1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * driver for channel subsystem 4 * 5 * Copyright IBM Corp. 2002, 2010 6 * 7 * Author(s): Arnd Bergmann (arndb@de.ibm.com) 8 * Cornelia Huck (cornelia.huck@de.ibm.com) 9 */ 10 11 #define KMSG_COMPONENT "cio" 12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 13 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/list.h> 20 #include <linux/reboot.h> 21 #include <linux/proc_fs.h> 22 #include <linux/genalloc.h> 23 #include <linux/dma-mapping.h> 24 #include <asm/isc.h> 25 #include <asm/crw.h> 26 27 #include "css.h" 28 #include "cio.h" 29 #include "blacklist.h" 30 #include "cio_debug.h" 31 #include "ioasm.h" 32 #include "chsc.h" 33 #include "device.h" 34 #include "idset.h" 35 #include "chp.h" 36 37 int css_init_done = 0; 38 int max_ssid; 39 40 #define MAX_CSS_IDX 0 41 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1]; 42 static struct bus_type css_bus_type; 43 44 int 45 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data) 46 { 47 struct subchannel_id schid; 48 int ret; 49 50 init_subchannel_id(&schid); 51 do { 52 do { 53 ret = fn(schid, data); 54 if (ret) 55 break; 56 } while (schid.sch_no++ < __MAX_SUBCHANNEL); 57 schid.sch_no = 0; 58 } while (schid.ssid++ < max_ssid); 59 return ret; 60 } 61 62 struct cb_data { 63 void *data; 64 struct idset *set; 65 int (*fn_known_sch)(struct subchannel *, void *); 66 int (*fn_unknown_sch)(struct subchannel_id, void *); 67 }; 68 69 static int call_fn_known_sch(struct device *dev, void *data) 70 { 71 struct subchannel *sch = to_subchannel(dev); 72 struct cb_data *cb = data; 73 int rc = 0; 74 75 if (cb->set) 76 idset_sch_del(cb->set, sch->schid); 77 if (cb->fn_known_sch) 78 rc = cb->fn_known_sch(sch, cb->data); 79 return rc; 80 } 81 82 static int call_fn_unknown_sch(struct subchannel_id schid, void *data) 83 { 84 struct cb_data *cb = data; 85 int rc = 0; 86 87 if (idset_sch_contains(cb->set, schid)) 88 rc = cb->fn_unknown_sch(schid, cb->data); 89 return rc; 90 } 91 92 static int call_fn_all_sch(struct subchannel_id schid, void *data) 93 { 94 struct cb_data *cb = data; 95 struct subchannel *sch; 96 int rc = 0; 97 98 sch = get_subchannel_by_schid(schid); 99 if (sch) { 100 if (cb->fn_known_sch) 101 rc = cb->fn_known_sch(sch, cb->data); 102 put_device(&sch->dev); 103 } else { 104 if (cb->fn_unknown_sch) 105 rc = cb->fn_unknown_sch(schid, cb->data); 106 } 107 108 return rc; 109 } 110 111 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *), 112 int (*fn_unknown)(struct subchannel_id, 113 void *), void *data) 114 { 115 struct cb_data cb; 116 int rc; 117 118 cb.data = data; 119 cb.fn_known_sch = fn_known; 120 cb.fn_unknown_sch = fn_unknown; 121 122 if (fn_known && !fn_unknown) { 123 /* Skip idset allocation in case of known-only loop. */ 124 cb.set = NULL; 125 return bus_for_each_dev(&css_bus_type, NULL, &cb, 126 call_fn_known_sch); 127 } 128 129 cb.set = idset_sch_new(); 130 if (!cb.set) 131 /* fall back to brute force scanning in case of oom */ 132 return for_each_subchannel(call_fn_all_sch, &cb); 133 134 idset_fill(cb.set); 135 136 /* Process registered subchannels. */ 137 rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch); 138 if (rc) 139 goto out; 140 /* Process unregistered subchannels. */ 141 if (fn_unknown) 142 rc = for_each_subchannel(call_fn_unknown_sch, &cb); 143 out: 144 idset_free(cb.set); 145 146 return rc; 147 } 148 149 static void css_sch_todo(struct work_struct *work); 150 151 static void css_sch_create_locks(struct subchannel *sch) 152 { 153 spin_lock_init(&sch->lock); 154 mutex_init(&sch->reg_mutex); 155 } 156 157 static void css_subchannel_release(struct device *dev) 158 { 159 struct subchannel *sch = to_subchannel(dev); 160 161 sch->config.intparm = 0; 162 cio_commit_config(sch); 163 kfree(sch->driver_override); 164 kfree(sch); 165 } 166 167 static int css_validate_subchannel(struct subchannel_id schid, 168 struct schib *schib) 169 { 170 int err; 171 172 switch (schib->pmcw.st) { 173 case SUBCHANNEL_TYPE_IO: 174 case SUBCHANNEL_TYPE_MSG: 175 if (!css_sch_is_valid(schib)) 176 err = -ENODEV; 177 else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) { 178 CIO_MSG_EVENT(6, "Blacklisted device detected " 179 "at devno %04X, subchannel set %x\n", 180 schib->pmcw.dev, schid.ssid); 181 err = -ENODEV; 182 } else 183 err = 0; 184 break; 185 default: 186 err = 0; 187 } 188 if (err) 189 goto out; 190 191 CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n", 192 schid.ssid, schid.sch_no, schib->pmcw.st); 193 out: 194 return err; 195 } 196 197 struct subchannel *css_alloc_subchannel(struct subchannel_id schid, 198 struct schib *schib) 199 { 200 struct subchannel *sch; 201 int ret; 202 203 ret = css_validate_subchannel(schid, schib); 204 if (ret < 0) 205 return ERR_PTR(ret); 206 207 sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA); 208 if (!sch) 209 return ERR_PTR(-ENOMEM); 210 211 sch->schid = schid; 212 sch->schib = *schib; 213 sch->st = schib->pmcw.st; 214 215 css_sch_create_locks(sch); 216 217 INIT_WORK(&sch->todo_work, css_sch_todo); 218 sch->dev.release = &css_subchannel_release; 219 sch->dev.dma_mask = &sch->dma_mask; 220 device_initialize(&sch->dev); 221 /* 222 * The physical addresses for some of the dma structures that can 223 * belong to a subchannel need to fit 31 bit width (e.g. ccw). 224 */ 225 ret = dma_set_coherent_mask(&sch->dev, DMA_BIT_MASK(31)); 226 if (ret) 227 goto err; 228 /* 229 * But we don't have such restrictions imposed on the stuff that 230 * is handled by the streaming API. 231 */ 232 ret = dma_set_mask(&sch->dev, DMA_BIT_MASK(64)); 233 if (ret) 234 goto err; 235 236 return sch; 237 238 err: 239 kfree(sch); 240 return ERR_PTR(ret); 241 } 242 243 static int css_sch_device_register(struct subchannel *sch) 244 { 245 int ret; 246 247 mutex_lock(&sch->reg_mutex); 248 dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid, 249 sch->schid.sch_no); 250 ret = device_add(&sch->dev); 251 mutex_unlock(&sch->reg_mutex); 252 return ret; 253 } 254 255 /** 256 * css_sch_device_unregister - unregister a subchannel 257 * @sch: subchannel to be unregistered 258 */ 259 void css_sch_device_unregister(struct subchannel *sch) 260 { 261 mutex_lock(&sch->reg_mutex); 262 if (device_is_registered(&sch->dev)) 263 device_unregister(&sch->dev); 264 mutex_unlock(&sch->reg_mutex); 265 } 266 EXPORT_SYMBOL_GPL(css_sch_device_unregister); 267 268 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw) 269 { 270 int i; 271 int mask; 272 273 memset(ssd, 0, sizeof(struct chsc_ssd_info)); 274 ssd->path_mask = pmcw->pim; 275 for (i = 0; i < 8; i++) { 276 mask = 0x80 >> i; 277 if (pmcw->pim & mask) { 278 chp_id_init(&ssd->chpid[i]); 279 ssd->chpid[i].id = pmcw->chpid[i]; 280 } 281 } 282 } 283 284 static void ssd_register_chpids(struct chsc_ssd_info *ssd) 285 { 286 int i; 287 int mask; 288 289 for (i = 0; i < 8; i++) { 290 mask = 0x80 >> i; 291 if (ssd->path_mask & mask) 292 chp_new(ssd->chpid[i]); 293 } 294 } 295 296 void css_update_ssd_info(struct subchannel *sch) 297 { 298 int ret; 299 300 ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info); 301 if (ret) 302 ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw); 303 304 ssd_register_chpids(&sch->ssd_info); 305 } 306 307 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 struct subchannel *sch = to_subchannel(dev); 311 312 return sprintf(buf, "%01x\n", sch->st); 313 } 314 315 static DEVICE_ATTR_RO(type); 316 317 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 318 char *buf) 319 { 320 struct subchannel *sch = to_subchannel(dev); 321 322 return sprintf(buf, "css:t%01X\n", sch->st); 323 } 324 325 static DEVICE_ATTR_RO(modalias); 326 327 static ssize_t driver_override_store(struct device *dev, 328 struct device_attribute *attr, 329 const char *buf, size_t count) 330 { 331 struct subchannel *sch = to_subchannel(dev); 332 int ret; 333 334 ret = driver_set_override(dev, &sch->driver_override, buf, count); 335 if (ret) 336 return ret; 337 338 return count; 339 } 340 341 static ssize_t driver_override_show(struct device *dev, 342 struct device_attribute *attr, char *buf) 343 { 344 struct subchannel *sch = to_subchannel(dev); 345 ssize_t len; 346 347 device_lock(dev); 348 len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override); 349 device_unlock(dev); 350 return len; 351 } 352 static DEVICE_ATTR_RW(driver_override); 353 354 static struct attribute *subch_attrs[] = { 355 &dev_attr_type.attr, 356 &dev_attr_modalias.attr, 357 &dev_attr_driver_override.attr, 358 NULL, 359 }; 360 361 static struct attribute_group subch_attr_group = { 362 .attrs = subch_attrs, 363 }; 364 365 static const struct attribute_group *default_subch_attr_groups[] = { 366 &subch_attr_group, 367 NULL, 368 }; 369 370 static ssize_t chpids_show(struct device *dev, 371 struct device_attribute *attr, 372 char *buf) 373 { 374 struct subchannel *sch = to_subchannel(dev); 375 struct chsc_ssd_info *ssd = &sch->ssd_info; 376 ssize_t ret = 0; 377 int mask; 378 int chp; 379 380 for (chp = 0; chp < 8; chp++) { 381 mask = 0x80 >> chp; 382 if (ssd->path_mask & mask) 383 ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id); 384 else 385 ret += sprintf(buf + ret, "00 "); 386 } 387 ret += sprintf(buf + ret, "\n"); 388 return ret; 389 } 390 static DEVICE_ATTR_RO(chpids); 391 392 static ssize_t pimpampom_show(struct device *dev, 393 struct device_attribute *attr, 394 char *buf) 395 { 396 struct subchannel *sch = to_subchannel(dev); 397 struct pmcw *pmcw = &sch->schib.pmcw; 398 399 return sprintf(buf, "%02x %02x %02x\n", 400 pmcw->pim, pmcw->pam, pmcw->pom); 401 } 402 static DEVICE_ATTR_RO(pimpampom); 403 404 static ssize_t dev_busid_show(struct device *dev, 405 struct device_attribute *attr, 406 char *buf) 407 { 408 struct subchannel *sch = to_subchannel(dev); 409 struct pmcw *pmcw = &sch->schib.pmcw; 410 411 if ((pmcw->st == SUBCHANNEL_TYPE_IO && pmcw->dnv) || 412 (pmcw->st == SUBCHANNEL_TYPE_MSG && pmcw->w)) 413 return sysfs_emit(buf, "0.%x.%04x\n", sch->schid.ssid, 414 pmcw->dev); 415 else 416 return sysfs_emit(buf, "none\n"); 417 } 418 static DEVICE_ATTR_RO(dev_busid); 419 420 static struct attribute *io_subchannel_type_attrs[] = { 421 &dev_attr_chpids.attr, 422 &dev_attr_pimpampom.attr, 423 &dev_attr_dev_busid.attr, 424 NULL, 425 }; 426 ATTRIBUTE_GROUPS(io_subchannel_type); 427 428 static const struct device_type io_subchannel_type = { 429 .groups = io_subchannel_type_groups, 430 }; 431 432 int css_register_subchannel(struct subchannel *sch) 433 { 434 int ret; 435 436 /* Initialize the subchannel structure */ 437 sch->dev.parent = &channel_subsystems[0]->device; 438 sch->dev.bus = &css_bus_type; 439 sch->dev.groups = default_subch_attr_groups; 440 441 if (sch->st == SUBCHANNEL_TYPE_IO) 442 sch->dev.type = &io_subchannel_type; 443 444 css_update_ssd_info(sch); 445 /* make it known to the system */ 446 ret = css_sch_device_register(sch); 447 if (ret) { 448 CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n", 449 sch->schid.ssid, sch->schid.sch_no, ret); 450 return ret; 451 } 452 return ret; 453 } 454 455 static int css_probe_device(struct subchannel_id schid, struct schib *schib) 456 { 457 struct subchannel *sch; 458 int ret; 459 460 sch = css_alloc_subchannel(schid, schib); 461 if (IS_ERR(sch)) 462 return PTR_ERR(sch); 463 464 ret = css_register_subchannel(sch); 465 if (ret) 466 put_device(&sch->dev); 467 468 return ret; 469 } 470 471 static int 472 check_subchannel(struct device *dev, const void *data) 473 { 474 struct subchannel *sch; 475 struct subchannel_id *schid = (void *)data; 476 477 sch = to_subchannel(dev); 478 return schid_equal(&sch->schid, schid); 479 } 480 481 struct subchannel * 482 get_subchannel_by_schid(struct subchannel_id schid) 483 { 484 struct device *dev; 485 486 dev = bus_find_device(&css_bus_type, NULL, 487 &schid, check_subchannel); 488 489 return dev ? to_subchannel(dev) : NULL; 490 } 491 492 /** 493 * css_sch_is_valid() - check if a subchannel is valid 494 * @schib: subchannel information block for the subchannel 495 */ 496 int css_sch_is_valid(struct schib *schib) 497 { 498 if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv) 499 return 0; 500 if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w) 501 return 0; 502 return 1; 503 } 504 EXPORT_SYMBOL_GPL(css_sch_is_valid); 505 506 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow) 507 { 508 struct schib schib; 509 int ccode; 510 511 if (!slow) { 512 /* Will be done on the slow path. */ 513 return -EAGAIN; 514 } 515 /* 516 * The first subchannel that is not-operational (ccode==3) 517 * indicates that there aren't any more devices available. 518 * If stsch gets an exception, it means the current subchannel set 519 * is not valid. 520 */ 521 ccode = stsch(schid, &schib); 522 if (ccode) 523 return (ccode == 3) ? -ENXIO : ccode; 524 525 return css_probe_device(schid, &schib); 526 } 527 528 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow) 529 { 530 int ret = 0; 531 532 if (sch->driver) { 533 if (sch->driver->sch_event) 534 ret = sch->driver->sch_event(sch, slow); 535 else 536 dev_dbg(&sch->dev, 537 "Got subchannel machine check but " 538 "no sch_event handler provided.\n"); 539 } 540 if (ret != 0 && ret != -EAGAIN) { 541 CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n", 542 sch->schid.ssid, sch->schid.sch_no, ret); 543 } 544 return ret; 545 } 546 547 static void css_evaluate_subchannel(struct subchannel_id schid, int slow) 548 { 549 struct subchannel *sch; 550 int ret; 551 552 sch = get_subchannel_by_schid(schid); 553 if (sch) { 554 ret = css_evaluate_known_subchannel(sch, slow); 555 put_device(&sch->dev); 556 } else 557 ret = css_evaluate_new_subchannel(schid, slow); 558 if (ret == -EAGAIN) 559 css_schedule_eval(schid); 560 } 561 562 /** 563 * css_sched_sch_todo - schedule a subchannel operation 564 * @sch: subchannel 565 * @todo: todo 566 * 567 * Schedule the operation identified by @todo to be performed on the slow path 568 * workqueue. Do nothing if another operation with higher priority is already 569 * scheduled. Needs to be called with subchannel lock held. 570 */ 571 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo) 572 { 573 CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n", 574 sch->schid.ssid, sch->schid.sch_no, todo); 575 if (sch->todo >= todo) 576 return; 577 /* Get workqueue ref. */ 578 if (!get_device(&sch->dev)) 579 return; 580 sch->todo = todo; 581 if (!queue_work(cio_work_q, &sch->todo_work)) { 582 /* Already queued, release workqueue ref. */ 583 put_device(&sch->dev); 584 } 585 } 586 EXPORT_SYMBOL_GPL(css_sched_sch_todo); 587 588 static void css_sch_todo(struct work_struct *work) 589 { 590 struct subchannel *sch; 591 enum sch_todo todo; 592 int ret; 593 594 sch = container_of(work, struct subchannel, todo_work); 595 /* Find out todo. */ 596 spin_lock_irq(&sch->lock); 597 todo = sch->todo; 598 CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid, 599 sch->schid.sch_no, todo); 600 sch->todo = SCH_TODO_NOTHING; 601 spin_unlock_irq(&sch->lock); 602 /* Perform todo. */ 603 switch (todo) { 604 case SCH_TODO_NOTHING: 605 break; 606 case SCH_TODO_EVAL: 607 ret = css_evaluate_known_subchannel(sch, 1); 608 if (ret == -EAGAIN) { 609 spin_lock_irq(&sch->lock); 610 css_sched_sch_todo(sch, todo); 611 spin_unlock_irq(&sch->lock); 612 } 613 break; 614 case SCH_TODO_UNREG: 615 css_sch_device_unregister(sch); 616 break; 617 } 618 /* Release workqueue ref. */ 619 put_device(&sch->dev); 620 } 621 622 static struct idset *slow_subchannel_set; 623 static DEFINE_SPINLOCK(slow_subchannel_lock); 624 static DECLARE_WAIT_QUEUE_HEAD(css_eval_wq); 625 static atomic_t css_eval_scheduled; 626 627 static int __init slow_subchannel_init(void) 628 { 629 atomic_set(&css_eval_scheduled, 0); 630 slow_subchannel_set = idset_sch_new(); 631 if (!slow_subchannel_set) { 632 CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n"); 633 return -ENOMEM; 634 } 635 return 0; 636 } 637 638 static int slow_eval_known_fn(struct subchannel *sch, void *data) 639 { 640 int eval; 641 int rc; 642 643 spin_lock_irq(&slow_subchannel_lock); 644 eval = idset_sch_contains(slow_subchannel_set, sch->schid); 645 idset_sch_del(slow_subchannel_set, sch->schid); 646 spin_unlock_irq(&slow_subchannel_lock); 647 if (eval) { 648 rc = css_evaluate_known_subchannel(sch, 1); 649 if (rc == -EAGAIN) 650 css_schedule_eval(sch->schid); 651 /* 652 * The loop might take long time for platforms with lots of 653 * known devices. Allow scheduling here. 654 */ 655 cond_resched(); 656 } 657 return 0; 658 } 659 660 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data) 661 { 662 int eval; 663 int rc = 0; 664 665 spin_lock_irq(&slow_subchannel_lock); 666 eval = idset_sch_contains(slow_subchannel_set, schid); 667 idset_sch_del(slow_subchannel_set, schid); 668 spin_unlock_irq(&slow_subchannel_lock); 669 if (eval) { 670 rc = css_evaluate_new_subchannel(schid, 1); 671 switch (rc) { 672 case -EAGAIN: 673 css_schedule_eval(schid); 674 rc = 0; 675 break; 676 case -ENXIO: 677 case -ENOMEM: 678 case -EIO: 679 /* These should abort looping */ 680 spin_lock_irq(&slow_subchannel_lock); 681 idset_sch_del_subseq(slow_subchannel_set, schid); 682 spin_unlock_irq(&slow_subchannel_lock); 683 break; 684 default: 685 rc = 0; 686 } 687 /* Allow scheduling here since the containing loop might 688 * take a while. */ 689 cond_resched(); 690 } 691 return rc; 692 } 693 694 static void css_slow_path_func(struct work_struct *unused) 695 { 696 unsigned long flags; 697 698 CIO_TRACE_EVENT(4, "slowpath"); 699 for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn, 700 NULL); 701 spin_lock_irqsave(&slow_subchannel_lock, flags); 702 if (idset_is_empty(slow_subchannel_set)) { 703 atomic_set(&css_eval_scheduled, 0); 704 wake_up(&css_eval_wq); 705 } 706 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 707 } 708 709 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func); 710 struct workqueue_struct *cio_work_q; 711 712 void css_schedule_eval(struct subchannel_id schid) 713 { 714 unsigned long flags; 715 716 spin_lock_irqsave(&slow_subchannel_lock, flags); 717 idset_sch_add(slow_subchannel_set, schid); 718 atomic_set(&css_eval_scheduled, 1); 719 queue_delayed_work(cio_work_q, &slow_path_work, 0); 720 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 721 } 722 723 void css_schedule_eval_all(void) 724 { 725 unsigned long flags; 726 727 spin_lock_irqsave(&slow_subchannel_lock, flags); 728 idset_fill(slow_subchannel_set); 729 atomic_set(&css_eval_scheduled, 1); 730 queue_delayed_work(cio_work_q, &slow_path_work, 0); 731 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 732 } 733 734 static int __unset_validpath(struct device *dev, void *data) 735 { 736 struct idset *set = data; 737 struct subchannel *sch = to_subchannel(dev); 738 struct pmcw *pmcw = &sch->schib.pmcw; 739 740 /* Here we want to make sure that we are considering only those subchannels 741 * which do not have an operational device attached to it. This can be found 742 * with the help of PAM and POM values of pmcw. OPM provides the information 743 * about any path which is currently vary-off, so that we should not consider. 744 */ 745 if (sch->st == SUBCHANNEL_TYPE_IO && 746 (sch->opm & pmcw->pam & pmcw->pom)) 747 idset_sch_del(set, sch->schid); 748 749 return 0; 750 } 751 752 static int __unset_online(struct device *dev, void *data) 753 { 754 struct idset *set = data; 755 struct subchannel *sch = to_subchannel(dev); 756 757 if (sch->st == SUBCHANNEL_TYPE_IO && sch->config.ena) 758 idset_sch_del(set, sch->schid); 759 760 return 0; 761 } 762 763 void css_schedule_eval_cond(enum css_eval_cond cond, unsigned long delay) 764 { 765 unsigned long flags; 766 struct idset *set; 767 768 /* Find unregistered subchannels. */ 769 set = idset_sch_new(); 770 if (!set) { 771 /* Fallback. */ 772 css_schedule_eval_all(); 773 return; 774 } 775 idset_fill(set); 776 switch (cond) { 777 case CSS_EVAL_NO_PATH: 778 bus_for_each_dev(&css_bus_type, NULL, set, __unset_validpath); 779 break; 780 case CSS_EVAL_NOT_ONLINE: 781 bus_for_each_dev(&css_bus_type, NULL, set, __unset_online); 782 break; 783 default: 784 break; 785 } 786 787 /* Apply to slow_subchannel_set. */ 788 spin_lock_irqsave(&slow_subchannel_lock, flags); 789 idset_add_set(slow_subchannel_set, set); 790 atomic_set(&css_eval_scheduled, 1); 791 queue_delayed_work(cio_work_q, &slow_path_work, delay); 792 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 793 idset_free(set); 794 } 795 796 void css_wait_for_slow_path(void) 797 { 798 flush_workqueue(cio_work_q); 799 } 800 801 /* Schedule reprobing of all subchannels with no valid operational path. */ 802 void css_schedule_reprobe(void) 803 { 804 /* Schedule with a delay to allow merging of subsequent calls. */ 805 css_schedule_eval_cond(CSS_EVAL_NO_PATH, 1 * HZ); 806 } 807 EXPORT_SYMBOL_GPL(css_schedule_reprobe); 808 809 /* 810 * Called from the machine check handler for subchannel report words. 811 */ 812 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow) 813 { 814 struct subchannel_id mchk_schid; 815 struct subchannel *sch; 816 817 if (overflow) { 818 css_schedule_eval_all(); 819 return; 820 } 821 CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, " 822 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 823 crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc, 824 crw0->erc, crw0->rsid); 825 if (crw1) 826 CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, " 827 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 828 crw1->slct, crw1->oflw, crw1->chn, crw1->rsc, 829 crw1->anc, crw1->erc, crw1->rsid); 830 init_subchannel_id(&mchk_schid); 831 mchk_schid.sch_no = crw0->rsid; 832 if (crw1) 833 mchk_schid.ssid = (crw1->rsid >> 4) & 3; 834 835 if (crw0->erc == CRW_ERC_PMOD) { 836 sch = get_subchannel_by_schid(mchk_schid); 837 if (sch) { 838 css_update_ssd_info(sch); 839 put_device(&sch->dev); 840 } 841 } 842 /* 843 * Since we are always presented with IPI in the CRW, we have to 844 * use stsch() to find out if the subchannel in question has come 845 * or gone. 846 */ 847 css_evaluate_subchannel(mchk_schid, 0); 848 } 849 850 static void __init 851 css_generate_pgid(struct channel_subsystem *css, u32 tod_high) 852 { 853 struct cpuid cpu_id; 854 855 if (css_general_characteristics.mcss) { 856 css->global_pgid.pgid_high.ext_cssid.version = 0x80; 857 css->global_pgid.pgid_high.ext_cssid.cssid = 858 css->id_valid ? css->cssid : 0; 859 } else { 860 css->global_pgid.pgid_high.cpu_addr = stap(); 861 } 862 get_cpu_id(&cpu_id); 863 css->global_pgid.cpu_id = cpu_id.ident; 864 css->global_pgid.cpu_model = cpu_id.machine; 865 css->global_pgid.tod_high = tod_high; 866 } 867 868 static void channel_subsystem_release(struct device *dev) 869 { 870 struct channel_subsystem *css = to_css(dev); 871 872 mutex_destroy(&css->mutex); 873 kfree(css); 874 } 875 876 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a, 877 char *buf) 878 { 879 struct channel_subsystem *css = to_css(dev); 880 881 if (!css->id_valid) 882 return -EINVAL; 883 884 return sprintf(buf, "%x\n", css->cssid); 885 } 886 static DEVICE_ATTR_RO(real_cssid); 887 888 static ssize_t rescan_store(struct device *dev, struct device_attribute *a, 889 const char *buf, size_t count) 890 { 891 CIO_TRACE_EVENT(4, "usr-rescan"); 892 893 css_schedule_eval_all(); 894 css_complete_work(); 895 896 return count; 897 } 898 static DEVICE_ATTR_WO(rescan); 899 900 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a, 901 char *buf) 902 { 903 struct channel_subsystem *css = to_css(dev); 904 int ret; 905 906 mutex_lock(&css->mutex); 907 ret = sprintf(buf, "%x\n", css->cm_enabled); 908 mutex_unlock(&css->mutex); 909 return ret; 910 } 911 912 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a, 913 const char *buf, size_t count) 914 { 915 struct channel_subsystem *css = to_css(dev); 916 unsigned long val; 917 int ret; 918 919 ret = kstrtoul(buf, 16, &val); 920 if (ret) 921 return ret; 922 mutex_lock(&css->mutex); 923 switch (val) { 924 case 0: 925 ret = css->cm_enabled ? chsc_secm(css, 0) : 0; 926 break; 927 case 1: 928 ret = css->cm_enabled ? 0 : chsc_secm(css, 1); 929 break; 930 default: 931 ret = -EINVAL; 932 } 933 mutex_unlock(&css->mutex); 934 return ret < 0 ? ret : count; 935 } 936 static DEVICE_ATTR_RW(cm_enable); 937 938 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr, 939 int index) 940 { 941 return css_chsc_characteristics.secm ? attr->mode : 0; 942 } 943 944 static struct attribute *cssdev_attrs[] = { 945 &dev_attr_real_cssid.attr, 946 &dev_attr_rescan.attr, 947 NULL, 948 }; 949 950 static struct attribute_group cssdev_attr_group = { 951 .attrs = cssdev_attrs, 952 }; 953 954 static struct attribute *cssdev_cm_attrs[] = { 955 &dev_attr_cm_enable.attr, 956 NULL, 957 }; 958 959 static struct attribute_group cssdev_cm_attr_group = { 960 .attrs = cssdev_cm_attrs, 961 .is_visible = cm_enable_mode, 962 }; 963 964 static const struct attribute_group *cssdev_attr_groups[] = { 965 &cssdev_attr_group, 966 &cssdev_cm_attr_group, 967 NULL, 968 }; 969 970 static int __init setup_css(int nr) 971 { 972 struct channel_subsystem *css; 973 int ret; 974 975 css = kzalloc(sizeof(*css), GFP_KERNEL); 976 if (!css) 977 return -ENOMEM; 978 979 channel_subsystems[nr] = css; 980 dev_set_name(&css->device, "css%x", nr); 981 css->device.groups = cssdev_attr_groups; 982 css->device.release = channel_subsystem_release; 983 /* 984 * We currently allocate notifier bits with this (using 985 * css->device as the device argument with the DMA API) 986 * and are fine with 64 bit addresses. 987 */ 988 ret = dma_coerce_mask_and_coherent(&css->device, DMA_BIT_MASK(64)); 989 if (ret) { 990 kfree(css); 991 goto out_err; 992 } 993 994 mutex_init(&css->mutex); 995 ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid); 996 if (!ret) { 997 css->id_valid = true; 998 pr_info("Partition identifier %01x.%01x\n", css->cssid, 999 css->iid); 1000 } 1001 css_generate_pgid(css, (u32) (get_tod_clock() >> 32)); 1002 1003 ret = device_register(&css->device); 1004 if (ret) { 1005 put_device(&css->device); 1006 goto out_err; 1007 } 1008 1009 css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel), 1010 GFP_KERNEL); 1011 if (!css->pseudo_subchannel) { 1012 device_unregister(&css->device); 1013 ret = -ENOMEM; 1014 goto out_err; 1015 } 1016 1017 css->pseudo_subchannel->dev.parent = &css->device; 1018 css->pseudo_subchannel->dev.release = css_subchannel_release; 1019 mutex_init(&css->pseudo_subchannel->reg_mutex); 1020 css_sch_create_locks(css->pseudo_subchannel); 1021 1022 dev_set_name(&css->pseudo_subchannel->dev, "defunct"); 1023 ret = device_register(&css->pseudo_subchannel->dev); 1024 if (ret) { 1025 put_device(&css->pseudo_subchannel->dev); 1026 device_unregister(&css->device); 1027 goto out_err; 1028 } 1029 1030 return ret; 1031 out_err: 1032 channel_subsystems[nr] = NULL; 1033 return ret; 1034 } 1035 1036 static int css_reboot_event(struct notifier_block *this, 1037 unsigned long event, 1038 void *ptr) 1039 { 1040 struct channel_subsystem *css; 1041 int ret; 1042 1043 ret = NOTIFY_DONE; 1044 for_each_css(css) { 1045 mutex_lock(&css->mutex); 1046 if (css->cm_enabled) 1047 if (chsc_secm(css, 0)) 1048 ret = NOTIFY_BAD; 1049 mutex_unlock(&css->mutex); 1050 } 1051 1052 return ret; 1053 } 1054 1055 static struct notifier_block css_reboot_notifier = { 1056 .notifier_call = css_reboot_event, 1057 }; 1058 1059 #define CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO) 1060 static struct gen_pool *cio_dma_pool; 1061 1062 /* Currently cio supports only a single css */ 1063 struct device *cio_get_dma_css_dev(void) 1064 { 1065 return &channel_subsystems[0]->device; 1066 } 1067 1068 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages) 1069 { 1070 struct gen_pool *gp_dma; 1071 void *cpu_addr; 1072 dma_addr_t dma_addr; 1073 int i; 1074 1075 gp_dma = gen_pool_create(3, -1); 1076 if (!gp_dma) 1077 return NULL; 1078 for (i = 0; i < nr_pages; ++i) { 1079 cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, 1080 CIO_DMA_GFP); 1081 if (!cpu_addr) 1082 return gp_dma; 1083 gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr, 1084 dma_addr, PAGE_SIZE, -1); 1085 } 1086 return gp_dma; 1087 } 1088 1089 static void __gp_dma_free_dma(struct gen_pool *pool, 1090 struct gen_pool_chunk *chunk, void *data) 1091 { 1092 size_t chunk_size = chunk->end_addr - chunk->start_addr + 1; 1093 1094 dma_free_coherent((struct device *) data, chunk_size, 1095 (void *) chunk->start_addr, 1096 (dma_addr_t) chunk->phys_addr); 1097 } 1098 1099 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev) 1100 { 1101 if (!gp_dma) 1102 return; 1103 /* this is quite ugly but no better idea */ 1104 gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev); 1105 gen_pool_destroy(gp_dma); 1106 } 1107 1108 static int cio_dma_pool_init(void) 1109 { 1110 /* No need to free up the resources: compiled in */ 1111 cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1); 1112 if (!cio_dma_pool) 1113 return -ENOMEM; 1114 return 0; 1115 } 1116 1117 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev, 1118 size_t size) 1119 { 1120 dma_addr_t dma_addr; 1121 unsigned long addr; 1122 size_t chunk_size; 1123 1124 if (!gp_dma) 1125 return NULL; 1126 addr = gen_pool_alloc(gp_dma, size); 1127 while (!addr) { 1128 chunk_size = round_up(size, PAGE_SIZE); 1129 addr = (unsigned long) dma_alloc_coherent(dma_dev, 1130 chunk_size, &dma_addr, CIO_DMA_GFP); 1131 if (!addr) 1132 return NULL; 1133 gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1); 1134 addr = gen_pool_alloc(gp_dma, size); 1135 } 1136 return (void *) addr; 1137 } 1138 1139 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size) 1140 { 1141 if (!cpu_addr) 1142 return; 1143 memset(cpu_addr, 0, size); 1144 gen_pool_free(gp_dma, (unsigned long) cpu_addr, size); 1145 } 1146 1147 /* 1148 * Allocate dma memory from the css global pool. Intended for memory not 1149 * specific to any single device within the css. The allocated memory 1150 * is not guaranteed to be 31-bit addressable. 1151 * 1152 * Caution: Not suitable for early stuff like console. 1153 */ 1154 void *cio_dma_zalloc(size_t size) 1155 { 1156 return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size); 1157 } 1158 1159 void cio_dma_free(void *cpu_addr, size_t size) 1160 { 1161 cio_gp_dma_free(cio_dma_pool, cpu_addr, size); 1162 } 1163 1164 /* 1165 * Now that the driver core is running, we can setup our channel subsystem. 1166 * The struct subchannel's are created during probing. 1167 */ 1168 static int __init css_bus_init(void) 1169 { 1170 int ret, i; 1171 1172 ret = chsc_init(); 1173 if (ret) 1174 return ret; 1175 1176 chsc_determine_css_characteristics(); 1177 /* Try to enable MSS. */ 1178 ret = chsc_enable_facility(CHSC_SDA_OC_MSS); 1179 if (ret) 1180 max_ssid = 0; 1181 else /* Success. */ 1182 max_ssid = __MAX_SSID; 1183 1184 ret = slow_subchannel_init(); 1185 if (ret) 1186 goto out; 1187 1188 ret = crw_register_handler(CRW_RSC_SCH, css_process_crw); 1189 if (ret) 1190 goto out; 1191 1192 if ((ret = bus_register(&css_bus_type))) 1193 goto out; 1194 1195 /* Setup css structure. */ 1196 for (i = 0; i <= MAX_CSS_IDX; i++) { 1197 ret = setup_css(i); 1198 if (ret) 1199 goto out_unregister; 1200 } 1201 ret = register_reboot_notifier(&css_reboot_notifier); 1202 if (ret) 1203 goto out_unregister; 1204 ret = cio_dma_pool_init(); 1205 if (ret) 1206 goto out_unregister_rn; 1207 airq_init(); 1208 css_init_done = 1; 1209 1210 /* Enable default isc for I/O subchannels. */ 1211 isc_register(IO_SCH_ISC); 1212 1213 return 0; 1214 out_unregister_rn: 1215 unregister_reboot_notifier(&css_reboot_notifier); 1216 out_unregister: 1217 while (i-- > 0) { 1218 struct channel_subsystem *css = channel_subsystems[i]; 1219 device_unregister(&css->pseudo_subchannel->dev); 1220 device_unregister(&css->device); 1221 } 1222 bus_unregister(&css_bus_type); 1223 out: 1224 crw_unregister_handler(CRW_RSC_SCH); 1225 idset_free(slow_subchannel_set); 1226 chsc_init_cleanup(); 1227 pr_alert("The CSS device driver initialization failed with " 1228 "errno=%d\n", ret); 1229 return ret; 1230 } 1231 1232 static void __init css_bus_cleanup(void) 1233 { 1234 struct channel_subsystem *css; 1235 1236 for_each_css(css) { 1237 device_unregister(&css->pseudo_subchannel->dev); 1238 device_unregister(&css->device); 1239 } 1240 bus_unregister(&css_bus_type); 1241 crw_unregister_handler(CRW_RSC_SCH); 1242 idset_free(slow_subchannel_set); 1243 chsc_init_cleanup(); 1244 isc_unregister(IO_SCH_ISC); 1245 } 1246 1247 static int __init channel_subsystem_init(void) 1248 { 1249 int ret; 1250 1251 ret = css_bus_init(); 1252 if (ret) 1253 return ret; 1254 cio_work_q = create_singlethread_workqueue("cio"); 1255 if (!cio_work_q) { 1256 ret = -ENOMEM; 1257 goto out_bus; 1258 } 1259 ret = io_subchannel_init(); 1260 if (ret) 1261 goto out_wq; 1262 1263 /* Register subchannels which are already in use. */ 1264 cio_register_early_subchannels(); 1265 /* Start initial subchannel evaluation. */ 1266 css_schedule_eval_all(); 1267 1268 return ret; 1269 out_wq: 1270 destroy_workqueue(cio_work_q); 1271 out_bus: 1272 css_bus_cleanup(); 1273 return ret; 1274 } 1275 subsys_initcall(channel_subsystem_init); 1276 1277 static int css_settle(struct device_driver *drv, void *unused) 1278 { 1279 struct css_driver *cssdrv = to_cssdriver(drv); 1280 1281 if (cssdrv->settle) 1282 return cssdrv->settle(); 1283 return 0; 1284 } 1285 1286 int css_complete_work(void) 1287 { 1288 int ret; 1289 1290 /* Wait for the evaluation of subchannels to finish. */ 1291 ret = wait_event_interruptible(css_eval_wq, 1292 atomic_read(&css_eval_scheduled) == 0); 1293 if (ret) 1294 return -EINTR; 1295 flush_workqueue(cio_work_q); 1296 /* Wait for the subchannel type specific initialization to finish */ 1297 return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle); 1298 } 1299 1300 1301 /* 1302 * Wait for the initialization of devices to finish, to make sure we are 1303 * done with our setup if the search for the root device starts. 1304 */ 1305 static int __init channel_subsystem_init_sync(void) 1306 { 1307 css_complete_work(); 1308 return 0; 1309 } 1310 subsys_initcall_sync(channel_subsystem_init_sync); 1311 1312 #ifdef CONFIG_PROC_FS 1313 static ssize_t cio_settle_write(struct file *file, const char __user *buf, 1314 size_t count, loff_t *ppos) 1315 { 1316 int ret; 1317 1318 /* Handle pending CRW's. */ 1319 crw_wait_for_channel_report(); 1320 ret = css_complete_work(); 1321 1322 return ret ? ret : count; 1323 } 1324 1325 static const struct proc_ops cio_settle_proc_ops = { 1326 .proc_open = nonseekable_open, 1327 .proc_write = cio_settle_write, 1328 .proc_lseek = no_llseek, 1329 }; 1330 1331 static int __init cio_settle_init(void) 1332 { 1333 struct proc_dir_entry *entry; 1334 1335 entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops); 1336 if (!entry) 1337 return -ENOMEM; 1338 return 0; 1339 } 1340 device_initcall(cio_settle_init); 1341 #endif /*CONFIG_PROC_FS*/ 1342 1343 int sch_is_pseudo_sch(struct subchannel *sch) 1344 { 1345 if (!sch->dev.parent) 1346 return 0; 1347 return sch == to_css(sch->dev.parent)->pseudo_subchannel; 1348 } 1349 1350 static int css_bus_match(struct device *dev, struct device_driver *drv) 1351 { 1352 struct subchannel *sch = to_subchannel(dev); 1353 struct css_driver *driver = to_cssdriver(drv); 1354 struct css_device_id *id; 1355 1356 /* When driver_override is set, only bind to the matching driver */ 1357 if (sch->driver_override && strcmp(sch->driver_override, drv->name)) 1358 return 0; 1359 1360 for (id = driver->subchannel_type; id->match_flags; id++) { 1361 if (sch->st == id->type) 1362 return 1; 1363 } 1364 1365 return 0; 1366 } 1367 1368 static int css_probe(struct device *dev) 1369 { 1370 struct subchannel *sch; 1371 int ret; 1372 1373 sch = to_subchannel(dev); 1374 sch->driver = to_cssdriver(dev->driver); 1375 ret = sch->driver->probe ? sch->driver->probe(sch) : 0; 1376 if (ret) 1377 sch->driver = NULL; 1378 return ret; 1379 } 1380 1381 static void css_remove(struct device *dev) 1382 { 1383 struct subchannel *sch; 1384 1385 sch = to_subchannel(dev); 1386 if (sch->driver->remove) 1387 sch->driver->remove(sch); 1388 sch->driver = NULL; 1389 } 1390 1391 static void css_shutdown(struct device *dev) 1392 { 1393 struct subchannel *sch; 1394 1395 sch = to_subchannel(dev); 1396 if (sch->driver && sch->driver->shutdown) 1397 sch->driver->shutdown(sch); 1398 } 1399 1400 static int css_uevent(const struct device *dev, struct kobj_uevent_env *env) 1401 { 1402 const struct subchannel *sch = to_subchannel(dev); 1403 int ret; 1404 1405 ret = add_uevent_var(env, "ST=%01X", sch->st); 1406 if (ret) 1407 return ret; 1408 ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st); 1409 return ret; 1410 } 1411 1412 static struct bus_type css_bus_type = { 1413 .name = "css", 1414 .match = css_bus_match, 1415 .probe = css_probe, 1416 .remove = css_remove, 1417 .shutdown = css_shutdown, 1418 .uevent = css_uevent, 1419 }; 1420 1421 /** 1422 * css_driver_register - register a css driver 1423 * @cdrv: css driver to register 1424 * 1425 * This is mainly a wrapper around driver_register that sets name 1426 * and bus_type in the embedded struct device_driver correctly. 1427 */ 1428 int css_driver_register(struct css_driver *cdrv) 1429 { 1430 cdrv->drv.bus = &css_bus_type; 1431 return driver_register(&cdrv->drv); 1432 } 1433 EXPORT_SYMBOL_GPL(css_driver_register); 1434 1435 /** 1436 * css_driver_unregister - unregister a css driver 1437 * @cdrv: css driver to unregister 1438 * 1439 * This is a wrapper around driver_unregister. 1440 */ 1441 void css_driver_unregister(struct css_driver *cdrv) 1442 { 1443 driver_unregister(&cdrv->drv); 1444 } 1445 EXPORT_SYMBOL_GPL(css_driver_unregister); 1446