xref: /linux/drivers/s390/cio/css.c (revision a35707c3d850dda0ceefb75b1b3bd191921d5765)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * driver for channel subsystem
4  *
5  * Copyright IBM Corp. 2002, 2010
6  *
7  * Author(s): Arnd Bergmann (arndb@de.ibm.com)
8  *	      Cornelia Huck (cornelia.huck@de.ibm.com)
9  */
10 
11 #define KMSG_COMPONENT "cio"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/reboot.h>
21 #include <linux/proc_fs.h>
22 #include <linux/genalloc.h>
23 #include <linux/dma-mapping.h>
24 #include <asm/isc.h>
25 #include <asm/crw.h>
26 
27 #include "css.h"
28 #include "cio.h"
29 #include "blacklist.h"
30 #include "cio_debug.h"
31 #include "ioasm.h"
32 #include "chsc.h"
33 #include "device.h"
34 #include "idset.h"
35 #include "chp.h"
36 
37 int css_init_done = 0;
38 int max_ssid;
39 
40 #define MAX_CSS_IDX 0
41 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1];
42 static struct bus_type css_bus_type;
43 
44 int
45 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data)
46 {
47 	struct subchannel_id schid;
48 	int ret;
49 
50 	init_subchannel_id(&schid);
51 	do {
52 		do {
53 			ret = fn(schid, data);
54 			if (ret)
55 				break;
56 		} while (schid.sch_no++ < __MAX_SUBCHANNEL);
57 		schid.sch_no = 0;
58 	} while (schid.ssid++ < max_ssid);
59 	return ret;
60 }
61 
62 struct cb_data {
63 	void *data;
64 	struct idset *set;
65 	int (*fn_known_sch)(struct subchannel *, void *);
66 	int (*fn_unknown_sch)(struct subchannel_id, void *);
67 };
68 
69 static int call_fn_known_sch(struct device *dev, void *data)
70 {
71 	struct subchannel *sch = to_subchannel(dev);
72 	struct cb_data *cb = data;
73 	int rc = 0;
74 
75 	if (cb->set)
76 		idset_sch_del(cb->set, sch->schid);
77 	if (cb->fn_known_sch)
78 		rc = cb->fn_known_sch(sch, cb->data);
79 	return rc;
80 }
81 
82 static int call_fn_unknown_sch(struct subchannel_id schid, void *data)
83 {
84 	struct cb_data *cb = data;
85 	int rc = 0;
86 
87 	if (idset_sch_contains(cb->set, schid))
88 		rc = cb->fn_unknown_sch(schid, cb->data);
89 	return rc;
90 }
91 
92 static int call_fn_all_sch(struct subchannel_id schid, void *data)
93 {
94 	struct cb_data *cb = data;
95 	struct subchannel *sch;
96 	int rc = 0;
97 
98 	sch = get_subchannel_by_schid(schid);
99 	if (sch) {
100 		if (cb->fn_known_sch)
101 			rc = cb->fn_known_sch(sch, cb->data);
102 		put_device(&sch->dev);
103 	} else {
104 		if (cb->fn_unknown_sch)
105 			rc = cb->fn_unknown_sch(schid, cb->data);
106 	}
107 
108 	return rc;
109 }
110 
111 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
112 			       int (*fn_unknown)(struct subchannel_id,
113 			       void *), void *data)
114 {
115 	struct cb_data cb;
116 	int rc;
117 
118 	cb.data = data;
119 	cb.fn_known_sch = fn_known;
120 	cb.fn_unknown_sch = fn_unknown;
121 
122 	if (fn_known && !fn_unknown) {
123 		/* Skip idset allocation in case of known-only loop. */
124 		cb.set = NULL;
125 		return bus_for_each_dev(&css_bus_type, NULL, &cb,
126 					call_fn_known_sch);
127 	}
128 
129 	cb.set = idset_sch_new();
130 	if (!cb.set)
131 		/* fall back to brute force scanning in case of oom */
132 		return for_each_subchannel(call_fn_all_sch, &cb);
133 
134 	idset_fill(cb.set);
135 
136 	/* Process registered subchannels. */
137 	rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch);
138 	if (rc)
139 		goto out;
140 	/* Process unregistered subchannels. */
141 	if (fn_unknown)
142 		rc = for_each_subchannel(call_fn_unknown_sch, &cb);
143 out:
144 	idset_free(cb.set);
145 
146 	return rc;
147 }
148 
149 static void css_sch_todo(struct work_struct *work);
150 
151 static int css_sch_create_locks(struct subchannel *sch)
152 {
153 	sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL);
154 	if (!sch->lock)
155 		return -ENOMEM;
156 
157 	spin_lock_init(sch->lock);
158 	mutex_init(&sch->reg_mutex);
159 
160 	return 0;
161 }
162 
163 static void css_subchannel_release(struct device *dev)
164 {
165 	struct subchannel *sch = to_subchannel(dev);
166 
167 	sch->config.intparm = 0;
168 	cio_commit_config(sch);
169 	kfree(sch->driver_override);
170 	kfree(sch->lock);
171 	kfree(sch);
172 }
173 
174 static int css_validate_subchannel(struct subchannel_id schid,
175 				   struct schib *schib)
176 {
177 	int err;
178 
179 	switch (schib->pmcw.st) {
180 	case SUBCHANNEL_TYPE_IO:
181 	case SUBCHANNEL_TYPE_MSG:
182 		if (!css_sch_is_valid(schib))
183 			err = -ENODEV;
184 		else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) {
185 			CIO_MSG_EVENT(6, "Blacklisted device detected "
186 				      "at devno %04X, subchannel set %x\n",
187 				      schib->pmcw.dev, schid.ssid);
188 			err = -ENODEV;
189 		} else
190 			err = 0;
191 		break;
192 	default:
193 		err = 0;
194 	}
195 	if (err)
196 		goto out;
197 
198 	CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n",
199 		      schid.ssid, schid.sch_no, schib->pmcw.st);
200 out:
201 	return err;
202 }
203 
204 struct subchannel *css_alloc_subchannel(struct subchannel_id schid,
205 					struct schib *schib)
206 {
207 	struct subchannel *sch;
208 	int ret;
209 
210 	ret = css_validate_subchannel(schid, schib);
211 	if (ret < 0)
212 		return ERR_PTR(ret);
213 
214 	sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA);
215 	if (!sch)
216 		return ERR_PTR(-ENOMEM);
217 
218 	sch->schid = schid;
219 	sch->schib = *schib;
220 	sch->st = schib->pmcw.st;
221 
222 	ret = css_sch_create_locks(sch);
223 	if (ret)
224 		goto err;
225 
226 	INIT_WORK(&sch->todo_work, css_sch_todo);
227 	sch->dev.release = &css_subchannel_release;
228 	sch->dev.dma_mask = &sch->dma_mask;
229 	device_initialize(&sch->dev);
230 	/*
231 	 * The physical addresses for some of the dma structures that can
232 	 * belong to a subchannel need to fit 31 bit width (e.g. ccw).
233 	 */
234 	ret = dma_set_coherent_mask(&sch->dev, DMA_BIT_MASK(31));
235 	if (ret)
236 		goto err;
237 	/*
238 	 * But we don't have such restrictions imposed on the stuff that
239 	 * is handled by the streaming API.
240 	 */
241 	ret = dma_set_mask(&sch->dev, DMA_BIT_MASK(64));
242 	if (ret)
243 		goto err;
244 
245 	return sch;
246 
247 err:
248 	kfree(sch);
249 	return ERR_PTR(ret);
250 }
251 
252 static int css_sch_device_register(struct subchannel *sch)
253 {
254 	int ret;
255 
256 	mutex_lock(&sch->reg_mutex);
257 	dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid,
258 		     sch->schid.sch_no);
259 	ret = device_add(&sch->dev);
260 	mutex_unlock(&sch->reg_mutex);
261 	return ret;
262 }
263 
264 /**
265  * css_sch_device_unregister - unregister a subchannel
266  * @sch: subchannel to be unregistered
267  */
268 void css_sch_device_unregister(struct subchannel *sch)
269 {
270 	mutex_lock(&sch->reg_mutex);
271 	if (device_is_registered(&sch->dev))
272 		device_unregister(&sch->dev);
273 	mutex_unlock(&sch->reg_mutex);
274 }
275 EXPORT_SYMBOL_GPL(css_sch_device_unregister);
276 
277 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw)
278 {
279 	int i;
280 	int mask;
281 
282 	memset(ssd, 0, sizeof(struct chsc_ssd_info));
283 	ssd->path_mask = pmcw->pim;
284 	for (i = 0; i < 8; i++) {
285 		mask = 0x80 >> i;
286 		if (pmcw->pim & mask) {
287 			chp_id_init(&ssd->chpid[i]);
288 			ssd->chpid[i].id = pmcw->chpid[i];
289 		}
290 	}
291 }
292 
293 static void ssd_register_chpids(struct chsc_ssd_info *ssd)
294 {
295 	int i;
296 	int mask;
297 
298 	for (i = 0; i < 8; i++) {
299 		mask = 0x80 >> i;
300 		if (ssd->path_mask & mask)
301 			chp_new(ssd->chpid[i]);
302 	}
303 }
304 
305 void css_update_ssd_info(struct subchannel *sch)
306 {
307 	int ret;
308 
309 	ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info);
310 	if (ret)
311 		ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw);
312 
313 	ssd_register_chpids(&sch->ssd_info);
314 }
315 
316 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
317 			 char *buf)
318 {
319 	struct subchannel *sch = to_subchannel(dev);
320 
321 	return sprintf(buf, "%01x\n", sch->st);
322 }
323 
324 static DEVICE_ATTR_RO(type);
325 
326 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
327 			     char *buf)
328 {
329 	struct subchannel *sch = to_subchannel(dev);
330 
331 	return sprintf(buf, "css:t%01X\n", sch->st);
332 }
333 
334 static DEVICE_ATTR_RO(modalias);
335 
336 static ssize_t driver_override_store(struct device *dev,
337 				     struct device_attribute *attr,
338 				     const char *buf, size_t count)
339 {
340 	struct subchannel *sch = to_subchannel(dev);
341 	char *driver_override, *old, *cp;
342 
343 	/* We need to keep extra room for a newline */
344 	if (count >= (PAGE_SIZE - 1))
345 		return -EINVAL;
346 
347 	driver_override = kstrndup(buf, count, GFP_KERNEL);
348 	if (!driver_override)
349 		return -ENOMEM;
350 
351 	cp = strchr(driver_override, '\n');
352 	if (cp)
353 		*cp = '\0';
354 
355 	device_lock(dev);
356 	old = sch->driver_override;
357 	if (strlen(driver_override)) {
358 		sch->driver_override = driver_override;
359 	} else {
360 		kfree(driver_override);
361 		sch->driver_override = NULL;
362 	}
363 	device_unlock(dev);
364 
365 	kfree(old);
366 
367 	return count;
368 }
369 
370 static ssize_t driver_override_show(struct device *dev,
371 				    struct device_attribute *attr, char *buf)
372 {
373 	struct subchannel *sch = to_subchannel(dev);
374 	ssize_t len;
375 
376 	device_lock(dev);
377 	len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override);
378 	device_unlock(dev);
379 	return len;
380 }
381 static DEVICE_ATTR_RW(driver_override);
382 
383 static struct attribute *subch_attrs[] = {
384 	&dev_attr_type.attr,
385 	&dev_attr_modalias.attr,
386 	&dev_attr_driver_override.attr,
387 	NULL,
388 };
389 
390 static struct attribute_group subch_attr_group = {
391 	.attrs = subch_attrs,
392 };
393 
394 static const struct attribute_group *default_subch_attr_groups[] = {
395 	&subch_attr_group,
396 	NULL,
397 };
398 
399 static ssize_t chpids_show(struct device *dev,
400 			   struct device_attribute *attr,
401 			   char *buf)
402 {
403 	struct subchannel *sch = to_subchannel(dev);
404 	struct chsc_ssd_info *ssd = &sch->ssd_info;
405 	ssize_t ret = 0;
406 	int mask;
407 	int chp;
408 
409 	for (chp = 0; chp < 8; chp++) {
410 		mask = 0x80 >> chp;
411 		if (ssd->path_mask & mask)
412 			ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id);
413 		else
414 			ret += sprintf(buf + ret, "00 ");
415 	}
416 	ret += sprintf(buf + ret, "\n");
417 	return ret;
418 }
419 static DEVICE_ATTR_RO(chpids);
420 
421 static ssize_t pimpampom_show(struct device *dev,
422 			      struct device_attribute *attr,
423 			      char *buf)
424 {
425 	struct subchannel *sch = to_subchannel(dev);
426 	struct pmcw *pmcw = &sch->schib.pmcw;
427 
428 	return sprintf(buf, "%02x %02x %02x\n",
429 		       pmcw->pim, pmcw->pam, pmcw->pom);
430 }
431 static DEVICE_ATTR_RO(pimpampom);
432 
433 static ssize_t dev_busid_show(struct device *dev,
434 			      struct device_attribute *attr,
435 			      char *buf)
436 {
437 	struct subchannel *sch = to_subchannel(dev);
438 	struct pmcw *pmcw = &sch->schib.pmcw;
439 
440 	if ((pmcw->st == SUBCHANNEL_TYPE_IO && pmcw->dnv) ||
441 	    (pmcw->st == SUBCHANNEL_TYPE_MSG && pmcw->w))
442 		return sysfs_emit(buf, "0.%x.%04x\n", sch->schid.ssid,
443 				  pmcw->dev);
444 	else
445 		return sysfs_emit(buf, "none\n");
446 }
447 static DEVICE_ATTR_RO(dev_busid);
448 
449 static struct attribute *io_subchannel_type_attrs[] = {
450 	&dev_attr_chpids.attr,
451 	&dev_attr_pimpampom.attr,
452 	&dev_attr_dev_busid.attr,
453 	NULL,
454 };
455 ATTRIBUTE_GROUPS(io_subchannel_type);
456 
457 static const struct device_type io_subchannel_type = {
458 	.groups = io_subchannel_type_groups,
459 };
460 
461 int css_register_subchannel(struct subchannel *sch)
462 {
463 	int ret;
464 
465 	/* Initialize the subchannel structure */
466 	sch->dev.parent = &channel_subsystems[0]->device;
467 	sch->dev.bus = &css_bus_type;
468 	sch->dev.groups = default_subch_attr_groups;
469 
470 	if (sch->st == SUBCHANNEL_TYPE_IO)
471 		sch->dev.type = &io_subchannel_type;
472 
473 	css_update_ssd_info(sch);
474 	/* make it known to the system */
475 	ret = css_sch_device_register(sch);
476 	if (ret) {
477 		CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n",
478 			      sch->schid.ssid, sch->schid.sch_no, ret);
479 		return ret;
480 	}
481 	return ret;
482 }
483 
484 static int css_probe_device(struct subchannel_id schid, struct schib *schib)
485 {
486 	struct subchannel *sch;
487 	int ret;
488 
489 	sch = css_alloc_subchannel(schid, schib);
490 	if (IS_ERR(sch))
491 		return PTR_ERR(sch);
492 
493 	ret = css_register_subchannel(sch);
494 	if (ret)
495 		put_device(&sch->dev);
496 
497 	return ret;
498 }
499 
500 static int
501 check_subchannel(struct device *dev, const void *data)
502 {
503 	struct subchannel *sch;
504 	struct subchannel_id *schid = (void *)data;
505 
506 	sch = to_subchannel(dev);
507 	return schid_equal(&sch->schid, schid);
508 }
509 
510 struct subchannel *
511 get_subchannel_by_schid(struct subchannel_id schid)
512 {
513 	struct device *dev;
514 
515 	dev = bus_find_device(&css_bus_type, NULL,
516 			      &schid, check_subchannel);
517 
518 	return dev ? to_subchannel(dev) : NULL;
519 }
520 
521 /**
522  * css_sch_is_valid() - check if a subchannel is valid
523  * @schib: subchannel information block for the subchannel
524  */
525 int css_sch_is_valid(struct schib *schib)
526 {
527 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv)
528 		return 0;
529 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w)
530 		return 0;
531 	return 1;
532 }
533 EXPORT_SYMBOL_GPL(css_sch_is_valid);
534 
535 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow)
536 {
537 	struct schib schib;
538 	int ccode;
539 
540 	if (!slow) {
541 		/* Will be done on the slow path. */
542 		return -EAGAIN;
543 	}
544 	/*
545 	 * The first subchannel that is not-operational (ccode==3)
546 	 * indicates that there aren't any more devices available.
547 	 * If stsch gets an exception, it means the current subchannel set
548 	 * is not valid.
549 	 */
550 	ccode = stsch(schid, &schib);
551 	if (ccode)
552 		return (ccode == 3) ? -ENXIO : ccode;
553 
554 	return css_probe_device(schid, &schib);
555 }
556 
557 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow)
558 {
559 	int ret = 0;
560 
561 	if (sch->driver) {
562 		if (sch->driver->sch_event)
563 			ret = sch->driver->sch_event(sch, slow);
564 		else
565 			dev_dbg(&sch->dev,
566 				"Got subchannel machine check but "
567 				"no sch_event handler provided.\n");
568 	}
569 	if (ret != 0 && ret != -EAGAIN) {
570 		CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n",
571 			      sch->schid.ssid, sch->schid.sch_no, ret);
572 	}
573 	return ret;
574 }
575 
576 static void css_evaluate_subchannel(struct subchannel_id schid, int slow)
577 {
578 	struct subchannel *sch;
579 	int ret;
580 
581 	sch = get_subchannel_by_schid(schid);
582 	if (sch) {
583 		ret = css_evaluate_known_subchannel(sch, slow);
584 		put_device(&sch->dev);
585 	} else
586 		ret = css_evaluate_new_subchannel(schid, slow);
587 	if (ret == -EAGAIN)
588 		css_schedule_eval(schid);
589 }
590 
591 /**
592  * css_sched_sch_todo - schedule a subchannel operation
593  * @sch: subchannel
594  * @todo: todo
595  *
596  * Schedule the operation identified by @todo to be performed on the slow path
597  * workqueue. Do nothing if another operation with higher priority is already
598  * scheduled. Needs to be called with subchannel lock held.
599  */
600 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo)
601 {
602 	CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n",
603 		      sch->schid.ssid, sch->schid.sch_no, todo);
604 	if (sch->todo >= todo)
605 		return;
606 	/* Get workqueue ref. */
607 	if (!get_device(&sch->dev))
608 		return;
609 	sch->todo = todo;
610 	if (!queue_work(cio_work_q, &sch->todo_work)) {
611 		/* Already queued, release workqueue ref. */
612 		put_device(&sch->dev);
613 	}
614 }
615 EXPORT_SYMBOL_GPL(css_sched_sch_todo);
616 
617 static void css_sch_todo(struct work_struct *work)
618 {
619 	struct subchannel *sch;
620 	enum sch_todo todo;
621 	int ret;
622 
623 	sch = container_of(work, struct subchannel, todo_work);
624 	/* Find out todo. */
625 	spin_lock_irq(sch->lock);
626 	todo = sch->todo;
627 	CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid,
628 		      sch->schid.sch_no, todo);
629 	sch->todo = SCH_TODO_NOTHING;
630 	spin_unlock_irq(sch->lock);
631 	/* Perform todo. */
632 	switch (todo) {
633 	case SCH_TODO_NOTHING:
634 		break;
635 	case SCH_TODO_EVAL:
636 		ret = css_evaluate_known_subchannel(sch, 1);
637 		if (ret == -EAGAIN) {
638 			spin_lock_irq(sch->lock);
639 			css_sched_sch_todo(sch, todo);
640 			spin_unlock_irq(sch->lock);
641 		}
642 		break;
643 	case SCH_TODO_UNREG:
644 		css_sch_device_unregister(sch);
645 		break;
646 	}
647 	/* Release workqueue ref. */
648 	put_device(&sch->dev);
649 }
650 
651 static struct idset *slow_subchannel_set;
652 static DEFINE_SPINLOCK(slow_subchannel_lock);
653 static DECLARE_WAIT_QUEUE_HEAD(css_eval_wq);
654 static atomic_t css_eval_scheduled;
655 
656 static int __init slow_subchannel_init(void)
657 {
658 	atomic_set(&css_eval_scheduled, 0);
659 	slow_subchannel_set = idset_sch_new();
660 	if (!slow_subchannel_set) {
661 		CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n");
662 		return -ENOMEM;
663 	}
664 	return 0;
665 }
666 
667 static int slow_eval_known_fn(struct subchannel *sch, void *data)
668 {
669 	int eval;
670 	int rc;
671 
672 	spin_lock_irq(&slow_subchannel_lock);
673 	eval = idset_sch_contains(slow_subchannel_set, sch->schid);
674 	idset_sch_del(slow_subchannel_set, sch->schid);
675 	spin_unlock_irq(&slow_subchannel_lock);
676 	if (eval) {
677 		rc = css_evaluate_known_subchannel(sch, 1);
678 		if (rc == -EAGAIN)
679 			css_schedule_eval(sch->schid);
680 		/*
681 		 * The loop might take long time for platforms with lots of
682 		 * known devices. Allow scheduling here.
683 		 */
684 		cond_resched();
685 	}
686 	return 0;
687 }
688 
689 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data)
690 {
691 	int eval;
692 	int rc = 0;
693 
694 	spin_lock_irq(&slow_subchannel_lock);
695 	eval = idset_sch_contains(slow_subchannel_set, schid);
696 	idset_sch_del(slow_subchannel_set, schid);
697 	spin_unlock_irq(&slow_subchannel_lock);
698 	if (eval) {
699 		rc = css_evaluate_new_subchannel(schid, 1);
700 		switch (rc) {
701 		case -EAGAIN:
702 			css_schedule_eval(schid);
703 			rc = 0;
704 			break;
705 		case -ENXIO:
706 		case -ENOMEM:
707 		case -EIO:
708 			/* These should abort looping */
709 			spin_lock_irq(&slow_subchannel_lock);
710 			idset_sch_del_subseq(slow_subchannel_set, schid);
711 			spin_unlock_irq(&slow_subchannel_lock);
712 			break;
713 		default:
714 			rc = 0;
715 		}
716 		/* Allow scheduling here since the containing loop might
717 		 * take a while.  */
718 		cond_resched();
719 	}
720 	return rc;
721 }
722 
723 static void css_slow_path_func(struct work_struct *unused)
724 {
725 	unsigned long flags;
726 
727 	CIO_TRACE_EVENT(4, "slowpath");
728 	for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn,
729 				   NULL);
730 	spin_lock_irqsave(&slow_subchannel_lock, flags);
731 	if (idset_is_empty(slow_subchannel_set)) {
732 		atomic_set(&css_eval_scheduled, 0);
733 		wake_up(&css_eval_wq);
734 	}
735 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
736 }
737 
738 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func);
739 struct workqueue_struct *cio_work_q;
740 
741 void css_schedule_eval(struct subchannel_id schid)
742 {
743 	unsigned long flags;
744 
745 	spin_lock_irqsave(&slow_subchannel_lock, flags);
746 	idset_sch_add(slow_subchannel_set, schid);
747 	atomic_set(&css_eval_scheduled, 1);
748 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
749 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
750 }
751 
752 void css_schedule_eval_all(void)
753 {
754 	unsigned long flags;
755 
756 	spin_lock_irqsave(&slow_subchannel_lock, flags);
757 	idset_fill(slow_subchannel_set);
758 	atomic_set(&css_eval_scheduled, 1);
759 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
760 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
761 }
762 
763 static int __unset_registered(struct device *dev, void *data)
764 {
765 	struct idset *set = data;
766 	struct subchannel *sch = to_subchannel(dev);
767 
768 	idset_sch_del(set, sch->schid);
769 	return 0;
770 }
771 
772 static int __unset_online(struct device *dev, void *data)
773 {
774 	struct idset *set = data;
775 	struct subchannel *sch = to_subchannel(dev);
776 	struct ccw_device *cdev;
777 
778 	if (sch->st == SUBCHANNEL_TYPE_IO) {
779 		cdev = sch_get_cdev(sch);
780 		if (cdev && cdev->online)
781 			idset_sch_del(set, sch->schid);
782 	}
783 
784 	return 0;
785 }
786 
787 void css_schedule_eval_cond(enum css_eval_cond cond, unsigned long delay)
788 {
789 	unsigned long flags;
790 	struct idset *set;
791 
792 	/* Find unregistered subchannels. */
793 	set = idset_sch_new();
794 	if (!set) {
795 		/* Fallback. */
796 		css_schedule_eval_all();
797 		return;
798 	}
799 	idset_fill(set);
800 	switch (cond) {
801 	case CSS_EVAL_UNREG:
802 		bus_for_each_dev(&css_bus_type, NULL, set, __unset_registered);
803 		break;
804 	case CSS_EVAL_NOT_ONLINE:
805 		bus_for_each_dev(&css_bus_type, NULL, set, __unset_online);
806 		break;
807 	default:
808 		break;
809 	}
810 
811 	/* Apply to slow_subchannel_set. */
812 	spin_lock_irqsave(&slow_subchannel_lock, flags);
813 	idset_add_set(slow_subchannel_set, set);
814 	atomic_set(&css_eval_scheduled, 1);
815 	queue_delayed_work(cio_work_q, &slow_path_work, delay);
816 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
817 	idset_free(set);
818 }
819 
820 void css_wait_for_slow_path(void)
821 {
822 	flush_workqueue(cio_work_q);
823 }
824 
825 /* Schedule reprobing of all unregistered subchannels. */
826 void css_schedule_reprobe(void)
827 {
828 	/* Schedule with a delay to allow merging of subsequent calls. */
829 	css_schedule_eval_cond(CSS_EVAL_UNREG, 1 * HZ);
830 }
831 EXPORT_SYMBOL_GPL(css_schedule_reprobe);
832 
833 /*
834  * Called from the machine check handler for subchannel report words.
835  */
836 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow)
837 {
838 	struct subchannel_id mchk_schid;
839 	struct subchannel *sch;
840 
841 	if (overflow) {
842 		css_schedule_eval_all();
843 		return;
844 	}
845 	CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, "
846 		      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
847 		      crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc,
848 		      crw0->erc, crw0->rsid);
849 	if (crw1)
850 		CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, "
851 			      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
852 			      crw1->slct, crw1->oflw, crw1->chn, crw1->rsc,
853 			      crw1->anc, crw1->erc, crw1->rsid);
854 	init_subchannel_id(&mchk_schid);
855 	mchk_schid.sch_no = crw0->rsid;
856 	if (crw1)
857 		mchk_schid.ssid = (crw1->rsid >> 4) & 3;
858 
859 	if (crw0->erc == CRW_ERC_PMOD) {
860 		sch = get_subchannel_by_schid(mchk_schid);
861 		if (sch) {
862 			css_update_ssd_info(sch);
863 			put_device(&sch->dev);
864 		}
865 	}
866 	/*
867 	 * Since we are always presented with IPI in the CRW, we have to
868 	 * use stsch() to find out if the subchannel in question has come
869 	 * or gone.
870 	 */
871 	css_evaluate_subchannel(mchk_schid, 0);
872 }
873 
874 static void __init
875 css_generate_pgid(struct channel_subsystem *css, u32 tod_high)
876 {
877 	struct cpuid cpu_id;
878 
879 	if (css_general_characteristics.mcss) {
880 		css->global_pgid.pgid_high.ext_cssid.version = 0x80;
881 		css->global_pgid.pgid_high.ext_cssid.cssid =
882 			css->id_valid ? css->cssid : 0;
883 	} else {
884 		css->global_pgid.pgid_high.cpu_addr = stap();
885 	}
886 	get_cpu_id(&cpu_id);
887 	css->global_pgid.cpu_id = cpu_id.ident;
888 	css->global_pgid.cpu_model = cpu_id.machine;
889 	css->global_pgid.tod_high = tod_high;
890 }
891 
892 static void channel_subsystem_release(struct device *dev)
893 {
894 	struct channel_subsystem *css = to_css(dev);
895 
896 	mutex_destroy(&css->mutex);
897 	kfree(css);
898 }
899 
900 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a,
901 			       char *buf)
902 {
903 	struct channel_subsystem *css = to_css(dev);
904 
905 	if (!css->id_valid)
906 		return -EINVAL;
907 
908 	return sprintf(buf, "%x\n", css->cssid);
909 }
910 static DEVICE_ATTR_RO(real_cssid);
911 
912 static ssize_t rescan_store(struct device *dev, struct device_attribute *a,
913 			    const char *buf, size_t count)
914 {
915 	CIO_TRACE_EVENT(4, "usr-rescan");
916 
917 	css_schedule_eval_all();
918 	css_complete_work();
919 
920 	return count;
921 }
922 static DEVICE_ATTR_WO(rescan);
923 
924 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a,
925 			      char *buf)
926 {
927 	struct channel_subsystem *css = to_css(dev);
928 	int ret;
929 
930 	mutex_lock(&css->mutex);
931 	ret = sprintf(buf, "%x\n", css->cm_enabled);
932 	mutex_unlock(&css->mutex);
933 	return ret;
934 }
935 
936 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a,
937 			       const char *buf, size_t count)
938 {
939 	struct channel_subsystem *css = to_css(dev);
940 	unsigned long val;
941 	int ret;
942 
943 	ret = kstrtoul(buf, 16, &val);
944 	if (ret)
945 		return ret;
946 	mutex_lock(&css->mutex);
947 	switch (val) {
948 	case 0:
949 		ret = css->cm_enabled ? chsc_secm(css, 0) : 0;
950 		break;
951 	case 1:
952 		ret = css->cm_enabled ? 0 : chsc_secm(css, 1);
953 		break;
954 	default:
955 		ret = -EINVAL;
956 	}
957 	mutex_unlock(&css->mutex);
958 	return ret < 0 ? ret : count;
959 }
960 static DEVICE_ATTR_RW(cm_enable);
961 
962 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr,
963 			      int index)
964 {
965 	return css_chsc_characteristics.secm ? attr->mode : 0;
966 }
967 
968 static struct attribute *cssdev_attrs[] = {
969 	&dev_attr_real_cssid.attr,
970 	&dev_attr_rescan.attr,
971 	NULL,
972 };
973 
974 static struct attribute_group cssdev_attr_group = {
975 	.attrs = cssdev_attrs,
976 };
977 
978 static struct attribute *cssdev_cm_attrs[] = {
979 	&dev_attr_cm_enable.attr,
980 	NULL,
981 };
982 
983 static struct attribute_group cssdev_cm_attr_group = {
984 	.attrs = cssdev_cm_attrs,
985 	.is_visible = cm_enable_mode,
986 };
987 
988 static const struct attribute_group *cssdev_attr_groups[] = {
989 	&cssdev_attr_group,
990 	&cssdev_cm_attr_group,
991 	NULL,
992 };
993 
994 static int __init setup_css(int nr)
995 {
996 	struct channel_subsystem *css;
997 	int ret;
998 
999 	css = kzalloc(sizeof(*css), GFP_KERNEL);
1000 	if (!css)
1001 		return -ENOMEM;
1002 
1003 	channel_subsystems[nr] = css;
1004 	dev_set_name(&css->device, "css%x", nr);
1005 	css->device.groups = cssdev_attr_groups;
1006 	css->device.release = channel_subsystem_release;
1007 	/*
1008 	 * We currently allocate notifier bits with this (using
1009 	 * css->device as the device argument with the DMA API)
1010 	 * and are fine with 64 bit addresses.
1011 	 */
1012 	ret = dma_coerce_mask_and_coherent(&css->device, DMA_BIT_MASK(64));
1013 	if (ret) {
1014 		kfree(css);
1015 		goto out_err;
1016 	}
1017 
1018 	mutex_init(&css->mutex);
1019 	ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid);
1020 	if (!ret) {
1021 		css->id_valid = true;
1022 		pr_info("Partition identifier %01x.%01x\n", css->cssid,
1023 			css->iid);
1024 	}
1025 	css_generate_pgid(css, (u32) (get_tod_clock() >> 32));
1026 
1027 	ret = device_register(&css->device);
1028 	if (ret) {
1029 		put_device(&css->device);
1030 		goto out_err;
1031 	}
1032 
1033 	css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel),
1034 					 GFP_KERNEL);
1035 	if (!css->pseudo_subchannel) {
1036 		device_unregister(&css->device);
1037 		ret = -ENOMEM;
1038 		goto out_err;
1039 	}
1040 
1041 	css->pseudo_subchannel->dev.parent = &css->device;
1042 	css->pseudo_subchannel->dev.release = css_subchannel_release;
1043 	mutex_init(&css->pseudo_subchannel->reg_mutex);
1044 	ret = css_sch_create_locks(css->pseudo_subchannel);
1045 	if (ret) {
1046 		kfree(css->pseudo_subchannel);
1047 		device_unregister(&css->device);
1048 		goto out_err;
1049 	}
1050 
1051 	dev_set_name(&css->pseudo_subchannel->dev, "defunct");
1052 	ret = device_register(&css->pseudo_subchannel->dev);
1053 	if (ret) {
1054 		put_device(&css->pseudo_subchannel->dev);
1055 		device_unregister(&css->device);
1056 		goto out_err;
1057 	}
1058 
1059 	return ret;
1060 out_err:
1061 	channel_subsystems[nr] = NULL;
1062 	return ret;
1063 }
1064 
1065 static int css_reboot_event(struct notifier_block *this,
1066 			    unsigned long event,
1067 			    void *ptr)
1068 {
1069 	struct channel_subsystem *css;
1070 	int ret;
1071 
1072 	ret = NOTIFY_DONE;
1073 	for_each_css(css) {
1074 		mutex_lock(&css->mutex);
1075 		if (css->cm_enabled)
1076 			if (chsc_secm(css, 0))
1077 				ret = NOTIFY_BAD;
1078 		mutex_unlock(&css->mutex);
1079 	}
1080 
1081 	return ret;
1082 }
1083 
1084 static struct notifier_block css_reboot_notifier = {
1085 	.notifier_call = css_reboot_event,
1086 };
1087 
1088 #define  CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO)
1089 static struct gen_pool *cio_dma_pool;
1090 
1091 /* Currently cio supports only a single css */
1092 struct device *cio_get_dma_css_dev(void)
1093 {
1094 	return &channel_subsystems[0]->device;
1095 }
1096 
1097 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages)
1098 {
1099 	struct gen_pool *gp_dma;
1100 	void *cpu_addr;
1101 	dma_addr_t dma_addr;
1102 	int i;
1103 
1104 	gp_dma = gen_pool_create(3, -1);
1105 	if (!gp_dma)
1106 		return NULL;
1107 	for (i = 0; i < nr_pages; ++i) {
1108 		cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr,
1109 					      CIO_DMA_GFP);
1110 		if (!cpu_addr)
1111 			return gp_dma;
1112 		gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr,
1113 				  dma_addr, PAGE_SIZE, -1);
1114 	}
1115 	return gp_dma;
1116 }
1117 
1118 static void __gp_dma_free_dma(struct gen_pool *pool,
1119 			      struct gen_pool_chunk *chunk, void *data)
1120 {
1121 	size_t chunk_size = chunk->end_addr - chunk->start_addr + 1;
1122 
1123 	dma_free_coherent((struct device *) data, chunk_size,
1124 			 (void *) chunk->start_addr,
1125 			 (dma_addr_t) chunk->phys_addr);
1126 }
1127 
1128 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev)
1129 {
1130 	if (!gp_dma)
1131 		return;
1132 	/* this is quite ugly but no better idea */
1133 	gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev);
1134 	gen_pool_destroy(gp_dma);
1135 }
1136 
1137 static int cio_dma_pool_init(void)
1138 {
1139 	/* No need to free up the resources: compiled in */
1140 	cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1);
1141 	if (!cio_dma_pool)
1142 		return -ENOMEM;
1143 	return 0;
1144 }
1145 
1146 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev,
1147 			size_t size)
1148 {
1149 	dma_addr_t dma_addr;
1150 	unsigned long addr;
1151 	size_t chunk_size;
1152 
1153 	if (!gp_dma)
1154 		return NULL;
1155 	addr = gen_pool_alloc(gp_dma, size);
1156 	while (!addr) {
1157 		chunk_size = round_up(size, PAGE_SIZE);
1158 		addr = (unsigned long) dma_alloc_coherent(dma_dev,
1159 					 chunk_size, &dma_addr, CIO_DMA_GFP);
1160 		if (!addr)
1161 			return NULL;
1162 		gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1);
1163 		addr = gen_pool_alloc(gp_dma, size);
1164 	}
1165 	return (void *) addr;
1166 }
1167 
1168 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size)
1169 {
1170 	if (!cpu_addr)
1171 		return;
1172 	memset(cpu_addr, 0, size);
1173 	gen_pool_free(gp_dma, (unsigned long) cpu_addr, size);
1174 }
1175 
1176 /*
1177  * Allocate dma memory from the css global pool. Intended for memory not
1178  * specific to any single device within the css. The allocated memory
1179  * is not guaranteed to be 31-bit addressable.
1180  *
1181  * Caution: Not suitable for early stuff like console.
1182  */
1183 void *cio_dma_zalloc(size_t size)
1184 {
1185 	return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size);
1186 }
1187 
1188 void cio_dma_free(void *cpu_addr, size_t size)
1189 {
1190 	cio_gp_dma_free(cio_dma_pool, cpu_addr, size);
1191 }
1192 
1193 /*
1194  * Now that the driver core is running, we can setup our channel subsystem.
1195  * The struct subchannel's are created during probing.
1196  */
1197 static int __init css_bus_init(void)
1198 {
1199 	int ret, i;
1200 
1201 	ret = chsc_init();
1202 	if (ret)
1203 		return ret;
1204 
1205 	chsc_determine_css_characteristics();
1206 	/* Try to enable MSS. */
1207 	ret = chsc_enable_facility(CHSC_SDA_OC_MSS);
1208 	if (ret)
1209 		max_ssid = 0;
1210 	else /* Success. */
1211 		max_ssid = __MAX_SSID;
1212 
1213 	ret = slow_subchannel_init();
1214 	if (ret)
1215 		goto out;
1216 
1217 	ret = crw_register_handler(CRW_RSC_SCH, css_process_crw);
1218 	if (ret)
1219 		goto out;
1220 
1221 	if ((ret = bus_register(&css_bus_type)))
1222 		goto out;
1223 
1224 	/* Setup css structure. */
1225 	for (i = 0; i <= MAX_CSS_IDX; i++) {
1226 		ret = setup_css(i);
1227 		if (ret)
1228 			goto out_unregister;
1229 	}
1230 	ret = register_reboot_notifier(&css_reboot_notifier);
1231 	if (ret)
1232 		goto out_unregister;
1233 	ret = cio_dma_pool_init();
1234 	if (ret)
1235 		goto out_unregister_rn;
1236 	airq_init();
1237 	css_init_done = 1;
1238 
1239 	/* Enable default isc for I/O subchannels. */
1240 	isc_register(IO_SCH_ISC);
1241 
1242 	return 0;
1243 out_unregister_rn:
1244 	unregister_reboot_notifier(&css_reboot_notifier);
1245 out_unregister:
1246 	while (i-- > 0) {
1247 		struct channel_subsystem *css = channel_subsystems[i];
1248 		device_unregister(&css->pseudo_subchannel->dev);
1249 		device_unregister(&css->device);
1250 	}
1251 	bus_unregister(&css_bus_type);
1252 out:
1253 	crw_unregister_handler(CRW_RSC_SCH);
1254 	idset_free(slow_subchannel_set);
1255 	chsc_init_cleanup();
1256 	pr_alert("The CSS device driver initialization failed with "
1257 		 "errno=%d\n", ret);
1258 	return ret;
1259 }
1260 
1261 static void __init css_bus_cleanup(void)
1262 {
1263 	struct channel_subsystem *css;
1264 
1265 	for_each_css(css) {
1266 		device_unregister(&css->pseudo_subchannel->dev);
1267 		device_unregister(&css->device);
1268 	}
1269 	bus_unregister(&css_bus_type);
1270 	crw_unregister_handler(CRW_RSC_SCH);
1271 	idset_free(slow_subchannel_set);
1272 	chsc_init_cleanup();
1273 	isc_unregister(IO_SCH_ISC);
1274 }
1275 
1276 static int __init channel_subsystem_init(void)
1277 {
1278 	int ret;
1279 
1280 	ret = css_bus_init();
1281 	if (ret)
1282 		return ret;
1283 	cio_work_q = create_singlethread_workqueue("cio");
1284 	if (!cio_work_q) {
1285 		ret = -ENOMEM;
1286 		goto out_bus;
1287 	}
1288 	ret = io_subchannel_init();
1289 	if (ret)
1290 		goto out_wq;
1291 
1292 	/* Register subchannels which are already in use. */
1293 	cio_register_early_subchannels();
1294 	/* Start initial subchannel evaluation. */
1295 	css_schedule_eval_all();
1296 
1297 	return ret;
1298 out_wq:
1299 	destroy_workqueue(cio_work_q);
1300 out_bus:
1301 	css_bus_cleanup();
1302 	return ret;
1303 }
1304 subsys_initcall(channel_subsystem_init);
1305 
1306 static int css_settle(struct device_driver *drv, void *unused)
1307 {
1308 	struct css_driver *cssdrv = to_cssdriver(drv);
1309 
1310 	if (cssdrv->settle)
1311 		return cssdrv->settle();
1312 	return 0;
1313 }
1314 
1315 int css_complete_work(void)
1316 {
1317 	int ret;
1318 
1319 	/* Wait for the evaluation of subchannels to finish. */
1320 	ret = wait_event_interruptible(css_eval_wq,
1321 				       atomic_read(&css_eval_scheduled) == 0);
1322 	if (ret)
1323 		return -EINTR;
1324 	flush_workqueue(cio_work_q);
1325 	/* Wait for the subchannel type specific initialization to finish */
1326 	return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle);
1327 }
1328 
1329 
1330 /*
1331  * Wait for the initialization of devices to finish, to make sure we are
1332  * done with our setup if the search for the root device starts.
1333  */
1334 static int __init channel_subsystem_init_sync(void)
1335 {
1336 	css_complete_work();
1337 	return 0;
1338 }
1339 subsys_initcall_sync(channel_subsystem_init_sync);
1340 
1341 #ifdef CONFIG_PROC_FS
1342 static ssize_t cio_settle_write(struct file *file, const char __user *buf,
1343 				size_t count, loff_t *ppos)
1344 {
1345 	int ret;
1346 
1347 	/* Handle pending CRW's. */
1348 	crw_wait_for_channel_report();
1349 	ret = css_complete_work();
1350 
1351 	return ret ? ret : count;
1352 }
1353 
1354 static const struct proc_ops cio_settle_proc_ops = {
1355 	.proc_open	= nonseekable_open,
1356 	.proc_write	= cio_settle_write,
1357 	.proc_lseek	= no_llseek,
1358 };
1359 
1360 static int __init cio_settle_init(void)
1361 {
1362 	struct proc_dir_entry *entry;
1363 
1364 	entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops);
1365 	if (!entry)
1366 		return -ENOMEM;
1367 	return 0;
1368 }
1369 device_initcall(cio_settle_init);
1370 #endif /*CONFIG_PROC_FS*/
1371 
1372 int sch_is_pseudo_sch(struct subchannel *sch)
1373 {
1374 	if (!sch->dev.parent)
1375 		return 0;
1376 	return sch == to_css(sch->dev.parent)->pseudo_subchannel;
1377 }
1378 
1379 static int css_bus_match(struct device *dev, struct device_driver *drv)
1380 {
1381 	struct subchannel *sch = to_subchannel(dev);
1382 	struct css_driver *driver = to_cssdriver(drv);
1383 	struct css_device_id *id;
1384 
1385 	/* When driver_override is set, only bind to the matching driver */
1386 	if (sch->driver_override && strcmp(sch->driver_override, drv->name))
1387 		return 0;
1388 
1389 	for (id = driver->subchannel_type; id->match_flags; id++) {
1390 		if (sch->st == id->type)
1391 			return 1;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int css_probe(struct device *dev)
1398 {
1399 	struct subchannel *sch;
1400 	int ret;
1401 
1402 	sch = to_subchannel(dev);
1403 	sch->driver = to_cssdriver(dev->driver);
1404 	ret = sch->driver->probe ? sch->driver->probe(sch) : 0;
1405 	if (ret)
1406 		sch->driver = NULL;
1407 	return ret;
1408 }
1409 
1410 static void css_remove(struct device *dev)
1411 {
1412 	struct subchannel *sch;
1413 
1414 	sch = to_subchannel(dev);
1415 	if (sch->driver->remove)
1416 		sch->driver->remove(sch);
1417 	sch->driver = NULL;
1418 }
1419 
1420 static void css_shutdown(struct device *dev)
1421 {
1422 	struct subchannel *sch;
1423 
1424 	sch = to_subchannel(dev);
1425 	if (sch->driver && sch->driver->shutdown)
1426 		sch->driver->shutdown(sch);
1427 }
1428 
1429 static int css_uevent(struct device *dev, struct kobj_uevent_env *env)
1430 {
1431 	struct subchannel *sch = to_subchannel(dev);
1432 	int ret;
1433 
1434 	ret = add_uevent_var(env, "ST=%01X", sch->st);
1435 	if (ret)
1436 		return ret;
1437 	ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st);
1438 	return ret;
1439 }
1440 
1441 static struct bus_type css_bus_type = {
1442 	.name     = "css",
1443 	.match    = css_bus_match,
1444 	.probe    = css_probe,
1445 	.remove   = css_remove,
1446 	.shutdown = css_shutdown,
1447 	.uevent   = css_uevent,
1448 };
1449 
1450 /**
1451  * css_driver_register - register a css driver
1452  * @cdrv: css driver to register
1453  *
1454  * This is mainly a wrapper around driver_register that sets name
1455  * and bus_type in the embedded struct device_driver correctly.
1456  */
1457 int css_driver_register(struct css_driver *cdrv)
1458 {
1459 	cdrv->drv.bus = &css_bus_type;
1460 	return driver_register(&cdrv->drv);
1461 }
1462 EXPORT_SYMBOL_GPL(css_driver_register);
1463 
1464 /**
1465  * css_driver_unregister - unregister a css driver
1466  * @cdrv: css driver to unregister
1467  *
1468  * This is a wrapper around driver_unregister.
1469  */
1470 void css_driver_unregister(struct css_driver *cdrv)
1471 {
1472 	driver_unregister(&cdrv->drv);
1473 }
1474 EXPORT_SYMBOL_GPL(css_driver_unregister);
1475