1 /* 2 * Linux on zSeries Channel Measurement Facility support 3 * 4 * Copyright IBM Corp. 2000, 2006 5 * 6 * Authors: Arnd Bergmann <arndb@de.ibm.com> 7 * Cornelia Huck <cornelia.huck@de.ibm.com> 8 * 9 * original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #define KMSG_COMPONENT "cio" 27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 28 29 #include <linux/bootmem.h> 30 #include <linux/device.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/slab.h> 36 #include <linux/timex.h> /* get_tod_clock() */ 37 38 #include <asm/ccwdev.h> 39 #include <asm/cio.h> 40 #include <asm/cmb.h> 41 #include <asm/div64.h> 42 43 #include "cio.h" 44 #include "css.h" 45 #include "device.h" 46 #include "ioasm.h" 47 #include "chsc.h" 48 49 /* 50 * parameter to enable cmf during boot, possible uses are: 51 * "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be 52 * used on any subchannel 53 * "s390cmf=<num>" -- enable cmf and allocate enough memory to measure 54 * <num> subchannel, where <num> is an integer 55 * between 1 and 65535, default is 1024 56 */ 57 #define ARGSTRING "s390cmf" 58 59 /* indices for READCMB */ 60 enum cmb_index { 61 /* basic and exended format: */ 62 cmb_ssch_rsch_count, 63 cmb_sample_count, 64 cmb_device_connect_time, 65 cmb_function_pending_time, 66 cmb_device_disconnect_time, 67 cmb_control_unit_queuing_time, 68 cmb_device_active_only_time, 69 /* extended format only: */ 70 cmb_device_busy_time, 71 cmb_initial_command_response_time, 72 }; 73 74 /** 75 * enum cmb_format - types of supported measurement block formats 76 * 77 * @CMF_BASIC: traditional channel measurement blocks supported 78 * by all machines that we run on 79 * @CMF_EXTENDED: improved format that was introduced with the z990 80 * machine 81 * @CMF_AUTODETECT: default: use extended format when running on a machine 82 * supporting extended format, otherwise fall back to 83 * basic format 84 */ 85 enum cmb_format { 86 CMF_BASIC, 87 CMF_EXTENDED, 88 CMF_AUTODETECT = -1, 89 }; 90 91 /* 92 * format - actual format for all measurement blocks 93 * 94 * The format module parameter can be set to a value of 0 (zero) 95 * or 1, indicating basic or extended format as described for 96 * enum cmb_format. 97 */ 98 static int format = CMF_AUTODETECT; 99 module_param(format, bint, 0444); 100 101 /** 102 * struct cmb_operations - functions to use depending on cmb_format 103 * 104 * Most of these functions operate on a struct ccw_device. There is only 105 * one instance of struct cmb_operations because the format of the measurement 106 * data is guaranteed to be the same for every ccw_device. 107 * 108 * @alloc: allocate memory for a channel measurement block, 109 * either with the help of a special pool or with kmalloc 110 * @free: free memory allocated with @alloc 111 * @set: enable or disable measurement 112 * @read: read a measurement entry at an index 113 * @readall: read a measurement block in a common format 114 * @reset: clear the data in the associated measurement block and 115 * reset its time stamp 116 * @align: align an allocated block so that the hardware can use it 117 */ 118 struct cmb_operations { 119 int (*alloc) (struct ccw_device *); 120 void (*free) (struct ccw_device *); 121 int (*set) (struct ccw_device *, u32); 122 u64 (*read) (struct ccw_device *, int); 123 int (*readall)(struct ccw_device *, struct cmbdata *); 124 void (*reset) (struct ccw_device *); 125 void *(*align) (void *); 126 /* private: */ 127 struct attribute_group *attr_group; 128 }; 129 static struct cmb_operations *cmbops; 130 131 struct cmb_data { 132 void *hw_block; /* Pointer to block updated by hardware */ 133 void *last_block; /* Last changed block copied from hardware block */ 134 int size; /* Size of hw_block and last_block */ 135 unsigned long long last_update; /* when last_block was updated */ 136 }; 137 138 /* 139 * Our user interface is designed in terms of nanoseconds, 140 * while the hardware measures total times in its own 141 * unit. 142 */ 143 static inline u64 time_to_nsec(u32 value) 144 { 145 return ((u64)value) * 128000ull; 146 } 147 148 /* 149 * Users are usually interested in average times, 150 * not accumulated time. 151 * This also helps us with atomicity problems 152 * when reading sinlge values. 153 */ 154 static inline u64 time_to_avg_nsec(u32 value, u32 count) 155 { 156 u64 ret; 157 158 /* no samples yet, avoid division by 0 */ 159 if (count == 0) 160 return 0; 161 162 /* value comes in units of 128 µsec */ 163 ret = time_to_nsec(value); 164 do_div(ret, count); 165 166 return ret; 167 } 168 169 /* 170 * Activate or deactivate the channel monitor. When area is NULL, 171 * the monitor is deactivated. The channel monitor needs to 172 * be active in order to measure subchannels, which also need 173 * to be enabled. 174 */ 175 static inline void cmf_activate(void *area, unsigned int onoff) 176 { 177 register void * __gpr2 asm("2"); 178 register long __gpr1 asm("1"); 179 180 __gpr2 = area; 181 __gpr1 = onoff ? 2 : 0; 182 /* activate channel measurement */ 183 asm("schm" : : "d" (__gpr2), "d" (__gpr1) ); 184 } 185 186 static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc, 187 unsigned long address) 188 { 189 struct subchannel *sch; 190 191 sch = to_subchannel(cdev->dev.parent); 192 193 sch->config.mme = mme; 194 sch->config.mbfc = mbfc; 195 /* address can be either a block address or a block index */ 196 if (mbfc) 197 sch->config.mba = address; 198 else 199 sch->config.mbi = address; 200 201 return cio_commit_config(sch); 202 } 203 204 struct set_schib_struct { 205 u32 mme; 206 int mbfc; 207 unsigned long address; 208 wait_queue_head_t wait; 209 int ret; 210 struct kref kref; 211 }; 212 213 static void cmf_set_schib_release(struct kref *kref) 214 { 215 struct set_schib_struct *set_data; 216 217 set_data = container_of(kref, struct set_schib_struct, kref); 218 kfree(set_data); 219 } 220 221 #define CMF_PENDING 1 222 223 static int set_schib_wait(struct ccw_device *cdev, u32 mme, 224 int mbfc, unsigned long address) 225 { 226 struct set_schib_struct *set_data; 227 int ret; 228 229 spin_lock_irq(cdev->ccwlock); 230 if (!cdev->private->cmb) { 231 ret = -ENODEV; 232 goto out; 233 } 234 set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC); 235 if (!set_data) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 init_waitqueue_head(&set_data->wait); 240 kref_init(&set_data->kref); 241 set_data->mme = mme; 242 set_data->mbfc = mbfc; 243 set_data->address = address; 244 245 ret = set_schib(cdev, mme, mbfc, address); 246 if (ret != -EBUSY) 247 goto out_put; 248 249 if (cdev->private->state != DEV_STATE_ONLINE) { 250 /* if the device is not online, don't even try again */ 251 ret = -EBUSY; 252 goto out_put; 253 } 254 255 cdev->private->state = DEV_STATE_CMFCHANGE; 256 set_data->ret = CMF_PENDING; 257 cdev->private->cmb_wait = set_data; 258 259 spin_unlock_irq(cdev->ccwlock); 260 if (wait_event_interruptible(set_data->wait, 261 set_data->ret != CMF_PENDING)) { 262 spin_lock_irq(cdev->ccwlock); 263 if (set_data->ret == CMF_PENDING) { 264 set_data->ret = -ERESTARTSYS; 265 if (cdev->private->state == DEV_STATE_CMFCHANGE) 266 cdev->private->state = DEV_STATE_ONLINE; 267 } 268 spin_unlock_irq(cdev->ccwlock); 269 } 270 spin_lock_irq(cdev->ccwlock); 271 cdev->private->cmb_wait = NULL; 272 ret = set_data->ret; 273 out_put: 274 kref_put(&set_data->kref, cmf_set_schib_release); 275 out: 276 spin_unlock_irq(cdev->ccwlock); 277 return ret; 278 } 279 280 void retry_set_schib(struct ccw_device *cdev) 281 { 282 struct set_schib_struct *set_data; 283 284 set_data = cdev->private->cmb_wait; 285 if (!set_data) { 286 WARN_ON(1); 287 return; 288 } 289 kref_get(&set_data->kref); 290 set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc, 291 set_data->address); 292 wake_up(&set_data->wait); 293 kref_put(&set_data->kref, cmf_set_schib_release); 294 } 295 296 static int cmf_copy_block(struct ccw_device *cdev) 297 { 298 struct subchannel *sch; 299 void *reference_buf; 300 void *hw_block; 301 struct cmb_data *cmb_data; 302 303 sch = to_subchannel(cdev->dev.parent); 304 305 if (cio_update_schib(sch)) 306 return -ENODEV; 307 308 if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) { 309 /* Don't copy if a start function is in progress. */ 310 if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) && 311 (scsw_actl(&sch->schib.scsw) & 312 (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) && 313 (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS))) 314 return -EBUSY; 315 } 316 cmb_data = cdev->private->cmb; 317 hw_block = cmbops->align(cmb_data->hw_block); 318 if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size)) 319 /* No need to copy. */ 320 return 0; 321 reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC); 322 if (!reference_buf) 323 return -ENOMEM; 324 /* Ensure consistency of block copied from hardware. */ 325 do { 326 memcpy(cmb_data->last_block, hw_block, cmb_data->size); 327 memcpy(reference_buf, hw_block, cmb_data->size); 328 } while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size)); 329 cmb_data->last_update = get_tod_clock(); 330 kfree(reference_buf); 331 return 0; 332 } 333 334 struct copy_block_struct { 335 wait_queue_head_t wait; 336 int ret; 337 struct kref kref; 338 }; 339 340 static void cmf_copy_block_release(struct kref *kref) 341 { 342 struct copy_block_struct *copy_block; 343 344 copy_block = container_of(kref, struct copy_block_struct, kref); 345 kfree(copy_block); 346 } 347 348 static int cmf_cmb_copy_wait(struct ccw_device *cdev) 349 { 350 struct copy_block_struct *copy_block; 351 int ret; 352 unsigned long flags; 353 354 spin_lock_irqsave(cdev->ccwlock, flags); 355 if (!cdev->private->cmb) { 356 ret = -ENODEV; 357 goto out; 358 } 359 copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC); 360 if (!copy_block) { 361 ret = -ENOMEM; 362 goto out; 363 } 364 init_waitqueue_head(©_block->wait); 365 kref_init(©_block->kref); 366 367 ret = cmf_copy_block(cdev); 368 if (ret != -EBUSY) 369 goto out_put; 370 371 if (cdev->private->state != DEV_STATE_ONLINE) { 372 ret = -EBUSY; 373 goto out_put; 374 } 375 376 cdev->private->state = DEV_STATE_CMFUPDATE; 377 copy_block->ret = CMF_PENDING; 378 cdev->private->cmb_wait = copy_block; 379 380 spin_unlock_irqrestore(cdev->ccwlock, flags); 381 if (wait_event_interruptible(copy_block->wait, 382 copy_block->ret != CMF_PENDING)) { 383 spin_lock_irqsave(cdev->ccwlock, flags); 384 if (copy_block->ret == CMF_PENDING) { 385 copy_block->ret = -ERESTARTSYS; 386 if (cdev->private->state == DEV_STATE_CMFUPDATE) 387 cdev->private->state = DEV_STATE_ONLINE; 388 } 389 spin_unlock_irqrestore(cdev->ccwlock, flags); 390 } 391 spin_lock_irqsave(cdev->ccwlock, flags); 392 cdev->private->cmb_wait = NULL; 393 ret = copy_block->ret; 394 out_put: 395 kref_put(©_block->kref, cmf_copy_block_release); 396 out: 397 spin_unlock_irqrestore(cdev->ccwlock, flags); 398 return ret; 399 } 400 401 void cmf_retry_copy_block(struct ccw_device *cdev) 402 { 403 struct copy_block_struct *copy_block; 404 405 copy_block = cdev->private->cmb_wait; 406 if (!copy_block) { 407 WARN_ON(1); 408 return; 409 } 410 kref_get(©_block->kref); 411 copy_block->ret = cmf_copy_block(cdev); 412 wake_up(©_block->wait); 413 kref_put(©_block->kref, cmf_copy_block_release); 414 } 415 416 static void cmf_generic_reset(struct ccw_device *cdev) 417 { 418 struct cmb_data *cmb_data; 419 420 spin_lock_irq(cdev->ccwlock); 421 cmb_data = cdev->private->cmb; 422 if (cmb_data) { 423 memset(cmb_data->last_block, 0, cmb_data->size); 424 /* 425 * Need to reset hw block as well to make the hardware start 426 * from 0 again. 427 */ 428 memset(cmbops->align(cmb_data->hw_block), 0, cmb_data->size); 429 cmb_data->last_update = 0; 430 } 431 cdev->private->cmb_start_time = get_tod_clock(); 432 spin_unlock_irq(cdev->ccwlock); 433 } 434 435 /** 436 * struct cmb_area - container for global cmb data 437 * 438 * @mem: pointer to CMBs (only in basic measurement mode) 439 * @list: contains a linked list of all subchannels 440 * @num_channels: number of channels to be measured 441 * @lock: protect concurrent access to @mem and @list 442 */ 443 struct cmb_area { 444 struct cmb *mem; 445 struct list_head list; 446 int num_channels; 447 spinlock_t lock; 448 }; 449 450 static struct cmb_area cmb_area = { 451 .lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock), 452 .list = LIST_HEAD_INIT(cmb_area.list), 453 .num_channels = 1024, 454 }; 455 456 /* ****** old style CMB handling ********/ 457 458 /* 459 * Basic channel measurement blocks are allocated in one contiguous 460 * block of memory, which can not be moved as long as any channel 461 * is active. Therefore, a maximum number of subchannels needs to 462 * be defined somewhere. This is a module parameter, defaulting to 463 * a reasonable value of 1024, or 32 kb of memory. 464 * Current kernels don't allow kmalloc with more than 128kb, so the 465 * maximum is 4096. 466 */ 467 468 module_param_named(maxchannels, cmb_area.num_channels, uint, 0444); 469 470 /** 471 * struct cmb - basic channel measurement block 472 * @ssch_rsch_count: number of ssch and rsch 473 * @sample_count: number of samples 474 * @device_connect_time: time of device connect 475 * @function_pending_time: time of function pending 476 * @device_disconnect_time: time of device disconnect 477 * @control_unit_queuing_time: time of control unit queuing 478 * @device_active_only_time: time of device active only 479 * @reserved: unused in basic measurement mode 480 * 481 * The measurement block as used by the hardware. The fields are described 482 * further in z/Architecture Principles of Operation, chapter 17. 483 * 484 * The cmb area made up from these blocks must be a contiguous array and may 485 * not be reallocated or freed. 486 * Only one cmb area can be present in the system. 487 */ 488 struct cmb { 489 u16 ssch_rsch_count; 490 u16 sample_count; 491 u32 device_connect_time; 492 u32 function_pending_time; 493 u32 device_disconnect_time; 494 u32 control_unit_queuing_time; 495 u32 device_active_only_time; 496 u32 reserved[2]; 497 }; 498 499 /* 500 * Insert a single device into the cmb_area list. 501 * Called with cmb_area.lock held from alloc_cmb. 502 */ 503 static int alloc_cmb_single(struct ccw_device *cdev, 504 struct cmb_data *cmb_data) 505 { 506 struct cmb *cmb; 507 struct ccw_device_private *node; 508 int ret; 509 510 spin_lock_irq(cdev->ccwlock); 511 if (!list_empty(&cdev->private->cmb_list)) { 512 ret = -EBUSY; 513 goto out; 514 } 515 516 /* 517 * Find first unused cmb in cmb_area.mem. 518 * This is a little tricky: cmb_area.list 519 * remains sorted by ->cmb->hw_data pointers. 520 */ 521 cmb = cmb_area.mem; 522 list_for_each_entry(node, &cmb_area.list, cmb_list) { 523 struct cmb_data *data; 524 data = node->cmb; 525 if ((struct cmb*)data->hw_block > cmb) 526 break; 527 cmb++; 528 } 529 if (cmb - cmb_area.mem >= cmb_area.num_channels) { 530 ret = -ENOMEM; 531 goto out; 532 } 533 534 /* insert new cmb */ 535 list_add_tail(&cdev->private->cmb_list, &node->cmb_list); 536 cmb_data->hw_block = cmb; 537 cdev->private->cmb = cmb_data; 538 ret = 0; 539 out: 540 spin_unlock_irq(cdev->ccwlock); 541 return ret; 542 } 543 544 static int alloc_cmb(struct ccw_device *cdev) 545 { 546 int ret; 547 struct cmb *mem; 548 ssize_t size; 549 struct cmb_data *cmb_data; 550 551 /* Allocate private cmb_data. */ 552 cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); 553 if (!cmb_data) 554 return -ENOMEM; 555 556 cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL); 557 if (!cmb_data->last_block) { 558 kfree(cmb_data); 559 return -ENOMEM; 560 } 561 cmb_data->size = sizeof(struct cmb); 562 spin_lock(&cmb_area.lock); 563 564 if (!cmb_area.mem) { 565 /* there is no user yet, so we need a new area */ 566 size = sizeof(struct cmb) * cmb_area.num_channels; 567 WARN_ON(!list_empty(&cmb_area.list)); 568 569 spin_unlock(&cmb_area.lock); 570 mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA, 571 get_order(size)); 572 spin_lock(&cmb_area.lock); 573 574 if (cmb_area.mem) { 575 /* ok, another thread was faster */ 576 free_pages((unsigned long)mem, get_order(size)); 577 } else if (!mem) { 578 /* no luck */ 579 ret = -ENOMEM; 580 goto out; 581 } else { 582 /* everything ok */ 583 memset(mem, 0, size); 584 cmb_area.mem = mem; 585 cmf_activate(cmb_area.mem, 1); 586 } 587 } 588 589 /* do the actual allocation */ 590 ret = alloc_cmb_single(cdev, cmb_data); 591 out: 592 spin_unlock(&cmb_area.lock); 593 if (ret) { 594 kfree(cmb_data->last_block); 595 kfree(cmb_data); 596 } 597 return ret; 598 } 599 600 static void free_cmb(struct ccw_device *cdev) 601 { 602 struct ccw_device_private *priv; 603 struct cmb_data *cmb_data; 604 605 spin_lock(&cmb_area.lock); 606 spin_lock_irq(cdev->ccwlock); 607 608 priv = cdev->private; 609 610 if (list_empty(&priv->cmb_list)) { 611 /* already freed */ 612 goto out; 613 } 614 615 cmb_data = priv->cmb; 616 priv->cmb = NULL; 617 if (cmb_data) 618 kfree(cmb_data->last_block); 619 kfree(cmb_data); 620 list_del_init(&priv->cmb_list); 621 622 if (list_empty(&cmb_area.list)) { 623 ssize_t size; 624 size = sizeof(struct cmb) * cmb_area.num_channels; 625 cmf_activate(NULL, 0); 626 free_pages((unsigned long)cmb_area.mem, get_order(size)); 627 cmb_area.mem = NULL; 628 } 629 out: 630 spin_unlock_irq(cdev->ccwlock); 631 spin_unlock(&cmb_area.lock); 632 } 633 634 static int set_cmb(struct ccw_device *cdev, u32 mme) 635 { 636 u16 offset; 637 struct cmb_data *cmb_data; 638 unsigned long flags; 639 640 spin_lock_irqsave(cdev->ccwlock, flags); 641 if (!cdev->private->cmb) { 642 spin_unlock_irqrestore(cdev->ccwlock, flags); 643 return -EINVAL; 644 } 645 cmb_data = cdev->private->cmb; 646 offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0; 647 spin_unlock_irqrestore(cdev->ccwlock, flags); 648 649 return set_schib_wait(cdev, mme, 0, offset); 650 } 651 652 static u64 read_cmb(struct ccw_device *cdev, int index) 653 { 654 struct cmb *cmb; 655 u32 val; 656 int ret; 657 unsigned long flags; 658 659 ret = cmf_cmb_copy_wait(cdev); 660 if (ret < 0) 661 return 0; 662 663 spin_lock_irqsave(cdev->ccwlock, flags); 664 if (!cdev->private->cmb) { 665 ret = 0; 666 goto out; 667 } 668 cmb = ((struct cmb_data *)cdev->private->cmb)->last_block; 669 670 switch (index) { 671 case cmb_ssch_rsch_count: 672 ret = cmb->ssch_rsch_count; 673 goto out; 674 case cmb_sample_count: 675 ret = cmb->sample_count; 676 goto out; 677 case cmb_device_connect_time: 678 val = cmb->device_connect_time; 679 break; 680 case cmb_function_pending_time: 681 val = cmb->function_pending_time; 682 break; 683 case cmb_device_disconnect_time: 684 val = cmb->device_disconnect_time; 685 break; 686 case cmb_control_unit_queuing_time: 687 val = cmb->control_unit_queuing_time; 688 break; 689 case cmb_device_active_only_time: 690 val = cmb->device_active_only_time; 691 break; 692 default: 693 ret = 0; 694 goto out; 695 } 696 ret = time_to_avg_nsec(val, cmb->sample_count); 697 out: 698 spin_unlock_irqrestore(cdev->ccwlock, flags); 699 return ret; 700 } 701 702 static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data) 703 { 704 struct cmb *cmb; 705 struct cmb_data *cmb_data; 706 u64 time; 707 unsigned long flags; 708 int ret; 709 710 ret = cmf_cmb_copy_wait(cdev); 711 if (ret < 0) 712 return ret; 713 spin_lock_irqsave(cdev->ccwlock, flags); 714 cmb_data = cdev->private->cmb; 715 if (!cmb_data) { 716 ret = -ENODEV; 717 goto out; 718 } 719 if (cmb_data->last_update == 0) { 720 ret = -EAGAIN; 721 goto out; 722 } 723 cmb = cmb_data->last_block; 724 time = cmb_data->last_update - cdev->private->cmb_start_time; 725 726 memset(data, 0, sizeof(struct cmbdata)); 727 728 /* we only know values before device_busy_time */ 729 data->size = offsetof(struct cmbdata, device_busy_time); 730 731 /* convert to nanoseconds */ 732 data->elapsed_time = (time * 1000) >> 12; 733 734 /* copy data to new structure */ 735 data->ssch_rsch_count = cmb->ssch_rsch_count; 736 data->sample_count = cmb->sample_count; 737 738 /* time fields are converted to nanoseconds while copying */ 739 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 740 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 741 data->device_disconnect_time = 742 time_to_nsec(cmb->device_disconnect_time); 743 data->control_unit_queuing_time 744 = time_to_nsec(cmb->control_unit_queuing_time); 745 data->device_active_only_time 746 = time_to_nsec(cmb->device_active_only_time); 747 ret = 0; 748 out: 749 spin_unlock_irqrestore(cdev->ccwlock, flags); 750 return ret; 751 } 752 753 static void reset_cmb(struct ccw_device *cdev) 754 { 755 cmf_generic_reset(cdev); 756 } 757 758 static void * align_cmb(void *area) 759 { 760 return area; 761 } 762 763 static struct attribute_group cmf_attr_group; 764 765 static struct cmb_operations cmbops_basic = { 766 .alloc = alloc_cmb, 767 .free = free_cmb, 768 .set = set_cmb, 769 .read = read_cmb, 770 .readall = readall_cmb, 771 .reset = reset_cmb, 772 .align = align_cmb, 773 .attr_group = &cmf_attr_group, 774 }; 775 776 /* ******** extended cmb handling ********/ 777 778 /** 779 * struct cmbe - extended channel measurement block 780 * @ssch_rsch_count: number of ssch and rsch 781 * @sample_count: number of samples 782 * @device_connect_time: time of device connect 783 * @function_pending_time: time of function pending 784 * @device_disconnect_time: time of device disconnect 785 * @control_unit_queuing_time: time of control unit queuing 786 * @device_active_only_time: time of device active only 787 * @device_busy_time: time of device busy 788 * @initial_command_response_time: initial command response time 789 * @reserved: unused 790 * 791 * The measurement block as used by the hardware. May be in any 64 bit physical 792 * location. 793 * The fields are described further in z/Architecture Principles of Operation, 794 * third edition, chapter 17. 795 */ 796 struct cmbe { 797 u32 ssch_rsch_count; 798 u32 sample_count; 799 u32 device_connect_time; 800 u32 function_pending_time; 801 u32 device_disconnect_time; 802 u32 control_unit_queuing_time; 803 u32 device_active_only_time; 804 u32 device_busy_time; 805 u32 initial_command_response_time; 806 u32 reserved[7]; 807 }; 808 809 /* 810 * kmalloc only guarantees 8 byte alignment, but we need cmbe 811 * pointers to be naturally aligned. Make sure to allocate 812 * enough space for two cmbes. 813 */ 814 static inline struct cmbe *cmbe_align(struct cmbe *c) 815 { 816 unsigned long addr; 817 addr = ((unsigned long)c + sizeof (struct cmbe) - sizeof(long)) & 818 ~(sizeof (struct cmbe) - sizeof(long)); 819 return (struct cmbe*)addr; 820 } 821 822 static int alloc_cmbe(struct ccw_device *cdev) 823 { 824 struct cmbe *cmbe; 825 struct cmb_data *cmb_data; 826 int ret; 827 828 cmbe = kzalloc (sizeof (*cmbe) * 2, GFP_KERNEL); 829 if (!cmbe) 830 return -ENOMEM; 831 cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); 832 if (!cmb_data) { 833 ret = -ENOMEM; 834 goto out_free; 835 } 836 cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL); 837 if (!cmb_data->last_block) { 838 ret = -ENOMEM; 839 goto out_free; 840 } 841 cmb_data->size = sizeof(struct cmbe); 842 spin_lock_irq(cdev->ccwlock); 843 if (cdev->private->cmb) { 844 spin_unlock_irq(cdev->ccwlock); 845 ret = -EBUSY; 846 goto out_free; 847 } 848 cmb_data->hw_block = cmbe; 849 cdev->private->cmb = cmb_data; 850 spin_unlock_irq(cdev->ccwlock); 851 852 /* activate global measurement if this is the first channel */ 853 spin_lock(&cmb_area.lock); 854 if (list_empty(&cmb_area.list)) 855 cmf_activate(NULL, 1); 856 list_add_tail(&cdev->private->cmb_list, &cmb_area.list); 857 spin_unlock(&cmb_area.lock); 858 859 return 0; 860 out_free: 861 if (cmb_data) 862 kfree(cmb_data->last_block); 863 kfree(cmb_data); 864 kfree(cmbe); 865 return ret; 866 } 867 868 static void free_cmbe(struct ccw_device *cdev) 869 { 870 struct cmb_data *cmb_data; 871 872 spin_lock_irq(cdev->ccwlock); 873 cmb_data = cdev->private->cmb; 874 cdev->private->cmb = NULL; 875 if (cmb_data) 876 kfree(cmb_data->last_block); 877 kfree(cmb_data); 878 spin_unlock_irq(cdev->ccwlock); 879 880 /* deactivate global measurement if this is the last channel */ 881 spin_lock(&cmb_area.lock); 882 list_del_init(&cdev->private->cmb_list); 883 if (list_empty(&cmb_area.list)) 884 cmf_activate(NULL, 0); 885 spin_unlock(&cmb_area.lock); 886 } 887 888 static int set_cmbe(struct ccw_device *cdev, u32 mme) 889 { 890 unsigned long mba; 891 struct cmb_data *cmb_data; 892 unsigned long flags; 893 894 spin_lock_irqsave(cdev->ccwlock, flags); 895 if (!cdev->private->cmb) { 896 spin_unlock_irqrestore(cdev->ccwlock, flags); 897 return -EINVAL; 898 } 899 cmb_data = cdev->private->cmb; 900 mba = mme ? (unsigned long) cmbe_align(cmb_data->hw_block) : 0; 901 spin_unlock_irqrestore(cdev->ccwlock, flags); 902 903 return set_schib_wait(cdev, mme, 1, mba); 904 } 905 906 907 static u64 read_cmbe(struct ccw_device *cdev, int index) 908 { 909 struct cmbe *cmb; 910 struct cmb_data *cmb_data; 911 u32 val; 912 int ret; 913 unsigned long flags; 914 915 ret = cmf_cmb_copy_wait(cdev); 916 if (ret < 0) 917 return 0; 918 919 spin_lock_irqsave(cdev->ccwlock, flags); 920 cmb_data = cdev->private->cmb; 921 if (!cmb_data) { 922 ret = 0; 923 goto out; 924 } 925 cmb = cmb_data->last_block; 926 927 switch (index) { 928 case cmb_ssch_rsch_count: 929 ret = cmb->ssch_rsch_count; 930 goto out; 931 case cmb_sample_count: 932 ret = cmb->sample_count; 933 goto out; 934 case cmb_device_connect_time: 935 val = cmb->device_connect_time; 936 break; 937 case cmb_function_pending_time: 938 val = cmb->function_pending_time; 939 break; 940 case cmb_device_disconnect_time: 941 val = cmb->device_disconnect_time; 942 break; 943 case cmb_control_unit_queuing_time: 944 val = cmb->control_unit_queuing_time; 945 break; 946 case cmb_device_active_only_time: 947 val = cmb->device_active_only_time; 948 break; 949 case cmb_device_busy_time: 950 val = cmb->device_busy_time; 951 break; 952 case cmb_initial_command_response_time: 953 val = cmb->initial_command_response_time; 954 break; 955 default: 956 ret = 0; 957 goto out; 958 } 959 ret = time_to_avg_nsec(val, cmb->sample_count); 960 out: 961 spin_unlock_irqrestore(cdev->ccwlock, flags); 962 return ret; 963 } 964 965 static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data) 966 { 967 struct cmbe *cmb; 968 struct cmb_data *cmb_data; 969 u64 time; 970 unsigned long flags; 971 int ret; 972 973 ret = cmf_cmb_copy_wait(cdev); 974 if (ret < 0) 975 return ret; 976 spin_lock_irqsave(cdev->ccwlock, flags); 977 cmb_data = cdev->private->cmb; 978 if (!cmb_data) { 979 ret = -ENODEV; 980 goto out; 981 } 982 if (cmb_data->last_update == 0) { 983 ret = -EAGAIN; 984 goto out; 985 } 986 time = cmb_data->last_update - cdev->private->cmb_start_time; 987 988 memset (data, 0, sizeof(struct cmbdata)); 989 990 /* we only know values before device_busy_time */ 991 data->size = offsetof(struct cmbdata, device_busy_time); 992 993 /* conver to nanoseconds */ 994 data->elapsed_time = (time * 1000) >> 12; 995 996 cmb = cmb_data->last_block; 997 /* copy data to new structure */ 998 data->ssch_rsch_count = cmb->ssch_rsch_count; 999 data->sample_count = cmb->sample_count; 1000 1001 /* time fields are converted to nanoseconds while copying */ 1002 data->device_connect_time = time_to_nsec(cmb->device_connect_time); 1003 data->function_pending_time = time_to_nsec(cmb->function_pending_time); 1004 data->device_disconnect_time = 1005 time_to_nsec(cmb->device_disconnect_time); 1006 data->control_unit_queuing_time 1007 = time_to_nsec(cmb->control_unit_queuing_time); 1008 data->device_active_only_time 1009 = time_to_nsec(cmb->device_active_only_time); 1010 data->device_busy_time = time_to_nsec(cmb->device_busy_time); 1011 data->initial_command_response_time 1012 = time_to_nsec(cmb->initial_command_response_time); 1013 1014 ret = 0; 1015 out: 1016 spin_unlock_irqrestore(cdev->ccwlock, flags); 1017 return ret; 1018 } 1019 1020 static void reset_cmbe(struct ccw_device *cdev) 1021 { 1022 cmf_generic_reset(cdev); 1023 } 1024 1025 static void * align_cmbe(void *area) 1026 { 1027 return cmbe_align(area); 1028 } 1029 1030 static struct attribute_group cmf_attr_group_ext; 1031 1032 static struct cmb_operations cmbops_extended = { 1033 .alloc = alloc_cmbe, 1034 .free = free_cmbe, 1035 .set = set_cmbe, 1036 .read = read_cmbe, 1037 .readall = readall_cmbe, 1038 .reset = reset_cmbe, 1039 .align = align_cmbe, 1040 .attr_group = &cmf_attr_group_ext, 1041 }; 1042 1043 static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx) 1044 { 1045 return sprintf(buf, "%lld\n", 1046 (unsigned long long) cmf_read(to_ccwdev(dev), idx)); 1047 } 1048 1049 static ssize_t cmb_show_avg_sample_interval(struct device *dev, 1050 struct device_attribute *attr, 1051 char *buf) 1052 { 1053 struct ccw_device *cdev; 1054 long interval; 1055 unsigned long count; 1056 struct cmb_data *cmb_data; 1057 1058 cdev = to_ccwdev(dev); 1059 count = cmf_read(cdev, cmb_sample_count); 1060 spin_lock_irq(cdev->ccwlock); 1061 cmb_data = cdev->private->cmb; 1062 if (count) { 1063 interval = cmb_data->last_update - 1064 cdev->private->cmb_start_time; 1065 interval = (interval * 1000) >> 12; 1066 interval /= count; 1067 } else 1068 interval = -1; 1069 spin_unlock_irq(cdev->ccwlock); 1070 return sprintf(buf, "%ld\n", interval); 1071 } 1072 1073 static ssize_t cmb_show_avg_utilization(struct device *dev, 1074 struct device_attribute *attr, 1075 char *buf) 1076 { 1077 struct cmbdata data; 1078 u64 utilization; 1079 unsigned long t, u; 1080 int ret; 1081 1082 ret = cmf_readall(to_ccwdev(dev), &data); 1083 if (ret == -EAGAIN || ret == -ENODEV) 1084 /* No data (yet/currently) available to use for calculation. */ 1085 return sprintf(buf, "n/a\n"); 1086 else if (ret) 1087 return ret; 1088 1089 utilization = data.device_connect_time + 1090 data.function_pending_time + 1091 data.device_disconnect_time; 1092 1093 /* shift to avoid long long division */ 1094 while (-1ul < (data.elapsed_time | utilization)) { 1095 utilization >>= 8; 1096 data.elapsed_time >>= 8; 1097 } 1098 1099 /* calculate value in 0.1 percent units */ 1100 t = (unsigned long) data.elapsed_time / 1000; 1101 u = (unsigned long) utilization / t; 1102 1103 return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10); 1104 } 1105 1106 #define cmf_attr(name) \ 1107 static ssize_t show_##name(struct device *dev, \ 1108 struct device_attribute *attr, char *buf) \ 1109 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1110 static DEVICE_ATTR(name, 0444, show_##name, NULL); 1111 1112 #define cmf_attr_avg(name) \ 1113 static ssize_t show_avg_##name(struct device *dev, \ 1114 struct device_attribute *attr, char *buf) \ 1115 { return cmb_show_attr((dev), buf, cmb_##name); } \ 1116 static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL); 1117 1118 cmf_attr(ssch_rsch_count); 1119 cmf_attr(sample_count); 1120 cmf_attr_avg(device_connect_time); 1121 cmf_attr_avg(function_pending_time); 1122 cmf_attr_avg(device_disconnect_time); 1123 cmf_attr_avg(control_unit_queuing_time); 1124 cmf_attr_avg(device_active_only_time); 1125 cmf_attr_avg(device_busy_time); 1126 cmf_attr_avg(initial_command_response_time); 1127 1128 static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval, 1129 NULL); 1130 static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL); 1131 1132 static struct attribute *cmf_attributes[] = { 1133 &dev_attr_avg_sample_interval.attr, 1134 &dev_attr_avg_utilization.attr, 1135 &dev_attr_ssch_rsch_count.attr, 1136 &dev_attr_sample_count.attr, 1137 &dev_attr_avg_device_connect_time.attr, 1138 &dev_attr_avg_function_pending_time.attr, 1139 &dev_attr_avg_device_disconnect_time.attr, 1140 &dev_attr_avg_control_unit_queuing_time.attr, 1141 &dev_attr_avg_device_active_only_time.attr, 1142 NULL, 1143 }; 1144 1145 static struct attribute_group cmf_attr_group = { 1146 .name = "cmf", 1147 .attrs = cmf_attributes, 1148 }; 1149 1150 static struct attribute *cmf_attributes_ext[] = { 1151 &dev_attr_avg_sample_interval.attr, 1152 &dev_attr_avg_utilization.attr, 1153 &dev_attr_ssch_rsch_count.attr, 1154 &dev_attr_sample_count.attr, 1155 &dev_attr_avg_device_connect_time.attr, 1156 &dev_attr_avg_function_pending_time.attr, 1157 &dev_attr_avg_device_disconnect_time.attr, 1158 &dev_attr_avg_control_unit_queuing_time.attr, 1159 &dev_attr_avg_device_active_only_time.attr, 1160 &dev_attr_avg_device_busy_time.attr, 1161 &dev_attr_avg_initial_command_response_time.attr, 1162 NULL, 1163 }; 1164 1165 static struct attribute_group cmf_attr_group_ext = { 1166 .name = "cmf", 1167 .attrs = cmf_attributes_ext, 1168 }; 1169 1170 static ssize_t cmb_enable_show(struct device *dev, 1171 struct device_attribute *attr, 1172 char *buf) 1173 { 1174 return sprintf(buf, "%d\n", to_ccwdev(dev)->private->cmb ? 1 : 0); 1175 } 1176 1177 static ssize_t cmb_enable_store(struct device *dev, 1178 struct device_attribute *attr, const char *buf, 1179 size_t c) 1180 { 1181 struct ccw_device *cdev; 1182 int ret; 1183 unsigned long val; 1184 1185 ret = kstrtoul(buf, 16, &val); 1186 if (ret) 1187 return ret; 1188 1189 cdev = to_ccwdev(dev); 1190 1191 switch (val) { 1192 case 0: 1193 ret = disable_cmf(cdev); 1194 break; 1195 case 1: 1196 ret = enable_cmf(cdev); 1197 break; 1198 } 1199 1200 return c; 1201 } 1202 1203 DEVICE_ATTR(cmb_enable, 0644, cmb_enable_show, cmb_enable_store); 1204 1205 int ccw_set_cmf(struct ccw_device *cdev, int enable) 1206 { 1207 return cmbops->set(cdev, enable ? 2 : 0); 1208 } 1209 1210 /** 1211 * enable_cmf() - switch on the channel measurement for a specific device 1212 * @cdev: The ccw device to be enabled 1213 * 1214 * Returns %0 for success or a negative error value. 1215 * 1216 * Context: 1217 * non-atomic 1218 */ 1219 int enable_cmf(struct ccw_device *cdev) 1220 { 1221 int ret; 1222 1223 ret = cmbops->alloc(cdev); 1224 cmbops->reset(cdev); 1225 if (ret) 1226 return ret; 1227 ret = cmbops->set(cdev, 2); 1228 if (ret) { 1229 cmbops->free(cdev); 1230 return ret; 1231 } 1232 ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group); 1233 if (!ret) 1234 return 0; 1235 cmbops->set(cdev, 0); //FIXME: this can fail 1236 cmbops->free(cdev); 1237 return ret; 1238 } 1239 1240 /** 1241 * disable_cmf() - switch off the channel measurement for a specific device 1242 * @cdev: The ccw device to be disabled 1243 * 1244 * Returns %0 for success or a negative error value. 1245 * 1246 * Context: 1247 * non-atomic 1248 */ 1249 int disable_cmf(struct ccw_device *cdev) 1250 { 1251 int ret; 1252 1253 ret = cmbops->set(cdev, 0); 1254 if (ret) 1255 return ret; 1256 cmbops->free(cdev); 1257 sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); 1258 return ret; 1259 } 1260 1261 /** 1262 * cmf_read() - read one value from the current channel measurement block 1263 * @cdev: the channel to be read 1264 * @index: the index of the value to be read 1265 * 1266 * Returns the value read or %0 if the value cannot be read. 1267 * 1268 * Context: 1269 * any 1270 */ 1271 u64 cmf_read(struct ccw_device *cdev, int index) 1272 { 1273 return cmbops->read(cdev, index); 1274 } 1275 1276 /** 1277 * cmf_readall() - read the current channel measurement block 1278 * @cdev: the channel to be read 1279 * @data: a pointer to a data block that will be filled 1280 * 1281 * Returns %0 on success, a negative error value otherwise. 1282 * 1283 * Context: 1284 * any 1285 */ 1286 int cmf_readall(struct ccw_device *cdev, struct cmbdata *data) 1287 { 1288 return cmbops->readall(cdev, data); 1289 } 1290 1291 /* Reenable cmf when a disconnected device becomes available again. */ 1292 int cmf_reenable(struct ccw_device *cdev) 1293 { 1294 cmbops->reset(cdev); 1295 return cmbops->set(cdev, 2); 1296 } 1297 1298 static int __init init_cmf(void) 1299 { 1300 char *format_string; 1301 char *detect_string = "parameter"; 1302 1303 /* 1304 * If the user did not give a parameter, see if we are running on a 1305 * machine supporting extended measurement blocks, otherwise fall back 1306 * to basic mode. 1307 */ 1308 if (format == CMF_AUTODETECT) { 1309 if (!css_general_characteristics.ext_mb) { 1310 format = CMF_BASIC; 1311 } else { 1312 format = CMF_EXTENDED; 1313 } 1314 detect_string = "autodetected"; 1315 } else { 1316 detect_string = "parameter"; 1317 } 1318 1319 switch (format) { 1320 case CMF_BASIC: 1321 format_string = "basic"; 1322 cmbops = &cmbops_basic; 1323 break; 1324 case CMF_EXTENDED: 1325 format_string = "extended"; 1326 cmbops = &cmbops_extended; 1327 break; 1328 default: 1329 return 1; 1330 } 1331 pr_info("Channel measurement facility initialized using format " 1332 "%s (mode %s)\n", format_string, detect_string); 1333 return 0; 1334 } 1335 1336 module_init(init_cmf); 1337 1338 1339 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>"); 1340 MODULE_LICENSE("GPL"); 1341 MODULE_DESCRIPTION("channel measurement facility base driver\n" 1342 "Copyright IBM Corp. 2003\n"); 1343 1344 EXPORT_SYMBOL_GPL(enable_cmf); 1345 EXPORT_SYMBOL_GPL(disable_cmf); 1346 EXPORT_SYMBOL_GPL(cmf_read); 1347 EXPORT_SYMBOL_GPL(cmf_readall); 1348