xref: /linux/drivers/s390/cio/css.c (revision 4ac6d90867a4de2e12117e755dbd76e08d88697f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * driver for channel subsystem
4  *
5  * Copyright IBM Corp. 2002, 2010
6  *
7  * Author(s): Arnd Bergmann (arndb@de.ibm.com)
8  *	      Cornelia Huck (cornelia.huck@de.ibm.com)
9  */
10 
11 #define KMSG_COMPONENT "cio"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13 
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/reboot.h>
21 #include <linux/proc_fs.h>
22 #include <linux/genalloc.h>
23 #include <linux/dma-mapping.h>
24 #include <asm/isc.h>
25 #include <asm/crw.h>
26 
27 #include "css.h"
28 #include "cio.h"
29 #include "blacklist.h"
30 #include "cio_debug.h"
31 #include "ioasm.h"
32 #include "chsc.h"
33 #include "device.h"
34 #include "idset.h"
35 #include "chp.h"
36 
37 int css_init_done = 0;
38 int max_ssid;
39 
40 #define MAX_CSS_IDX 0
41 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1];
42 static struct bus_type css_bus_type;
43 
44 int
45 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data)
46 {
47 	struct subchannel_id schid;
48 	int ret;
49 
50 	init_subchannel_id(&schid);
51 	do {
52 		do {
53 			ret = fn(schid, data);
54 			if (ret)
55 				break;
56 		} while (schid.sch_no++ < __MAX_SUBCHANNEL);
57 		schid.sch_no = 0;
58 	} while (schid.ssid++ < max_ssid);
59 	return ret;
60 }
61 
62 struct cb_data {
63 	void *data;
64 	struct idset *set;
65 	int (*fn_known_sch)(struct subchannel *, void *);
66 	int (*fn_unknown_sch)(struct subchannel_id, void *);
67 };
68 
69 static int call_fn_known_sch(struct device *dev, void *data)
70 {
71 	struct subchannel *sch = to_subchannel(dev);
72 	struct cb_data *cb = data;
73 	int rc = 0;
74 
75 	if (cb->set)
76 		idset_sch_del(cb->set, sch->schid);
77 	if (cb->fn_known_sch)
78 		rc = cb->fn_known_sch(sch, cb->data);
79 	return rc;
80 }
81 
82 static int call_fn_unknown_sch(struct subchannel_id schid, void *data)
83 {
84 	struct cb_data *cb = data;
85 	int rc = 0;
86 
87 	if (idset_sch_contains(cb->set, schid))
88 		rc = cb->fn_unknown_sch(schid, cb->data);
89 	return rc;
90 }
91 
92 static int call_fn_all_sch(struct subchannel_id schid, void *data)
93 {
94 	struct cb_data *cb = data;
95 	struct subchannel *sch;
96 	int rc = 0;
97 
98 	sch = get_subchannel_by_schid(schid);
99 	if (sch) {
100 		if (cb->fn_known_sch)
101 			rc = cb->fn_known_sch(sch, cb->data);
102 		put_device(&sch->dev);
103 	} else {
104 		if (cb->fn_unknown_sch)
105 			rc = cb->fn_unknown_sch(schid, cb->data);
106 	}
107 
108 	return rc;
109 }
110 
111 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
112 			       int (*fn_unknown)(struct subchannel_id,
113 			       void *), void *data)
114 {
115 	struct cb_data cb;
116 	int rc;
117 
118 	cb.data = data;
119 	cb.fn_known_sch = fn_known;
120 	cb.fn_unknown_sch = fn_unknown;
121 
122 	if (fn_known && !fn_unknown) {
123 		/* Skip idset allocation in case of known-only loop. */
124 		cb.set = NULL;
125 		return bus_for_each_dev(&css_bus_type, NULL, &cb,
126 					call_fn_known_sch);
127 	}
128 
129 	cb.set = idset_sch_new();
130 	if (!cb.set)
131 		/* fall back to brute force scanning in case of oom */
132 		return for_each_subchannel(call_fn_all_sch, &cb);
133 
134 	idset_fill(cb.set);
135 
136 	/* Process registered subchannels. */
137 	rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch);
138 	if (rc)
139 		goto out;
140 	/* Process unregistered subchannels. */
141 	if (fn_unknown)
142 		rc = for_each_subchannel(call_fn_unknown_sch, &cb);
143 out:
144 	idset_free(cb.set);
145 
146 	return rc;
147 }
148 
149 static void css_sch_todo(struct work_struct *work);
150 
151 static int css_sch_create_locks(struct subchannel *sch)
152 {
153 	sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL);
154 	if (!sch->lock)
155 		return -ENOMEM;
156 
157 	spin_lock_init(sch->lock);
158 	mutex_init(&sch->reg_mutex);
159 
160 	return 0;
161 }
162 
163 static void css_subchannel_release(struct device *dev)
164 {
165 	struct subchannel *sch = to_subchannel(dev);
166 
167 	sch->config.intparm = 0;
168 	cio_commit_config(sch);
169 	kfree(sch->driver_override);
170 	kfree(sch->lock);
171 	kfree(sch);
172 }
173 
174 static int css_validate_subchannel(struct subchannel_id schid,
175 				   struct schib *schib)
176 {
177 	int err;
178 
179 	switch (schib->pmcw.st) {
180 	case SUBCHANNEL_TYPE_IO:
181 	case SUBCHANNEL_TYPE_MSG:
182 		if (!css_sch_is_valid(schib))
183 			err = -ENODEV;
184 		else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) {
185 			CIO_MSG_EVENT(6, "Blacklisted device detected "
186 				      "at devno %04X, subchannel set %x\n",
187 				      schib->pmcw.dev, schid.ssid);
188 			err = -ENODEV;
189 		} else
190 			err = 0;
191 		break;
192 	default:
193 		err = 0;
194 	}
195 	if (err)
196 		goto out;
197 
198 	CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n",
199 		      schid.ssid, schid.sch_no, schib->pmcw.st);
200 out:
201 	return err;
202 }
203 
204 struct subchannel *css_alloc_subchannel(struct subchannel_id schid,
205 					struct schib *schib)
206 {
207 	struct subchannel *sch;
208 	int ret;
209 
210 	ret = css_validate_subchannel(schid, schib);
211 	if (ret < 0)
212 		return ERR_PTR(ret);
213 
214 	sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA);
215 	if (!sch)
216 		return ERR_PTR(-ENOMEM);
217 
218 	sch->schid = schid;
219 	sch->schib = *schib;
220 	sch->st = schib->pmcw.st;
221 
222 	ret = css_sch_create_locks(sch);
223 	if (ret)
224 		goto err;
225 
226 	INIT_WORK(&sch->todo_work, css_sch_todo);
227 	sch->dev.release = &css_subchannel_release;
228 	sch->dev.dma_mask = &sch->dma_mask;
229 	device_initialize(&sch->dev);
230 	/*
231 	 * The physical addresses for some of the dma structures that can
232 	 * belong to a subchannel need to fit 31 bit width (e.g. ccw).
233 	 */
234 	ret = dma_set_coherent_mask(&sch->dev, DMA_BIT_MASK(31));
235 	if (ret)
236 		goto err;
237 	/*
238 	 * But we don't have such restrictions imposed on the stuff that
239 	 * is handled by the streaming API.
240 	 */
241 	ret = dma_set_mask(&sch->dev, DMA_BIT_MASK(64));
242 	if (ret)
243 		goto err;
244 
245 	return sch;
246 
247 err:
248 	kfree(sch);
249 	return ERR_PTR(ret);
250 }
251 
252 static int css_sch_device_register(struct subchannel *sch)
253 {
254 	int ret;
255 
256 	mutex_lock(&sch->reg_mutex);
257 	dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid,
258 		     sch->schid.sch_no);
259 	ret = device_add(&sch->dev);
260 	mutex_unlock(&sch->reg_mutex);
261 	return ret;
262 }
263 
264 /**
265  * css_sch_device_unregister - unregister a subchannel
266  * @sch: subchannel to be unregistered
267  */
268 void css_sch_device_unregister(struct subchannel *sch)
269 {
270 	mutex_lock(&sch->reg_mutex);
271 	if (device_is_registered(&sch->dev))
272 		device_unregister(&sch->dev);
273 	mutex_unlock(&sch->reg_mutex);
274 }
275 EXPORT_SYMBOL_GPL(css_sch_device_unregister);
276 
277 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw)
278 {
279 	int i;
280 	int mask;
281 
282 	memset(ssd, 0, sizeof(struct chsc_ssd_info));
283 	ssd->path_mask = pmcw->pim;
284 	for (i = 0; i < 8; i++) {
285 		mask = 0x80 >> i;
286 		if (pmcw->pim & mask) {
287 			chp_id_init(&ssd->chpid[i]);
288 			ssd->chpid[i].id = pmcw->chpid[i];
289 		}
290 	}
291 }
292 
293 static void ssd_register_chpids(struct chsc_ssd_info *ssd)
294 {
295 	int i;
296 	int mask;
297 
298 	for (i = 0; i < 8; i++) {
299 		mask = 0x80 >> i;
300 		if (ssd->path_mask & mask)
301 			chp_new(ssd->chpid[i]);
302 	}
303 }
304 
305 void css_update_ssd_info(struct subchannel *sch)
306 {
307 	int ret;
308 
309 	ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info);
310 	if (ret)
311 		ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw);
312 
313 	ssd_register_chpids(&sch->ssd_info);
314 }
315 
316 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
317 			 char *buf)
318 {
319 	struct subchannel *sch = to_subchannel(dev);
320 
321 	return sprintf(buf, "%01x\n", sch->st);
322 }
323 
324 static DEVICE_ATTR_RO(type);
325 
326 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
327 			     char *buf)
328 {
329 	struct subchannel *sch = to_subchannel(dev);
330 
331 	return sprintf(buf, "css:t%01X\n", sch->st);
332 }
333 
334 static DEVICE_ATTR_RO(modalias);
335 
336 static ssize_t driver_override_store(struct device *dev,
337 				     struct device_attribute *attr,
338 				     const char *buf, size_t count)
339 {
340 	struct subchannel *sch = to_subchannel(dev);
341 	char *driver_override, *old, *cp;
342 
343 	/* We need to keep extra room for a newline */
344 	if (count >= (PAGE_SIZE - 1))
345 		return -EINVAL;
346 
347 	driver_override = kstrndup(buf, count, GFP_KERNEL);
348 	if (!driver_override)
349 		return -ENOMEM;
350 
351 	cp = strchr(driver_override, '\n');
352 	if (cp)
353 		*cp = '\0';
354 
355 	device_lock(dev);
356 	old = sch->driver_override;
357 	if (strlen(driver_override)) {
358 		sch->driver_override = driver_override;
359 	} else {
360 		kfree(driver_override);
361 		sch->driver_override = NULL;
362 	}
363 	device_unlock(dev);
364 
365 	kfree(old);
366 
367 	return count;
368 }
369 
370 static ssize_t driver_override_show(struct device *dev,
371 				    struct device_attribute *attr, char *buf)
372 {
373 	struct subchannel *sch = to_subchannel(dev);
374 	ssize_t len;
375 
376 	device_lock(dev);
377 	len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override);
378 	device_unlock(dev);
379 	return len;
380 }
381 static DEVICE_ATTR_RW(driver_override);
382 
383 static struct attribute *subch_attrs[] = {
384 	&dev_attr_type.attr,
385 	&dev_attr_modalias.attr,
386 	&dev_attr_driver_override.attr,
387 	NULL,
388 };
389 
390 static struct attribute_group subch_attr_group = {
391 	.attrs = subch_attrs,
392 };
393 
394 static const struct attribute_group *default_subch_attr_groups[] = {
395 	&subch_attr_group,
396 	NULL,
397 };
398 
399 static ssize_t chpids_show(struct device *dev,
400 			   struct device_attribute *attr,
401 			   char *buf)
402 {
403 	struct subchannel *sch = to_subchannel(dev);
404 	struct chsc_ssd_info *ssd = &sch->ssd_info;
405 	ssize_t ret = 0;
406 	int mask;
407 	int chp;
408 
409 	for (chp = 0; chp < 8; chp++) {
410 		mask = 0x80 >> chp;
411 		if (ssd->path_mask & mask)
412 			ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id);
413 		else
414 			ret += sprintf(buf + ret, "00 ");
415 	}
416 	ret += sprintf(buf + ret, "\n");
417 	return ret;
418 }
419 static DEVICE_ATTR_RO(chpids);
420 
421 static ssize_t pimpampom_show(struct device *dev,
422 			      struct device_attribute *attr,
423 			      char *buf)
424 {
425 	struct subchannel *sch = to_subchannel(dev);
426 	struct pmcw *pmcw = &sch->schib.pmcw;
427 
428 	return sprintf(buf, "%02x %02x %02x\n",
429 		       pmcw->pim, pmcw->pam, pmcw->pom);
430 }
431 static DEVICE_ATTR_RO(pimpampom);
432 
433 static ssize_t dev_busid_show(struct device *dev,
434 			      struct device_attribute *attr,
435 			      char *buf)
436 {
437 	struct subchannel *sch = to_subchannel(dev);
438 	struct pmcw *pmcw = &sch->schib.pmcw;
439 
440 	if ((pmcw->st == SUBCHANNEL_TYPE_IO ||
441 	     pmcw->st == SUBCHANNEL_TYPE_MSG) && pmcw->dnv)
442 		return sysfs_emit(buf, "0.%x.%04x\n", sch->schid.ssid,
443 				  pmcw->dev);
444 	else
445 		return sysfs_emit(buf, "none\n");
446 }
447 static DEVICE_ATTR_RO(dev_busid);
448 
449 static struct attribute *io_subchannel_type_attrs[] = {
450 	&dev_attr_chpids.attr,
451 	&dev_attr_pimpampom.attr,
452 	&dev_attr_dev_busid.attr,
453 	NULL,
454 };
455 ATTRIBUTE_GROUPS(io_subchannel_type);
456 
457 static const struct device_type io_subchannel_type = {
458 	.groups = io_subchannel_type_groups,
459 };
460 
461 int css_register_subchannel(struct subchannel *sch)
462 {
463 	int ret;
464 
465 	/* Initialize the subchannel structure */
466 	sch->dev.parent = &channel_subsystems[0]->device;
467 	sch->dev.bus = &css_bus_type;
468 	sch->dev.groups = default_subch_attr_groups;
469 
470 	if (sch->st == SUBCHANNEL_TYPE_IO)
471 		sch->dev.type = &io_subchannel_type;
472 
473 	/*
474 	 * We don't want to generate uevents for I/O subchannels that don't
475 	 * have a working ccw device behind them since they will be
476 	 * unregistered before they can be used anyway, so we delay the add
477 	 * uevent until after device recognition was successful.
478 	 * Note that we suppress the uevent for all subchannel types;
479 	 * the subchannel driver can decide itself when it wants to inform
480 	 * userspace of its existence.
481 	 */
482 	dev_set_uevent_suppress(&sch->dev, 1);
483 	css_update_ssd_info(sch);
484 	/* make it known to the system */
485 	ret = css_sch_device_register(sch);
486 	if (ret) {
487 		CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n",
488 			      sch->schid.ssid, sch->schid.sch_no, ret);
489 		return ret;
490 	}
491 	if (!sch->driver) {
492 		/*
493 		 * No driver matched. Generate the uevent now so that
494 		 * a fitting driver module may be loaded based on the
495 		 * modalias.
496 		 */
497 		dev_set_uevent_suppress(&sch->dev, 0);
498 		kobject_uevent(&sch->dev.kobj, KOBJ_ADD);
499 	}
500 	return ret;
501 }
502 
503 static int css_probe_device(struct subchannel_id schid, struct schib *schib)
504 {
505 	struct subchannel *sch;
506 	int ret;
507 
508 	sch = css_alloc_subchannel(schid, schib);
509 	if (IS_ERR(sch))
510 		return PTR_ERR(sch);
511 
512 	ret = css_register_subchannel(sch);
513 	if (ret)
514 		put_device(&sch->dev);
515 
516 	return ret;
517 }
518 
519 static int
520 check_subchannel(struct device *dev, const void *data)
521 {
522 	struct subchannel *sch;
523 	struct subchannel_id *schid = (void *)data;
524 
525 	sch = to_subchannel(dev);
526 	return schid_equal(&sch->schid, schid);
527 }
528 
529 struct subchannel *
530 get_subchannel_by_schid(struct subchannel_id schid)
531 {
532 	struct device *dev;
533 
534 	dev = bus_find_device(&css_bus_type, NULL,
535 			      &schid, check_subchannel);
536 
537 	return dev ? to_subchannel(dev) : NULL;
538 }
539 
540 /**
541  * css_sch_is_valid() - check if a subchannel is valid
542  * @schib: subchannel information block for the subchannel
543  */
544 int css_sch_is_valid(struct schib *schib)
545 {
546 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv)
547 		return 0;
548 	if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w)
549 		return 0;
550 	return 1;
551 }
552 EXPORT_SYMBOL_GPL(css_sch_is_valid);
553 
554 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow)
555 {
556 	struct schib schib;
557 	int ccode;
558 
559 	if (!slow) {
560 		/* Will be done on the slow path. */
561 		return -EAGAIN;
562 	}
563 	/*
564 	 * The first subchannel that is not-operational (ccode==3)
565 	 * indicates that there aren't any more devices available.
566 	 * If stsch gets an exception, it means the current subchannel set
567 	 * is not valid.
568 	 */
569 	ccode = stsch(schid, &schib);
570 	if (ccode)
571 		return (ccode == 3) ? -ENXIO : ccode;
572 
573 	return css_probe_device(schid, &schib);
574 }
575 
576 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow)
577 {
578 	int ret = 0;
579 
580 	if (sch->driver) {
581 		if (sch->driver->sch_event)
582 			ret = sch->driver->sch_event(sch, slow);
583 		else
584 			dev_dbg(&sch->dev,
585 				"Got subchannel machine check but "
586 				"no sch_event handler provided.\n");
587 	}
588 	if (ret != 0 && ret != -EAGAIN) {
589 		CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n",
590 			      sch->schid.ssid, sch->schid.sch_no, ret);
591 	}
592 	return ret;
593 }
594 
595 static void css_evaluate_subchannel(struct subchannel_id schid, int slow)
596 {
597 	struct subchannel *sch;
598 	int ret;
599 
600 	sch = get_subchannel_by_schid(schid);
601 	if (sch) {
602 		ret = css_evaluate_known_subchannel(sch, slow);
603 		put_device(&sch->dev);
604 	} else
605 		ret = css_evaluate_new_subchannel(schid, slow);
606 	if (ret == -EAGAIN)
607 		css_schedule_eval(schid);
608 }
609 
610 /**
611  * css_sched_sch_todo - schedule a subchannel operation
612  * @sch: subchannel
613  * @todo: todo
614  *
615  * Schedule the operation identified by @todo to be performed on the slow path
616  * workqueue. Do nothing if another operation with higher priority is already
617  * scheduled. Needs to be called with subchannel lock held.
618  */
619 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo)
620 {
621 	CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n",
622 		      sch->schid.ssid, sch->schid.sch_no, todo);
623 	if (sch->todo >= todo)
624 		return;
625 	/* Get workqueue ref. */
626 	if (!get_device(&sch->dev))
627 		return;
628 	sch->todo = todo;
629 	if (!queue_work(cio_work_q, &sch->todo_work)) {
630 		/* Already queued, release workqueue ref. */
631 		put_device(&sch->dev);
632 	}
633 }
634 EXPORT_SYMBOL_GPL(css_sched_sch_todo);
635 
636 static void css_sch_todo(struct work_struct *work)
637 {
638 	struct subchannel *sch;
639 	enum sch_todo todo;
640 	int ret;
641 
642 	sch = container_of(work, struct subchannel, todo_work);
643 	/* Find out todo. */
644 	spin_lock_irq(sch->lock);
645 	todo = sch->todo;
646 	CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid,
647 		      sch->schid.sch_no, todo);
648 	sch->todo = SCH_TODO_NOTHING;
649 	spin_unlock_irq(sch->lock);
650 	/* Perform todo. */
651 	switch (todo) {
652 	case SCH_TODO_NOTHING:
653 		break;
654 	case SCH_TODO_EVAL:
655 		ret = css_evaluate_known_subchannel(sch, 1);
656 		if (ret == -EAGAIN) {
657 			spin_lock_irq(sch->lock);
658 			css_sched_sch_todo(sch, todo);
659 			spin_unlock_irq(sch->lock);
660 		}
661 		break;
662 	case SCH_TODO_UNREG:
663 		css_sch_device_unregister(sch);
664 		break;
665 	}
666 	/* Release workqueue ref. */
667 	put_device(&sch->dev);
668 }
669 
670 static struct idset *slow_subchannel_set;
671 static DEFINE_SPINLOCK(slow_subchannel_lock);
672 static DECLARE_WAIT_QUEUE_HEAD(css_eval_wq);
673 static atomic_t css_eval_scheduled;
674 
675 static int __init slow_subchannel_init(void)
676 {
677 	atomic_set(&css_eval_scheduled, 0);
678 	slow_subchannel_set = idset_sch_new();
679 	if (!slow_subchannel_set) {
680 		CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n");
681 		return -ENOMEM;
682 	}
683 	return 0;
684 }
685 
686 static int slow_eval_known_fn(struct subchannel *sch, void *data)
687 {
688 	int eval;
689 	int rc;
690 
691 	spin_lock_irq(&slow_subchannel_lock);
692 	eval = idset_sch_contains(slow_subchannel_set, sch->schid);
693 	idset_sch_del(slow_subchannel_set, sch->schid);
694 	spin_unlock_irq(&slow_subchannel_lock);
695 	if (eval) {
696 		rc = css_evaluate_known_subchannel(sch, 1);
697 		if (rc == -EAGAIN)
698 			css_schedule_eval(sch->schid);
699 		/*
700 		 * The loop might take long time for platforms with lots of
701 		 * known devices. Allow scheduling here.
702 		 */
703 		cond_resched();
704 	}
705 	return 0;
706 }
707 
708 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data)
709 {
710 	int eval;
711 	int rc = 0;
712 
713 	spin_lock_irq(&slow_subchannel_lock);
714 	eval = idset_sch_contains(slow_subchannel_set, schid);
715 	idset_sch_del(slow_subchannel_set, schid);
716 	spin_unlock_irq(&slow_subchannel_lock);
717 	if (eval) {
718 		rc = css_evaluate_new_subchannel(schid, 1);
719 		switch (rc) {
720 		case -EAGAIN:
721 			css_schedule_eval(schid);
722 			rc = 0;
723 			break;
724 		case -ENXIO:
725 		case -ENOMEM:
726 		case -EIO:
727 			/* These should abort looping */
728 			spin_lock_irq(&slow_subchannel_lock);
729 			idset_sch_del_subseq(slow_subchannel_set, schid);
730 			spin_unlock_irq(&slow_subchannel_lock);
731 			break;
732 		default:
733 			rc = 0;
734 		}
735 		/* Allow scheduling here since the containing loop might
736 		 * take a while.  */
737 		cond_resched();
738 	}
739 	return rc;
740 }
741 
742 static void css_slow_path_func(struct work_struct *unused)
743 {
744 	unsigned long flags;
745 
746 	CIO_TRACE_EVENT(4, "slowpath");
747 	for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn,
748 				   NULL);
749 	spin_lock_irqsave(&slow_subchannel_lock, flags);
750 	if (idset_is_empty(slow_subchannel_set)) {
751 		atomic_set(&css_eval_scheduled, 0);
752 		wake_up(&css_eval_wq);
753 	}
754 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
755 }
756 
757 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func);
758 struct workqueue_struct *cio_work_q;
759 
760 void css_schedule_eval(struct subchannel_id schid)
761 {
762 	unsigned long flags;
763 
764 	spin_lock_irqsave(&slow_subchannel_lock, flags);
765 	idset_sch_add(slow_subchannel_set, schid);
766 	atomic_set(&css_eval_scheduled, 1);
767 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
768 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
769 }
770 
771 void css_schedule_eval_all(void)
772 {
773 	unsigned long flags;
774 
775 	spin_lock_irqsave(&slow_subchannel_lock, flags);
776 	idset_fill(slow_subchannel_set);
777 	atomic_set(&css_eval_scheduled, 1);
778 	queue_delayed_work(cio_work_q, &slow_path_work, 0);
779 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
780 }
781 
782 static int __unset_registered(struct device *dev, void *data)
783 {
784 	struct idset *set = data;
785 	struct subchannel *sch = to_subchannel(dev);
786 
787 	idset_sch_del(set, sch->schid);
788 	return 0;
789 }
790 
791 void css_schedule_eval_all_unreg(unsigned long delay)
792 {
793 	unsigned long flags;
794 	struct idset *unreg_set;
795 
796 	/* Find unregistered subchannels. */
797 	unreg_set = idset_sch_new();
798 	if (!unreg_set) {
799 		/* Fallback. */
800 		css_schedule_eval_all();
801 		return;
802 	}
803 	idset_fill(unreg_set);
804 	bus_for_each_dev(&css_bus_type, NULL, unreg_set, __unset_registered);
805 	/* Apply to slow_subchannel_set. */
806 	spin_lock_irqsave(&slow_subchannel_lock, flags);
807 	idset_add_set(slow_subchannel_set, unreg_set);
808 	atomic_set(&css_eval_scheduled, 1);
809 	queue_delayed_work(cio_work_q, &slow_path_work, delay);
810 	spin_unlock_irqrestore(&slow_subchannel_lock, flags);
811 	idset_free(unreg_set);
812 }
813 
814 void css_wait_for_slow_path(void)
815 {
816 	flush_workqueue(cio_work_q);
817 }
818 
819 /* Schedule reprobing of all unregistered subchannels. */
820 void css_schedule_reprobe(void)
821 {
822 	/* Schedule with a delay to allow merging of subsequent calls. */
823 	css_schedule_eval_all_unreg(1 * HZ);
824 }
825 EXPORT_SYMBOL_GPL(css_schedule_reprobe);
826 
827 /*
828  * Called from the machine check handler for subchannel report words.
829  */
830 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow)
831 {
832 	struct subchannel_id mchk_schid;
833 	struct subchannel *sch;
834 
835 	if (overflow) {
836 		css_schedule_eval_all();
837 		return;
838 	}
839 	CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, "
840 		      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
841 		      crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc,
842 		      crw0->erc, crw0->rsid);
843 	if (crw1)
844 		CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, "
845 			      "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
846 			      crw1->slct, crw1->oflw, crw1->chn, crw1->rsc,
847 			      crw1->anc, crw1->erc, crw1->rsid);
848 	init_subchannel_id(&mchk_schid);
849 	mchk_schid.sch_no = crw0->rsid;
850 	if (crw1)
851 		mchk_schid.ssid = (crw1->rsid >> 4) & 3;
852 
853 	if (crw0->erc == CRW_ERC_PMOD) {
854 		sch = get_subchannel_by_schid(mchk_schid);
855 		if (sch) {
856 			css_update_ssd_info(sch);
857 			put_device(&sch->dev);
858 		}
859 	}
860 	/*
861 	 * Since we are always presented with IPI in the CRW, we have to
862 	 * use stsch() to find out if the subchannel in question has come
863 	 * or gone.
864 	 */
865 	css_evaluate_subchannel(mchk_schid, 0);
866 }
867 
868 static void __init
869 css_generate_pgid(struct channel_subsystem *css, u32 tod_high)
870 {
871 	struct cpuid cpu_id;
872 
873 	if (css_general_characteristics.mcss) {
874 		css->global_pgid.pgid_high.ext_cssid.version = 0x80;
875 		css->global_pgid.pgid_high.ext_cssid.cssid =
876 			css->id_valid ? css->cssid : 0;
877 	} else {
878 		css->global_pgid.pgid_high.cpu_addr = stap();
879 	}
880 	get_cpu_id(&cpu_id);
881 	css->global_pgid.cpu_id = cpu_id.ident;
882 	css->global_pgid.cpu_model = cpu_id.machine;
883 	css->global_pgid.tod_high = tod_high;
884 }
885 
886 static void channel_subsystem_release(struct device *dev)
887 {
888 	struct channel_subsystem *css = to_css(dev);
889 
890 	mutex_destroy(&css->mutex);
891 	kfree(css);
892 }
893 
894 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a,
895 			       char *buf)
896 {
897 	struct channel_subsystem *css = to_css(dev);
898 
899 	if (!css->id_valid)
900 		return -EINVAL;
901 
902 	return sprintf(buf, "%x\n", css->cssid);
903 }
904 static DEVICE_ATTR_RO(real_cssid);
905 
906 static ssize_t rescan_store(struct device *dev, struct device_attribute *a,
907 			    const char *buf, size_t count)
908 {
909 	CIO_TRACE_EVENT(4, "usr-rescan");
910 
911 	css_schedule_eval_all();
912 	css_complete_work();
913 
914 	return count;
915 }
916 static DEVICE_ATTR_WO(rescan);
917 
918 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a,
919 			      char *buf)
920 {
921 	struct channel_subsystem *css = to_css(dev);
922 	int ret;
923 
924 	mutex_lock(&css->mutex);
925 	ret = sprintf(buf, "%x\n", css->cm_enabled);
926 	mutex_unlock(&css->mutex);
927 	return ret;
928 }
929 
930 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a,
931 			       const char *buf, size_t count)
932 {
933 	struct channel_subsystem *css = to_css(dev);
934 	unsigned long val;
935 	int ret;
936 
937 	ret = kstrtoul(buf, 16, &val);
938 	if (ret)
939 		return ret;
940 	mutex_lock(&css->mutex);
941 	switch (val) {
942 	case 0:
943 		ret = css->cm_enabled ? chsc_secm(css, 0) : 0;
944 		break;
945 	case 1:
946 		ret = css->cm_enabled ? 0 : chsc_secm(css, 1);
947 		break;
948 	default:
949 		ret = -EINVAL;
950 	}
951 	mutex_unlock(&css->mutex);
952 	return ret < 0 ? ret : count;
953 }
954 static DEVICE_ATTR_RW(cm_enable);
955 
956 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr,
957 			      int index)
958 {
959 	return css_chsc_characteristics.secm ? attr->mode : 0;
960 }
961 
962 static struct attribute *cssdev_attrs[] = {
963 	&dev_attr_real_cssid.attr,
964 	&dev_attr_rescan.attr,
965 	NULL,
966 };
967 
968 static struct attribute_group cssdev_attr_group = {
969 	.attrs = cssdev_attrs,
970 };
971 
972 static struct attribute *cssdev_cm_attrs[] = {
973 	&dev_attr_cm_enable.attr,
974 	NULL,
975 };
976 
977 static struct attribute_group cssdev_cm_attr_group = {
978 	.attrs = cssdev_cm_attrs,
979 	.is_visible = cm_enable_mode,
980 };
981 
982 static const struct attribute_group *cssdev_attr_groups[] = {
983 	&cssdev_attr_group,
984 	&cssdev_cm_attr_group,
985 	NULL,
986 };
987 
988 static int __init setup_css(int nr)
989 {
990 	struct channel_subsystem *css;
991 	int ret;
992 
993 	css = kzalloc(sizeof(*css), GFP_KERNEL);
994 	if (!css)
995 		return -ENOMEM;
996 
997 	channel_subsystems[nr] = css;
998 	dev_set_name(&css->device, "css%x", nr);
999 	css->device.groups = cssdev_attr_groups;
1000 	css->device.release = channel_subsystem_release;
1001 	/*
1002 	 * We currently allocate notifier bits with this (using
1003 	 * css->device as the device argument with the DMA API)
1004 	 * and are fine with 64 bit addresses.
1005 	 */
1006 	ret = dma_coerce_mask_and_coherent(&css->device, DMA_BIT_MASK(64));
1007 	if (ret) {
1008 		kfree(css);
1009 		goto out_err;
1010 	}
1011 
1012 	mutex_init(&css->mutex);
1013 	ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid);
1014 	if (!ret) {
1015 		css->id_valid = true;
1016 		pr_info("Partition identifier %01x.%01x\n", css->cssid,
1017 			css->iid);
1018 	}
1019 	css_generate_pgid(css, (u32) (get_tod_clock() >> 32));
1020 
1021 	ret = device_register(&css->device);
1022 	if (ret) {
1023 		put_device(&css->device);
1024 		goto out_err;
1025 	}
1026 
1027 	css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel),
1028 					 GFP_KERNEL);
1029 	if (!css->pseudo_subchannel) {
1030 		device_unregister(&css->device);
1031 		ret = -ENOMEM;
1032 		goto out_err;
1033 	}
1034 
1035 	css->pseudo_subchannel->dev.parent = &css->device;
1036 	css->pseudo_subchannel->dev.release = css_subchannel_release;
1037 	mutex_init(&css->pseudo_subchannel->reg_mutex);
1038 	ret = css_sch_create_locks(css->pseudo_subchannel);
1039 	if (ret) {
1040 		kfree(css->pseudo_subchannel);
1041 		device_unregister(&css->device);
1042 		goto out_err;
1043 	}
1044 
1045 	dev_set_name(&css->pseudo_subchannel->dev, "defunct");
1046 	ret = device_register(&css->pseudo_subchannel->dev);
1047 	if (ret) {
1048 		put_device(&css->pseudo_subchannel->dev);
1049 		device_unregister(&css->device);
1050 		goto out_err;
1051 	}
1052 
1053 	return ret;
1054 out_err:
1055 	channel_subsystems[nr] = NULL;
1056 	return ret;
1057 }
1058 
1059 static int css_reboot_event(struct notifier_block *this,
1060 			    unsigned long event,
1061 			    void *ptr)
1062 {
1063 	struct channel_subsystem *css;
1064 	int ret;
1065 
1066 	ret = NOTIFY_DONE;
1067 	for_each_css(css) {
1068 		mutex_lock(&css->mutex);
1069 		if (css->cm_enabled)
1070 			if (chsc_secm(css, 0))
1071 				ret = NOTIFY_BAD;
1072 		mutex_unlock(&css->mutex);
1073 	}
1074 
1075 	return ret;
1076 }
1077 
1078 static struct notifier_block css_reboot_notifier = {
1079 	.notifier_call = css_reboot_event,
1080 };
1081 
1082 #define  CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO)
1083 static struct gen_pool *cio_dma_pool;
1084 
1085 /* Currently cio supports only a single css */
1086 struct device *cio_get_dma_css_dev(void)
1087 {
1088 	return &channel_subsystems[0]->device;
1089 }
1090 
1091 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages)
1092 {
1093 	struct gen_pool *gp_dma;
1094 	void *cpu_addr;
1095 	dma_addr_t dma_addr;
1096 	int i;
1097 
1098 	gp_dma = gen_pool_create(3, -1);
1099 	if (!gp_dma)
1100 		return NULL;
1101 	for (i = 0; i < nr_pages; ++i) {
1102 		cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr,
1103 					      CIO_DMA_GFP);
1104 		if (!cpu_addr)
1105 			return gp_dma;
1106 		gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr,
1107 				  dma_addr, PAGE_SIZE, -1);
1108 	}
1109 	return gp_dma;
1110 }
1111 
1112 static void __gp_dma_free_dma(struct gen_pool *pool,
1113 			      struct gen_pool_chunk *chunk, void *data)
1114 {
1115 	size_t chunk_size = chunk->end_addr - chunk->start_addr + 1;
1116 
1117 	dma_free_coherent((struct device *) data, chunk_size,
1118 			 (void *) chunk->start_addr,
1119 			 (dma_addr_t) chunk->phys_addr);
1120 }
1121 
1122 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev)
1123 {
1124 	if (!gp_dma)
1125 		return;
1126 	/* this is quite ugly but no better idea */
1127 	gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev);
1128 	gen_pool_destroy(gp_dma);
1129 }
1130 
1131 static int cio_dma_pool_init(void)
1132 {
1133 	/* No need to free up the resources: compiled in */
1134 	cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1);
1135 	if (!cio_dma_pool)
1136 		return -ENOMEM;
1137 	return 0;
1138 }
1139 
1140 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev,
1141 			size_t size)
1142 {
1143 	dma_addr_t dma_addr;
1144 	unsigned long addr;
1145 	size_t chunk_size;
1146 
1147 	if (!gp_dma)
1148 		return NULL;
1149 	addr = gen_pool_alloc(gp_dma, size);
1150 	while (!addr) {
1151 		chunk_size = round_up(size, PAGE_SIZE);
1152 		addr = (unsigned long) dma_alloc_coherent(dma_dev,
1153 					 chunk_size, &dma_addr, CIO_DMA_GFP);
1154 		if (!addr)
1155 			return NULL;
1156 		gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1);
1157 		addr = gen_pool_alloc(gp_dma, size);
1158 	}
1159 	return (void *) addr;
1160 }
1161 
1162 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size)
1163 {
1164 	if (!cpu_addr)
1165 		return;
1166 	memset(cpu_addr, 0, size);
1167 	gen_pool_free(gp_dma, (unsigned long) cpu_addr, size);
1168 }
1169 
1170 /*
1171  * Allocate dma memory from the css global pool. Intended for memory not
1172  * specific to any single device within the css. The allocated memory
1173  * is not guaranteed to be 31-bit addressable.
1174  *
1175  * Caution: Not suitable for early stuff like console.
1176  */
1177 void *cio_dma_zalloc(size_t size)
1178 {
1179 	return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size);
1180 }
1181 
1182 void cio_dma_free(void *cpu_addr, size_t size)
1183 {
1184 	cio_gp_dma_free(cio_dma_pool, cpu_addr, size);
1185 }
1186 
1187 /*
1188  * Now that the driver core is running, we can setup our channel subsystem.
1189  * The struct subchannel's are created during probing.
1190  */
1191 static int __init css_bus_init(void)
1192 {
1193 	int ret, i;
1194 
1195 	ret = chsc_init();
1196 	if (ret)
1197 		return ret;
1198 
1199 	chsc_determine_css_characteristics();
1200 	/* Try to enable MSS. */
1201 	ret = chsc_enable_facility(CHSC_SDA_OC_MSS);
1202 	if (ret)
1203 		max_ssid = 0;
1204 	else /* Success. */
1205 		max_ssid = __MAX_SSID;
1206 
1207 	ret = slow_subchannel_init();
1208 	if (ret)
1209 		goto out;
1210 
1211 	ret = crw_register_handler(CRW_RSC_SCH, css_process_crw);
1212 	if (ret)
1213 		goto out;
1214 
1215 	if ((ret = bus_register(&css_bus_type)))
1216 		goto out;
1217 
1218 	/* Setup css structure. */
1219 	for (i = 0; i <= MAX_CSS_IDX; i++) {
1220 		ret = setup_css(i);
1221 		if (ret)
1222 			goto out_unregister;
1223 	}
1224 	ret = register_reboot_notifier(&css_reboot_notifier);
1225 	if (ret)
1226 		goto out_unregister;
1227 	ret = cio_dma_pool_init();
1228 	if (ret)
1229 		goto out_unregister_rn;
1230 	airq_init();
1231 	css_init_done = 1;
1232 
1233 	/* Enable default isc for I/O subchannels. */
1234 	isc_register(IO_SCH_ISC);
1235 
1236 	return 0;
1237 out_unregister_rn:
1238 	unregister_reboot_notifier(&css_reboot_notifier);
1239 out_unregister:
1240 	while (i-- > 0) {
1241 		struct channel_subsystem *css = channel_subsystems[i];
1242 		device_unregister(&css->pseudo_subchannel->dev);
1243 		device_unregister(&css->device);
1244 	}
1245 	bus_unregister(&css_bus_type);
1246 out:
1247 	crw_unregister_handler(CRW_RSC_SCH);
1248 	idset_free(slow_subchannel_set);
1249 	chsc_init_cleanup();
1250 	pr_alert("The CSS device driver initialization failed with "
1251 		 "errno=%d\n", ret);
1252 	return ret;
1253 }
1254 
1255 static void __init css_bus_cleanup(void)
1256 {
1257 	struct channel_subsystem *css;
1258 
1259 	for_each_css(css) {
1260 		device_unregister(&css->pseudo_subchannel->dev);
1261 		device_unregister(&css->device);
1262 	}
1263 	bus_unregister(&css_bus_type);
1264 	crw_unregister_handler(CRW_RSC_SCH);
1265 	idset_free(slow_subchannel_set);
1266 	chsc_init_cleanup();
1267 	isc_unregister(IO_SCH_ISC);
1268 }
1269 
1270 static int __init channel_subsystem_init(void)
1271 {
1272 	int ret;
1273 
1274 	ret = css_bus_init();
1275 	if (ret)
1276 		return ret;
1277 	cio_work_q = create_singlethread_workqueue("cio");
1278 	if (!cio_work_q) {
1279 		ret = -ENOMEM;
1280 		goto out_bus;
1281 	}
1282 	ret = io_subchannel_init();
1283 	if (ret)
1284 		goto out_wq;
1285 
1286 	/* Register subchannels which are already in use. */
1287 	cio_register_early_subchannels();
1288 	/* Start initial subchannel evaluation. */
1289 	css_schedule_eval_all();
1290 
1291 	return ret;
1292 out_wq:
1293 	destroy_workqueue(cio_work_q);
1294 out_bus:
1295 	css_bus_cleanup();
1296 	return ret;
1297 }
1298 subsys_initcall(channel_subsystem_init);
1299 
1300 static int css_settle(struct device_driver *drv, void *unused)
1301 {
1302 	struct css_driver *cssdrv = to_cssdriver(drv);
1303 
1304 	if (cssdrv->settle)
1305 		return cssdrv->settle();
1306 	return 0;
1307 }
1308 
1309 int css_complete_work(void)
1310 {
1311 	int ret;
1312 
1313 	/* Wait for the evaluation of subchannels to finish. */
1314 	ret = wait_event_interruptible(css_eval_wq,
1315 				       atomic_read(&css_eval_scheduled) == 0);
1316 	if (ret)
1317 		return -EINTR;
1318 	flush_workqueue(cio_work_q);
1319 	/* Wait for the subchannel type specific initialization to finish */
1320 	return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle);
1321 }
1322 
1323 
1324 /*
1325  * Wait for the initialization of devices to finish, to make sure we are
1326  * done with our setup if the search for the root device starts.
1327  */
1328 static int __init channel_subsystem_init_sync(void)
1329 {
1330 	css_complete_work();
1331 	return 0;
1332 }
1333 subsys_initcall_sync(channel_subsystem_init_sync);
1334 
1335 #ifdef CONFIG_PROC_FS
1336 static ssize_t cio_settle_write(struct file *file, const char __user *buf,
1337 				size_t count, loff_t *ppos)
1338 {
1339 	int ret;
1340 
1341 	/* Handle pending CRW's. */
1342 	crw_wait_for_channel_report();
1343 	ret = css_complete_work();
1344 
1345 	return ret ? ret : count;
1346 }
1347 
1348 static const struct proc_ops cio_settle_proc_ops = {
1349 	.proc_open	= nonseekable_open,
1350 	.proc_write	= cio_settle_write,
1351 	.proc_lseek	= no_llseek,
1352 };
1353 
1354 static int __init cio_settle_init(void)
1355 {
1356 	struct proc_dir_entry *entry;
1357 
1358 	entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops);
1359 	if (!entry)
1360 		return -ENOMEM;
1361 	return 0;
1362 }
1363 device_initcall(cio_settle_init);
1364 #endif /*CONFIG_PROC_FS*/
1365 
1366 int sch_is_pseudo_sch(struct subchannel *sch)
1367 {
1368 	if (!sch->dev.parent)
1369 		return 0;
1370 	return sch == to_css(sch->dev.parent)->pseudo_subchannel;
1371 }
1372 
1373 static int css_bus_match(struct device *dev, struct device_driver *drv)
1374 {
1375 	struct subchannel *sch = to_subchannel(dev);
1376 	struct css_driver *driver = to_cssdriver(drv);
1377 	struct css_device_id *id;
1378 
1379 	/* When driver_override is set, only bind to the matching driver */
1380 	if (sch->driver_override && strcmp(sch->driver_override, drv->name))
1381 		return 0;
1382 
1383 	for (id = driver->subchannel_type; id->match_flags; id++) {
1384 		if (sch->st == id->type)
1385 			return 1;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static int css_probe(struct device *dev)
1392 {
1393 	struct subchannel *sch;
1394 	int ret;
1395 
1396 	sch = to_subchannel(dev);
1397 	sch->driver = to_cssdriver(dev->driver);
1398 	ret = sch->driver->probe ? sch->driver->probe(sch) : 0;
1399 	if (ret)
1400 		sch->driver = NULL;
1401 	return ret;
1402 }
1403 
1404 static void css_remove(struct device *dev)
1405 {
1406 	struct subchannel *sch;
1407 
1408 	sch = to_subchannel(dev);
1409 	if (sch->driver->remove)
1410 		sch->driver->remove(sch);
1411 	sch->driver = NULL;
1412 }
1413 
1414 static void css_shutdown(struct device *dev)
1415 {
1416 	struct subchannel *sch;
1417 
1418 	sch = to_subchannel(dev);
1419 	if (sch->driver && sch->driver->shutdown)
1420 		sch->driver->shutdown(sch);
1421 }
1422 
1423 static int css_uevent(struct device *dev, struct kobj_uevent_env *env)
1424 {
1425 	struct subchannel *sch = to_subchannel(dev);
1426 	int ret;
1427 
1428 	ret = add_uevent_var(env, "ST=%01X", sch->st);
1429 	if (ret)
1430 		return ret;
1431 	ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st);
1432 	return ret;
1433 }
1434 
1435 static struct bus_type css_bus_type = {
1436 	.name     = "css",
1437 	.match    = css_bus_match,
1438 	.probe    = css_probe,
1439 	.remove   = css_remove,
1440 	.shutdown = css_shutdown,
1441 	.uevent   = css_uevent,
1442 };
1443 
1444 /**
1445  * css_driver_register - register a css driver
1446  * @cdrv: css driver to register
1447  *
1448  * This is mainly a wrapper around driver_register that sets name
1449  * and bus_type in the embedded struct device_driver correctly.
1450  */
1451 int css_driver_register(struct css_driver *cdrv)
1452 {
1453 	cdrv->drv.bus = &css_bus_type;
1454 	return driver_register(&cdrv->drv);
1455 }
1456 EXPORT_SYMBOL_GPL(css_driver_register);
1457 
1458 /**
1459  * css_driver_unregister - unregister a css driver
1460  * @cdrv: css driver to unregister
1461  *
1462  * This is a wrapper around driver_unregister.
1463  */
1464 void css_driver_unregister(struct css_driver *cdrv)
1465 {
1466 	driver_unregister(&cdrv->drv);
1467 }
1468 EXPORT_SYMBOL_GPL(css_driver_unregister);
1469