xref: /linux/drivers/rtc/rtc-sun6i.c (revision 8f7e001e0325de63a42f23342ac3b8139150c5cf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * An RTC driver for Allwinner A31/A23
4  *
5  * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6  *
7  * based on rtc-sunxi.c
8  *
9  * An RTC driver for Allwinner A10/A20
10  *
11  * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/clk/sunxi-ng.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/rtc.h>
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 
33 /* Control register */
34 #define SUN6I_LOSC_CTRL				0x0000
35 #define SUN6I_LOSC_CTRL_KEY			(0x16aa << 16)
36 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS		BIT(15)
37 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC		BIT(9)
38 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC		BIT(8)
39 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC		BIT(7)
40 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN		BIT(4)
41 #define SUN6I_LOSC_CTRL_EXT_OSC			BIT(0)
42 #define SUN6I_LOSC_CTRL_ACC_MASK		GENMASK(9, 7)
43 
44 #define SUN6I_LOSC_CLK_PRESCAL			0x0008
45 
46 /* RTC */
47 #define SUN6I_RTC_YMD				0x0010
48 #define SUN6I_RTC_HMS				0x0014
49 
50 /* Alarm 0 (counter) */
51 #define SUN6I_ALRM_COUNTER			0x0020
52 /* This holds the remaining alarm seconds on older SoCs (current value) */
53 #define SUN6I_ALRM_COUNTER_HMS			0x0024
54 #define SUN6I_ALRM_EN				0x0028
55 #define SUN6I_ALRM_EN_CNT_EN			BIT(0)
56 #define SUN6I_ALRM_IRQ_EN			0x002c
57 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN		BIT(0)
58 #define SUN6I_ALRM_IRQ_STA			0x0030
59 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND		BIT(0)
60 
61 /* Alarm 1 (wall clock) */
62 #define SUN6I_ALRM1_EN				0x0044
63 #define SUN6I_ALRM1_IRQ_EN			0x0048
64 #define SUN6I_ALRM1_IRQ_STA			0x004c
65 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND	BIT(0)
66 
67 /* Alarm config */
68 #define SUN6I_ALARM_CONFIG			0x0050
69 #define SUN6I_ALARM_CONFIG_WAKEUP		BIT(0)
70 
71 #define SUN6I_LOSC_OUT_GATING			0x0060
72 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET		0
73 
74 /* General-purpose data */
75 #define SUN6I_GP_DATA				0x0100
76 #define SUN6I_GP_DATA_SIZE			0x20
77 
78 /*
79  * Get date values
80  */
81 #define SUN6I_DATE_GET_DAY_VALUE(x)		((x)  & 0x0000001f)
82 #define SUN6I_DATE_GET_MON_VALUE(x)		(((x) & 0x00000f00) >> 8)
83 #define SUN6I_DATE_GET_YEAR_VALUE(x)		(((x) & 0x003f0000) >> 16)
84 #define SUN6I_LEAP_GET_VALUE(x)			(((x) & 0x00400000) >> 22)
85 
86 /*
87  * Get time values
88  */
89 #define SUN6I_TIME_GET_SEC_VALUE(x)		((x)  & 0x0000003f)
90 #define SUN6I_TIME_GET_MIN_VALUE(x)		(((x) & 0x00003f00) >> 8)
91 #define SUN6I_TIME_GET_HOUR_VALUE(x)		(((x) & 0x001f0000) >> 16)
92 
93 /*
94  * Set date values
95  */
96 #define SUN6I_DATE_SET_DAY_VALUE(x)		((x)       & 0x0000001f)
97 #define SUN6I_DATE_SET_MON_VALUE(x)		((x) <<  8 & 0x00000f00)
98 #define SUN6I_DATE_SET_YEAR_VALUE(x)		((x) << 16 & 0x003f0000)
99 #define SUN6I_LEAP_SET_VALUE(x)			((x) << 22 & 0x00400000)
100 
101 /*
102  * Set time values
103  */
104 #define SUN6I_TIME_SET_SEC_VALUE(x)		((x)       & 0x0000003f)
105 #define SUN6I_TIME_SET_MIN_VALUE(x)		((x) <<  8 & 0x00003f00)
106 #define SUN6I_TIME_SET_HOUR_VALUE(x)		((x) << 16 & 0x001f0000)
107 
108 /*
109  * The year parameter passed to the driver is usually an offset relative to
110  * the year 1900. This macro is used to convert this offset to another one
111  * relative to the minimum year allowed by the hardware.
112  *
113  * The year range is 1970 - 2033. This range is selected to match Allwinner's
114  * driver, even though it is somewhat limited.
115  */
116 #define SUN6I_YEAR_MIN				1970
117 #define SUN6I_YEAR_OFF				(SUN6I_YEAR_MIN - 1900)
118 
119 #define SECS_PER_DAY				(24 * 3600ULL)
120 
121 /*
122  * There are other differences between models, including:
123  *
124  *   - number of GPIO pins that can be configured to hold a certain level
125  *   - crypto-key related registers (H5, H6)
126  *   - boot process related (super standby, secondary processor entry address)
127  *     registers (R40, H6)
128  *   - SYS power domain controls (R40)
129  *   - DCXO controls (H6)
130  *   - RC oscillator calibration (H6)
131  *
132  * These functions are not covered by this driver.
133  */
134 struct sun6i_rtc_clk_data {
135 	unsigned long rc_osc_rate;
136 	unsigned int fixed_prescaler : 16;
137 	unsigned int has_prescaler : 1;
138 	unsigned int has_out_clk : 1;
139 	unsigned int export_iosc : 1;
140 	unsigned int has_losc_en : 1;
141 	unsigned int has_auto_swt : 1;
142 };
143 
144 #define RTC_LINEAR_DAY	BIT(0)
145 
146 struct sun6i_rtc_dev {
147 	struct rtc_device *rtc;
148 	const struct sun6i_rtc_clk_data *data;
149 	void __iomem *base;
150 	int irq;
151 	time64_t alarm;
152 	unsigned long flags;
153 
154 	struct clk_hw hw;
155 	struct clk_hw *int_osc;
156 	struct clk *losc;
157 	struct clk *ext_losc;
158 
159 	spinlock_t lock;
160 };
161 
162 static struct sun6i_rtc_dev *sun6i_rtc;
163 
164 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
165 					       unsigned long parent_rate)
166 {
167 	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
168 	u32 val = 0;
169 
170 	val = readl(rtc->base + SUN6I_LOSC_CTRL);
171 	if (val & SUN6I_LOSC_CTRL_EXT_OSC)
172 		return parent_rate;
173 
174 	if (rtc->data->fixed_prescaler)
175 		parent_rate /= rtc->data->fixed_prescaler;
176 
177 	if (rtc->data->has_prescaler) {
178 		val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
179 		val &= GENMASK(4, 0);
180 	}
181 
182 	return parent_rate / (val + 1);
183 }
184 
185 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
186 {
187 	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
188 
189 	return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
190 }
191 
192 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
193 {
194 	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
195 	unsigned long flags;
196 	u32 val;
197 
198 	if (index > 1)
199 		return -EINVAL;
200 
201 	spin_lock_irqsave(&rtc->lock, flags);
202 	val = readl(rtc->base + SUN6I_LOSC_CTRL);
203 	val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
204 	val |= SUN6I_LOSC_CTRL_KEY;
205 	val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
206 	if (rtc->data->has_losc_en) {
207 		val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
208 		val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
209 	}
210 	writel(val, rtc->base + SUN6I_LOSC_CTRL);
211 	spin_unlock_irqrestore(&rtc->lock, flags);
212 
213 	return 0;
214 }
215 
216 static const struct clk_ops sun6i_rtc_osc_ops = {
217 	.recalc_rate	= sun6i_rtc_osc_recalc_rate,
218 
219 	.get_parent	= sun6i_rtc_osc_get_parent,
220 	.set_parent	= sun6i_rtc_osc_set_parent,
221 };
222 
223 static void __init sun6i_rtc_clk_init(struct device_node *node,
224 				      const struct sun6i_rtc_clk_data *data)
225 {
226 	struct clk_hw_onecell_data *clk_data;
227 	struct sun6i_rtc_dev *rtc;
228 	struct clk_init_data init = {
229 		.ops		= &sun6i_rtc_osc_ops,
230 		.name		= "losc",
231 	};
232 	const char *iosc_name = "rtc-int-osc";
233 	const char *clkout_name = "osc32k-out";
234 	const char *parents[2];
235 	u32 reg;
236 
237 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
238 	if (!rtc)
239 		return;
240 
241 	rtc->data = data;
242 	clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
243 	if (!clk_data) {
244 		kfree(rtc);
245 		return;
246 	}
247 
248 	spin_lock_init(&rtc->lock);
249 
250 	rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
251 	if (IS_ERR(rtc->base)) {
252 		pr_crit("Can't map RTC registers");
253 		goto err;
254 	}
255 
256 	reg = SUN6I_LOSC_CTRL_KEY;
257 	if (rtc->data->has_auto_swt) {
258 		/* Bypass auto-switch to int osc, on ext losc failure */
259 		reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
260 		writel(reg, rtc->base + SUN6I_LOSC_CTRL);
261 	}
262 
263 	/* Switch to the external, more precise, oscillator, if present */
264 	if (of_get_property(node, "clocks", NULL)) {
265 		reg |= SUN6I_LOSC_CTRL_EXT_OSC;
266 		if (rtc->data->has_losc_en)
267 			reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
268 	}
269 	writel(reg, rtc->base + SUN6I_LOSC_CTRL);
270 
271 	/* Yes, I know, this is ugly. */
272 	sun6i_rtc = rtc;
273 
274 	/* Only read IOSC name from device tree if it is exported */
275 	if (rtc->data->export_iosc)
276 		of_property_read_string_index(node, "clock-output-names", 2,
277 					      &iosc_name);
278 
279 	rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
280 								iosc_name,
281 								NULL, 0,
282 								rtc->data->rc_osc_rate,
283 								300000000);
284 	if (IS_ERR(rtc->int_osc)) {
285 		pr_crit("Couldn't register the internal oscillator\n");
286 		goto err;
287 	}
288 
289 	parents[0] = clk_hw_get_name(rtc->int_osc);
290 	/* If there is no external oscillator, this will be NULL and ... */
291 	parents[1] = of_clk_get_parent_name(node, 0);
292 
293 	rtc->hw.init = &init;
294 
295 	init.parent_names = parents;
296 	/* ... number of clock parents will be 1. */
297 	init.num_parents = of_clk_get_parent_count(node) + 1;
298 	of_property_read_string_index(node, "clock-output-names", 0,
299 				      &init.name);
300 
301 	rtc->losc = clk_register(NULL, &rtc->hw);
302 	if (IS_ERR(rtc->losc)) {
303 		pr_crit("Couldn't register the LOSC clock\n");
304 		goto err_register;
305 	}
306 
307 	of_property_read_string_index(node, "clock-output-names", 1,
308 				      &clkout_name);
309 	rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
310 					  0, rtc->base + SUN6I_LOSC_OUT_GATING,
311 					  SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
312 					  &rtc->lock);
313 	if (IS_ERR(rtc->ext_losc)) {
314 		pr_crit("Couldn't register the LOSC external gate\n");
315 		goto err_register;
316 	}
317 
318 	clk_data->num = 2;
319 	clk_data->hws[0] = &rtc->hw;
320 	clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
321 	if (rtc->data->export_iosc) {
322 		clk_data->hws[2] = rtc->int_osc;
323 		clk_data->num = 3;
324 	}
325 	of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
326 	return;
327 
328 err_register:
329 	clk_hw_unregister_fixed_rate(rtc->int_osc);
330 err:
331 	kfree(clk_data);
332 }
333 
334 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
335 	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
336 	.has_prescaler = 1,
337 };
338 
339 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
340 {
341 	sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
342 }
343 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
344 		      sun6i_a31_rtc_clk_init);
345 
346 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
347 	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
348 	.has_prescaler = 1,
349 	.has_out_clk = 1,
350 };
351 
352 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
353 {
354 	sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
355 }
356 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
357 		      sun8i_a23_rtc_clk_init);
358 
359 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
360 	.rc_osc_rate = 16000000,
361 	.fixed_prescaler = 32,
362 	.has_prescaler = 1,
363 	.has_out_clk = 1,
364 	.export_iosc = 1,
365 };
366 
367 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
368 {
369 	sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
370 }
371 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
372 		      sun8i_h3_rtc_clk_init);
373 /* As far as we are concerned, clocks for H5 are the same as H3 */
374 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
375 		      sun8i_h3_rtc_clk_init);
376 
377 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
378 	.rc_osc_rate = 16000000,
379 	.fixed_prescaler = 32,
380 	.has_prescaler = 1,
381 	.has_out_clk = 1,
382 	.export_iosc = 1,
383 	.has_losc_en = 1,
384 	.has_auto_swt = 1,
385 };
386 
387 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
388 {
389 	sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
390 }
391 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
392 		      sun50i_h6_rtc_clk_init);
393 
394 /*
395  * The R40 user manual is self-conflicting on whether the prescaler is
396  * fixed or configurable. The clock diagram shows it as fixed, but there
397  * is also a configurable divider in the RTC block.
398  */
399 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
400 	.rc_osc_rate = 16000000,
401 	.fixed_prescaler = 512,
402 };
403 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
404 {
405 	sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
406 }
407 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
408 		      sun8i_r40_rtc_clk_init);
409 
410 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
411 	.rc_osc_rate = 32000,
412 	.has_out_clk = 1,
413 };
414 
415 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
416 {
417 	sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
418 }
419 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
420 		      sun8i_v3_rtc_clk_init);
421 
422 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
423 {
424 	struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
425 	irqreturn_t ret = IRQ_NONE;
426 	u32 val;
427 
428 	spin_lock(&chip->lock);
429 	val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
430 
431 	if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
432 		val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
433 		writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
434 
435 		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
436 
437 		ret = IRQ_HANDLED;
438 	}
439 	spin_unlock(&chip->lock);
440 
441 	return ret;
442 }
443 
444 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
445 {
446 	u32 alrm_val = 0;
447 	u32 alrm_irq_val = 0;
448 	u32 alrm_wake_val = 0;
449 	unsigned long flags;
450 
451 	if (to) {
452 		alrm_val = SUN6I_ALRM_EN_CNT_EN;
453 		alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
454 		alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
455 	} else {
456 		writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
457 		       chip->base + SUN6I_ALRM_IRQ_STA);
458 	}
459 
460 	spin_lock_irqsave(&chip->lock, flags);
461 	writel(alrm_val, chip->base + SUN6I_ALRM_EN);
462 	writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
463 	writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
464 	spin_unlock_irqrestore(&chip->lock, flags);
465 }
466 
467 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
468 {
469 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
470 	u32 date, time;
471 
472 	/*
473 	 * read again in case it changes
474 	 */
475 	do {
476 		date = readl(chip->base + SUN6I_RTC_YMD);
477 		time = readl(chip->base + SUN6I_RTC_HMS);
478 	} while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
479 		 (time != readl(chip->base + SUN6I_RTC_HMS)));
480 
481 	if (chip->flags & RTC_LINEAR_DAY) {
482 		/*
483 		 * Newer chips store a linear day number, the manual
484 		 * does not mandate any epoch base. The BSP driver uses
485 		 * the UNIX epoch, let's just copy that, as it's the
486 		 * easiest anyway.
487 		 */
488 		rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
489 	} else {
490 		rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
491 		rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
492 		rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
493 
494 		/*
495 		 * switch from (data_year->min)-relative offset to
496 		 * a (1900)-relative one
497 		 */
498 		rtc_tm->tm_year += SUN6I_YEAR_OFF;
499 	}
500 
501 	rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
502 	rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
503 	rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
504 
505 	return 0;
506 }
507 
508 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
509 {
510 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
511 	unsigned long flags;
512 	u32 alrm_st;
513 	u32 alrm_en;
514 
515 	spin_lock_irqsave(&chip->lock, flags);
516 	alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
517 	alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
518 	spin_unlock_irqrestore(&chip->lock, flags);
519 
520 	wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
521 	wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
522 	rtc_time64_to_tm(chip->alarm, &wkalrm->time);
523 
524 	return 0;
525 }
526 
527 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
528 {
529 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
530 	struct rtc_time *alrm_tm = &wkalrm->time;
531 	struct rtc_time tm_now;
532 	time64_t time_set;
533 	u32 counter_val, counter_val_hms;
534 	int ret;
535 
536 	time_set = rtc_tm_to_time64(alrm_tm);
537 
538 	if (chip->flags & RTC_LINEAR_DAY) {
539 		/*
540 		 * The alarm registers hold the actual alarm time, encoded
541 		 * in the same way (linear day + HMS) as the current time.
542 		 */
543 		counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
544 				  SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
545 				  SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
546 		/* The division will cut off the H:M:S part of alrm_tm. */
547 		counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
548 	} else {
549 		/* The alarm register holds the number of seconds left. */
550 		time64_t time_now;
551 
552 		ret = sun6i_rtc_gettime(dev, &tm_now);
553 		if (ret < 0) {
554 			dev_err(dev, "Error in getting time\n");
555 			return -EINVAL;
556 		}
557 
558 		time_now = rtc_tm_to_time64(&tm_now);
559 		if (time_set <= time_now) {
560 			dev_err(dev, "Date to set in the past\n");
561 			return -EINVAL;
562 		}
563 		if ((time_set - time_now) > U32_MAX) {
564 			dev_err(dev, "Date too far in the future\n");
565 			return -EINVAL;
566 		}
567 
568 		counter_val = time_set - time_now;
569 	}
570 
571 	sun6i_rtc_setaie(0, chip);
572 	writel(0, chip->base + SUN6I_ALRM_COUNTER);
573 	if (chip->flags & RTC_LINEAR_DAY)
574 		writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
575 	usleep_range(100, 300);
576 
577 	writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
578 	if (chip->flags & RTC_LINEAR_DAY)
579 		writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
580 	chip->alarm = time_set;
581 
582 	sun6i_rtc_setaie(wkalrm->enabled, chip);
583 
584 	return 0;
585 }
586 
587 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
588 			  unsigned int mask, unsigned int ms_timeout)
589 {
590 	const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
591 	u32 reg;
592 
593 	do {
594 		reg = readl(chip->base + offset);
595 		reg &= mask;
596 
597 		if (!reg)
598 			return 0;
599 
600 	} while (time_before(jiffies, timeout));
601 
602 	return -ETIMEDOUT;
603 }
604 
605 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
606 {
607 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
608 	u32 date = 0;
609 	u32 time = 0;
610 
611 	time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
612 		SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
613 		SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
614 
615 	if (chip->flags & RTC_LINEAR_DAY) {
616 		/* The division will cut off the H:M:S part of rtc_tm. */
617 		date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
618 	} else {
619 		rtc_tm->tm_year -= SUN6I_YEAR_OFF;
620 		rtc_tm->tm_mon += 1;
621 
622 		date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
623 			SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
624 			SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
625 
626 		if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
627 			date |= SUN6I_LEAP_SET_VALUE(1);
628 	}
629 
630 	/* Check whether registers are writable */
631 	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
632 			   SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
633 		dev_err(dev, "rtc is still busy.\n");
634 		return -EBUSY;
635 	}
636 
637 	writel(time, chip->base + SUN6I_RTC_HMS);
638 
639 	/*
640 	 * After writing the RTC HH-MM-SS register, the
641 	 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
642 	 * be cleared until the real writing operation is finished
643 	 */
644 
645 	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
646 			   SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
647 		dev_err(dev, "Failed to set rtc time.\n");
648 		return -ETIMEDOUT;
649 	}
650 
651 	writel(date, chip->base + SUN6I_RTC_YMD);
652 
653 	/*
654 	 * After writing the RTC YY-MM-DD register, the
655 	 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
656 	 * be cleared until the real writing operation is finished
657 	 */
658 
659 	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
660 			   SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
661 		dev_err(dev, "Failed to set rtc time.\n");
662 		return -ETIMEDOUT;
663 	}
664 
665 	return 0;
666 }
667 
668 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
669 {
670 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
671 
672 	if (!enabled)
673 		sun6i_rtc_setaie(enabled, chip);
674 
675 	return 0;
676 }
677 
678 static const struct rtc_class_ops sun6i_rtc_ops = {
679 	.read_time		= sun6i_rtc_gettime,
680 	.set_time		= sun6i_rtc_settime,
681 	.read_alarm		= sun6i_rtc_getalarm,
682 	.set_alarm		= sun6i_rtc_setalarm,
683 	.alarm_irq_enable	= sun6i_rtc_alarm_irq_enable
684 };
685 
686 static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
687 {
688 	struct sun6i_rtc_dev *chip = priv;
689 	u32 *val = _val;
690 	int i;
691 
692 	for (i = 0; i < bytes / 4; ++i)
693 		val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
694 
695 	return 0;
696 }
697 
698 static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
699 {
700 	struct sun6i_rtc_dev *chip = priv;
701 	u32 *val = _val;
702 	int i;
703 
704 	for (i = 0; i < bytes / 4; ++i)
705 		writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
706 
707 	return 0;
708 }
709 
710 static struct nvmem_config sun6i_rtc_nvmem_cfg = {
711 	.type		= NVMEM_TYPE_BATTERY_BACKED,
712 	.reg_read	= sun6i_rtc_nvmem_read,
713 	.reg_write	= sun6i_rtc_nvmem_write,
714 	.size		= SUN6I_GP_DATA_SIZE,
715 	.word_size	= 4,
716 	.stride		= 4,
717 };
718 
719 #ifdef CONFIG_PM_SLEEP
720 /* Enable IRQ wake on suspend, to wake up from RTC. */
721 static int sun6i_rtc_suspend(struct device *dev)
722 {
723 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
724 
725 	if (device_may_wakeup(dev))
726 		enable_irq_wake(chip->irq);
727 
728 	return 0;
729 }
730 
731 /* Disable IRQ wake on resume. */
732 static int sun6i_rtc_resume(struct device *dev)
733 {
734 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
735 
736 	if (device_may_wakeup(dev))
737 		disable_irq_wake(chip->irq);
738 
739 	return 0;
740 }
741 #endif
742 
743 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
744 	sun6i_rtc_suspend, sun6i_rtc_resume);
745 
746 static void sun6i_rtc_bus_clk_cleanup(void *data)
747 {
748 	struct clk *bus_clk = data;
749 
750 	clk_disable_unprepare(bus_clk);
751 }
752 
753 static int sun6i_rtc_probe(struct platform_device *pdev)
754 {
755 	struct sun6i_rtc_dev *chip = sun6i_rtc;
756 	struct device *dev = &pdev->dev;
757 	struct clk *bus_clk;
758 	int ret;
759 
760 	bus_clk = devm_clk_get_optional(dev, "bus");
761 	if (IS_ERR(bus_clk))
762 		return PTR_ERR(bus_clk);
763 
764 	if (bus_clk) {
765 		ret = clk_prepare_enable(bus_clk);
766 		if (ret)
767 			return ret;
768 
769 		ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
770 					       bus_clk);
771 		if (ret)
772 			return ret;
773 	}
774 
775 	if (!chip) {
776 		chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
777 		if (!chip)
778 			return -ENOMEM;
779 
780 		spin_lock_init(&chip->lock);
781 
782 		chip->base = devm_platform_ioremap_resource(pdev, 0);
783 		if (IS_ERR(chip->base))
784 			return PTR_ERR(chip->base);
785 
786 		if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
787 			ret = sun6i_rtc_ccu_probe(dev, chip->base);
788 			if (ret)
789 				return ret;
790 		}
791 	}
792 
793 	platform_set_drvdata(pdev, chip);
794 
795 	chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
796 
797 	chip->irq = platform_get_irq(pdev, 0);
798 	if (chip->irq < 0)
799 		return chip->irq;
800 
801 	ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
802 			       0, dev_name(&pdev->dev), chip);
803 	if (ret) {
804 		dev_err(&pdev->dev, "Could not request IRQ\n");
805 		return ret;
806 	}
807 
808 	/* clear the alarm counter value */
809 	writel(0, chip->base + SUN6I_ALRM_COUNTER);
810 
811 	/* disable counter alarm */
812 	writel(0, chip->base + SUN6I_ALRM_EN);
813 
814 	/* disable counter alarm interrupt */
815 	writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
816 
817 	/* disable week alarm */
818 	writel(0, chip->base + SUN6I_ALRM1_EN);
819 
820 	/* disable week alarm interrupt */
821 	writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
822 
823 	/* clear counter alarm pending interrupts */
824 	writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
825 	       chip->base + SUN6I_ALRM_IRQ_STA);
826 
827 	/* clear week alarm pending interrupts */
828 	writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
829 	       chip->base + SUN6I_ALRM1_IRQ_STA);
830 
831 	/* disable alarm wakeup */
832 	writel(0, chip->base + SUN6I_ALARM_CONFIG);
833 
834 	clk_prepare_enable(chip->losc);
835 
836 	device_init_wakeup(&pdev->dev, 1);
837 
838 	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
839 	if (IS_ERR(chip->rtc))
840 		return PTR_ERR(chip->rtc);
841 
842 	chip->rtc->ops = &sun6i_rtc_ops;
843 	if (chip->flags & RTC_LINEAR_DAY)
844 		chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
845 	else
846 		chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
847 
848 	ret = devm_rtc_register_device(chip->rtc);
849 	if (ret)
850 		return ret;
851 
852 	sun6i_rtc_nvmem_cfg.priv = chip;
853 	ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
854 	if (ret)
855 		return ret;
856 
857 	dev_info(&pdev->dev, "RTC enabled\n");
858 
859 	return 0;
860 }
861 
862 /*
863  * As far as RTC functionality goes, all models are the same. The
864  * datasheets claim that different models have different number of
865  * registers available for non-volatile storage, but experiments show
866  * that all SoCs have 16 registers available for this purpose.
867  */
868 static const struct of_device_id sun6i_rtc_dt_ids[] = {
869 	{ .compatible = "allwinner,sun6i-a31-rtc" },
870 	{ .compatible = "allwinner,sun8i-a23-rtc" },
871 	{ .compatible = "allwinner,sun8i-h3-rtc" },
872 	{ .compatible = "allwinner,sun8i-r40-rtc" },
873 	{ .compatible = "allwinner,sun8i-v3-rtc" },
874 	{ .compatible = "allwinner,sun50i-h5-rtc" },
875 	{ .compatible = "allwinner,sun50i-h6-rtc" },
876 	{ .compatible = "allwinner,sun50i-h616-rtc",
877 		.data = (void *)RTC_LINEAR_DAY },
878 	{ .compatible = "allwinner,sun50i-r329-rtc",
879 		.data = (void *)RTC_LINEAR_DAY },
880 	{ /* sentinel */ },
881 };
882 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
883 
884 static struct platform_driver sun6i_rtc_driver = {
885 	.probe		= sun6i_rtc_probe,
886 	.driver		= {
887 		.name		= "sun6i-rtc",
888 		.of_match_table = sun6i_rtc_dt_ids,
889 		.pm = &sun6i_rtc_pm_ops,
890 	},
891 };
892 builtin_platform_driver(sun6i_rtc_driver);
893