xref: /linux/drivers/s390/cio/css.c (revision f5a0ea8936a640d8229d5219515141fc496ec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * driver for channel subsystem
4  *
5  * Copyright IBM Corp. 2002, 2010
6  *
7  * Author(s): Arnd Bergmann (arndb@de.ibm.com)
8  *	      Cornelia Huck (cornelia.huck@de.ibm.com)
9  */
10 
11 #define KMSG_COMPONENT "cio"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/reboot.h>
21 #include <linux/proc_fs.h>
22 #include <linux/genalloc.h>
23 #include <linux/dma-mapping.h>
24 #include <asm/isc.h>
25 #include <asm/crw.h>
26 
27 #include "css.h"
28 #include "cio.h"
29 #include "blacklist.h"
30 #include "cio_debug.h"
31 #include "ioasm.h"
32 #include "chsc.h"
33 #include "device.h"
34 #include "idset.h"
35 #include "chp.h"
36 
37 int css_init_done = 0;
38 int max_ssid;
39 
40 #define MAX_CSS_IDX 0
41 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1];
42 static const struct bus_type css_bus_type;
43 
44 int
45 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data)
46 {
47 	struct subchannel_id schid;
48 	int ret;
49 
50 	init_subchannel_id(&schid);
51 	do {
52 		do {
53 			ret = fn(schid, data);
54 			if (ret)
55 				break;
56 		} while (schid.sch_no++ < __MAX_SUBCHANNEL);
57 		schid.sch_no = 0;
58 	} while (schid.ssid++ < max_ssid);
59 	return ret;
60 }
61 
62 struct cb_data {
63 	void *data;
64 	struct idset *set;
65 	int (*fn_known_sch)(struct subchannel *, void *);
66 	int (*fn_unknown_sch)(struct subchannel_id, void *);
67 };
68 
69 static int call_fn_known_sch(struct device *dev, void *data)
70 {
71 	struct subchannel *sch = to_subchannel(dev);
72 	struct cb_data *cb = data;
73 	int rc = 0;
74 
75 	if (cb->set)
76 		idset_sch_del(cb->set, sch->schid);
77 	if (cb->fn_known_sch)
78 		rc = cb->fn_known_sch(sch, cb->data);
79 	return rc;
80 }
81 
82 static int call_fn_unknown_sch(struct subchannel_id schid, void *data)
83 {
84 	struct cb_data *cb = data;
85 	int rc = 0;
86 
87 	if (idset_sch_contains(cb->set, schid))
88 		rc = cb->fn_unknown_sch(schid, cb->data);
89 	return rc;
90 }
91 
92 static int call_fn_all_sch(struct subchannel_id schid, void *data)
93 {
94 	struct cb_data *cb = data;
95 	struct subchannel *sch;
96 	int rc = 0;
97 
98 	sch = get_subchannel_by_schid(schid);
99 	if (sch) {
100 		if (cb->fn_known_sch)
101 			rc = cb->fn_known_sch(sch, cb->data);
102 		put_device(&sch->dev);
103 	} else {
104 		if (cb->fn_unknown_sch)
105 			rc = cb->fn_unknown_sch(schid, cb->data);
106 	}
107 
108 	return rc;
109 }
110 
111 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
112 			       int (*fn_unknown)(struct subchannel_id,
113 			       void *), void *data)
114 {
115 	struct cb_data cb;
116 	int rc;
117 
118 	cb.data = data;
119 	cb.fn_known_sch = fn_known;
120 	cb.fn_unknown_sch = fn_unknown;
121 
122 	if (fn_known && !fn_unknown) {
123 		/* Skip idset allocation in case of known-only loop. */
124 		cb.set = NULL;
125 		return bus_for_each_dev(&css_bus_type, NULL, &cb,
126 					call_fn_known_sch);
127 	}
128 
129 	cb.set = idset_sch_new();
130 	if (!cb.set)
131 		/* fall back to brute force scanning in case of oom */
132 		return for_each_subchannel(call_fn_all_sch, &cb);
133 
134 	idset_fill(cb.set);
135 
136 	/* Process registered subchannels. */
137 	rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch);
138 	if (rc)
139 		goto out;
140 	/* Process unregistered subchannels. */
141 	if (fn_unknown)
142 		rc = for_each_subchannel(call_fn_unknown_sch, &cb);
143 out:
144 	idset_free(cb.set);
145 
146 	return rc;
147 }
148 
149 static void css_sch_todo(struct work_struct *work);
150 
151 static void css_sch_create_locks(struct subchannel *sch)
152 {
153 	spin_lock_init(&sch->lock);
154 	mutex_init(&sch->reg_mutex);
155 }
156 
157 static void css_subchannel_release(struct device *dev)
158 {
159 	struct subchannel *sch = to_subchannel(dev);
160 
161 	sch->config.intparm = 0;
162 	cio_commit_config(sch);
163 	kfree(sch->driver_override);
164 	kfree(sch);
165 }
166 
167 static int css_validate_subchannel(struct subchannel_id schid,
168 				   struct schib *schib)
169 {
170 	int err;
171 
172 	switch (schib->pmcw.st) {
173 	case SUBCHANNEL_TYPE_IO:
174 	case SUBCHANNEL_TYPE_MSG:
175 		if (!css_sch_is_valid(schib))
176 			err = -ENODEV;
177 		else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) {
178 			CIO_MSG_EVENT(6, "Blacklisted device detected "
179 				      "at devno %04X, subchannel set %x\n",
180 				      schib->pmcw.dev, schid.ssid);
181 			err = -ENODEV;
182 		} else
183 			err = 0;
184 		break;
185 	default:
186 		err = 0;
187 	}
188 	if (err)
189 		goto out;
190 
191 	CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n",
192 		      schid.ssid, schid.sch_no, schib->pmcw.st);
193 out:
194 	return err;
195 }
196 
197 struct subchannel *css_alloc_subchannel(struct subchannel_id schid,
198 					struct schib *schib)
199 {
200 	struct subchannel *sch;
201 	int ret;
202 
203 	ret = css_validate_subchannel(schid, schib);
204 	if (ret < 0)
205 		return ERR_PTR(ret);
206 
207 	sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA);
208 	if (!sch)
209 		return ERR_PTR(-ENOMEM);
210 
211 	sch->schid = schid;
212 	sch->schib = *schib;
213 	sch->st = schib->pmcw.st;
214 
215 	css_sch_create_locks(sch);
216 
217 	INIT_WORK(&sch->todo_work, css_sch_todo);
218 	sch->dev.release = &css_subchannel_release;
219 	sch->dev.dma_mask = &sch->dma_mask;
220 	device_initialize(&sch->dev);
221 	/*
222 	 * The physical addresses for some of the dma structures that can
223 	 * belong to a subchannel need to fit 31 bit width (e.g. ccw).
224 	 */
225 	ret = dma_set_coherent_mask(&sch->dev, DMA_BIT_MASK(31));
226 	if (ret)
227 		goto err;
228 	/*
229 	 * But we don't have such restrictions imposed on the stuff that
230 	 * is handled by the streaming API.
231 	 */
232 	ret = dma_set_mask(&sch->dev, DMA_BIT_MASK(64));
233 	if (ret)
234 		goto err;
235 
236 	return sch;
237 
238 err:
239 	kfree(sch);
240 	return ERR_PTR(ret);
241 }
242 
243 static int css_sch_device_register(struct subchannel *sch)
244 {
245 	int ret;
246 
247 	mutex_lock(&sch->reg_mutex);
248 	dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid,
249 		     sch->schid.sch_no);
250 	ret = device_add(&sch->dev);
251 	mutex_unlock(&sch->reg_mutex);
252 	return ret;
253 }
254 
255 /**
256  * css_sch_device_unregister - unregister a subchannel
257  * @sch: subchannel to be unregistered
258  */
259 void css_sch_device_unregister(struct subchannel *sch)
260 {
261 	mutex_lock(&sch->reg_mutex);
262 	if (device_is_registered(&sch->dev))
263 		device_unregister(&sch->dev);
264 	mutex_unlock(&sch->reg_mutex);
265 }
266 EXPORT_SYMBOL_GPL(css_sch_device_unregister);
267 
268 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw)
269 {
270 	int i;
271 	int mask;
272 
273 	memset(ssd, 0, sizeof(struct chsc_ssd_info));
274 	ssd->path_mask = pmcw->pim;
275 	for (i = 0; i < 8; i++) {
276 		mask = 0x80 >> i;
277 		if (pmcw->pim & mask) {
278 			chp_id_init(&ssd->chpid[i]);
279 			ssd->chpid[i].id = pmcw->chpid[i];
280 		}
281 	}
282 }
283 
284 static void ssd_register_chpids(struct chsc_ssd_info *ssd)
285 {
286 	int i;
287 	int mask;
288 
289 	for (i = 0; i < 8; i++) {
290 		mask = 0x80 >> i;
291 		if (ssd->path_mask & mask)
292 			chp_new(ssd->chpid[i]);
293 	}
294 }
295 
296 void css_update_ssd_info(struct subchannel *sch)
297 {
298 	int ret;
299 
300 	ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info);
301 	if (ret)
302 		ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw);
303 
304 	ssd_register_chpids(&sch->ssd_info);
305 }
306 
307 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
308 			 char *buf)
309 {
310 	struct subchannel *sch = to_subchannel(dev);
311 
312 	return sysfs_emit(buf, "%01x\n", sch->st);
313 }
314 
315 static DEVICE_ATTR_RO(type);
316 
317 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
318 			     char *buf)
319 {
320 	struct subchannel *sch = to_subchannel(dev);
321 
322 	return sysfs_emit(buf, "css:t%01X\n", sch->st);
323 }
324 
325 static DEVICE_ATTR_RO(modalias);
326 
327 static ssize_t driver_override_store(struct device *dev,
328 				     struct device_attribute *attr,
329 				     const char *buf, size_t count)
330 {
331 	struct subchannel *sch = to_subchannel(dev);
332 	int ret;
333 
334 	ret = driver_set_override(dev, &sch->driver_override, buf, count);
335 	if (ret)
336 		return ret;
337 
338 	return count;
339 }
340 
341 static ssize_t driver_override_show(struct device *dev,
342 				    struct device_attribute *attr, char *buf)
343 {
344 	struct subchannel *sch = to_subchannel(dev);
345 	ssize_t len;
346 
347 	device_lock(dev);
348 	len = sysfs_emit(buf, "%s\n", sch->driver_override);
349 	device_unlock(dev);
350 	return len;
351 }
352 static DEVICE_ATTR_RW(driver_override);
353 
354 static struct attribute *subch_attrs[] = {
355 	&dev_attr_type.attr,
356 	&dev_attr_modalias.attr,
357 	&dev_attr_driver_override.attr,
358 	NULL,
359 };
360 
361 static struct attribute_group subch_attr_group = {
362 	.attrs = subch_attrs,
363 };
364 
365 static const struct attribute_group *default_subch_attr_groups[] = {
366 	&subch_attr_group,
367 	NULL,
368 };
369 
370 static ssize_t chpids_show(struct device *dev,
371 			   struct device_attribute *attr,
372 			   char *buf)
373 {
374 	struct subchannel *sch = to_subchannel(dev);
375 	struct chsc_ssd_info *ssd = &sch->ssd_info;
376 	ssize_t ret = 0;
377 	int mask;
378 	int chp;
379 
380 	for (chp = 0; chp < 8; chp++) {
381 		mask = 0x80 >> chp;
382 		if (ssd->path_mask & mask)
383 			ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id);
384 		else
385 			ret += sprintf(buf + ret, "00 ");
386 	}
387 	ret += sprintf(buf + ret, "\n");
388 	return ret;
389 }
390 static DEVICE_ATTR_RO(chpids);
391 
392 static ssize_t pimpampom_show(struct device *dev,
393 			      struct device_attribute *attr,
394 			      char *buf)
395 {
396 	struct subchannel *sch = to_subchannel(dev);
397 	struct pmcw *pmcw = &sch->schib.pmcw;
398 
399 	return sysfs_emit(buf, "%02x %02x %02x\n",
400 			  pmcw->pim, pmcw->pam, pmcw->pom);
401 }
402 static DEVICE_ATTR_RO(pimpampom);
403 
404 static ssize_t dev_busid_show(struct device *dev,
405 			      struct device_attribute *attr,
406 			      char *buf)
407 {
408 	struct subchannel *sch = to_subchannel(dev);
409 	struct pmcw *pmcw = &sch->schib.pmcw;
410 
411 	if ((pmcw->st == SUBCHANNEL_TYPE_IO && pmcw->dnv) ||
412 	    (pmcw->st == SUBCHANNEL_TYPE_MSG && pmcw->w))
413 		return sysfs_emit(buf, "0.%x.%04x\n", sch->schid.ssid,
414 				  pmcw->dev);
415 	else
416 		return sysfs_emit(buf, "none\n");
417 }
418 static DEVICE_ATTR_RO(dev_busid);
419 
420 static struct attribute *io_subchannel_type_attrs[] = {
421 	&dev_attr_chpids.attr,
422 	&dev_attr_pimpampom.attr,
423 	&dev_attr_dev_busid.attr,
424 	NULL,
425 };
426 ATTRIBUTE_GROUPS(io_subchannel_type);
427 
428 static const struct device_type io_subchannel_type = {
429 	.groups = io_subchannel_type_groups,
430 };
431 
432 int css_register_subchannel(struct subchannel *sch)
433 {
434 	int ret;
435 
436 	/* Initialize the subchannel structure */
437 	sch->dev.parent = &channel_subsystems[0]->device;
438 	sch->dev.bus = &css_bus_type;
439 	sch->dev.groups = default_subch_attr_groups;
440 
441 	if (sch->st == SUBCHANNEL_TYPE_IO)
442 		sch->dev.type = &io_subchannel_type;
443 
444 	css_update_ssd_info(sch);
445 	/* make it known to the system */
446 	ret = css_sch_device_register(sch);
447 	if (ret) {
448 		CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n",
449 			      sch->schid.ssid, sch->schid.sch_no, ret);
450 		return ret;
451 	}
452 	return ret;
453 }
454 
455 static int css_probe_device(struct subchannel_id schid, struct schib *schib)
456 {
457 	struct subchannel *sch;
458 	int ret;
459 
460 	sch = css_alloc_subchannel(schid, schib);
461 	if (IS_ERR(sch))
462 		return PTR_ERR(sch);
463 
464 	ret = css_register_subchannel(sch);
465 	if (ret)
466 		put_device(&sch->dev);
467 
468 	return ret;
469 }
470 
471 static int
472 check_subchannel(struct device *dev, const void *data)
473 {
474 	struct subchannel *sch;
475 	struct subchannel_id *schid = (void *)data;
476 
477 	sch = to_subchannel(dev);
478 	return schid_equal(&sch->schid, schid);
479 }
480 
481 struct subchannel *
482 get_subchannel_by_schid(struct subchannel_id schid)
483 {
484 	struct device *dev;
485 
486 	dev = bus_find_device(&css_bus_type, NULL,
487 			      &schid, check_subchannel);
488 
489 	return dev ? to_subchannel(dev) : NULL;
490 }
491 
492 /**
493  * css_sch_is_valid() - check if a subchannel is valid
494  * @schib: subchannel information block for the subchannel
495  */
496 int css_sch_is_valid(struct schib *schib)
497 {
498 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv)
499 		return 0;
500 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w)
501 		return 0;
502 	return 1;
503 }
504 EXPORT_SYMBOL_GPL(css_sch_is_valid);
505 
506 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow)
507 {
508 	struct schib schib;
509 	int ccode;
510 
511 	if (!slow) {
512 		/* Will be done on the slow path. */
513 		return -EAGAIN;
514 	}
515 	/*
516 	 * The first subchannel that is not-operational (ccode==3)
517 	 * indicates that there aren't any more devices available.
518 	 * If stsch gets an exception, it means the current subchannel set
519 	 * is not valid.
520 	 */
521 	ccode = stsch(schid, &schib);
522 	if (ccode)
523 		return (ccode == 3) ? -ENXIO : ccode;
524 
525 	return css_probe_device(schid, &schib);
526 }
527 
528 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow)
529 {
530 	int ret = 0;
531 
532 	if (sch->driver) {
533 		if (sch->driver->sch_event)
534 			ret = sch->driver->sch_event(sch, slow);
535 		else
536 			dev_dbg(&sch->dev,
537 				"Got subchannel machine check but "
538 				"no sch_event handler provided.\n");
539 	}
540 	if (ret != 0 && ret != -EAGAIN) {
541 		CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n",
542 			      sch->schid.ssid, sch->schid.sch_no, ret);
543 	}
544 	return ret;
545 }
546 
547 static void css_evaluate_subchannel(struct subchannel_id schid, int slow)
548 {
549 	struct subchannel *sch;
550 	int ret;
551 
552 	sch = get_subchannel_by_schid(schid);
553 	if (sch) {
554 		ret = css_evaluate_known_subchannel(sch, slow);
555 		put_device(&sch->dev);
556 	} else
557 		ret = css_evaluate_new_subchannel(schid, slow);
558 	if (ret == -EAGAIN)
559 		css_schedule_eval(schid);
560 }
561 
562 /**
563  * css_sched_sch_todo - schedule a subchannel operation
564  * @sch: subchannel
565  * @todo: todo
566  *
567  * Schedule the operation identified by @todo to be performed on the slow path
568  * workqueue. Do nothing if another operation with higher priority is already
569  * scheduled. Needs to be called with subchannel lock held.
570  */
571 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo)
572 {
573 	CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n",
574 		      sch->schid.ssid, sch->schid.sch_no, todo);
575 	if (sch->todo >= todo)
576 		return;
577 	/* Get workqueue ref. */
578 	if (!get_device(&sch->dev))
579 		return;
580 	sch->todo = todo;
581 	if (!queue_work(cio_work_q, &sch->todo_work)) {
582 		/* Already queued, release workqueue ref. */
583 		put_device(&sch->dev);
584 	}
585 }
586 EXPORT_SYMBOL_GPL(css_sched_sch_todo);
587 
588 static void css_sch_todo(struct work_struct *work)
589 {
590 	struct subchannel *sch;
591 	enum sch_todo todo;
592 	int ret;
593 
594 	sch = container_of(work, struct subchannel, todo_work);
595 	/* Find out todo. */
596 	spin_lock_irq(&sch->lock);
597 	todo = sch->todo;
598 	CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid,
599 		      sch->schid.sch_no, todo);
600 	sch->todo = SCH_TODO_NOTHING;
601 	spin_unlock_irq(&sch->lock);
602 	/* Perform todo. */
603 	switch (todo) {
604 	case SCH_TODO_NOTHING:
605 		break;
606 	case SCH_TODO_EVAL:
607 		ret = css_evaluate_known_subchannel(sch, 1);
608 		if (ret == -EAGAIN) {
609 			spin_lock_irq(&sch->lock);
610 			css_sched_sch_todo(sch, todo);
611 			spin_unlock_irq(&sch->lock);
612 		}
613 		break;
614 	case SCH_TODO_UNREG:
615 		css_sch_device_unregister(sch);
616 		break;
617 	}
618 	/* Release workqueue ref. */
619 	put_device(&sch->dev);
620 }
621 
622 static struct idset *slow_subchannel_set;
623 static DEFINE_SPINLOCK(slow_subchannel_lock);
624 static DECLARE_WAIT_QUEUE_HEAD(css_eval_wq);
625 static atomic_t css_eval_scheduled;
626 
627 static int __init slow_subchannel_init(void)
628 {
629 	atomic_set(&css_eval_scheduled, 0);
630 	slow_subchannel_set = idset_sch_new();
631 	if (!slow_subchannel_set) {
632 		CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n");
633 		return -ENOMEM;
634 	}
635 	return 0;
636 }
637 
638 static int slow_eval_known_fn(struct subchannel *sch, void *data)
639 {
640 	int eval;
641 	int rc;
642 
643 	spin_lock_irq(&slow_subchannel_lock);
644 	eval = idset_sch_contains(slow_subchannel_set, sch->schid);
645 	idset_sch_del(slow_subchannel_set, sch->schid);
646 	spin_unlock_irq(&slow_subchannel_lock);
647 	if (eval) {
648 		rc = css_evaluate_known_subchannel(sch, 1);
649 		if (rc == -EAGAIN)
650 			css_schedule_eval(sch->schid);
651 		/*
652 		 * The loop might take long time for platforms with lots of
653 		 * known devices. Allow scheduling here.
654 		 */
655 		cond_resched();
656 	}
657 	return 0;
658 }
659 
660 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data)
661 {
662 	int eval;
663 	int rc = 0;
664 
665 	spin_lock_irq(&slow_subchannel_lock);
666 	eval = idset_sch_contains(slow_subchannel_set, schid);
667 	idset_sch_del(slow_subchannel_set, schid);
668 	spin_unlock_irq(&slow_subchannel_lock);
669 	if (eval) {
670 		rc = css_evaluate_new_subchannel(schid, 1);
671 		switch (rc) {
672 		case -EAGAIN:
673 			css_schedule_eval(schid);
674 			rc = 0;
675 			break;
676 		case -ENXIO:
677 		case -ENOMEM:
678 		case -EIO:
679 			/* These should abort looping */
680 			spin_lock_irq(&slow_subchannel_lock);
681 			idset_sch_del_subseq(slow_subchannel_set, schid);
682 			spin_unlock_irq(&slow_subchannel_lock);
683 			break;
684 		default:
685 			rc = 0;
686 		}
687 		/* Allow scheduling here since the containing loop might
688 		 * take a while.  */
689 		cond_resched();
690 	}
691 	return rc;
692 }
693 
694 static void css_slow_path_func(struct work_struct *unused)
695 {
696 	unsigned long flags;
697 
698 	CIO_TRACE_EVENT(4, "slowpath");
699 	for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn,
700 				   NULL);
701 	spin_lock_irqsave(&slow_subchannel_lock, flags);
702 	if (idset_is_empty(slow_subchannel_set)) {
703 		atomic_set(&css_eval_scheduled, 0);
704 		wake_up(&css_eval_wq);
705 	}
706 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
707 }
708 
709 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func);
710 struct workqueue_struct *cio_work_q;
711 
712 void css_schedule_eval(struct subchannel_id schid)
713 {
714 	unsigned long flags;
715 
716 	spin_lock_irqsave(&slow_subchannel_lock, flags);
717 	idset_sch_add(slow_subchannel_set, schid);
718 	atomic_set(&css_eval_scheduled, 1);
719 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
720 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
721 }
722 
723 void css_schedule_eval_all(void)
724 {
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(&slow_subchannel_lock, flags);
728 	idset_fill(slow_subchannel_set);
729 	atomic_set(&css_eval_scheduled, 1);
730 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
731 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
732 }
733 
734 static int __unset_validpath(struct device *dev, void *data)
735 {
736 	struct idset *set = data;
737 	struct subchannel *sch = to_subchannel(dev);
738 	struct pmcw *pmcw = &sch->schib.pmcw;
739 
740 	/* Here we want to make sure that we are considering only those subchannels
741 	 * which do not have an operational device attached to it. This can be found
742 	 * with the help of PAM and POM values of pmcw. OPM provides the information
743 	 * about any path which is currently vary-off, so that we should not consider.
744 	 */
745 	if (sch->st == SUBCHANNEL_TYPE_IO &&
746 	    (sch->opm & pmcw->pam & pmcw->pom))
747 		idset_sch_del(set, sch->schid);
748 
749 	return 0;
750 }
751 
752 static int __unset_online(struct device *dev, void *data)
753 {
754 	struct idset *set = data;
755 	struct subchannel *sch = to_subchannel(dev);
756 
757 	if (sch->st == SUBCHANNEL_TYPE_IO && sch->config.ena)
758 		idset_sch_del(set, sch->schid);
759 
760 	return 0;
761 }
762 
763 void css_schedule_eval_cond(enum css_eval_cond cond, unsigned long delay)
764 {
765 	unsigned long flags;
766 	struct idset *set;
767 
768 	/* Find unregistered subchannels. */
769 	set = idset_sch_new();
770 	if (!set) {
771 		/* Fallback. */
772 		css_schedule_eval_all();
773 		return;
774 	}
775 	idset_fill(set);
776 	switch (cond) {
777 	case CSS_EVAL_NO_PATH:
778 		bus_for_each_dev(&css_bus_type, NULL, set, __unset_validpath);
779 		break;
780 	case CSS_EVAL_NOT_ONLINE:
781 		bus_for_each_dev(&css_bus_type, NULL, set, __unset_online);
782 		break;
783 	default:
784 		break;
785 	}
786 
787 	/* Apply to slow_subchannel_set. */
788 	spin_lock_irqsave(&slow_subchannel_lock, flags);
789 	idset_add_set(slow_subchannel_set, set);
790 	atomic_set(&css_eval_scheduled, 1);
791 	queue_delayed_work(cio_work_q, &slow_path_work, delay);
792 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
793 	idset_free(set);
794 }
795 
796 void css_wait_for_slow_path(void)
797 {
798 	flush_workqueue(cio_work_q);
799 }
800 
801 /* Schedule reprobing of all subchannels with no valid operational path. */
802 void css_schedule_reprobe(void)
803 {
804 	/* Schedule with a delay to allow merging of subsequent calls. */
805 	css_schedule_eval_cond(CSS_EVAL_NO_PATH, 1 * HZ);
806 }
807 EXPORT_SYMBOL_GPL(css_schedule_reprobe);
808 
809 /*
810  * Called from the machine check handler for subchannel report words.
811  */
812 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow)
813 {
814 	struct subchannel_id mchk_schid;
815 	struct subchannel *sch;
816 
817 	if (overflow) {
818 		css_schedule_eval_all();
819 		return;
820 	}
821 	CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, "
822 		      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
823 		      crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc,
824 		      crw0->erc, crw0->rsid);
825 	if (crw1)
826 		CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, "
827 			      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
828 			      crw1->slct, crw1->oflw, crw1->chn, crw1->rsc,
829 			      crw1->anc, crw1->erc, crw1->rsid);
830 	init_subchannel_id(&mchk_schid);
831 	mchk_schid.sch_no = crw0->rsid;
832 	if (crw1)
833 		mchk_schid.ssid = (crw1->rsid >> 4) & 3;
834 
835 	if (crw0->erc == CRW_ERC_PMOD) {
836 		sch = get_subchannel_by_schid(mchk_schid);
837 		if (sch) {
838 			css_update_ssd_info(sch);
839 			put_device(&sch->dev);
840 		}
841 	}
842 	/*
843 	 * Since we are always presented with IPI in the CRW, we have to
844 	 * use stsch() to find out if the subchannel in question has come
845 	 * or gone.
846 	 */
847 	css_evaluate_subchannel(mchk_schid, 0);
848 }
849 
850 static void __init
851 css_generate_pgid(struct channel_subsystem *css, u32 tod_high)
852 {
853 	struct cpuid cpu_id;
854 
855 	if (css_general_characteristics.mcss) {
856 		css->global_pgid.pgid_high.ext_cssid.version = 0x80;
857 		css->global_pgid.pgid_high.ext_cssid.cssid =
858 			css->id_valid ? css->cssid : 0;
859 	} else {
860 		css->global_pgid.pgid_high.cpu_addr = stap();
861 	}
862 	get_cpu_id(&cpu_id);
863 	css->global_pgid.cpu_id = cpu_id.ident;
864 	css->global_pgid.cpu_model = cpu_id.machine;
865 	css->global_pgid.tod_high = tod_high;
866 }
867 
868 static void channel_subsystem_release(struct device *dev)
869 {
870 	struct channel_subsystem *css = to_css(dev);
871 
872 	mutex_destroy(&css->mutex);
873 	kfree(css);
874 }
875 
876 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a,
877 			       char *buf)
878 {
879 	struct channel_subsystem *css = to_css(dev);
880 
881 	if (!css->id_valid)
882 		return -EINVAL;
883 
884 	return sysfs_emit(buf, "%x\n", css->cssid);
885 }
886 static DEVICE_ATTR_RO(real_cssid);
887 
888 static ssize_t rescan_store(struct device *dev, struct device_attribute *a,
889 			    const char *buf, size_t count)
890 {
891 	CIO_TRACE_EVENT(4, "usr-rescan");
892 
893 	css_schedule_eval_all();
894 	css_complete_work();
895 
896 	return count;
897 }
898 static DEVICE_ATTR_WO(rescan);
899 
900 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a,
901 			      char *buf)
902 {
903 	struct channel_subsystem *css = to_css(dev);
904 	int ret;
905 
906 	mutex_lock(&css->mutex);
907 	ret = sysfs_emit(buf, "%x\n", css->cm_enabled);
908 	mutex_unlock(&css->mutex);
909 	return ret;
910 }
911 
912 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a,
913 			       const char *buf, size_t count)
914 {
915 	struct channel_subsystem *css = to_css(dev);
916 	unsigned long val;
917 	int ret;
918 
919 	ret = kstrtoul(buf, 16, &val);
920 	if (ret)
921 		return ret;
922 	mutex_lock(&css->mutex);
923 	switch (val) {
924 	case 0:
925 		ret = css->cm_enabled ? chsc_secm(css, 0) : 0;
926 		break;
927 	case 1:
928 		ret = css->cm_enabled ? 0 : chsc_secm(css, 1);
929 		break;
930 	default:
931 		ret = -EINVAL;
932 	}
933 	mutex_unlock(&css->mutex);
934 	return ret < 0 ? ret : count;
935 }
936 static DEVICE_ATTR_RW(cm_enable);
937 
938 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr,
939 			      int index)
940 {
941 	return css_chsc_characteristics.secm ? attr->mode : 0;
942 }
943 
944 static struct attribute *cssdev_attrs[] = {
945 	&dev_attr_real_cssid.attr,
946 	&dev_attr_rescan.attr,
947 	NULL,
948 };
949 
950 static struct attribute_group cssdev_attr_group = {
951 	.attrs = cssdev_attrs,
952 };
953 
954 static struct attribute *cssdev_cm_attrs[] = {
955 	&dev_attr_cm_enable.attr,
956 	NULL,
957 };
958 
959 static struct attribute_group cssdev_cm_attr_group = {
960 	.attrs = cssdev_cm_attrs,
961 	.is_visible = cm_enable_mode,
962 };
963 
964 static const struct attribute_group *cssdev_attr_groups[] = {
965 	&cssdev_attr_group,
966 	&cssdev_cm_attr_group,
967 	NULL,
968 };
969 
970 static int __init setup_css(int nr)
971 {
972 	struct channel_subsystem *css;
973 	int ret;
974 
975 	css = kzalloc(sizeof(*css), GFP_KERNEL);
976 	if (!css)
977 		return -ENOMEM;
978 
979 	channel_subsystems[nr] = css;
980 	dev_set_name(&css->device, "css%x", nr);
981 	css->device.groups = cssdev_attr_groups;
982 	css->device.release = channel_subsystem_release;
983 	/*
984 	 * We currently allocate notifier bits with this (using
985 	 * css->device as the device argument with the DMA API)
986 	 * and are fine with 64 bit addresses.
987 	 */
988 	ret = dma_coerce_mask_and_coherent(&css->device, DMA_BIT_MASK(64));
989 	if (ret) {
990 		kfree(css);
991 		goto out_err;
992 	}
993 
994 	mutex_init(&css->mutex);
995 	ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid);
996 	if (!ret) {
997 		css->id_valid = true;
998 		pr_info("Partition identifier %01x.%01x\n", css->cssid,
999 			css->iid);
1000 	}
1001 	css_generate_pgid(css, (u32) (get_tod_clock() >> 32));
1002 
1003 	ret = device_register(&css->device);
1004 	if (ret) {
1005 		put_device(&css->device);
1006 		goto out_err;
1007 	}
1008 
1009 	css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel),
1010 					 GFP_KERNEL);
1011 	if (!css->pseudo_subchannel) {
1012 		device_unregister(&css->device);
1013 		ret = -ENOMEM;
1014 		goto out_err;
1015 	}
1016 
1017 	css->pseudo_subchannel->dev.parent = &css->device;
1018 	css->pseudo_subchannel->dev.release = css_subchannel_release;
1019 	mutex_init(&css->pseudo_subchannel->reg_mutex);
1020 	css_sch_create_locks(css->pseudo_subchannel);
1021 
1022 	dev_set_name(&css->pseudo_subchannel->dev, "defunct");
1023 	ret = device_register(&css->pseudo_subchannel->dev);
1024 	if (ret) {
1025 		put_device(&css->pseudo_subchannel->dev);
1026 		device_unregister(&css->device);
1027 		goto out_err;
1028 	}
1029 
1030 	return ret;
1031 out_err:
1032 	channel_subsystems[nr] = NULL;
1033 	return ret;
1034 }
1035 
1036 static int css_reboot_event(struct notifier_block *this,
1037 			    unsigned long event,
1038 			    void *ptr)
1039 {
1040 	struct channel_subsystem *css;
1041 	int ret;
1042 
1043 	ret = NOTIFY_DONE;
1044 	for_each_css(css) {
1045 		mutex_lock(&css->mutex);
1046 		if (css->cm_enabled)
1047 			if (chsc_secm(css, 0))
1048 				ret = NOTIFY_BAD;
1049 		mutex_unlock(&css->mutex);
1050 	}
1051 
1052 	return ret;
1053 }
1054 
1055 static struct notifier_block css_reboot_notifier = {
1056 	.notifier_call = css_reboot_event,
1057 };
1058 
1059 #define  CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO)
1060 static struct gen_pool *cio_dma_pool;
1061 
1062 /* Currently cio supports only a single css */
1063 struct device *cio_get_dma_css_dev(void)
1064 {
1065 	return &channel_subsystems[0]->device;
1066 }
1067 
1068 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages)
1069 {
1070 	struct gen_pool *gp_dma;
1071 	void *cpu_addr;
1072 	dma_addr_t dma_addr;
1073 	int i;
1074 
1075 	gp_dma = gen_pool_create(3, -1);
1076 	if (!gp_dma)
1077 		return NULL;
1078 	for (i = 0; i < nr_pages; ++i) {
1079 		cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr,
1080 					      CIO_DMA_GFP);
1081 		if (!cpu_addr)
1082 			return gp_dma;
1083 		gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr,
1084 				  dma_addr, PAGE_SIZE, -1);
1085 	}
1086 	return gp_dma;
1087 }
1088 
1089 static void __gp_dma_free_dma(struct gen_pool *pool,
1090 			      struct gen_pool_chunk *chunk, void *data)
1091 {
1092 	size_t chunk_size = chunk->end_addr - chunk->start_addr + 1;
1093 
1094 	dma_free_coherent((struct device *) data, chunk_size,
1095 			 (void *) chunk->start_addr,
1096 			 (dma_addr_t) chunk->phys_addr);
1097 }
1098 
1099 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev)
1100 {
1101 	if (!gp_dma)
1102 		return;
1103 	/* this is quite ugly but no better idea */
1104 	gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev);
1105 	gen_pool_destroy(gp_dma);
1106 }
1107 
1108 static int cio_dma_pool_init(void)
1109 {
1110 	/* No need to free up the resources: compiled in */
1111 	cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1);
1112 	if (!cio_dma_pool)
1113 		return -ENOMEM;
1114 	return 0;
1115 }
1116 
1117 void *__cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev,
1118 			  size_t size, dma32_t *dma_handle)
1119 {
1120 	dma_addr_t dma_addr;
1121 	size_t chunk_size;
1122 	void *addr;
1123 
1124 	if (!gp_dma)
1125 		return NULL;
1126 	addr = gen_pool_dma_alloc(gp_dma, size, &dma_addr);
1127 	while (!addr) {
1128 		chunk_size = round_up(size, PAGE_SIZE);
1129 		addr = dma_alloc_coherent(dma_dev, chunk_size, &dma_addr, CIO_DMA_GFP);
1130 		if (!addr)
1131 			return NULL;
1132 		gen_pool_add_virt(gp_dma, (unsigned long)addr, dma_addr, chunk_size, -1);
1133 		addr = gen_pool_dma_alloc(gp_dma, size, dma_handle ? &dma_addr : NULL);
1134 	}
1135 	if (dma_handle)
1136 		*dma_handle = (__force dma32_t)dma_addr;
1137 	return addr;
1138 }
1139 
1140 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev,
1141 			size_t size)
1142 {
1143 	return __cio_gp_dma_zalloc(gp_dma, dma_dev, size, NULL);
1144 }
1145 
1146 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size)
1147 {
1148 	if (!cpu_addr)
1149 		return;
1150 	memset(cpu_addr, 0, size);
1151 	gen_pool_free(gp_dma, (unsigned long) cpu_addr, size);
1152 }
1153 
1154 /*
1155  * Allocate dma memory from the css global pool. Intended for memory not
1156  * specific to any single device within the css. The allocated memory
1157  * is not guaranteed to be 31-bit addressable.
1158  *
1159  * Caution: Not suitable for early stuff like console.
1160  */
1161 void *cio_dma_zalloc(size_t size)
1162 {
1163 	return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size);
1164 }
1165 
1166 void cio_dma_free(void *cpu_addr, size_t size)
1167 {
1168 	cio_gp_dma_free(cio_dma_pool, cpu_addr, size);
1169 }
1170 
1171 /*
1172  * Now that the driver core is running, we can setup our channel subsystem.
1173  * The struct subchannel's are created during probing.
1174  */
1175 static int __init css_bus_init(void)
1176 {
1177 	int ret, i;
1178 
1179 	ret = chsc_init();
1180 	if (ret)
1181 		return ret;
1182 
1183 	chsc_determine_css_characteristics();
1184 	/* Try to enable MSS. */
1185 	ret = chsc_enable_facility(CHSC_SDA_OC_MSS);
1186 	if (ret)
1187 		max_ssid = 0;
1188 	else /* Success. */
1189 		max_ssid = __MAX_SSID;
1190 
1191 	ret = slow_subchannel_init();
1192 	if (ret)
1193 		goto out;
1194 
1195 	ret = crw_register_handler(CRW_RSC_SCH, css_process_crw);
1196 	if (ret)
1197 		goto out;
1198 
1199 	if ((ret = bus_register(&css_bus_type)))
1200 		goto out;
1201 
1202 	/* Setup css structure. */
1203 	for (i = 0; i <= MAX_CSS_IDX; i++) {
1204 		ret = setup_css(i);
1205 		if (ret)
1206 			goto out_unregister;
1207 	}
1208 	ret = register_reboot_notifier(&css_reboot_notifier);
1209 	if (ret)
1210 		goto out_unregister;
1211 	ret = cio_dma_pool_init();
1212 	if (ret)
1213 		goto out_unregister_rn;
1214 	airq_init();
1215 	css_init_done = 1;
1216 
1217 	/* Enable default isc for I/O subchannels. */
1218 	isc_register(IO_SCH_ISC);
1219 
1220 	return 0;
1221 out_unregister_rn:
1222 	unregister_reboot_notifier(&css_reboot_notifier);
1223 out_unregister:
1224 	while (i-- > 0) {
1225 		struct channel_subsystem *css = channel_subsystems[i];
1226 		device_unregister(&css->pseudo_subchannel->dev);
1227 		device_unregister(&css->device);
1228 	}
1229 	bus_unregister(&css_bus_type);
1230 out:
1231 	crw_unregister_handler(CRW_RSC_SCH);
1232 	idset_free(slow_subchannel_set);
1233 	chsc_init_cleanup();
1234 	pr_alert("The CSS device driver initialization failed with "
1235 		 "errno=%d\n", ret);
1236 	return ret;
1237 }
1238 
1239 static void __init css_bus_cleanup(void)
1240 {
1241 	struct channel_subsystem *css;
1242 
1243 	for_each_css(css) {
1244 		device_unregister(&css->pseudo_subchannel->dev);
1245 		device_unregister(&css->device);
1246 	}
1247 	bus_unregister(&css_bus_type);
1248 	crw_unregister_handler(CRW_RSC_SCH);
1249 	idset_free(slow_subchannel_set);
1250 	chsc_init_cleanup();
1251 	isc_unregister(IO_SCH_ISC);
1252 }
1253 
1254 static int __init channel_subsystem_init(void)
1255 {
1256 	int ret;
1257 
1258 	ret = css_bus_init();
1259 	if (ret)
1260 		return ret;
1261 	cio_work_q = create_singlethread_workqueue("cio");
1262 	if (!cio_work_q) {
1263 		ret = -ENOMEM;
1264 		goto out_bus;
1265 	}
1266 	ret = io_subchannel_init();
1267 	if (ret)
1268 		goto out_wq;
1269 
1270 	/* Register subchannels which are already in use. */
1271 	cio_register_early_subchannels();
1272 	/* Start initial subchannel evaluation. */
1273 	css_schedule_eval_all();
1274 
1275 	return ret;
1276 out_wq:
1277 	destroy_workqueue(cio_work_q);
1278 out_bus:
1279 	css_bus_cleanup();
1280 	return ret;
1281 }
1282 subsys_initcall(channel_subsystem_init);
1283 
1284 static int css_settle(struct device_driver *drv, void *unused)
1285 {
1286 	struct css_driver *cssdrv = to_cssdriver(drv);
1287 
1288 	if (cssdrv->settle)
1289 		return cssdrv->settle();
1290 	return 0;
1291 }
1292 
1293 int css_complete_work(void)
1294 {
1295 	int ret;
1296 
1297 	/* Wait for the evaluation of subchannels to finish. */
1298 	ret = wait_event_interruptible(css_eval_wq,
1299 				       atomic_read(&css_eval_scheduled) == 0);
1300 	if (ret)
1301 		return -EINTR;
1302 	flush_workqueue(cio_work_q);
1303 	/* Wait for the subchannel type specific initialization to finish */
1304 	return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle);
1305 }
1306 
1307 
1308 /*
1309  * Wait for the initialization of devices to finish, to make sure we are
1310  * done with our setup if the search for the root device starts.
1311  */
1312 static int __init channel_subsystem_init_sync(void)
1313 {
1314 	css_complete_work();
1315 	return 0;
1316 }
1317 subsys_initcall_sync(channel_subsystem_init_sync);
1318 
1319 #ifdef CONFIG_PROC_FS
1320 static ssize_t cio_settle_write(struct file *file, const char __user *buf,
1321 				size_t count, loff_t *ppos)
1322 {
1323 	int ret;
1324 
1325 	/* Handle pending CRW's. */
1326 	crw_wait_for_channel_report();
1327 	ret = css_complete_work();
1328 
1329 	return ret ? ret : count;
1330 }
1331 
1332 static const struct proc_ops cio_settle_proc_ops = {
1333 	.proc_open	= nonseekable_open,
1334 	.proc_write	= cio_settle_write,
1335 };
1336 
1337 static int __init cio_settle_init(void)
1338 {
1339 	struct proc_dir_entry *entry;
1340 
1341 	entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops);
1342 	if (!entry)
1343 		return -ENOMEM;
1344 	return 0;
1345 }
1346 device_initcall(cio_settle_init);
1347 #endif /*CONFIG_PROC_FS*/
1348 
1349 int sch_is_pseudo_sch(struct subchannel *sch)
1350 {
1351 	if (!sch->dev.parent)
1352 		return 0;
1353 	return sch == to_css(sch->dev.parent)->pseudo_subchannel;
1354 }
1355 
1356 static int css_bus_match(struct device *dev, const struct device_driver *drv)
1357 {
1358 	struct subchannel *sch = to_subchannel(dev);
1359 	const struct css_driver *driver = to_cssdriver(drv);
1360 	struct css_device_id *id;
1361 
1362 	/* When driver_override is set, only bind to the matching driver */
1363 	if (sch->driver_override && strcmp(sch->driver_override, drv->name))
1364 		return 0;
1365 
1366 	for (id = driver->subchannel_type; id->match_flags; id++) {
1367 		if (sch->st == id->type)
1368 			return 1;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int css_probe(struct device *dev)
1375 {
1376 	struct subchannel *sch;
1377 	int ret;
1378 
1379 	sch = to_subchannel(dev);
1380 	sch->driver = to_cssdriver(dev->driver);
1381 	ret = sch->driver->probe ? sch->driver->probe(sch) : 0;
1382 	if (ret)
1383 		sch->driver = NULL;
1384 	return ret;
1385 }
1386 
1387 static void css_remove(struct device *dev)
1388 {
1389 	struct subchannel *sch;
1390 
1391 	sch = to_subchannel(dev);
1392 	if (sch->driver->remove)
1393 		sch->driver->remove(sch);
1394 	sch->driver = NULL;
1395 }
1396 
1397 static void css_shutdown(struct device *dev)
1398 {
1399 	struct subchannel *sch;
1400 
1401 	sch = to_subchannel(dev);
1402 	if (sch->driver && sch->driver->shutdown)
1403 		sch->driver->shutdown(sch);
1404 }
1405 
1406 static int css_uevent(const struct device *dev, struct kobj_uevent_env *env)
1407 {
1408 	const struct subchannel *sch = to_subchannel(dev);
1409 	int ret;
1410 
1411 	ret = add_uevent_var(env, "ST=%01X", sch->st);
1412 	if (ret)
1413 		return ret;
1414 	ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st);
1415 	return ret;
1416 }
1417 
1418 static const struct bus_type css_bus_type = {
1419 	.name     = "css",
1420 	.match    = css_bus_match,
1421 	.probe    = css_probe,
1422 	.remove   = css_remove,
1423 	.shutdown = css_shutdown,
1424 	.uevent   = css_uevent,
1425 };
1426 
1427 /**
1428  * css_driver_register - register a css driver
1429  * @cdrv: css driver to register
1430  *
1431  * This is mainly a wrapper around driver_register that sets name
1432  * and bus_type in the embedded struct device_driver correctly.
1433  */
1434 int css_driver_register(struct css_driver *cdrv)
1435 {
1436 	cdrv->drv.bus = &css_bus_type;
1437 	return driver_register(&cdrv->drv);
1438 }
1439 EXPORT_SYMBOL_GPL(css_driver_register);
1440 
1441 /**
1442  * css_driver_unregister - unregister a css driver
1443  * @cdrv: css driver to unregister
1444  *
1445  * This is a wrapper around driver_unregister.
1446  */
1447 void css_driver_unregister(struct css_driver *cdrv)
1448 {
1449 	driver_unregister(&cdrv->drv);
1450 }
1451 EXPORT_SYMBOL_GPL(css_driver_unregister);
1452