1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * driver for channel subsystem 4 * 5 * Copyright IBM Corp. 2002, 2010 6 * 7 * Author(s): Arnd Bergmann (arndb@de.ibm.com) 8 * Cornelia Huck (cornelia.huck@de.ibm.com) 9 */ 10 11 #define KMSG_COMPONENT "cio" 12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 13 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/list.h> 20 #include <linux/reboot.h> 21 #include <linux/proc_fs.h> 22 #include <linux/genalloc.h> 23 #include <linux/dma-mapping.h> 24 #include <asm/isc.h> 25 #include <asm/crw.h> 26 27 #include "css.h" 28 #include "cio.h" 29 #include "blacklist.h" 30 #include "cio_debug.h" 31 #include "ioasm.h" 32 #include "chsc.h" 33 #include "device.h" 34 #include "idset.h" 35 #include "chp.h" 36 37 int css_init_done = 0; 38 int max_ssid; 39 40 #define MAX_CSS_IDX 0 41 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1]; 42 static struct bus_type css_bus_type; 43 44 int 45 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data) 46 { 47 struct subchannel_id schid; 48 int ret; 49 50 init_subchannel_id(&schid); 51 do { 52 do { 53 ret = fn(schid, data); 54 if (ret) 55 break; 56 } while (schid.sch_no++ < __MAX_SUBCHANNEL); 57 schid.sch_no = 0; 58 } while (schid.ssid++ < max_ssid); 59 return ret; 60 } 61 62 struct cb_data { 63 void *data; 64 struct idset *set; 65 int (*fn_known_sch)(struct subchannel *, void *); 66 int (*fn_unknown_sch)(struct subchannel_id, void *); 67 }; 68 69 static int call_fn_known_sch(struct device *dev, void *data) 70 { 71 struct subchannel *sch = to_subchannel(dev); 72 struct cb_data *cb = data; 73 int rc = 0; 74 75 if (cb->set) 76 idset_sch_del(cb->set, sch->schid); 77 if (cb->fn_known_sch) 78 rc = cb->fn_known_sch(sch, cb->data); 79 return rc; 80 } 81 82 static int call_fn_unknown_sch(struct subchannel_id schid, void *data) 83 { 84 struct cb_data *cb = data; 85 int rc = 0; 86 87 if (idset_sch_contains(cb->set, schid)) 88 rc = cb->fn_unknown_sch(schid, cb->data); 89 return rc; 90 } 91 92 static int call_fn_all_sch(struct subchannel_id schid, void *data) 93 { 94 struct cb_data *cb = data; 95 struct subchannel *sch; 96 int rc = 0; 97 98 sch = get_subchannel_by_schid(schid); 99 if (sch) { 100 if (cb->fn_known_sch) 101 rc = cb->fn_known_sch(sch, cb->data); 102 put_device(&sch->dev); 103 } else { 104 if (cb->fn_unknown_sch) 105 rc = cb->fn_unknown_sch(schid, cb->data); 106 } 107 108 return rc; 109 } 110 111 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *), 112 int (*fn_unknown)(struct subchannel_id, 113 void *), void *data) 114 { 115 struct cb_data cb; 116 int rc; 117 118 cb.data = data; 119 cb.fn_known_sch = fn_known; 120 cb.fn_unknown_sch = fn_unknown; 121 122 if (fn_known && !fn_unknown) { 123 /* Skip idset allocation in case of known-only loop. */ 124 cb.set = NULL; 125 return bus_for_each_dev(&css_bus_type, NULL, &cb, 126 call_fn_known_sch); 127 } 128 129 cb.set = idset_sch_new(); 130 if (!cb.set) 131 /* fall back to brute force scanning in case of oom */ 132 return for_each_subchannel(call_fn_all_sch, &cb); 133 134 idset_fill(cb.set); 135 136 /* Process registered subchannels. */ 137 rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch); 138 if (rc) 139 goto out; 140 /* Process unregistered subchannels. */ 141 if (fn_unknown) 142 rc = for_each_subchannel(call_fn_unknown_sch, &cb); 143 out: 144 idset_free(cb.set); 145 146 return rc; 147 } 148 149 static void css_sch_todo(struct work_struct *work); 150 151 static int css_sch_create_locks(struct subchannel *sch) 152 { 153 sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL); 154 if (!sch->lock) 155 return -ENOMEM; 156 157 spin_lock_init(sch->lock); 158 mutex_init(&sch->reg_mutex); 159 160 return 0; 161 } 162 163 static void css_subchannel_release(struct device *dev) 164 { 165 struct subchannel *sch = to_subchannel(dev); 166 167 sch->config.intparm = 0; 168 cio_commit_config(sch); 169 kfree(sch->driver_override); 170 kfree(sch->lock); 171 kfree(sch); 172 } 173 174 static int css_validate_subchannel(struct subchannel_id schid, 175 struct schib *schib) 176 { 177 int err; 178 179 switch (schib->pmcw.st) { 180 case SUBCHANNEL_TYPE_IO: 181 case SUBCHANNEL_TYPE_MSG: 182 if (!css_sch_is_valid(schib)) 183 err = -ENODEV; 184 else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) { 185 CIO_MSG_EVENT(6, "Blacklisted device detected " 186 "at devno %04X, subchannel set %x\n", 187 schib->pmcw.dev, schid.ssid); 188 err = -ENODEV; 189 } else 190 err = 0; 191 break; 192 default: 193 err = 0; 194 } 195 if (err) 196 goto out; 197 198 CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n", 199 schid.ssid, schid.sch_no, schib->pmcw.st); 200 out: 201 return err; 202 } 203 204 struct subchannel *css_alloc_subchannel(struct subchannel_id schid, 205 struct schib *schib) 206 { 207 struct subchannel *sch; 208 int ret; 209 210 ret = css_validate_subchannel(schid, schib); 211 if (ret < 0) 212 return ERR_PTR(ret); 213 214 sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA); 215 if (!sch) 216 return ERR_PTR(-ENOMEM); 217 218 sch->schid = schid; 219 sch->schib = *schib; 220 sch->st = schib->pmcw.st; 221 222 ret = css_sch_create_locks(sch); 223 if (ret) 224 goto err; 225 226 INIT_WORK(&sch->todo_work, css_sch_todo); 227 sch->dev.release = &css_subchannel_release; 228 sch->dev.dma_mask = &sch->dma_mask; 229 device_initialize(&sch->dev); 230 /* 231 * The physical addresses for some of the dma structures that can 232 * belong to a subchannel need to fit 31 bit width (e.g. ccw). 233 */ 234 ret = dma_set_coherent_mask(&sch->dev, DMA_BIT_MASK(31)); 235 if (ret) 236 goto err; 237 /* 238 * But we don't have such restrictions imposed on the stuff that 239 * is handled by the streaming API. 240 */ 241 ret = dma_set_mask(&sch->dev, DMA_BIT_MASK(64)); 242 if (ret) 243 goto err; 244 245 return sch; 246 247 err: 248 kfree(sch); 249 return ERR_PTR(ret); 250 } 251 252 static int css_sch_device_register(struct subchannel *sch) 253 { 254 int ret; 255 256 mutex_lock(&sch->reg_mutex); 257 dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid, 258 sch->schid.sch_no); 259 ret = device_add(&sch->dev); 260 mutex_unlock(&sch->reg_mutex); 261 return ret; 262 } 263 264 /** 265 * css_sch_device_unregister - unregister a subchannel 266 * @sch: subchannel to be unregistered 267 */ 268 void css_sch_device_unregister(struct subchannel *sch) 269 { 270 mutex_lock(&sch->reg_mutex); 271 if (device_is_registered(&sch->dev)) 272 device_unregister(&sch->dev); 273 mutex_unlock(&sch->reg_mutex); 274 } 275 EXPORT_SYMBOL_GPL(css_sch_device_unregister); 276 277 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw) 278 { 279 int i; 280 int mask; 281 282 memset(ssd, 0, sizeof(struct chsc_ssd_info)); 283 ssd->path_mask = pmcw->pim; 284 for (i = 0; i < 8; i++) { 285 mask = 0x80 >> i; 286 if (pmcw->pim & mask) { 287 chp_id_init(&ssd->chpid[i]); 288 ssd->chpid[i].id = pmcw->chpid[i]; 289 } 290 } 291 } 292 293 static void ssd_register_chpids(struct chsc_ssd_info *ssd) 294 { 295 int i; 296 int mask; 297 298 for (i = 0; i < 8; i++) { 299 mask = 0x80 >> i; 300 if (ssd->path_mask & mask) 301 chp_new(ssd->chpid[i]); 302 } 303 } 304 305 void css_update_ssd_info(struct subchannel *sch) 306 { 307 int ret; 308 309 ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info); 310 if (ret) 311 ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw); 312 313 ssd_register_chpids(&sch->ssd_info); 314 } 315 316 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 317 char *buf) 318 { 319 struct subchannel *sch = to_subchannel(dev); 320 321 return sprintf(buf, "%01x\n", sch->st); 322 } 323 324 static DEVICE_ATTR_RO(type); 325 326 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, 327 char *buf) 328 { 329 struct subchannel *sch = to_subchannel(dev); 330 331 return sprintf(buf, "css:t%01X\n", sch->st); 332 } 333 334 static DEVICE_ATTR_RO(modalias); 335 336 static ssize_t driver_override_store(struct device *dev, 337 struct device_attribute *attr, 338 const char *buf, size_t count) 339 { 340 struct subchannel *sch = to_subchannel(dev); 341 char *driver_override, *old, *cp; 342 343 /* We need to keep extra room for a newline */ 344 if (count >= (PAGE_SIZE - 1)) 345 return -EINVAL; 346 347 driver_override = kstrndup(buf, count, GFP_KERNEL); 348 if (!driver_override) 349 return -ENOMEM; 350 351 cp = strchr(driver_override, '\n'); 352 if (cp) 353 *cp = '\0'; 354 355 device_lock(dev); 356 old = sch->driver_override; 357 if (strlen(driver_override)) { 358 sch->driver_override = driver_override; 359 } else { 360 kfree(driver_override); 361 sch->driver_override = NULL; 362 } 363 device_unlock(dev); 364 365 kfree(old); 366 367 return count; 368 } 369 370 static ssize_t driver_override_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 struct subchannel *sch = to_subchannel(dev); 374 ssize_t len; 375 376 device_lock(dev); 377 len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override); 378 device_unlock(dev); 379 return len; 380 } 381 static DEVICE_ATTR_RW(driver_override); 382 383 static struct attribute *subch_attrs[] = { 384 &dev_attr_type.attr, 385 &dev_attr_modalias.attr, 386 &dev_attr_driver_override.attr, 387 NULL, 388 }; 389 390 static struct attribute_group subch_attr_group = { 391 .attrs = subch_attrs, 392 }; 393 394 static const struct attribute_group *default_subch_attr_groups[] = { 395 &subch_attr_group, 396 NULL, 397 }; 398 399 static ssize_t chpids_show(struct device *dev, 400 struct device_attribute *attr, 401 char *buf) 402 { 403 struct subchannel *sch = to_subchannel(dev); 404 struct chsc_ssd_info *ssd = &sch->ssd_info; 405 ssize_t ret = 0; 406 int mask; 407 int chp; 408 409 for (chp = 0; chp < 8; chp++) { 410 mask = 0x80 >> chp; 411 if (ssd->path_mask & mask) 412 ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id); 413 else 414 ret += sprintf(buf + ret, "00 "); 415 } 416 ret += sprintf(buf + ret, "\n"); 417 return ret; 418 } 419 static DEVICE_ATTR_RO(chpids); 420 421 static ssize_t pimpampom_show(struct device *dev, 422 struct device_attribute *attr, 423 char *buf) 424 { 425 struct subchannel *sch = to_subchannel(dev); 426 struct pmcw *pmcw = &sch->schib.pmcw; 427 428 return sprintf(buf, "%02x %02x %02x\n", 429 pmcw->pim, pmcw->pam, pmcw->pom); 430 } 431 static DEVICE_ATTR_RO(pimpampom); 432 433 static ssize_t dev_busid_show(struct device *dev, 434 struct device_attribute *attr, 435 char *buf) 436 { 437 struct subchannel *sch = to_subchannel(dev); 438 struct pmcw *pmcw = &sch->schib.pmcw; 439 440 if ((pmcw->st == SUBCHANNEL_TYPE_IO || 441 pmcw->st == SUBCHANNEL_TYPE_MSG) && pmcw->dnv) 442 return sysfs_emit(buf, "0.%x.%04x\n", sch->schid.ssid, 443 pmcw->dev); 444 else 445 return sysfs_emit(buf, "none\n"); 446 } 447 static DEVICE_ATTR_RO(dev_busid); 448 449 static struct attribute *io_subchannel_type_attrs[] = { 450 &dev_attr_chpids.attr, 451 &dev_attr_pimpampom.attr, 452 &dev_attr_dev_busid.attr, 453 NULL, 454 }; 455 ATTRIBUTE_GROUPS(io_subchannel_type); 456 457 static const struct device_type io_subchannel_type = { 458 .groups = io_subchannel_type_groups, 459 }; 460 461 int css_register_subchannel(struct subchannel *sch) 462 { 463 int ret; 464 465 /* Initialize the subchannel structure */ 466 sch->dev.parent = &channel_subsystems[0]->device; 467 sch->dev.bus = &css_bus_type; 468 sch->dev.groups = default_subch_attr_groups; 469 470 if (sch->st == SUBCHANNEL_TYPE_IO) 471 sch->dev.type = &io_subchannel_type; 472 473 /* 474 * We don't want to generate uevents for I/O subchannels that don't 475 * have a working ccw device behind them since they will be 476 * unregistered before they can be used anyway, so we delay the add 477 * uevent until after device recognition was successful. 478 * Note that we suppress the uevent for all subchannel types; 479 * the subchannel driver can decide itself when it wants to inform 480 * userspace of its existence. 481 */ 482 dev_set_uevent_suppress(&sch->dev, 1); 483 css_update_ssd_info(sch); 484 /* make it known to the system */ 485 ret = css_sch_device_register(sch); 486 if (ret) { 487 CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n", 488 sch->schid.ssid, sch->schid.sch_no, ret); 489 return ret; 490 } 491 if (!sch->driver) { 492 /* 493 * No driver matched. Generate the uevent now so that 494 * a fitting driver module may be loaded based on the 495 * modalias. 496 */ 497 dev_set_uevent_suppress(&sch->dev, 0); 498 kobject_uevent(&sch->dev.kobj, KOBJ_ADD); 499 } 500 return ret; 501 } 502 503 static int css_probe_device(struct subchannel_id schid, struct schib *schib) 504 { 505 struct subchannel *sch; 506 int ret; 507 508 sch = css_alloc_subchannel(schid, schib); 509 if (IS_ERR(sch)) 510 return PTR_ERR(sch); 511 512 ret = css_register_subchannel(sch); 513 if (ret) 514 put_device(&sch->dev); 515 516 return ret; 517 } 518 519 static int 520 check_subchannel(struct device *dev, const void *data) 521 { 522 struct subchannel *sch; 523 struct subchannel_id *schid = (void *)data; 524 525 sch = to_subchannel(dev); 526 return schid_equal(&sch->schid, schid); 527 } 528 529 struct subchannel * 530 get_subchannel_by_schid(struct subchannel_id schid) 531 { 532 struct device *dev; 533 534 dev = bus_find_device(&css_bus_type, NULL, 535 &schid, check_subchannel); 536 537 return dev ? to_subchannel(dev) : NULL; 538 } 539 540 /** 541 * css_sch_is_valid() - check if a subchannel is valid 542 * @schib: subchannel information block for the subchannel 543 */ 544 int css_sch_is_valid(struct schib *schib) 545 { 546 if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv) 547 return 0; 548 if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w) 549 return 0; 550 return 1; 551 } 552 EXPORT_SYMBOL_GPL(css_sch_is_valid); 553 554 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow) 555 { 556 struct schib schib; 557 int ccode; 558 559 if (!slow) { 560 /* Will be done on the slow path. */ 561 return -EAGAIN; 562 } 563 /* 564 * The first subchannel that is not-operational (ccode==3) 565 * indicates that there aren't any more devices available. 566 * If stsch gets an exception, it means the current subchannel set 567 * is not valid. 568 */ 569 ccode = stsch(schid, &schib); 570 if (ccode) 571 return (ccode == 3) ? -ENXIO : ccode; 572 573 return css_probe_device(schid, &schib); 574 } 575 576 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow) 577 { 578 int ret = 0; 579 580 if (sch->driver) { 581 if (sch->driver->sch_event) 582 ret = sch->driver->sch_event(sch, slow); 583 else 584 dev_dbg(&sch->dev, 585 "Got subchannel machine check but " 586 "no sch_event handler provided.\n"); 587 } 588 if (ret != 0 && ret != -EAGAIN) { 589 CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n", 590 sch->schid.ssid, sch->schid.sch_no, ret); 591 } 592 return ret; 593 } 594 595 static void css_evaluate_subchannel(struct subchannel_id schid, int slow) 596 { 597 struct subchannel *sch; 598 int ret; 599 600 sch = get_subchannel_by_schid(schid); 601 if (sch) { 602 ret = css_evaluate_known_subchannel(sch, slow); 603 put_device(&sch->dev); 604 } else 605 ret = css_evaluate_new_subchannel(schid, slow); 606 if (ret == -EAGAIN) 607 css_schedule_eval(schid); 608 } 609 610 /** 611 * css_sched_sch_todo - schedule a subchannel operation 612 * @sch: subchannel 613 * @todo: todo 614 * 615 * Schedule the operation identified by @todo to be performed on the slow path 616 * workqueue. Do nothing if another operation with higher priority is already 617 * scheduled. Needs to be called with subchannel lock held. 618 */ 619 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo) 620 { 621 CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n", 622 sch->schid.ssid, sch->schid.sch_no, todo); 623 if (sch->todo >= todo) 624 return; 625 /* Get workqueue ref. */ 626 if (!get_device(&sch->dev)) 627 return; 628 sch->todo = todo; 629 if (!queue_work(cio_work_q, &sch->todo_work)) { 630 /* Already queued, release workqueue ref. */ 631 put_device(&sch->dev); 632 } 633 } 634 EXPORT_SYMBOL_GPL(css_sched_sch_todo); 635 636 static void css_sch_todo(struct work_struct *work) 637 { 638 struct subchannel *sch; 639 enum sch_todo todo; 640 int ret; 641 642 sch = container_of(work, struct subchannel, todo_work); 643 /* Find out todo. */ 644 spin_lock_irq(sch->lock); 645 todo = sch->todo; 646 CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid, 647 sch->schid.sch_no, todo); 648 sch->todo = SCH_TODO_NOTHING; 649 spin_unlock_irq(sch->lock); 650 /* Perform todo. */ 651 switch (todo) { 652 case SCH_TODO_NOTHING: 653 break; 654 case SCH_TODO_EVAL: 655 ret = css_evaluate_known_subchannel(sch, 1); 656 if (ret == -EAGAIN) { 657 spin_lock_irq(sch->lock); 658 css_sched_sch_todo(sch, todo); 659 spin_unlock_irq(sch->lock); 660 } 661 break; 662 case SCH_TODO_UNREG: 663 css_sch_device_unregister(sch); 664 break; 665 } 666 /* Release workqueue ref. */ 667 put_device(&sch->dev); 668 } 669 670 static struct idset *slow_subchannel_set; 671 static DEFINE_SPINLOCK(slow_subchannel_lock); 672 static DECLARE_WAIT_QUEUE_HEAD(css_eval_wq); 673 static atomic_t css_eval_scheduled; 674 675 static int __init slow_subchannel_init(void) 676 { 677 atomic_set(&css_eval_scheduled, 0); 678 slow_subchannel_set = idset_sch_new(); 679 if (!slow_subchannel_set) { 680 CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n"); 681 return -ENOMEM; 682 } 683 return 0; 684 } 685 686 static int slow_eval_known_fn(struct subchannel *sch, void *data) 687 { 688 int eval; 689 int rc; 690 691 spin_lock_irq(&slow_subchannel_lock); 692 eval = idset_sch_contains(slow_subchannel_set, sch->schid); 693 idset_sch_del(slow_subchannel_set, sch->schid); 694 spin_unlock_irq(&slow_subchannel_lock); 695 if (eval) { 696 rc = css_evaluate_known_subchannel(sch, 1); 697 if (rc == -EAGAIN) 698 css_schedule_eval(sch->schid); 699 /* 700 * The loop might take long time for platforms with lots of 701 * known devices. Allow scheduling here. 702 */ 703 cond_resched(); 704 } 705 return 0; 706 } 707 708 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data) 709 { 710 int eval; 711 int rc = 0; 712 713 spin_lock_irq(&slow_subchannel_lock); 714 eval = idset_sch_contains(slow_subchannel_set, schid); 715 idset_sch_del(slow_subchannel_set, schid); 716 spin_unlock_irq(&slow_subchannel_lock); 717 if (eval) { 718 rc = css_evaluate_new_subchannel(schid, 1); 719 switch (rc) { 720 case -EAGAIN: 721 css_schedule_eval(schid); 722 rc = 0; 723 break; 724 case -ENXIO: 725 case -ENOMEM: 726 case -EIO: 727 /* These should abort looping */ 728 spin_lock_irq(&slow_subchannel_lock); 729 idset_sch_del_subseq(slow_subchannel_set, schid); 730 spin_unlock_irq(&slow_subchannel_lock); 731 break; 732 default: 733 rc = 0; 734 } 735 /* Allow scheduling here since the containing loop might 736 * take a while. */ 737 cond_resched(); 738 } 739 return rc; 740 } 741 742 static void css_slow_path_func(struct work_struct *unused) 743 { 744 unsigned long flags; 745 746 CIO_TRACE_EVENT(4, "slowpath"); 747 for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn, 748 NULL); 749 spin_lock_irqsave(&slow_subchannel_lock, flags); 750 if (idset_is_empty(slow_subchannel_set)) { 751 atomic_set(&css_eval_scheduled, 0); 752 wake_up(&css_eval_wq); 753 } 754 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 755 } 756 757 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func); 758 struct workqueue_struct *cio_work_q; 759 760 void css_schedule_eval(struct subchannel_id schid) 761 { 762 unsigned long flags; 763 764 spin_lock_irqsave(&slow_subchannel_lock, flags); 765 idset_sch_add(slow_subchannel_set, schid); 766 atomic_set(&css_eval_scheduled, 1); 767 queue_delayed_work(cio_work_q, &slow_path_work, 0); 768 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 769 } 770 771 void css_schedule_eval_all(void) 772 { 773 unsigned long flags; 774 775 spin_lock_irqsave(&slow_subchannel_lock, flags); 776 idset_fill(slow_subchannel_set); 777 atomic_set(&css_eval_scheduled, 1); 778 queue_delayed_work(cio_work_q, &slow_path_work, 0); 779 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 780 } 781 782 static int __unset_registered(struct device *dev, void *data) 783 { 784 struct idset *set = data; 785 struct subchannel *sch = to_subchannel(dev); 786 787 idset_sch_del(set, sch->schid); 788 return 0; 789 } 790 791 static int __unset_online(struct device *dev, void *data) 792 { 793 struct idset *set = data; 794 struct subchannel *sch = to_subchannel(dev); 795 struct ccw_device *cdev; 796 797 if (sch->st == SUBCHANNEL_TYPE_IO) { 798 cdev = sch_get_cdev(sch); 799 if (cdev && cdev->online) 800 idset_sch_del(set, sch->schid); 801 } 802 803 return 0; 804 } 805 806 void css_schedule_eval_cond(enum css_eval_cond cond, unsigned long delay) 807 { 808 unsigned long flags; 809 struct idset *set; 810 811 /* Find unregistered subchannels. */ 812 set = idset_sch_new(); 813 if (!set) { 814 /* Fallback. */ 815 css_schedule_eval_all(); 816 return; 817 } 818 idset_fill(set); 819 switch (cond) { 820 case CSS_EVAL_UNREG: 821 bus_for_each_dev(&css_bus_type, NULL, set, __unset_registered); 822 break; 823 case CSS_EVAL_NOT_ONLINE: 824 bus_for_each_dev(&css_bus_type, NULL, set, __unset_online); 825 break; 826 default: 827 break; 828 } 829 830 /* Apply to slow_subchannel_set. */ 831 spin_lock_irqsave(&slow_subchannel_lock, flags); 832 idset_add_set(slow_subchannel_set, set); 833 atomic_set(&css_eval_scheduled, 1); 834 queue_delayed_work(cio_work_q, &slow_path_work, delay); 835 spin_unlock_irqrestore(&slow_subchannel_lock, flags); 836 idset_free(set); 837 } 838 839 void css_wait_for_slow_path(void) 840 { 841 flush_workqueue(cio_work_q); 842 } 843 844 /* Schedule reprobing of all unregistered subchannels. */ 845 void css_schedule_reprobe(void) 846 { 847 /* Schedule with a delay to allow merging of subsequent calls. */ 848 css_schedule_eval_cond(CSS_EVAL_UNREG, 1 * HZ); 849 } 850 EXPORT_SYMBOL_GPL(css_schedule_reprobe); 851 852 /* 853 * Called from the machine check handler for subchannel report words. 854 */ 855 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow) 856 { 857 struct subchannel_id mchk_schid; 858 struct subchannel *sch; 859 860 if (overflow) { 861 css_schedule_eval_all(); 862 return; 863 } 864 CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, " 865 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 866 crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc, 867 crw0->erc, crw0->rsid); 868 if (crw1) 869 CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, " 870 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", 871 crw1->slct, crw1->oflw, crw1->chn, crw1->rsc, 872 crw1->anc, crw1->erc, crw1->rsid); 873 init_subchannel_id(&mchk_schid); 874 mchk_schid.sch_no = crw0->rsid; 875 if (crw1) 876 mchk_schid.ssid = (crw1->rsid >> 4) & 3; 877 878 if (crw0->erc == CRW_ERC_PMOD) { 879 sch = get_subchannel_by_schid(mchk_schid); 880 if (sch) { 881 css_update_ssd_info(sch); 882 put_device(&sch->dev); 883 } 884 } 885 /* 886 * Since we are always presented with IPI in the CRW, we have to 887 * use stsch() to find out if the subchannel in question has come 888 * or gone. 889 */ 890 css_evaluate_subchannel(mchk_schid, 0); 891 } 892 893 static void __init 894 css_generate_pgid(struct channel_subsystem *css, u32 tod_high) 895 { 896 struct cpuid cpu_id; 897 898 if (css_general_characteristics.mcss) { 899 css->global_pgid.pgid_high.ext_cssid.version = 0x80; 900 css->global_pgid.pgid_high.ext_cssid.cssid = 901 css->id_valid ? css->cssid : 0; 902 } else { 903 css->global_pgid.pgid_high.cpu_addr = stap(); 904 } 905 get_cpu_id(&cpu_id); 906 css->global_pgid.cpu_id = cpu_id.ident; 907 css->global_pgid.cpu_model = cpu_id.machine; 908 css->global_pgid.tod_high = tod_high; 909 } 910 911 static void channel_subsystem_release(struct device *dev) 912 { 913 struct channel_subsystem *css = to_css(dev); 914 915 mutex_destroy(&css->mutex); 916 kfree(css); 917 } 918 919 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a, 920 char *buf) 921 { 922 struct channel_subsystem *css = to_css(dev); 923 924 if (!css->id_valid) 925 return -EINVAL; 926 927 return sprintf(buf, "%x\n", css->cssid); 928 } 929 static DEVICE_ATTR_RO(real_cssid); 930 931 static ssize_t rescan_store(struct device *dev, struct device_attribute *a, 932 const char *buf, size_t count) 933 { 934 CIO_TRACE_EVENT(4, "usr-rescan"); 935 936 css_schedule_eval_all(); 937 css_complete_work(); 938 939 return count; 940 } 941 static DEVICE_ATTR_WO(rescan); 942 943 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a, 944 char *buf) 945 { 946 struct channel_subsystem *css = to_css(dev); 947 int ret; 948 949 mutex_lock(&css->mutex); 950 ret = sprintf(buf, "%x\n", css->cm_enabled); 951 mutex_unlock(&css->mutex); 952 return ret; 953 } 954 955 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a, 956 const char *buf, size_t count) 957 { 958 struct channel_subsystem *css = to_css(dev); 959 unsigned long val; 960 int ret; 961 962 ret = kstrtoul(buf, 16, &val); 963 if (ret) 964 return ret; 965 mutex_lock(&css->mutex); 966 switch (val) { 967 case 0: 968 ret = css->cm_enabled ? chsc_secm(css, 0) : 0; 969 break; 970 case 1: 971 ret = css->cm_enabled ? 0 : chsc_secm(css, 1); 972 break; 973 default: 974 ret = -EINVAL; 975 } 976 mutex_unlock(&css->mutex); 977 return ret < 0 ? ret : count; 978 } 979 static DEVICE_ATTR_RW(cm_enable); 980 981 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr, 982 int index) 983 { 984 return css_chsc_characteristics.secm ? attr->mode : 0; 985 } 986 987 static struct attribute *cssdev_attrs[] = { 988 &dev_attr_real_cssid.attr, 989 &dev_attr_rescan.attr, 990 NULL, 991 }; 992 993 static struct attribute_group cssdev_attr_group = { 994 .attrs = cssdev_attrs, 995 }; 996 997 static struct attribute *cssdev_cm_attrs[] = { 998 &dev_attr_cm_enable.attr, 999 NULL, 1000 }; 1001 1002 static struct attribute_group cssdev_cm_attr_group = { 1003 .attrs = cssdev_cm_attrs, 1004 .is_visible = cm_enable_mode, 1005 }; 1006 1007 static const struct attribute_group *cssdev_attr_groups[] = { 1008 &cssdev_attr_group, 1009 &cssdev_cm_attr_group, 1010 NULL, 1011 }; 1012 1013 static int __init setup_css(int nr) 1014 { 1015 struct channel_subsystem *css; 1016 int ret; 1017 1018 css = kzalloc(sizeof(*css), GFP_KERNEL); 1019 if (!css) 1020 return -ENOMEM; 1021 1022 channel_subsystems[nr] = css; 1023 dev_set_name(&css->device, "css%x", nr); 1024 css->device.groups = cssdev_attr_groups; 1025 css->device.release = channel_subsystem_release; 1026 /* 1027 * We currently allocate notifier bits with this (using 1028 * css->device as the device argument with the DMA API) 1029 * and are fine with 64 bit addresses. 1030 */ 1031 ret = dma_coerce_mask_and_coherent(&css->device, DMA_BIT_MASK(64)); 1032 if (ret) { 1033 kfree(css); 1034 goto out_err; 1035 } 1036 1037 mutex_init(&css->mutex); 1038 ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid); 1039 if (!ret) { 1040 css->id_valid = true; 1041 pr_info("Partition identifier %01x.%01x\n", css->cssid, 1042 css->iid); 1043 } 1044 css_generate_pgid(css, (u32) (get_tod_clock() >> 32)); 1045 1046 ret = device_register(&css->device); 1047 if (ret) { 1048 put_device(&css->device); 1049 goto out_err; 1050 } 1051 1052 css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel), 1053 GFP_KERNEL); 1054 if (!css->pseudo_subchannel) { 1055 device_unregister(&css->device); 1056 ret = -ENOMEM; 1057 goto out_err; 1058 } 1059 1060 css->pseudo_subchannel->dev.parent = &css->device; 1061 css->pseudo_subchannel->dev.release = css_subchannel_release; 1062 mutex_init(&css->pseudo_subchannel->reg_mutex); 1063 ret = css_sch_create_locks(css->pseudo_subchannel); 1064 if (ret) { 1065 kfree(css->pseudo_subchannel); 1066 device_unregister(&css->device); 1067 goto out_err; 1068 } 1069 1070 dev_set_name(&css->pseudo_subchannel->dev, "defunct"); 1071 ret = device_register(&css->pseudo_subchannel->dev); 1072 if (ret) { 1073 put_device(&css->pseudo_subchannel->dev); 1074 device_unregister(&css->device); 1075 goto out_err; 1076 } 1077 1078 return ret; 1079 out_err: 1080 channel_subsystems[nr] = NULL; 1081 return ret; 1082 } 1083 1084 static int css_reboot_event(struct notifier_block *this, 1085 unsigned long event, 1086 void *ptr) 1087 { 1088 struct channel_subsystem *css; 1089 int ret; 1090 1091 ret = NOTIFY_DONE; 1092 for_each_css(css) { 1093 mutex_lock(&css->mutex); 1094 if (css->cm_enabled) 1095 if (chsc_secm(css, 0)) 1096 ret = NOTIFY_BAD; 1097 mutex_unlock(&css->mutex); 1098 } 1099 1100 return ret; 1101 } 1102 1103 static struct notifier_block css_reboot_notifier = { 1104 .notifier_call = css_reboot_event, 1105 }; 1106 1107 #define CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO) 1108 static struct gen_pool *cio_dma_pool; 1109 1110 /* Currently cio supports only a single css */ 1111 struct device *cio_get_dma_css_dev(void) 1112 { 1113 return &channel_subsystems[0]->device; 1114 } 1115 1116 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages) 1117 { 1118 struct gen_pool *gp_dma; 1119 void *cpu_addr; 1120 dma_addr_t dma_addr; 1121 int i; 1122 1123 gp_dma = gen_pool_create(3, -1); 1124 if (!gp_dma) 1125 return NULL; 1126 for (i = 0; i < nr_pages; ++i) { 1127 cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, 1128 CIO_DMA_GFP); 1129 if (!cpu_addr) 1130 return gp_dma; 1131 gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr, 1132 dma_addr, PAGE_SIZE, -1); 1133 } 1134 return gp_dma; 1135 } 1136 1137 static void __gp_dma_free_dma(struct gen_pool *pool, 1138 struct gen_pool_chunk *chunk, void *data) 1139 { 1140 size_t chunk_size = chunk->end_addr - chunk->start_addr + 1; 1141 1142 dma_free_coherent((struct device *) data, chunk_size, 1143 (void *) chunk->start_addr, 1144 (dma_addr_t) chunk->phys_addr); 1145 } 1146 1147 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev) 1148 { 1149 if (!gp_dma) 1150 return; 1151 /* this is quite ugly but no better idea */ 1152 gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev); 1153 gen_pool_destroy(gp_dma); 1154 } 1155 1156 static int cio_dma_pool_init(void) 1157 { 1158 /* No need to free up the resources: compiled in */ 1159 cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1); 1160 if (!cio_dma_pool) 1161 return -ENOMEM; 1162 return 0; 1163 } 1164 1165 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev, 1166 size_t size) 1167 { 1168 dma_addr_t dma_addr; 1169 unsigned long addr; 1170 size_t chunk_size; 1171 1172 if (!gp_dma) 1173 return NULL; 1174 addr = gen_pool_alloc(gp_dma, size); 1175 while (!addr) { 1176 chunk_size = round_up(size, PAGE_SIZE); 1177 addr = (unsigned long) dma_alloc_coherent(dma_dev, 1178 chunk_size, &dma_addr, CIO_DMA_GFP); 1179 if (!addr) 1180 return NULL; 1181 gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1); 1182 addr = gen_pool_alloc(gp_dma, size); 1183 } 1184 return (void *) addr; 1185 } 1186 1187 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size) 1188 { 1189 if (!cpu_addr) 1190 return; 1191 memset(cpu_addr, 0, size); 1192 gen_pool_free(gp_dma, (unsigned long) cpu_addr, size); 1193 } 1194 1195 /* 1196 * Allocate dma memory from the css global pool. Intended for memory not 1197 * specific to any single device within the css. The allocated memory 1198 * is not guaranteed to be 31-bit addressable. 1199 * 1200 * Caution: Not suitable for early stuff like console. 1201 */ 1202 void *cio_dma_zalloc(size_t size) 1203 { 1204 return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size); 1205 } 1206 1207 void cio_dma_free(void *cpu_addr, size_t size) 1208 { 1209 cio_gp_dma_free(cio_dma_pool, cpu_addr, size); 1210 } 1211 1212 /* 1213 * Now that the driver core is running, we can setup our channel subsystem. 1214 * The struct subchannel's are created during probing. 1215 */ 1216 static int __init css_bus_init(void) 1217 { 1218 int ret, i; 1219 1220 ret = chsc_init(); 1221 if (ret) 1222 return ret; 1223 1224 chsc_determine_css_characteristics(); 1225 /* Try to enable MSS. */ 1226 ret = chsc_enable_facility(CHSC_SDA_OC_MSS); 1227 if (ret) 1228 max_ssid = 0; 1229 else /* Success. */ 1230 max_ssid = __MAX_SSID; 1231 1232 ret = slow_subchannel_init(); 1233 if (ret) 1234 goto out; 1235 1236 ret = crw_register_handler(CRW_RSC_SCH, css_process_crw); 1237 if (ret) 1238 goto out; 1239 1240 if ((ret = bus_register(&css_bus_type))) 1241 goto out; 1242 1243 /* Setup css structure. */ 1244 for (i = 0; i <= MAX_CSS_IDX; i++) { 1245 ret = setup_css(i); 1246 if (ret) 1247 goto out_unregister; 1248 } 1249 ret = register_reboot_notifier(&css_reboot_notifier); 1250 if (ret) 1251 goto out_unregister; 1252 ret = cio_dma_pool_init(); 1253 if (ret) 1254 goto out_unregister_rn; 1255 airq_init(); 1256 css_init_done = 1; 1257 1258 /* Enable default isc for I/O subchannels. */ 1259 isc_register(IO_SCH_ISC); 1260 1261 return 0; 1262 out_unregister_rn: 1263 unregister_reboot_notifier(&css_reboot_notifier); 1264 out_unregister: 1265 while (i-- > 0) { 1266 struct channel_subsystem *css = channel_subsystems[i]; 1267 device_unregister(&css->pseudo_subchannel->dev); 1268 device_unregister(&css->device); 1269 } 1270 bus_unregister(&css_bus_type); 1271 out: 1272 crw_unregister_handler(CRW_RSC_SCH); 1273 idset_free(slow_subchannel_set); 1274 chsc_init_cleanup(); 1275 pr_alert("The CSS device driver initialization failed with " 1276 "errno=%d\n", ret); 1277 return ret; 1278 } 1279 1280 static void __init css_bus_cleanup(void) 1281 { 1282 struct channel_subsystem *css; 1283 1284 for_each_css(css) { 1285 device_unregister(&css->pseudo_subchannel->dev); 1286 device_unregister(&css->device); 1287 } 1288 bus_unregister(&css_bus_type); 1289 crw_unregister_handler(CRW_RSC_SCH); 1290 idset_free(slow_subchannel_set); 1291 chsc_init_cleanup(); 1292 isc_unregister(IO_SCH_ISC); 1293 } 1294 1295 static int __init channel_subsystem_init(void) 1296 { 1297 int ret; 1298 1299 ret = css_bus_init(); 1300 if (ret) 1301 return ret; 1302 cio_work_q = create_singlethread_workqueue("cio"); 1303 if (!cio_work_q) { 1304 ret = -ENOMEM; 1305 goto out_bus; 1306 } 1307 ret = io_subchannel_init(); 1308 if (ret) 1309 goto out_wq; 1310 1311 /* Register subchannels which are already in use. */ 1312 cio_register_early_subchannels(); 1313 /* Start initial subchannel evaluation. */ 1314 css_schedule_eval_all(); 1315 1316 return ret; 1317 out_wq: 1318 destroy_workqueue(cio_work_q); 1319 out_bus: 1320 css_bus_cleanup(); 1321 return ret; 1322 } 1323 subsys_initcall(channel_subsystem_init); 1324 1325 static int css_settle(struct device_driver *drv, void *unused) 1326 { 1327 struct css_driver *cssdrv = to_cssdriver(drv); 1328 1329 if (cssdrv->settle) 1330 return cssdrv->settle(); 1331 return 0; 1332 } 1333 1334 int css_complete_work(void) 1335 { 1336 int ret; 1337 1338 /* Wait for the evaluation of subchannels to finish. */ 1339 ret = wait_event_interruptible(css_eval_wq, 1340 atomic_read(&css_eval_scheduled) == 0); 1341 if (ret) 1342 return -EINTR; 1343 flush_workqueue(cio_work_q); 1344 /* Wait for the subchannel type specific initialization to finish */ 1345 return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle); 1346 } 1347 1348 1349 /* 1350 * Wait for the initialization of devices to finish, to make sure we are 1351 * done with our setup if the search for the root device starts. 1352 */ 1353 static int __init channel_subsystem_init_sync(void) 1354 { 1355 css_complete_work(); 1356 return 0; 1357 } 1358 subsys_initcall_sync(channel_subsystem_init_sync); 1359 1360 #ifdef CONFIG_PROC_FS 1361 static ssize_t cio_settle_write(struct file *file, const char __user *buf, 1362 size_t count, loff_t *ppos) 1363 { 1364 int ret; 1365 1366 /* Handle pending CRW's. */ 1367 crw_wait_for_channel_report(); 1368 ret = css_complete_work(); 1369 1370 return ret ? ret : count; 1371 } 1372 1373 static const struct proc_ops cio_settle_proc_ops = { 1374 .proc_open = nonseekable_open, 1375 .proc_write = cio_settle_write, 1376 .proc_lseek = no_llseek, 1377 }; 1378 1379 static int __init cio_settle_init(void) 1380 { 1381 struct proc_dir_entry *entry; 1382 1383 entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops); 1384 if (!entry) 1385 return -ENOMEM; 1386 return 0; 1387 } 1388 device_initcall(cio_settle_init); 1389 #endif /*CONFIG_PROC_FS*/ 1390 1391 int sch_is_pseudo_sch(struct subchannel *sch) 1392 { 1393 if (!sch->dev.parent) 1394 return 0; 1395 return sch == to_css(sch->dev.parent)->pseudo_subchannel; 1396 } 1397 1398 static int css_bus_match(struct device *dev, struct device_driver *drv) 1399 { 1400 struct subchannel *sch = to_subchannel(dev); 1401 struct css_driver *driver = to_cssdriver(drv); 1402 struct css_device_id *id; 1403 1404 /* When driver_override is set, only bind to the matching driver */ 1405 if (sch->driver_override && strcmp(sch->driver_override, drv->name)) 1406 return 0; 1407 1408 for (id = driver->subchannel_type; id->match_flags; id++) { 1409 if (sch->st == id->type) 1410 return 1; 1411 } 1412 1413 return 0; 1414 } 1415 1416 static int css_probe(struct device *dev) 1417 { 1418 struct subchannel *sch; 1419 int ret; 1420 1421 sch = to_subchannel(dev); 1422 sch->driver = to_cssdriver(dev->driver); 1423 ret = sch->driver->probe ? sch->driver->probe(sch) : 0; 1424 if (ret) 1425 sch->driver = NULL; 1426 return ret; 1427 } 1428 1429 static void css_remove(struct device *dev) 1430 { 1431 struct subchannel *sch; 1432 1433 sch = to_subchannel(dev); 1434 if (sch->driver->remove) 1435 sch->driver->remove(sch); 1436 sch->driver = NULL; 1437 } 1438 1439 static void css_shutdown(struct device *dev) 1440 { 1441 struct subchannel *sch; 1442 1443 sch = to_subchannel(dev); 1444 if (sch->driver && sch->driver->shutdown) 1445 sch->driver->shutdown(sch); 1446 } 1447 1448 static int css_uevent(struct device *dev, struct kobj_uevent_env *env) 1449 { 1450 struct subchannel *sch = to_subchannel(dev); 1451 int ret; 1452 1453 ret = add_uevent_var(env, "ST=%01X", sch->st); 1454 if (ret) 1455 return ret; 1456 ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st); 1457 return ret; 1458 } 1459 1460 static struct bus_type css_bus_type = { 1461 .name = "css", 1462 .match = css_bus_match, 1463 .probe = css_probe, 1464 .remove = css_remove, 1465 .shutdown = css_shutdown, 1466 .uevent = css_uevent, 1467 }; 1468 1469 /** 1470 * css_driver_register - register a css driver 1471 * @cdrv: css driver to register 1472 * 1473 * This is mainly a wrapper around driver_register that sets name 1474 * and bus_type in the embedded struct device_driver correctly. 1475 */ 1476 int css_driver_register(struct css_driver *cdrv) 1477 { 1478 cdrv->drv.bus = &css_bus_type; 1479 return driver_register(&cdrv->drv); 1480 } 1481 EXPORT_SYMBOL_GPL(css_driver_register); 1482 1483 /** 1484 * css_driver_unregister - unregister a css driver 1485 * @cdrv: css driver to unregister 1486 * 1487 * This is a wrapper around driver_unregister. 1488 */ 1489 void css_driver_unregister(struct css_driver *cdrv) 1490 { 1491 driver_unregister(&cdrv->drv); 1492 } 1493 EXPORT_SYMBOL_GPL(css_driver_unregister); 1494