1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Linux on zSeries Channel Measurement Facility support 4 * 5 * Copyright IBM Corp. 2000, 2006 6 * 7 * Authors: Arnd Bergmann <arndb@de.ibm.com> 8 * Cornelia Huck <cornelia.huck@de.ibm.com> 9 * 10 * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "cio" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/bootmem.h> 17 #include <linux/device.h> 18 #include <linux/init.h> 19 #include <linux/list.h> 20 #include <linux/export.h> 21 #include <linux/moduleparam.h> 22 #include <linux/slab.h> 23 #include <linux/timex.h> /* get_tod_clock() */ 24 25 #include <asm/ccwdev.h> 26 #include <asm/cio.h> 27 #include <asm/cmb.h> 28 #include <asm/div64.h> 29 30 #include "cio.h" 31 #include "css.h" 32 #include "device.h" 33 #include "ioasm.h" 34 #include "chsc.h" 35 36 /* 37 * parameter to enable cmf during boot, possible uses are: 38 * "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be 39 * used on any subchannel 40 * "s390cmf=<num>" -- enable cmf and allocate enough memory to measure 41 * <num> subchannel, where <num> is an integer 42 * between 1 and 65535, default is 1024 43 */ 44 #define ARGSTRING "s390cmf" 45 46 /* indices for READCMB */ 47 enum cmb_index { 48 avg_utilization = -1, 49 /* basic and exended format: */ 50 cmb_ssch_rsch_count = 0, 51 cmb_sample_count, 52 cmb_device_connect_time, 53 cmb_function_pending_time, 54 cmb_device_disconnect_time, 55 cmb_control_unit_queuing_time, 56 cmb_device_active_only_time, 57 /* extended format only: */ 58 cmb_device_busy_time, 59 cmb_initial_command_response_time, 60 }; 61 62 /** 63 * enum cmb_format - types of supported measurement block formats 64 * 65 * @CMF_BASIC: traditional channel measurement blocks supported 66 * by all machines that we run on 67 * @CMF_EXTENDED: improved format that was introduced with the z990 68 * machine 69 * @CMF_AUTODETECT: default: use extended format when running on a machine 70 * supporting extended format, otherwise fall back to 71 * basic format 72 */ 73 enum cmb_format { 74 CMF_BASIC, 75 CMF_EXTENDED, 76 CMF_AUTODETECT = -1, 77 }; 78 79 /* 80 * format - actual format for all measurement blocks 81 * 82 * The format module parameter can be set to a value of 0 (zero) 83 * or 1, indicating basic or extended format as described for 84 * enum cmb_format. 85 */ 86 static int format = CMF_AUTODETECT; 87 module_param(format, bint, 0444); 88 89 /** 90 * struct cmb_operations - functions to use depending on cmb_format 91 * 92 * Most of these functions operate on a struct ccw_device. There is only 93 * one instance of struct cmb_operations because the format of the measurement 94 * data is guaranteed to be the same for every ccw_device. 95 * 96 * @alloc: allocate memory for a channel measurement block, 97 * either with the help of a special pool or with kmalloc 98 * @free: free memory allocated with @alloc 99 * @set: enable or disable measurement 100 * @read: read a measurement entry at an index 101 * @readall: read a measurement block in a common format 102 * @reset: clear the data in the associated measurement block and 103 * reset its time stamp 104 */ 105 struct cmb_operations { 106 int (*alloc) (struct ccw_device *); 107 void (*free) (struct ccw_device *); 108 int (*set) (struct ccw_device *, u32); 109 u64 (*read) (struct ccw_device *, int); 110 int (*readall)(struct ccw_device *, struct cmbdata *); 111 void (*reset) (struct ccw_device *); 112 /* private: */ 113 struct attribute_group *attr_group; 114 }; 115 static struct cmb_operations *cmbops; 116 117 struct cmb_data { 118 void *hw_block; /* Pointer to block updated by hardware */ 119 void *last_block; /* Last changed block copied from hardware block */ 120 int size; /* Size of hw_block and last_block */ 121 unsigned long long last_update; /* when last_block was updated */ 122 }; 123 124 /* 125 * Our user interface is designed in terms of nanoseconds, 126 * while the hardware measures total times in its own 127 * unit. 128 */ 129 static inline u64 time_to_nsec(u32 value) 130 { 131 return ((u64)value) * 128000ull; 132 } 133 134 /* 135 * Users are usually interested in average times, 136 * not accumulated time. 137 * This also helps us with atomicity problems 138 * when reading sinlge values. 139 */ 140 static inline u64 time_to_avg_nsec(u32 value, u32 count) 141 { 142 u64 ret; 143 144 /* no samples yet, avoid division by 0 */ 145 if (count == 0) 146 return 0; 147 148 /* value comes in units of 128 µsec */ 149 ret = time_to_nsec(value); 150 do_div(ret, count); 151 152 return ret; 153 } 154 155 #define CMF_OFF 0 156 #define CMF_ON 2 157 158 /* 159 * Activate or deactivate the channel monitor. When area is NULL, 160 * the monitor is deactivated. The channel monitor needs to 161 * be active in order to measure subchannels, which also need 162 * to be enabled. 163 */ 164 static inline void cmf_activate(void *area, unsigned int onoff) 165 { 166 register void * __gpr2 asm("2"); 167 register long __gpr1 asm("1"); 168 169 __gpr2 = area; 170 __gpr1 = onoff; 171 /* activate channel measurement */ 172 asm("schm" : : "d" (__gpr2), "d" (__gpr1) ); 173 } 174 175 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc, 176 unsigned long address) 177 { 178 struct subchannel *sch = to_subchannel(cdev->dev.parent); 179 int ret; 180 181 sch->config.mme = mme; 182 sch->config.mbfc = mbfc; 183 /* address can be either a block address or a block index */ 184 if (mbfc) 185 sch->config.mba = address; 186 else 187 sch->config.mbi = address; 188 189 ret = cio_commit_config(sch); 190 if (!mme && ret == -ENODEV) { 191 /* 192 * The task was to disable measurement block updates but 193 * the subchannel is already gone. Report success. 194 */ 195 ret = 0; 196 } 197 return ret; 198 } 199 200 struct set_schib_struct { 201 u32 mme; 202 int mbfc; 203 unsigned long address; 204 wait_queue_head_t wait; 205 int ret; 206 }; 207 208 #define CMF_PENDING 1 209 #define SET_SCHIB_TIMEOUT (10 * HZ) 210 211 static int set_schib_wait(struct ccw_device *cdev, u32 mme, 212 int mbfc, unsigned long address) 213 { 214 struct set_schib_struct set_data; 215 int ret = -ENODEV; 216 217 spin_lock_irq(cdev->ccwlock); 218 if (!cdev->private->cmb) 219 goto out; 220 221 ret = set_schib(cdev, mme, mbfc, address); 222 if (ret != -EBUSY) 223 goto out; 224 225 /* if the device is not online, don't even try again */ 226 if (cdev->private->state != DEV_STATE_ONLINE) 227 goto out; 228 229 init_waitqueue_head(&set_data.wait); 230 set_data.mme = mme; 231 set_data.mbfc = mbfc; 232 set_data.address = address; 233 set_data.ret = CMF_PENDING; 234 235 cdev->private->state = DEV_STATE_CMFCHANGE; 236 cdev->private->cmb_wait = &set_data; 237 spin_unlock_irq(cdev->ccwlock); 238 239 ret = wait_event_interruptible_timeout(set_data.wait, 240 set_data.ret != CMF_PENDING, 241 SET_SCHIB_TIMEOUT); 242 spin_lock_irq(cdev->ccwlock); 243 if (ret <= 0) { 244 if (set_data.ret == CMF_PENDING) { 245 set_data.ret = (ret == 0) ? -ETIME : ret; 246 if (cdev->private->state == DEV_STATE_CMFCHANGE) 247 cdev->private->state = DEV_STATE_ONLINE; 248 } 249 } 250 cdev->private->cmb_wait = NULL; 251 ret = set_data.ret; 252 out: 253 spin_unlock_irq(cdev->ccwlock); 254 return ret; 255 } 256 257 void retry_set_schib(struct ccw_device *cdev) 258 { 259 struct set_schib_struct *set_data = cdev->private->cmb_wait; 260 261 if (!set_data) 262 return; 263 264 set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc, 265 set_data->address); 266 wake_up(&set_data->wait); 267 } 268 269 static int cmf_copy_block(struct ccw_device *cdev) 270 { 271 struct subchannel *sch = to_subchannel(cdev->dev.parent); 272 struct cmb_data *cmb_data; 273 void *hw_block; 274 275 if (cio_update_schib(sch)) 276 return -ENODEV; 277 278 if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) { 279 /* Don't copy if a start function is in progress. */ 280 if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) && 281 (scsw_actl(&sch->schib.scsw) & 282 (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) && 283 (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS))) 284 return -EBUSY; 285 } 286 cmb_data = cdev->private->cmb; 287 hw_block = cmb_data->hw_block; 288 memcpy(cmb_data->last_block, hw_block, cmb_data->size); 289 cmb_data->last_update = get_tod_clock(); 290 return 0; 291 } 292 293 struct copy_block_struct { 294 wait_queue_head_t wait; 295 int ret; 296 }; 297 298 static int cmf_cmb_copy_wait(struct ccw_device *cdev) 299 { 300 struct copy_block_struct copy_block; 301 int ret = -ENODEV; 302 303 spin_lock_irq(cdev->ccwlock); 304 if (!cdev->private->cmb) 305 goto out; 306 307 ret = cmf_copy_block(cdev); 308 if (ret != -EBUSY) 309 goto out; 310 311 if (cdev->private->state != DEV_STATE_ONLINE) 312 goto out; 313 314 init_waitqueue_head(©_block.wait); 315 copy_block.ret = CMF_PENDING; 316 317 cdev->private->state = DEV_STATE_CMFUPDATE; 318 cdev->private->cmb_wait = ©_block; 319 spin_unlock_irq(cdev->ccwlock); 320 321 ret = wait_event_interruptible(copy_block.wait, 322 copy_block.ret != CMF_PENDING); 323 spin_lock_irq(cdev->ccwlock); 324 if (ret) { 325 if (copy_block.ret == CMF_PENDING) { 326 copy_block.ret = -ERESTARTSYS; 327 if (cdev->private->state == DEV_STATE_CMFUPDATE) 328 cdev->private->state = DEV_STATE_ONLINE; 329 } 330 } 331 cdev->private->cmb_wait = NULL; 332 ret = copy_block.ret; 333 out: 334 spin_unlock_irq(cdev->ccwlock); 335 return ret; 336 } 337 338 void cmf_retry_copy_block(struct ccw_device *cdev) 339 { 340 struct copy_block_struct *copy_block = cdev->private->cmb_wait; 341 342 if (!copy_block) 343 return; 344 345 copy_block->ret = cmf_copy_block(cdev); 346 wake_up(©_block->wait); 347 } 348 349 static void cmf_generic_reset(struct ccw_device *cdev) 350 { 351 struct cmb_data *cmb_data; 352 353 spin_lock_irq(cdev->ccwlock); 354 cmb_data = cdev->private->cmb; 355 if (cmb_data) { 356 memset(cmb_data->last_block, 0, cmb_data->size); 357 /* 358 * Need to reset hw block as well to make the hardware start 359 * from 0 again. 360 */ 361 memset(cmb_data->hw_block, 0, cmb_data->size); 362 cmb_data->last_update = 0; 363 } 364 cdev->private->cmb_start_time = get_tod_clock(); 365 spin_unlock_irq(cdev->ccwlock); 366 } 367 368 /** 369 * struct cmb_area - container for global cmb data 370 * 371 * @mem: pointer to CMBs (only in basic measurement mode) 372 * @list: contains a linked list of all subchannels 373 * @num_channels: number of channels to be measured 374 * @lock: protect concurrent access to @mem and @list 375 */ 376 struct cmb_area { 377 struct cmb *mem; 378 struct list_head list; 379 int num_channels; 380 spinlock_t lock; 381 }; 382 383 static struct cmb_area cmb_area = { 384 .lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock), 385 .list = LIST_HEAD_INIT(cmb_area.list), 386 .num_channels = 1024, 387 }; 388 389 /* ****** old style CMB handling ********/ 390 391 /* 392 * Basic channel measurement blocks are allocated in one contiguous 393 * block of memory, which can not be moved as long as any channel 394 * is active. Therefore, a maximum number of subchannels needs to 395 * be defined somewhere. This is a module parameter, defaulting to 396 * a reasonable value of 1024, or 32 kb of memory. 397 * Current kernels don't allow kmalloc with more than 128kb, so the 398 * maximum is 4096. 399 */ 400 401 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444); 402 403 /** 404 * struct cmb - basic channel measurement block 405 * @ssch_rsch_count: number of ssch and rsch 406 * @sample_count: number of samples 407 * @device_connect_time: time of device connect 408 * @function_pending_time: time of function pending 409 * @device_disconnect_time: time of device disconnect 410 * @control_unit_queuing_time: time of control unit queuing 411 * @device_active_only_time: time of device active only 412 * @reserved: unused in basic measurement mode 413 * 414 * The measurement block as used by the hardware. The fields are described 415 * further in z/Architecture Principles of Operation, chapter 17. 416 * 417 * The cmb area made up from these blocks must be a contiguous array and may 418 * not be reallocated or freed. 419 * Only one cmb area can be present in the system. 420 */ 421 struct cmb { 422 u16 ssch_rsch_count; 423 u16 sample_count; 424 u32 device_connect_time; 425 u32 function_pending_time; 426 u32 device_disconnect_time; 427 u32 control_unit_queuing_time; 428 u32 device_active_only_time; 429 u32 reserved[2]; 430 }; 431 432 /* 433 * Insert a single device into the cmb_area list. 434 * Called with cmb_area.lock held from alloc_cmb. 435 */ 436 static int alloc_cmb_single(struct ccw_device *cdev, 437 struct cmb_data *cmb_data) 438 { 439 struct cmb *cmb; 440 struct ccw_device_private *node; 441 int ret; 442 443 spin_lock_irq(cdev->ccwlock); 444 if (!list_empty(&cdev->private->cmb_list)) { 445 ret = -EBUSY; 446 goto out; 447 } 448 449 /* 450 * Find first unused cmb in cmb_area.mem. 451 * This is a little tricky: cmb_area.list 452 * remains sorted by ->cmb->hw_data pointers. 453 */ 454 cmb = cmb_area.mem; 455 list_for_each_entry(node, &cmb_area.list, cmb_list) { 456 struct cmb_data *data; 457 data = node->cmb; 458 if ((struct cmb*)data->hw_block > cmb) 459 break; 460 cmb++; 461 } 462 if (cmb - cmb_area.mem >= cmb_area.num_channels) { 463 ret = -ENOMEM; 464 goto out; 465 } 466 467 /* insert new cmb */ 468 list_add_tail(&cdev->private->cmb_list, &node->cmb_list); 469 cmb_data->hw_block = cmb; 470 cdev->private->cmb = cmb_data; 471 ret = 0; 472 out: 473 spin_unlock_irq(cdev->ccwlock); 474 return ret; 475 } 476 477 static int alloc_cmb(struct ccw_device *cdev) 478 { 479 int ret; 480 struct cmb *mem; 481 ssize_t size; 482 struct cmb_data *cmb_data; 483 484 /* Allocate private cmb_data. */ 485 cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); 486 if (!cmb_data) 487 return -ENOMEM; 488 489 cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL); 490 if (!cmb_data->last_block) { 491 kfree(cmb_data); 492 return -ENOMEM; 493 } 494 cmb_data->size = sizeof(struct cmb); 495 spin_lock(&cmb_area.lock); 496 497 if (!cmb_area.mem) { 498 /* there is no user yet, so we need a new area */ 499 size = sizeof(struct cmb) * cmb_area.num_channels; 500 WARN_ON(!list_empty(&cmb_area.list)); 501 502 spin_unlock(&cmb_area.lock); 503 mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA, 504 get_order(size)); 505 spin_lock(&cmb_area.lock); 506 507 if (cmb_area.mem) { 508 /* ok, another thread was faster */ 509 free_pages((unsigned long)mem, get_order(size)); 510 } else if (!mem) { 511 /* no luck */ 512 ret = -ENOMEM; 513 goto out; 514 } else { 515 /* everything ok */ 516 memset(mem, 0, size); 517 cmb_area.mem = mem; 518 cmf_activate(cmb_area.mem, CMF_ON); 519 } 520 } 521 522 /* do the actual allocation */ 523 ret = alloc_cmb_single(cdev, cmb_data); 524 out: 525 spin_unlock(&cmb_area.lock); 526 if (ret) { 527 kfree(cmb_data->last_block); 528 kfree(cmb_data); 529 } 530 return ret; 531 } 532 533 static void free_cmb(struct ccw_device *cdev) 534 { 535 struct ccw_device_private *priv; 536 struct cmb_data *cmb_data; 537 538 spin_lock(&cmb_area.lock); 539 spin_lock_irq(cdev->ccwlock); 540 541 priv = cdev->private; 542 cmb_data = priv->cmb; 543 priv->cmb = NULL; 544 if (cmb_data) 545 kfree(cmb_data->last_block); 546 kfree(cmb_data); 547 list_del_init(&priv->cmb_list); 548 549 if (list_empty(&cmb_area.list)) { 550 ssize_t size; 551 size = sizeof(struct cmb) * cmb_area.num_channels; 552 cmf_activate(NULL, CMF_OFF); 553 free_pages((unsigned long)cmb_area.mem, get_order(size)); 554 cmb_area.mem = NULL; 555 } 556 spin_unlock_irq(cdev->ccwlock); 557 spin_unlock(&cmb_area.lock); 558 } 559 560 static int set_cmb(struct ccw_device *cdev, u32 mme) 561 { 562 u16 offset; 563 struct cmb_data *cmb_data; 564 unsigned long flags; 565 566 spin_lock_irqsave(cdev->ccwlock, flags); 567 if (!cdev->private->cmb) { 568 spin_unlock_irqrestore(cdev->ccwlock, flags); 569 return -EINVAL; 570 } 571 cmb_data = cdev->private->cmb; 572 offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0; 573 spin_unlock_irqrestore(cdev->ccwlock, flags); 574 575 return set_schib_wait(cdev, mme, 0, offset); 576 } 577 578 /* calculate utilization in 0.1 percent units */ 579 static u64 __cmb_utilization(u64 device_connect_time, u64 function_pending_time, 580 u64 device_disconnect_time, u64 start_time) 581 { 582 u64 utilization, elapsed_time; 583 584 utilization = time_to_nsec(device_connect_time + 585 function_pending_time + 586 device_disconnect_time); 587 588 elapsed_time = get_tod_clock() - start_time; 589 elapsed_time = tod_to_ns(elapsed_time); 590 elapsed_time /= 1000; 591 592 return elapsed_time ? (utilization / elapsed_time) : 0; 593 } 594 595 static u64 read_cmb(struct ccw_device *cdev, int index) 596 { 597 struct cmb_data *cmb_data; 598 unsigned long flags; 599 struct cmb *cmb; 600 u64 ret = 0; 601 u32 val; 602 603 spin_lock_irqsave(cdev->ccwlock, flags); 604 cmb_data = cdev->private->cmb; 605 if (!cmb_data) 606 goto out; 607 608 cmb = cmb_data->hw_block; 609 switch (index) { 610 case avg_utilization: 611 ret = __cmb_utilization(cmb->device_connect_time, 612 cmb->function_pending_time, 613 cmb->device_disconnect_time, 614 cdev->private->cmb_start_time); 615 goto out; 616 case cmb_ssch_rsch_count: 617 ret = cmb->ssch_rsch_count; 618 goto out; 619 case cmb_sample_count: 620 ret = cmb->sample_count; 621 goto out; 622 case cmb_device_connect_time: 623 val = cmb->device_connect_time; 624 break; 625 case cmb_function_pending_time: 626 val = cmb->function_pending_time; 627 break; 628 case cmb_device_disconnect_time: 629 val = cmb->device_disconnect_time; 630 break; 631 case cmb_control_unit_queuing_time: 632 val = cmb->control_unit_queuing_time; 633 break; 634 case cmb_device_active_only_time: 635 val = cmb->device_active_only_time; 636 break; 637 default: 638 goto out; 639 } 640 ret = time_to_avg_nsec(val, cmb->sample_count); 641 out: 642 spin_unlock_irqrestore(cdev->ccwlock, flags); 643 return ret; 644 } 645 646 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data) 647 { 648 struct cmb *cmb; 649 struct cmb_data *cmb_data; 650 u64 time; 651 unsigned long flags; 652 int ret; 653 654 ret = cmf_cmb_copy_wait(cdev); 655 if (ret < 0) 656 return ret; 657 spin_lock_irqsave(cdev->ccwlock, flags); 658 cmb_data = cdev->private->cmb; 659 if (!cmb_data) { 660 ret = -ENODEV; 661 goto out; 662 } 663 if (cmb_data->last_update == 0) { 664 ret = -EAGAIN; 665 goto out; 666 } 667 cmb = cmb_data->last_block; 668 time = cmb_data->last_update - cdev->private->cmb_start_time; 669 670 memset(data, 0, sizeof(struct cmbdata)); 671 672 /* we only know values before device_busy_time */ 673 data->size = offsetof(struct cmbdata, device_busy_time); 674 675 data->elapsed_time = tod_to_ns(time); 676 677 /* copy data to new structure */ 678 data->ssch_rsch_count = cmb->ssch_rsch_count; 679 data->sample_count = cmb->sample_count; 680 681 /* time fields are converted to nanoseconds while copying */ 682 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 683 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 684 data->device_disconnect_time = 685 time_to_nsec(cmb->device_disconnect_time); 686 data->control_unit_queuing_time 687 = time_to_nsec(cmb->control_unit_queuing_time); 688 data->device_active_only_time 689 = time_to_nsec(cmb->device_active_only_time); 690 ret = 0; 691 out: 692 spin_unlock_irqrestore(cdev->ccwlock, flags); 693 return ret; 694 } 695 696 static void reset_cmb(struct ccw_device *cdev) 697 { 698 cmf_generic_reset(cdev); 699 } 700 701 static int cmf_enabled(struct ccw_device *cdev) 702 { 703 int enabled; 704 705 spin_lock_irq(cdev->ccwlock); 706 enabled = !!cdev->private->cmb; 707 spin_unlock_irq(cdev->ccwlock); 708 709 return enabled; 710 } 711 712 static struct attribute_group cmf_attr_group; 713 714 static struct cmb_operations cmbops_basic = { 715 .alloc = alloc_cmb, 716 .free = free_cmb, 717 .set = set_cmb, 718 .read = read_cmb, 719 .readall = readall_cmb, 720 .reset = reset_cmb, 721 .attr_group = &cmf_attr_group, 722 }; 723 724 /* ******** extended cmb handling ********/ 725 726 /** 727 * struct cmbe - extended channel measurement block 728 * @ssch_rsch_count: number of ssch and rsch 729 * @sample_count: number of samples 730 * @device_connect_time: time of device connect 731 * @function_pending_time: time of function pending 732 * @device_disconnect_time: time of device disconnect 733 * @control_unit_queuing_time: time of control unit queuing 734 * @device_active_only_time: time of device active only 735 * @device_busy_time: time of device busy 736 * @initial_command_response_time: initial command response time 737 * @reserved: unused 738 * 739 * The measurement block as used by the hardware. May be in any 64 bit physical 740 * location. 741 * The fields are described further in z/Architecture Principles of Operation, 742 * third edition, chapter 17. 743 */ 744 struct cmbe { 745 u32 ssch_rsch_count; 746 u32 sample_count; 747 u32 device_connect_time; 748 u32 function_pending_time; 749 u32 device_disconnect_time; 750 u32 control_unit_queuing_time; 751 u32 device_active_only_time; 752 u32 device_busy_time; 753 u32 initial_command_response_time; 754 u32 reserved[7]; 755 } __packed __aligned(64); 756 757 static struct kmem_cache *cmbe_cache; 758 759 static int alloc_cmbe(struct ccw_device *cdev) 760 { 761 struct cmb_data *cmb_data; 762 struct cmbe *cmbe; 763 int ret = -ENOMEM; 764 765 cmbe = kmem_cache_zalloc(cmbe_cache, GFP_KERNEL); 766 if (!cmbe) 767 return ret; 768 769 cmb_data = kzalloc(sizeof(*cmb_data), GFP_KERNEL); 770 if (!cmb_data) 771 goto out_free; 772 773 cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL); 774 if (!cmb_data->last_block) 775 goto out_free; 776 777 cmb_data->size = sizeof(*cmbe); 778 cmb_data->hw_block = cmbe; 779 780 spin_lock(&cmb_area.lock); 781 spin_lock_irq(cdev->ccwlock); 782 if (cdev->private->cmb) 783 goto out_unlock; 784 785 cdev->private->cmb = cmb_data; 786 787 /* activate global measurement if this is the first channel */ 788 if (list_empty(&cmb_area.list)) 789 cmf_activate(NULL, CMF_ON); 790 list_add_tail(&cdev->private->cmb_list, &cmb_area.list); 791 792 spin_unlock_irq(cdev->ccwlock); 793 spin_unlock(&cmb_area.lock); 794 return 0; 795 796 out_unlock: 797 spin_unlock_irq(cdev->ccwlock); 798 spin_unlock(&cmb_area.lock); 799 ret = -EBUSY; 800 out_free: 801 if (cmb_data) 802 kfree(cmb_data->last_block); 803 kfree(cmb_data); 804 kmem_cache_free(cmbe_cache, cmbe); 805 806 return ret; 807 } 808 809 static void free_cmbe(struct ccw_device *cdev) 810 { 811 struct cmb_data *cmb_data; 812 813 spin_lock(&cmb_area.lock); 814 spin_lock_irq(cdev->ccwlock); 815 cmb_data = cdev->private->cmb; 816 cdev->private->cmb = NULL; 817 if (cmb_data) { 818 kfree(cmb_data->last_block); 819 kmem_cache_free(cmbe_cache, cmb_data->hw_block); 820 } 821 kfree(cmb_data); 822 823 /* deactivate global measurement if this is the last channel */ 824 list_del_init(&cdev->private->cmb_list); 825 if (list_empty(&cmb_area.list)) 826 cmf_activate(NULL, CMF_OFF); 827 spin_unlock_irq(cdev->ccwlock); 828 spin_unlock(&cmb_area.lock); 829 } 830 831 static int set_cmbe(struct ccw_device *cdev, u32 mme) 832 { 833 unsigned long mba; 834 struct cmb_data *cmb_data; 835 unsigned long flags; 836 837 spin_lock_irqsave(cdev->ccwlock, flags); 838 if (!cdev->private->cmb) { 839 spin_unlock_irqrestore(cdev->ccwlock, flags); 840 return -EINVAL; 841 } 842 cmb_data = cdev->private->cmb; 843 mba = mme ? (unsigned long) cmb_data->hw_block : 0; 844 spin_unlock_irqrestore(cdev->ccwlock, flags); 845 846 return set_schib_wait(cdev, mme, 1, mba); 847 } 848 849 static u64 read_cmbe(struct ccw_device *cdev, int index) 850 { 851 struct cmb_data *cmb_data; 852 unsigned long flags; 853 struct cmbe *cmb; 854 u64 ret = 0; 855 u32 val; 856 857 spin_lock_irqsave(cdev->ccwlock, flags); 858 cmb_data = cdev->private->cmb; 859 if (!cmb_data) 860 goto out; 861 862 cmb = cmb_data->hw_block; 863 switch (index) { 864 case avg_utilization: 865 ret = __cmb_utilization(cmb->device_connect_time, 866 cmb->function_pending_time, 867 cmb->device_disconnect_time, 868 cdev->private->cmb_start_time); 869 goto out; 870 case cmb_ssch_rsch_count: 871 ret = cmb->ssch_rsch_count; 872 goto out; 873 case cmb_sample_count: 874 ret = cmb->sample_count; 875 goto out; 876 case cmb_device_connect_time: 877 val = cmb->device_connect_time; 878 break; 879 case cmb_function_pending_time: 880 val = cmb->function_pending_time; 881 break; 882 case cmb_device_disconnect_time: 883 val = cmb->device_disconnect_time; 884 break; 885 case cmb_control_unit_queuing_time: 886 val = cmb->control_unit_queuing_time; 887 break; 888 case cmb_device_active_only_time: 889 val = cmb->device_active_only_time; 890 break; 891 case cmb_device_busy_time: 892 val = cmb->device_busy_time; 893 break; 894 case cmb_initial_command_response_time: 895 val = cmb->initial_command_response_time; 896 break; 897 default: 898 goto out; 899 } 900 ret = time_to_avg_nsec(val, cmb->sample_count); 901 out: 902 spin_unlock_irqrestore(cdev->ccwlock, flags); 903 return ret; 904 } 905 906 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data) 907 { 908 struct cmbe *cmb; 909 struct cmb_data *cmb_data; 910 u64 time; 911 unsigned long flags; 912 int ret; 913 914 ret = cmf_cmb_copy_wait(cdev); 915 if (ret < 0) 916 return ret; 917 spin_lock_irqsave(cdev->ccwlock, flags); 918 cmb_data = cdev->private->cmb; 919 if (!cmb_data) { 920 ret = -ENODEV; 921 goto out; 922 } 923 if (cmb_data->last_update == 0) { 924 ret = -EAGAIN; 925 goto out; 926 } 927 time = cmb_data->last_update - cdev->private->cmb_start_time; 928 929 memset (data, 0, sizeof(struct cmbdata)); 930 931 /* we only know values before device_busy_time */ 932 data->size = offsetof(struct cmbdata, device_busy_time); 933 934 data->elapsed_time = tod_to_ns(time); 935 936 cmb = cmb_data->last_block; 937 /* copy data to new structure */ 938 data->ssch_rsch_count = cmb->ssch_rsch_count; 939 data->sample_count = cmb->sample_count; 940 941 /* time fields are converted to nanoseconds while copying */ 942 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 943 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 944 data->device_disconnect_time = 945 time_to_nsec(cmb->device_disconnect_time); 946 data->control_unit_queuing_time 947 = time_to_nsec(cmb->control_unit_queuing_time); 948 data->device_active_only_time 949 = time_to_nsec(cmb->device_active_only_time); 950 data->device_busy_time = time_to_nsec(cmb->device_busy_time); 951 data->initial_command_response_time 952 = time_to_nsec(cmb->initial_command_response_time); 953 954 ret = 0; 955 out: 956 spin_unlock_irqrestore(cdev->ccwlock, flags); 957 return ret; 958 } 959 960 static void reset_cmbe(struct ccw_device *cdev) 961 { 962 cmf_generic_reset(cdev); 963 } 964 965 static struct attribute_group cmf_attr_group_ext; 966 967 static struct cmb_operations cmbops_extended = { 968 .alloc = alloc_cmbe, 969 .free = free_cmbe, 970 .set = set_cmbe, 971 .read = read_cmbe, 972 .readall = readall_cmbe, 973 .reset = reset_cmbe, 974 .attr_group = &cmf_attr_group_ext, 975 }; 976 977 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx) 978 { 979 return sprintf(buf, "%lld\n", 980 (unsigned long long) cmf_read(to_ccwdev(dev), idx)); 981 } 982 983 static ssize_t cmb_show_avg_sample_interval(struct device *dev, 984 struct device_attribute *attr, 985 char *buf) 986 { 987 struct ccw_device *cdev = to_ccwdev(dev); 988 unsigned long count; 989 long interval; 990 991 count = cmf_read(cdev, cmb_sample_count); 992 spin_lock_irq(cdev->ccwlock); 993 if (count) { 994 interval = get_tod_clock() - cdev->private->cmb_start_time; 995 interval = tod_to_ns(interval); 996 interval /= count; 997 } else 998 interval = -1; 999 spin_unlock_irq(cdev->ccwlock); 1000 return sprintf(buf, "%ld\n", interval); 1001 } 1002 1003 static ssize_t cmb_show_avg_utilization(struct device *dev, 1004 struct device_attribute *attr, 1005 char *buf) 1006 { 1007 unsigned long u = cmf_read(to_ccwdev(dev), avg_utilization); 1008 1009 return sprintf(buf, "%02lu.%01lu%%\n", u / 10, u % 10); 1010 } 1011 1012 #define cmf_attr(name) \ 1013 static ssize_t show_##name(struct device *dev, \ 1014 struct device_attribute *attr, char *buf) \ 1015 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1016 static DEVICE_ATTR(name, 0444, show_##name, NULL); 1017 1018 #define cmf_attr_avg(name) \ 1019 static ssize_t show_avg_##name(struct device *dev, \ 1020 struct device_attribute *attr, char *buf) \ 1021 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1022 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL); 1023 1024 cmf_attr(ssch_rsch_count); 1025 cmf_attr(sample_count); 1026 cmf_attr_avg(device_connect_time); 1027 cmf_attr_avg(function_pending_time); 1028 cmf_attr_avg(device_disconnect_time); 1029 cmf_attr_avg(control_unit_queuing_time); 1030 cmf_attr_avg(device_active_only_time); 1031 cmf_attr_avg(device_busy_time); 1032 cmf_attr_avg(initial_command_response_time); 1033 1034 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval, 1035 NULL); 1036 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL); 1037 1038 static struct attribute *cmf_attributes[] = { 1039 &dev_attr_avg_sample_interval.attr, 1040 &dev_attr_avg_utilization.attr, 1041 &dev_attr_ssch_rsch_count.attr, 1042 &dev_attr_sample_count.attr, 1043 &dev_attr_avg_device_connect_time.attr, 1044 &dev_attr_avg_function_pending_time.attr, 1045 &dev_attr_avg_device_disconnect_time.attr, 1046 &dev_attr_avg_control_unit_queuing_time.attr, 1047 &dev_attr_avg_device_active_only_time.attr, 1048 NULL, 1049 }; 1050 1051 static struct attribute_group cmf_attr_group = { 1052 .name = "cmf", 1053 .attrs = cmf_attributes, 1054 }; 1055 1056 static struct attribute *cmf_attributes_ext[] = { 1057 &dev_attr_avg_sample_interval.attr, 1058 &dev_attr_avg_utilization.attr, 1059 &dev_attr_ssch_rsch_count.attr, 1060 &dev_attr_sample_count.attr, 1061 &dev_attr_avg_device_connect_time.attr, 1062 &dev_attr_avg_function_pending_time.attr, 1063 &dev_attr_avg_device_disconnect_time.attr, 1064 &dev_attr_avg_control_unit_queuing_time.attr, 1065 &dev_attr_avg_device_active_only_time.attr, 1066 &dev_attr_avg_device_busy_time.attr, 1067 &dev_attr_avg_initial_command_response_time.attr, 1068 NULL, 1069 }; 1070 1071 static struct attribute_group cmf_attr_group_ext = { 1072 .name = "cmf", 1073 .attrs = cmf_attributes_ext, 1074 }; 1075 1076 static ssize_t cmb_enable_show(struct device *dev, 1077 struct device_attribute *attr, 1078 char *buf) 1079 { 1080 struct ccw_device *cdev = to_ccwdev(dev); 1081 1082 return sprintf(buf, "%d\n", cmf_enabled(cdev)); 1083 } 1084 1085 static ssize_t cmb_enable_store(struct device *dev, 1086 struct device_attribute *attr, const char *buf, 1087 size_t c) 1088 { 1089 struct ccw_device *cdev = to_ccwdev(dev); 1090 unsigned long val; 1091 int ret; 1092 1093 ret = kstrtoul(buf, 16, &val); 1094 if (ret) 1095 return ret; 1096 1097 switch (val) { 1098 case 0: 1099 ret = disable_cmf(cdev); 1100 break; 1101 case 1: 1102 ret = enable_cmf(cdev); 1103 break; 1104 default: 1105 ret = -EINVAL; 1106 } 1107 1108 return ret ? ret : c; 1109 } 1110 DEVICE_ATTR_RW(cmb_enable); 1111 1112 int ccw_set_cmf(struct ccw_device *cdev, int enable) 1113 { 1114 return cmbops->set(cdev, enable ? 2 : 0); 1115 } 1116 1117 /** 1118 * enable_cmf() - switch on the channel measurement for a specific device 1119 * @cdev: The ccw device to be enabled 1120 * 1121 * Enable channel measurements for @cdev. If this is called on a device 1122 * for which channel measurement is already enabled a reset of the 1123 * measurement data is triggered. 1124 * Returns: %0 for success or a negative error value. 1125 * Context: 1126 * non-atomic 1127 */ 1128 int enable_cmf(struct ccw_device *cdev) 1129 { 1130 int ret = 0; 1131 1132 device_lock(&cdev->dev); 1133 if (cmf_enabled(cdev)) { 1134 cmbops->reset(cdev); 1135 goto out_unlock; 1136 } 1137 get_device(&cdev->dev); 1138 ret = cmbops->alloc(cdev); 1139 if (ret) 1140 goto out; 1141 cmbops->reset(cdev); 1142 ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group); 1143 if (ret) { 1144 cmbops->free(cdev); 1145 goto out; 1146 } 1147 ret = cmbops->set(cdev, 2); 1148 if (ret) { 1149 sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); 1150 cmbops->free(cdev); 1151 } 1152 out: 1153 if (ret) 1154 put_device(&cdev->dev); 1155 out_unlock: 1156 device_unlock(&cdev->dev); 1157 return ret; 1158 } 1159 1160 /** 1161 * __disable_cmf() - switch off the channel measurement for a specific device 1162 * @cdev: The ccw device to be disabled 1163 * 1164 * Returns: %0 for success or a negative error value. 1165 * 1166 * Context: 1167 * non-atomic, device_lock() held. 1168 */ 1169 int __disable_cmf(struct ccw_device *cdev) 1170 { 1171 int ret; 1172 1173 ret = cmbops->set(cdev, 0); 1174 if (ret) 1175 return ret; 1176 1177 sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); 1178 cmbops->free(cdev); 1179 put_device(&cdev->dev); 1180 1181 return ret; 1182 } 1183 1184 /** 1185 * disable_cmf() - switch off the channel measurement for a specific device 1186 * @cdev: The ccw device to be disabled 1187 * 1188 * Returns: %0 for success or a negative error value. 1189 * 1190 * Context: 1191 * non-atomic 1192 */ 1193 int disable_cmf(struct ccw_device *cdev) 1194 { 1195 int ret; 1196 1197 device_lock(&cdev->dev); 1198 ret = __disable_cmf(cdev); 1199 device_unlock(&cdev->dev); 1200 1201 return ret; 1202 } 1203 1204 /** 1205 * cmf_read() - read one value from the current channel measurement block 1206 * @cdev: the channel to be read 1207 * @index: the index of the value to be read 1208 * 1209 * Returns: The value read or %0 if the value cannot be read. 1210 * 1211 * Context: 1212 * any 1213 */ 1214 u64 cmf_read(struct ccw_device *cdev, int index) 1215 { 1216 return cmbops->read(cdev, index); 1217 } 1218 1219 /** 1220 * cmf_readall() - read the current channel measurement block 1221 * @cdev: the channel to be read 1222 * @data: a pointer to a data block that will be filled 1223 * 1224 * Returns: %0 on success, a negative error value otherwise. 1225 * 1226 * Context: 1227 * any 1228 */ 1229 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data) 1230 { 1231 return cmbops->readall(cdev, data); 1232 } 1233 1234 /* Reenable cmf when a disconnected device becomes available again. */ 1235 int cmf_reenable(struct ccw_device *cdev) 1236 { 1237 cmbops->reset(cdev); 1238 return cmbops->set(cdev, 2); 1239 } 1240 1241 /** 1242 * cmf_reactivate() - reactivate measurement block updates 1243 * 1244 * Use this during resume from hibernate. 1245 */ 1246 void cmf_reactivate(void) 1247 { 1248 spin_lock(&cmb_area.lock); 1249 if (!list_empty(&cmb_area.list)) 1250 cmf_activate(cmb_area.mem, CMF_ON); 1251 spin_unlock(&cmb_area.lock); 1252 } 1253 1254 static int __init init_cmbe(void) 1255 { 1256 cmbe_cache = kmem_cache_create("cmbe_cache", sizeof(struct cmbe), 1257 __alignof__(struct cmbe), 0, NULL); 1258 1259 return cmbe_cache ? 0 : -ENOMEM; 1260 } 1261 1262 static int __init init_cmf(void) 1263 { 1264 char *format_string; 1265 char *detect_string; 1266 int ret; 1267 1268 /* 1269 * If the user did not give a parameter, see if we are running on a 1270 * machine supporting extended measurement blocks, otherwise fall back 1271 * to basic mode. 1272 */ 1273 if (format == CMF_AUTODETECT) { 1274 if (!css_general_characteristics.ext_mb) { 1275 format = CMF_BASIC; 1276 } else { 1277 format = CMF_EXTENDED; 1278 } 1279 detect_string = "autodetected"; 1280 } else { 1281 detect_string = "parameter"; 1282 } 1283 1284 switch (format) { 1285 case CMF_BASIC: 1286 format_string = "basic"; 1287 cmbops = &cmbops_basic; 1288 break; 1289 case CMF_EXTENDED: 1290 format_string = "extended"; 1291 cmbops = &cmbops_extended; 1292 1293 ret = init_cmbe(); 1294 if (ret) 1295 return ret; 1296 break; 1297 default: 1298 return -EINVAL; 1299 } 1300 pr_info("Channel measurement facility initialized using format " 1301 "%s (mode %s)\n", format_string, detect_string); 1302 return 0; 1303 } 1304 device_initcall(init_cmf); 1305 1306 EXPORT_SYMBOL_GPL(enable_cmf); 1307 EXPORT_SYMBOL_GPL(disable_cmf); 1308 EXPORT_SYMBOL_GPL(cmf_read); 1309 EXPORT_SYMBOL_GPL(cmf_readall); 1310