelimit(&ratelimit_state)) 729 dev_warn( 730 vdev->dev, 731 "Prefetching channel program even though prefetch not specified in ORB"); 732 733 INIT_LIST_HEAD(&cp->ccwchain_list); 734 memcpy(&cp->orb, orb, sizeof(*orb)); 735 736 /* Build a ccwchain for the first CCW segment */ 737 ret = ccwchain_handle_ccw(orb->cmd.cpa, cp); 738 739 if (!ret) 740 cp->initialized = true; 741 742 return ret; 743 } 744 745 746 /** 747 * cp_free() - free resources for channel program. 748 * @cp: channel_program on which to perform the operation 749 * 750 * This unpins the memory pages and frees the memory space occupied by 751 * @cp, which must have been returned by a previous call to cp_init(). 752 * Otherwise, undefined behavior occurs. 753 */ 754 void cp_free(struct channel_program *cp) 755 { 756 struct vfio_device *vdev = 757 &container_of(cp, struct vfio_ccw_private, cp)->vdev; 758 struct ccwchain *chain, *temp; 759 int i; 760 761 if (!cp->initialized) 762 return; 763 764 cp->initialized = false; 765 list_for_each_entry_safe(chain, temp, &cp->ccwchain_list, next) { 766 for (i = 0; i < chain->ch_len; i++) { 767 page_array_unpin_free(&chain->ch_pa[i], vdev, idal_is_2k(cp)); 768 ccwchain_cda_free(chain, i); 769 } 770 ccwchain_free(chain); 771 } 772 } 773 774 /** 775 * cp_prefetch() - translate a guest physical address channel program to 776 * a real-device runnable channel program. 777 * @cp: channel_program on which to perform the operation 778 * 779 * This function translates the guest-physical-address channel program 780 * and stores the result to ccwchain list. @cp must have been 781 * initialized by a previous call with cp_init(). Otherwise, undefined 782 * behavior occurs. 783 * For each chain composing the channel program: 784 * - On entry ch_len holds the count of CCWs to be translated. 785 * - On exit ch_len is adjusted to the count of successfully translated CCWs. 786 * This allows cp_free to find in ch_len the count of CCWs to free in a chain. 787 * 788 * The S/390 CCW Translation APIS (prefixed by 'cp_') are introduced 789 * as helpers to do ccw chain translation inside the kernel. Basically 790 * they accept a channel program issued by a virtual machine, and 791 * translate the channel program to a real-device runnable channel 792 * program. 793 * 794 * These APIs will copy the ccws into kernel-space buffers, and update 795 * the guest physical addresses with their corresponding host physical 796 * addresses. Then channel I/O device drivers could issue the 797 * translated channel program to real devices to perform an I/O 798 * operation. 799 * 800 * These interfaces are designed to support translation only for 801 * channel programs, which are generated and formatted by a 802 * guest. Thus this will make it possible for things like VFIO to 803 * leverage the interfaces to passthrough a channel I/O mediated 804 * device in QEMU. 805 * 806 * We support direct ccw chaining by translating them to idal ccws. 807 * 808 * Returns: 809 * %0 on success and a negative error value on failure. 810 */ 811 int cp_prefetch(struct channel_program *cp) 812 { 813 struct ccwchain *chain; 814 struct ccw1 *ccw; 815 struct page_array *pa; 816 int len, idx, ret; 817 818 /* this is an error in the caller */ 819 if (!cp->initialized) 820 return -EINVAL; 821 822 list_for_each_entry(chain, &cp->ccwchain_list, next) { 823 len = chain->ch_len; 824 for (idx = 0; idx < len; idx++) { 825 ccw = &chain->ch_ccw[idx]; 826 pa = &chain->ch_pa[idx]; 827 828 ret = ccwchain_fetch_one(ccw, pa, cp); 829 if (ret) 830 goto out_err; 831 } 832 } 833 834 return 0; 835 out_err: 836 /* Only cleanup the chain elements that were actually translated. */ 837 chain->ch_len = idx; 838 list_for_each_entry_continue(chain, &cp->ccwchain_list, next) { 839 chain->ch_len = 0; 840 } 841 return ret; 842 } 843 844 /** 845 * cp_get_orb() - get the orb of the channel program 846 * @cp: channel_program on which to perform the operation 847 * @sch: subchannel the operation will be performed against 848 * 849 * This function returns the address of the updated orb of the channel 850 * program. Channel I/O device drivers could use this orb to issue a 851 * ssch. 852 */ 853 union orb *cp_get_orb(struct channel_program *cp, struct subchannel *sch) 854 { 855 union orb *orb; 856 struct ccwchain *chain; 857 struct ccw1 *cpa; 858 859 /* this is an error in the caller */ 860 if (!cp->initialized) 861 return NULL; 862 863 orb = &cp->orb; 864 865 orb->cmd.intparm = (u32)virt_to_phys(sch); 866 orb->cmd.fmt = 1; 867 868 /* 869 * Everything built by vfio-ccw is a Format-2 IDAL. 870 * If the input was a Format-1 IDAL, indicate that 871 * 2K Format-2 IDAWs were created here. 872 */ 873 if (!orb->cmd.c64) 874 orb->cmd.i2k = 1; 875 orb->cmd.c64 = 1; 876 877 if (orb->cmd.lpm == 0) 878 orb->cmd.lpm = sch->lpm; 879 880 chain = list_first_entry(&cp->ccwchain_list, struct ccwchain, next); 881 cpa = chain->ch_ccw; 882 orb->cmd.cpa = virt_to_dma32(cpa); 883 884 return orb; 885 } 886 887 /** 888 * cp_update_scsw() - update scsw for a channel program. 889 * @cp: channel_program on which to perform the operation 890 * @scsw: I/O results of the channel program and also the target to be 891 * updated 892 * 893 * @scsw contains the I/O results of the channel program that pointed 894 * to by @cp. However what @scsw->cpa stores is a host physical 895 * address, which is meaningless for the guest, which is waiting for 896 * the I/O results. 897 * 898 * This function updates @scsw->cpa to its coressponding guest physical 899 * address. 900 */ 901 void cp_update_scsw(struct channel_program *cp, union scsw *scsw) 902 { 903 struct ccwchain *chain; 904 dma32_t cpa = scsw->cmd.cpa; 905 u32 ccw_head; 906 907 if (!cp->initialized) 908 return; 909 910 /* 911 * LATER: 912 * For now, only update the cmd.cpa part. We may need to deal with 913 * other portions of the schib as well, even if we don't return them 914 * in the ioctl directly. Path status changes etc. 915 */ 916 list_for_each_entry(chain, &cp->ccwchain_list, next) { 917 ccw_head = (u32)(u64)chain->ch_ccw; 918 /* 919 * On successful execution, cpa points just beyond the end 920 * of the chain. 921 */ 922 if (is_cpa_within_range(cpa, ccw_head, chain->ch_len + 1)) { 923 /* 924 * (cpa - ccw_head) is the offset value of the host 925 * physical ccw to its chain head. 926 * Adding this value to the guest physical ccw chain 927 * head gets us the guest cpa: 928 * cpa = chain->ch_iova + (cpa - ccw_head) 929 */ 930 cpa = dma32_add(cpa, chain->ch_iova - ccw_head); 931 break; 932 } 933 } 934 935 scsw->cmd.cpa = cpa; 936 } 937 938 /** 939 * cp_iova_pinned() - check if an iova is pinned for a ccw chain. 940 * @cp: channel_program on which to perform the operation 941 * @iova: the iova to check 942 * @length: the length to check from @iova 943 * 944 * If the @iova is currently pinned for the ccw chain, return true; 945 * else return false. 946 */ 947 bool cp_iova_pinned(struct channel_program *cp, u64 iova, u64 length) 948 { 949 struct ccwchain *chain; 950 int i; 951 952 if (!cp->initialized) 953 return false; 954 955 list_for_each_entry(chain, &cp->ccwchain_list, next) { 956 for (i = 0; i < chain->ch_len; i++) 957 if (page_array_iova_pinned(&chain->ch_pa[i], iova, length)) 958 return true; 959 } 960 961 return false; 962 } 963