1 /* 2 * An i2c driver for the Xicor/Intersil X1205 RTC 3 * Copyright 2004 Karen Spearel 4 * Copyright 2005 Alessandro Zummo 5 * 6 * please send all reports to: 7 * Karen Spearel <kas111 at gmail dot com> 8 * Alessandro Zummo <a.zummo@towertech.it> 9 * 10 * based on a lot of other RTC drivers. 11 * 12 * Information and datasheet: 13 * http://www.intersil.com/cda/deviceinfo/0,1477,X1205,00.html 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License version 2 as 17 * published by the Free Software Foundation. 18 */ 19 20 #include <linux/i2c.h> 21 #include <linux/bcd.h> 22 #include <linux/rtc.h> 23 #include <linux/delay.h> 24 #include <linux/module.h> 25 26 #define DRV_VERSION "1.0.8" 27 28 /* offsets into CCR area */ 29 30 #define CCR_SEC 0 31 #define CCR_MIN 1 32 #define CCR_HOUR 2 33 #define CCR_MDAY 3 34 #define CCR_MONTH 4 35 #define CCR_YEAR 5 36 #define CCR_WDAY 6 37 #define CCR_Y2K 7 38 39 #define X1205_REG_SR 0x3F /* status register */ 40 #define X1205_REG_Y2K 0x37 41 #define X1205_REG_DW 0x36 42 #define X1205_REG_YR 0x35 43 #define X1205_REG_MO 0x34 44 #define X1205_REG_DT 0x33 45 #define X1205_REG_HR 0x32 46 #define X1205_REG_MN 0x31 47 #define X1205_REG_SC 0x30 48 #define X1205_REG_DTR 0x13 49 #define X1205_REG_ATR 0x12 50 #define X1205_REG_INT 0x11 51 #define X1205_REG_0 0x10 52 #define X1205_REG_Y2K1 0x0F 53 #define X1205_REG_DWA1 0x0E 54 #define X1205_REG_YRA1 0x0D 55 #define X1205_REG_MOA1 0x0C 56 #define X1205_REG_DTA1 0x0B 57 #define X1205_REG_HRA1 0x0A 58 #define X1205_REG_MNA1 0x09 59 #define X1205_REG_SCA1 0x08 60 #define X1205_REG_Y2K0 0x07 61 #define X1205_REG_DWA0 0x06 62 #define X1205_REG_YRA0 0x05 63 #define X1205_REG_MOA0 0x04 64 #define X1205_REG_DTA0 0x03 65 #define X1205_REG_HRA0 0x02 66 #define X1205_REG_MNA0 0x01 67 #define X1205_REG_SCA0 0x00 68 69 #define X1205_CCR_BASE 0x30 /* Base address of CCR */ 70 #define X1205_ALM0_BASE 0x00 /* Base address of ALARM0 */ 71 72 #define X1205_SR_RTCF 0x01 /* Clock failure */ 73 #define X1205_SR_WEL 0x02 /* Write Enable Latch */ 74 #define X1205_SR_RWEL 0x04 /* Register Write Enable */ 75 #define X1205_SR_AL0 0x20 /* Alarm 0 match */ 76 77 #define X1205_DTR_DTR0 0x01 78 #define X1205_DTR_DTR1 0x02 79 #define X1205_DTR_DTR2 0x04 80 81 #define X1205_HR_MIL 0x80 /* Set in ccr.hour for 24 hr mode */ 82 83 #define X1205_INT_AL0E 0x20 /* Alarm 0 enable */ 84 85 static struct i2c_driver x1205_driver; 86 87 /* 88 * In the routines that deal directly with the x1205 hardware, we use 89 * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch 90 * Epoch is initialized as 2000. Time is set to UTC. 91 */ 92 static int x1205_get_datetime(struct i2c_client *client, struct rtc_time *tm, 93 unsigned char reg_base) 94 { 95 unsigned char dt_addr[2] = { 0, reg_base }; 96 unsigned char buf[8]; 97 int i; 98 99 struct i2c_msg msgs[] = { 100 {/* setup read ptr */ 101 .addr = client->addr, 102 .len = 2, 103 .buf = dt_addr 104 }, 105 {/* read date */ 106 .addr = client->addr, 107 .flags = I2C_M_RD, 108 .len = 8, 109 .buf = buf 110 }, 111 }; 112 113 /* read date registers */ 114 if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) { 115 dev_err(&client->dev, "%s: read error\n", __func__); 116 return -EIO; 117 } 118 119 dev_dbg(&client->dev, 120 "%s: raw read data - sec=%02x, min=%02x, hr=%02x, " 121 "mday=%02x, mon=%02x, year=%02x, wday=%02x, y2k=%02x\n", 122 __func__, 123 buf[0], buf[1], buf[2], buf[3], 124 buf[4], buf[5], buf[6], buf[7]); 125 126 /* Mask out the enable bits if these are alarm registers */ 127 if (reg_base < X1205_CCR_BASE) 128 for (i = 0; i <= 4; i++) 129 buf[i] &= 0x7F; 130 131 tm->tm_sec = bcd2bin(buf[CCR_SEC]); 132 tm->tm_min = bcd2bin(buf[CCR_MIN]); 133 tm->tm_hour = bcd2bin(buf[CCR_HOUR] & 0x3F); /* hr is 0-23 */ 134 tm->tm_mday = bcd2bin(buf[CCR_MDAY]); 135 tm->tm_mon = bcd2bin(buf[CCR_MONTH]) - 1; /* mon is 0-11 */ 136 tm->tm_year = bcd2bin(buf[CCR_YEAR]) 137 + (bcd2bin(buf[CCR_Y2K]) * 100) - 1900; 138 tm->tm_wday = buf[CCR_WDAY]; 139 140 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, " 141 "mday=%d, mon=%d, year=%d, wday=%d\n", 142 __func__, 143 tm->tm_sec, tm->tm_min, tm->tm_hour, 144 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday); 145 146 return 0; 147 } 148 149 static int x1205_get_status(struct i2c_client *client, unsigned char *sr) 150 { 151 static unsigned char sr_addr[2] = { 0, X1205_REG_SR }; 152 153 struct i2c_msg msgs[] = { 154 { /* setup read ptr */ 155 .addr = client->addr, 156 .len = 2, 157 .buf = sr_addr 158 }, 159 { /* read status */ 160 .addr = client->addr, 161 .flags = I2C_M_RD, 162 .len = 1, 163 .buf = sr 164 }, 165 }; 166 167 /* read status register */ 168 if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) { 169 dev_err(&client->dev, "%s: read error\n", __func__); 170 return -EIO; 171 } 172 173 return 0; 174 } 175 176 static int x1205_set_datetime(struct i2c_client *client, struct rtc_time *tm, 177 u8 reg_base, unsigned char alm_enable) 178 { 179 int i, xfer; 180 unsigned char rdata[10] = { 0, reg_base }; 181 unsigned char *buf = rdata + 2; 182 183 static const unsigned char wel[3] = { 0, X1205_REG_SR, 184 X1205_SR_WEL }; 185 186 static const unsigned char rwel[3] = { 0, X1205_REG_SR, 187 X1205_SR_WEL | X1205_SR_RWEL }; 188 189 static const unsigned char diswe[3] = { 0, X1205_REG_SR, 0 }; 190 191 dev_dbg(&client->dev, 192 "%s: sec=%d min=%d hour=%d mday=%d mon=%d year=%d wday=%d\n", 193 __func__, tm->tm_sec, tm->tm_min, tm->tm_hour, tm->tm_mday, 194 tm->tm_mon, tm->tm_year, tm->tm_wday); 195 196 buf[CCR_SEC] = bin2bcd(tm->tm_sec); 197 buf[CCR_MIN] = bin2bcd(tm->tm_min); 198 199 /* set hour and 24hr bit */ 200 buf[CCR_HOUR] = bin2bcd(tm->tm_hour) | X1205_HR_MIL; 201 202 buf[CCR_MDAY] = bin2bcd(tm->tm_mday); 203 204 /* month, 1 - 12 */ 205 buf[CCR_MONTH] = bin2bcd(tm->tm_mon + 1); 206 207 /* year, since the rtc epoch*/ 208 buf[CCR_YEAR] = bin2bcd(tm->tm_year % 100); 209 buf[CCR_WDAY] = tm->tm_wday & 0x07; 210 buf[CCR_Y2K] = bin2bcd((tm->tm_year + 1900) / 100); 211 212 /* If writing alarm registers, set compare bits on registers 0-4 */ 213 if (reg_base < X1205_CCR_BASE) 214 for (i = 0; i <= 4; i++) 215 buf[i] |= 0x80; 216 217 /* this sequence is required to unlock the chip */ 218 xfer = i2c_master_send(client, wel, 3); 219 if (xfer != 3) { 220 dev_err(&client->dev, "%s: wel - %d\n", __func__, xfer); 221 return -EIO; 222 } 223 224 xfer = i2c_master_send(client, rwel, 3); 225 if (xfer != 3) { 226 dev_err(&client->dev, "%s: rwel - %d\n", __func__, xfer); 227 return -EIO; 228 } 229 230 xfer = i2c_master_send(client, rdata, sizeof(rdata)); 231 if (xfer != sizeof(rdata)) { 232 dev_err(&client->dev, 233 "%s: result=%d addr=%02x, data=%02x\n", 234 __func__, 235 xfer, rdata[1], rdata[2]); 236 return -EIO; 237 } 238 239 /* If we wrote to the nonvolatile region, wait 10msec for write cycle*/ 240 if (reg_base < X1205_CCR_BASE) { 241 unsigned char al0e[3] = { 0, X1205_REG_INT, 0 }; 242 243 msleep(10); 244 245 /* ...and set or clear the AL0E bit in the INT register */ 246 247 /* Need to set RWEL again as the write has cleared it */ 248 xfer = i2c_master_send(client, rwel, 3); 249 if (xfer != 3) { 250 dev_err(&client->dev, 251 "%s: aloe rwel - %d\n", 252 __func__, 253 xfer); 254 return -EIO; 255 } 256 257 if (alm_enable) 258 al0e[2] = X1205_INT_AL0E; 259 260 xfer = i2c_master_send(client, al0e, 3); 261 if (xfer != 3) { 262 dev_err(&client->dev, 263 "%s: al0e - %d\n", 264 __func__, 265 xfer); 266 return -EIO; 267 } 268 269 /* and wait 10msec again for this write to complete */ 270 msleep(10); 271 } 272 273 /* disable further writes */ 274 xfer = i2c_master_send(client, diswe, 3); 275 if (xfer != 3) { 276 dev_err(&client->dev, "%s: diswe - %d\n", __func__, xfer); 277 return -EIO; 278 } 279 280 return 0; 281 } 282 283 static int x1205_fix_osc(struct i2c_client *client) 284 { 285 int err; 286 struct rtc_time tm; 287 288 memset(&tm, 0, sizeof(tm)); 289 290 err = x1205_set_datetime(client, &tm, X1205_CCR_BASE, 0); 291 if (err < 0) 292 dev_err(&client->dev, "unable to restart the oscillator\n"); 293 294 return err; 295 } 296 297 static int x1205_get_dtrim(struct i2c_client *client, int *trim) 298 { 299 unsigned char dtr; 300 static unsigned char dtr_addr[2] = { 0, X1205_REG_DTR }; 301 302 struct i2c_msg msgs[] = { 303 { /* setup read ptr */ 304 .addr = client->addr, 305 .len = 2, 306 .buf = dtr_addr 307 }, 308 { /* read dtr */ 309 .addr = client->addr, 310 .flags = I2C_M_RD, 311 .len = 1, 312 .buf = &dtr 313 }, 314 }; 315 316 /* read dtr register */ 317 if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) { 318 dev_err(&client->dev, "%s: read error\n", __func__); 319 return -EIO; 320 } 321 322 dev_dbg(&client->dev, "%s: raw dtr=%x\n", __func__, dtr); 323 324 *trim = 0; 325 326 if (dtr & X1205_DTR_DTR0) 327 *trim += 20; 328 329 if (dtr & X1205_DTR_DTR1) 330 *trim += 10; 331 332 if (dtr & X1205_DTR_DTR2) 333 *trim = -*trim; 334 335 return 0; 336 } 337 338 static int x1205_get_atrim(struct i2c_client *client, int *trim) 339 { 340 s8 atr; 341 static unsigned char atr_addr[2] = { 0, X1205_REG_ATR }; 342 343 struct i2c_msg msgs[] = { 344 {/* setup read ptr */ 345 .addr = client->addr, 346 .len = 2, 347 .buf = atr_addr 348 }, 349 {/* read atr */ 350 .addr = client->addr, 351 .flags = I2C_M_RD, 352 .len = 1, 353 .buf = &atr 354 }, 355 }; 356 357 /* read atr register */ 358 if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) { 359 dev_err(&client->dev, "%s: read error\n", __func__); 360 return -EIO; 361 } 362 363 dev_dbg(&client->dev, "%s: raw atr=%x\n", __func__, atr); 364 365 /* atr is a two's complement value on 6 bits, 366 * perform sign extension. The formula is 367 * Catr = (atr * 0.25pF) + 11.00pF. 368 */ 369 if (atr & 0x20) 370 atr |= 0xC0; 371 372 dev_dbg(&client->dev, "%s: raw atr=%x (%d)\n", __func__, atr, atr); 373 374 *trim = (atr * 250) + 11000; 375 376 dev_dbg(&client->dev, "%s: real=%d\n", __func__, *trim); 377 378 return 0; 379 } 380 381 struct x1205_limit { 382 unsigned char reg, mask, min, max; 383 }; 384 385 static int x1205_validate_client(struct i2c_client *client) 386 { 387 int i, xfer; 388 389 /* Probe array. We will read the register at the specified 390 * address and check if the given bits are zero. 391 */ 392 static const unsigned char probe_zero_pattern[] = { 393 /* register, mask */ 394 X1205_REG_SR, 0x18, 395 X1205_REG_DTR, 0xF8, 396 X1205_REG_ATR, 0xC0, 397 X1205_REG_INT, 0x18, 398 X1205_REG_0, 0xFF, 399 }; 400 401 static const struct x1205_limit probe_limits_pattern[] = { 402 /* register, mask, min, max */ 403 { X1205_REG_Y2K, 0xFF, 19, 20 }, 404 { X1205_REG_DW, 0xFF, 0, 6 }, 405 { X1205_REG_YR, 0xFF, 0, 99 }, 406 { X1205_REG_MO, 0xFF, 0, 12 }, 407 { X1205_REG_DT, 0xFF, 0, 31 }, 408 { X1205_REG_HR, 0x7F, 0, 23 }, 409 { X1205_REG_MN, 0xFF, 0, 59 }, 410 { X1205_REG_SC, 0xFF, 0, 59 }, 411 { X1205_REG_Y2K1, 0xFF, 19, 20 }, 412 { X1205_REG_Y2K0, 0xFF, 19, 20 }, 413 }; 414 415 /* check that registers have bits a 0 where expected */ 416 for (i = 0; i < ARRAY_SIZE(probe_zero_pattern); i += 2) { 417 unsigned char buf; 418 419 unsigned char addr[2] = { 0, probe_zero_pattern[i] }; 420 421 struct i2c_msg msgs[2] = { 422 { 423 .addr = client->addr, 424 .len = 2, 425 .buf = addr 426 }, 427 { 428 .addr = client->addr, 429 .flags = I2C_M_RD, 430 .len = 1, 431 .buf = &buf 432 }, 433 }; 434 435 xfer = i2c_transfer(client->adapter, msgs, 2); 436 if (xfer != 2) { 437 dev_err(&client->dev, 438 "%s: could not read register %x\n", 439 __func__, probe_zero_pattern[i]); 440 441 return -EIO; 442 } 443 444 if ((buf & probe_zero_pattern[i+1]) != 0) { 445 dev_err(&client->dev, 446 "%s: register=%02x, zero pattern=%d, value=%x\n", 447 __func__, probe_zero_pattern[i], i, buf); 448 449 return -ENODEV; 450 } 451 } 452 453 /* check limits (only registers with bcd values) */ 454 for (i = 0; i < ARRAY_SIZE(probe_limits_pattern); i++) { 455 unsigned char reg, value; 456 457 unsigned char addr[2] = { 0, probe_limits_pattern[i].reg }; 458 459 struct i2c_msg msgs[2] = { 460 { 461 .addr = client->addr, 462 .len = 2, 463 .buf = addr 464 }, 465 { 466 .addr = client->addr, 467 .flags = I2C_M_RD, 468 .len = 1, 469 .buf = ® 470 }, 471 }; 472 473 xfer = i2c_transfer(client->adapter, msgs, 2); 474 if (xfer != 2) { 475 dev_err(&client->dev, 476 "%s: could not read register %x\n", 477 __func__, probe_limits_pattern[i].reg); 478 479 return -EIO; 480 } 481 482 value = bcd2bin(reg & probe_limits_pattern[i].mask); 483 484 if (value > probe_limits_pattern[i].max || 485 value < probe_limits_pattern[i].min) { 486 dev_dbg(&client->dev, 487 "%s: register=%x, lim pattern=%d, value=%d\n", 488 __func__, probe_limits_pattern[i].reg, 489 i, value); 490 491 return -ENODEV; 492 } 493 } 494 495 return 0; 496 } 497 498 static int x1205_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 499 { 500 int err; 501 unsigned char intreg, status; 502 static unsigned char int_addr[2] = { 0, X1205_REG_INT }; 503 struct i2c_client *client = to_i2c_client(dev); 504 struct i2c_msg msgs[] = { 505 { /* setup read ptr */ 506 .addr = client->addr, 507 .len = 2, 508 .buf = int_addr 509 }, 510 {/* read INT register */ 511 512 .addr = client->addr, 513 .flags = I2C_M_RD, 514 .len = 1, 515 .buf = &intreg 516 }, 517 }; 518 519 /* read interrupt register and status register */ 520 if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) { 521 dev_err(&client->dev, "%s: read error\n", __func__); 522 return -EIO; 523 } 524 err = x1205_get_status(client, &status); 525 if (err == 0) { 526 alrm->pending = (status & X1205_SR_AL0) ? 1 : 0; 527 alrm->enabled = (intreg & X1205_INT_AL0E) ? 1 : 0; 528 err = x1205_get_datetime(client, &alrm->time, X1205_ALM0_BASE); 529 } 530 return err; 531 } 532 533 static int x1205_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 534 { 535 return x1205_set_datetime(to_i2c_client(dev), 536 &alrm->time, X1205_ALM0_BASE, alrm->enabled); 537 } 538 539 static int x1205_rtc_read_time(struct device *dev, struct rtc_time *tm) 540 { 541 return x1205_get_datetime(to_i2c_client(dev), 542 tm, X1205_CCR_BASE); 543 } 544 545 static int x1205_rtc_set_time(struct device *dev, struct rtc_time *tm) 546 { 547 return x1205_set_datetime(to_i2c_client(dev), 548 tm, X1205_CCR_BASE, 0); 549 } 550 551 static int x1205_rtc_proc(struct device *dev, struct seq_file *seq) 552 { 553 int err, dtrim, atrim; 554 555 err = x1205_get_dtrim(to_i2c_client(dev), &dtrim); 556 if (!err) 557 seq_printf(seq, "digital_trim\t: %d ppm\n", dtrim); 558 559 err = x1205_get_atrim(to_i2c_client(dev), &atrim); 560 if (!err) 561 seq_printf(seq, "analog_trim\t: %d.%02d pF\n", 562 atrim / 1000, atrim % 1000); 563 return 0; 564 } 565 566 static const struct rtc_class_ops x1205_rtc_ops = { 567 .proc = x1205_rtc_proc, 568 .read_time = x1205_rtc_read_time, 569 .set_time = x1205_rtc_set_time, 570 .read_alarm = x1205_rtc_read_alarm, 571 .set_alarm = x1205_rtc_set_alarm, 572 }; 573 574 static ssize_t x1205_sysfs_show_atrim(struct device *dev, 575 struct device_attribute *attr, char *buf) 576 { 577 int err, atrim; 578 579 err = x1205_get_atrim(to_i2c_client(dev), &atrim); 580 if (err) 581 return err; 582 583 return sprintf(buf, "%d.%02d pF\n", atrim / 1000, atrim % 1000); 584 } 585 static DEVICE_ATTR(atrim, S_IRUGO, x1205_sysfs_show_atrim, NULL); 586 587 static ssize_t x1205_sysfs_show_dtrim(struct device *dev, 588 struct device_attribute *attr, char *buf) 589 { 590 int err, dtrim; 591 592 err = x1205_get_dtrim(to_i2c_client(dev), &dtrim); 593 if (err) 594 return err; 595 596 return sprintf(buf, "%d ppm\n", dtrim); 597 } 598 static DEVICE_ATTR(dtrim, S_IRUGO, x1205_sysfs_show_dtrim, NULL); 599 600 static int x1205_sysfs_register(struct device *dev) 601 { 602 int err; 603 604 err = device_create_file(dev, &dev_attr_atrim); 605 if (err) 606 return err; 607 608 err = device_create_file(dev, &dev_attr_dtrim); 609 if (err) 610 device_remove_file(dev, &dev_attr_atrim); 611 612 return err; 613 } 614 615 static void x1205_sysfs_unregister(struct device *dev) 616 { 617 device_remove_file(dev, &dev_attr_atrim); 618 device_remove_file(dev, &dev_attr_dtrim); 619 } 620 621 622 static int x1205_probe(struct i2c_client *client, 623 const struct i2c_device_id *id) 624 { 625 int err = 0; 626 unsigned char sr; 627 struct rtc_device *rtc; 628 629 dev_dbg(&client->dev, "%s\n", __func__); 630 631 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) 632 return -ENODEV; 633 634 if (x1205_validate_client(client) < 0) 635 return -ENODEV; 636 637 dev_info(&client->dev, "chip found, driver version " DRV_VERSION "\n"); 638 639 rtc = devm_rtc_device_register(&client->dev, x1205_driver.driver.name, 640 &x1205_rtc_ops, THIS_MODULE); 641 642 if (IS_ERR(rtc)) 643 return PTR_ERR(rtc); 644 645 i2c_set_clientdata(client, rtc); 646 647 /* Check for power failures and eventually enable the osc */ 648 err = x1205_get_status(client, &sr); 649 if (!err) { 650 if (sr & X1205_SR_RTCF) { 651 dev_err(&client->dev, 652 "power failure detected, " 653 "please set the clock\n"); 654 udelay(50); 655 x1205_fix_osc(client); 656 } 657 } else { 658 dev_err(&client->dev, "couldn't read status\n"); 659 } 660 661 err = x1205_sysfs_register(&client->dev); 662 if (err) 663 return err; 664 665 return 0; 666 } 667 668 static int x1205_remove(struct i2c_client *client) 669 { 670 x1205_sysfs_unregister(&client->dev); 671 return 0; 672 } 673 674 static const struct i2c_device_id x1205_id[] = { 675 { "x1205", 0 }, 676 { } 677 }; 678 MODULE_DEVICE_TABLE(i2c, x1205_id); 679 680 static struct i2c_driver x1205_driver = { 681 .driver = { 682 .name = "rtc-x1205", 683 }, 684 .probe = x1205_probe, 685 .remove = x1205_remove, 686 .id_table = x1205_id, 687 }; 688 689 module_i2c_driver(x1205_driver); 690 691 MODULE_AUTHOR( 692 "Karen Spearel <kas111 at gmail dot com>, " 693 "Alessandro Zummo <a.zummo@towertech.it>"); 694 MODULE_DESCRIPTION("Xicor/Intersil X1205 RTC driver"); 695 MODULE_LICENSE("GPL"); 696 MODULE_VERSION(DRV_VERSION); 697