xref: /linux/drivers/rtc/rtc-stmp3xxx.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Freescale STMP37XX/STMP378X Real Time Clock driver
3  *
4  * Copyright (c) 2007 Sigmatel, Inc.
5  * Peter Hartley, <peter.hartley@sigmatel.com>
6  *
7  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9  * Copyright 2011 Wolfram Sang, Pengutronix e.K.
10  */
11 
12 /*
13  * The code contained herein is licensed under the GNU General Public
14  * License. You may obtain a copy of the GNU General Public License
15  * Version 2 or later at the following locations:
16  *
17  * http://www.opensource.org/licenses/gpl-license.html
18  * http://www.gnu.org/copyleft/gpl.html
19  */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/init.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/rtc.h>
28 #include <linux/slab.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/stmp_device.h>
32 #include <linux/stmp3xxx_rtc_wdt.h>
33 
34 #define STMP3XXX_RTC_CTRL			0x0
35 #define STMP3XXX_RTC_CTRL_SET			0x4
36 #define STMP3XXX_RTC_CTRL_CLR			0x8
37 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
38 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
39 #define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
40 #define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
41 
42 #define STMP3XXX_RTC_STAT			0x10
43 #define STMP3XXX_RTC_STAT_STALE_SHIFT		16
44 #define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
45 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
46 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
47 
48 #define STMP3XXX_RTC_SECONDS			0x30
49 
50 #define STMP3XXX_RTC_ALARM			0x40
51 
52 #define STMP3XXX_RTC_WATCHDOG			0x50
53 
54 #define STMP3XXX_RTC_PERSISTENT0		0x60
55 #define STMP3XXX_RTC_PERSISTENT0_SET		0x64
56 #define STMP3XXX_RTC_PERSISTENT0_CLR		0x68
57 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
58 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
59 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
60 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
61 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
62 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
63 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
64 
65 #define STMP3XXX_RTC_PERSISTENT1		0x70
66 /* missing bitmask in headers */
67 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
68 
69 struct stmp3xxx_rtc_data {
70 	struct rtc_device *rtc;
71 	void __iomem *io;
72 	int irq_alarm;
73 };
74 
75 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
76 /**
77  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
78  * @dev: the parent device of the watchdog (= the RTC)
79  * @timeout: the desired value for the timeout register of the watchdog.
80  *           0 disables the watchdog
81  *
82  * The watchdog needs one register and two bits which are in the RTC domain.
83  * To handle the resource conflict, the RTC driver will create another
84  * platform_device for the watchdog driver as a child of the RTC device.
85  * The watchdog driver is passed the below accessor function via platform_data
86  * to configure the watchdog. Locking is not needed because accessing SET/CLR
87  * registers is atomic.
88  */
89 
90 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
91 {
92 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
93 
94 	if (timeout) {
95 		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
96 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
97 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
98 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
99 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
100 	} else {
101 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
102 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
103 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
104 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
105 	}
106 }
107 
108 static struct stmp3xxx_wdt_pdata wdt_pdata = {
109 	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
110 };
111 
112 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
113 {
114 	struct platform_device *wdt_pdev =
115 		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
116 
117 	if (wdt_pdev) {
118 		wdt_pdev->dev.parent = &rtc_pdev->dev;
119 		wdt_pdev->dev.platform_data = &wdt_pdata;
120 		platform_device_add(wdt_pdev);
121 	}
122 }
123 #else
124 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
125 {
126 }
127 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
128 
129 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
130 {
131 	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
132 	/*
133 	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
134 	 * states:
135 	 * | The order in which registers are updated is
136 	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
137 	 * | (This list is in bitfield order, from LSB to MSB, as they would
138 	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
139 	 * | register. For example, the Seconds register corresponds to
140 	 * | STALE_REGS or NEW_REGS containing 0x80.)
141 	 */
142 	do {
143 		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
144 				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
145 			return 0;
146 		udelay(1);
147 	} while (--timeout > 0);
148 	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
149 		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
150 }
151 
152 /* Time read/write */
153 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
154 {
155 	int ret;
156 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
157 
158 	ret = stmp3xxx_wait_time(rtc_data);
159 	if (ret)
160 		return ret;
161 
162 	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
163 	return 0;
164 }
165 
166 static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
167 {
168 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
169 
170 	writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
171 	return stmp3xxx_wait_time(rtc_data);
172 }
173 
174 /* interrupt(s) handler */
175 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
176 {
177 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
178 	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
179 
180 	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
181 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
182 				rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
183 		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
184 		return IRQ_HANDLED;
185 	}
186 
187 	return IRQ_NONE;
188 }
189 
190 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
191 {
192 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
193 
194 	if (enabled) {
195 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
196 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
197 				rtc_data->io + STMP3XXX_RTC_PERSISTENT0_SET);
198 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
199 				rtc_data->io + STMP3XXX_RTC_CTRL_SET);
200 	} else {
201 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
202 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
203 				rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
204 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
205 				rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
206 	}
207 	return 0;
208 }
209 
210 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
211 {
212 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
213 
214 	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
215 	return 0;
216 }
217 
218 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
219 {
220 	unsigned long t;
221 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
222 
223 	rtc_tm_to_time(&alm->time, &t);
224 	writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
225 
226 	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
227 
228 	return 0;
229 }
230 
231 static struct rtc_class_ops stmp3xxx_rtc_ops = {
232 	.alarm_irq_enable =
233 			  stmp3xxx_alarm_irq_enable,
234 	.read_time	= stmp3xxx_rtc_gettime,
235 	.set_mmss	= stmp3xxx_rtc_set_mmss,
236 	.read_alarm	= stmp3xxx_rtc_read_alarm,
237 	.set_alarm	= stmp3xxx_rtc_set_alarm,
238 };
239 
240 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
241 {
242 	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
243 
244 	if (!rtc_data)
245 		return 0;
246 
247 	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
248 			rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
249 
250 	return 0;
251 }
252 
253 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
254 {
255 	struct stmp3xxx_rtc_data *rtc_data;
256 	struct resource *r;
257 	u32 rtc_stat;
258 	u32 pers0_set, pers0_clr;
259 	u32 crystalfreq = 0;
260 	int err;
261 
262 	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
263 	if (!rtc_data)
264 		return -ENOMEM;
265 
266 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
267 	if (!r) {
268 		dev_err(&pdev->dev, "failed to get resource\n");
269 		return -ENXIO;
270 	}
271 
272 	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
273 	if (!rtc_data->io) {
274 		dev_err(&pdev->dev, "ioremap failed\n");
275 		return -EIO;
276 	}
277 
278 	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
279 
280 	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
281 	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
282 		dev_err(&pdev->dev, "no device onboard\n");
283 		return -ENODEV;
284 	}
285 
286 	platform_set_drvdata(pdev, rtc_data);
287 
288 	err = stmp_reset_block(rtc_data->io);
289 	if (err) {
290 		dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err);
291 		return err;
292 	}
293 
294 	/*
295 	 * Obviously the rtc needs a clock input to be able to run.
296 	 * This clock can be provided by an external 32k crystal. If that one is
297 	 * missing XTAL must not be disabled in suspend which consumes a
298 	 * lot of power. Normally the presence and exact frequency (supported
299 	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
300 	 * proves these fuses are not blown correctly on all machines, so the
301 	 * frequency can be overridden in the device tree.
302 	 */
303 	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
304 		crystalfreq = 32000;
305 	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
306 		crystalfreq = 32768;
307 
308 	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
309 			     &crystalfreq);
310 
311 	switch (crystalfreq) {
312 	case 32000:
313 		/* keep 32kHz crystal running in low-power mode */
314 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
315 			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
316 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
317 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
318 		break;
319 	case 32768:
320 		/* keep 32.768kHz crystal running in low-power mode */
321 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
322 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
323 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
324 			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
325 		break;
326 	default:
327 		dev_warn(&pdev->dev,
328 			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
329 		/* fall-through */
330 	case 0:
331 		/* keep XTAL on in low-power mode */
332 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
333 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
334 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
335 	}
336 
337 	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0_SET);
338 
339 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
340 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
341 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
342 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
343 
344 	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
345 			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
346 			rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
347 
348 	rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
349 				&stmp3xxx_rtc_ops, THIS_MODULE);
350 	if (IS_ERR(rtc_data->rtc))
351 		return PTR_ERR(rtc_data->rtc);
352 
353 	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
354 			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
355 	if (err) {
356 		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
357 			rtc_data->irq_alarm);
358 		return err;
359 	}
360 
361 	stmp3xxx_wdt_register(pdev);
362 	return 0;
363 }
364 
365 #ifdef CONFIG_PM_SLEEP
366 static int stmp3xxx_rtc_suspend(struct device *dev)
367 {
368 	return 0;
369 }
370 
371 static int stmp3xxx_rtc_resume(struct device *dev)
372 {
373 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
374 
375 	stmp_reset_block(rtc_data->io);
376 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
377 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
378 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
379 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
380 	return 0;
381 }
382 #endif
383 
384 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
385 			stmp3xxx_rtc_resume);
386 
387 static const struct of_device_id rtc_dt_ids[] = {
388 	{ .compatible = "fsl,stmp3xxx-rtc", },
389 	{ /* sentinel */ }
390 };
391 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
392 
393 static struct platform_driver stmp3xxx_rtcdrv = {
394 	.probe		= stmp3xxx_rtc_probe,
395 	.remove		= stmp3xxx_rtc_remove,
396 	.driver		= {
397 		.name	= "stmp3xxx-rtc",
398 		.pm	= &stmp3xxx_rtc_pm_ops,
399 		.of_match_table = rtc_dt_ids,
400 	},
401 };
402 
403 module_platform_driver(stmp3xxx_rtcdrv);
404 
405 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
406 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
407 		"Wolfram Sang <w.sang@pengutronix.de>");
408 MODULE_LICENSE("GPL");
409