1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale STMP37XX/STMP378X Real Time Clock driver 4 * 5 * Copyright (c) 2007 Sigmatel, Inc. 6 * Peter Hartley, <peter.hartley@sigmatel.com> 7 * 8 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved. 9 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. 10 * Copyright 2011 Wolfram Sang, Pengutronix e.K. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/io.h> 15 #include <linux/init.h> 16 #include <linux/platform_device.h> 17 #include <linux/interrupt.h> 18 #include <linux/delay.h> 19 #include <linux/rtc.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/stmp_device.h> 23 #include <linux/stmp3xxx_rtc_wdt.h> 24 25 #define STMP3XXX_RTC_CTRL 0x0 26 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN 0x00000001 27 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN 0x00000002 28 #define STMP3XXX_RTC_CTRL_ALARM_IRQ 0x00000004 29 #define STMP3XXX_RTC_CTRL_WATCHDOGEN 0x00000010 30 31 #define STMP3XXX_RTC_STAT 0x10 32 #define STMP3XXX_RTC_STAT_STALE_SHIFT 16 33 #define STMP3XXX_RTC_STAT_RTC_PRESENT 0x80000000 34 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT 0x10000000 35 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT 0x08000000 36 37 #define STMP3XXX_RTC_SECONDS 0x30 38 39 #define STMP3XXX_RTC_ALARM 0x40 40 41 #define STMP3XXX_RTC_WATCHDOG 0x50 42 43 #define STMP3XXX_RTC_PERSISTENT0 0x60 44 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE (1 << 0) 45 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN (1 << 1) 46 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN (1 << 2) 47 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP (1 << 4) 48 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP (1 << 5) 49 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ (1 << 6) 50 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE (1 << 7) 51 52 #define STMP3XXX_RTC_PERSISTENT1 0x70 53 /* missing bitmask in headers */ 54 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER 0x80000000 55 56 struct stmp3xxx_rtc_data { 57 struct rtc_device *rtc; 58 void __iomem *io; 59 int irq_alarm; 60 }; 61 62 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG) 63 /** 64 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC 65 * @dev: the parent device of the watchdog (= the RTC) 66 * @timeout: the desired value for the timeout register of the watchdog. 67 * 0 disables the watchdog 68 * 69 * The watchdog needs one register and two bits which are in the RTC domain. 70 * To handle the resource conflict, the RTC driver will create another 71 * platform_device for the watchdog driver as a child of the RTC device. 72 * The watchdog driver is passed the below accessor function via platform_data 73 * to configure the watchdog. Locking is not needed because accessing SET/CLR 74 * registers is atomic. 75 */ 76 77 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout) 78 { 79 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); 80 81 if (timeout) { 82 writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG); 83 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN, 84 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET); 85 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER, 86 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET); 87 } else { 88 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN, 89 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); 90 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER, 91 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR); 92 } 93 } 94 95 static struct stmp3xxx_wdt_pdata wdt_pdata = { 96 .wdt_set_timeout = stmp3xxx_wdt_set_timeout, 97 }; 98 99 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev) 100 { 101 int rc = -1; 102 struct platform_device *wdt_pdev = 103 platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id); 104 105 if (wdt_pdev) { 106 wdt_pdev->dev.parent = &rtc_pdev->dev; 107 wdt_pdev->dev.platform_data = &wdt_pdata; 108 rc = platform_device_add(wdt_pdev); 109 if (rc) 110 platform_device_put(wdt_pdev); 111 } 112 113 if (rc) 114 dev_err(&rtc_pdev->dev, 115 "failed to register stmp3xxx_rtc_wdt\n"); 116 } 117 #else 118 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev) 119 { 120 } 121 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */ 122 123 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data) 124 { 125 int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */ 126 /* 127 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010 128 * states: 129 * | The order in which registers are updated is 130 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds. 131 * | (This list is in bitfield order, from LSB to MSB, as they would 132 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT 133 * | register. For example, the Seconds register corresponds to 134 * | STALE_REGS or NEW_REGS containing 0x80.) 135 */ 136 do { 137 if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) & 138 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT))) 139 return 0; 140 udelay(1); 141 } while (--timeout > 0); 142 return (readl(rtc_data->io + STMP3XXX_RTC_STAT) & 143 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0; 144 } 145 146 /* Time read/write */ 147 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) 148 { 149 int ret; 150 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); 151 152 ret = stmp3xxx_wait_time(rtc_data); 153 if (ret) 154 return ret; 155 156 rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm); 157 return 0; 158 } 159 160 static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) 161 { 162 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); 163 164 writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS); 165 return stmp3xxx_wait_time(rtc_data); 166 } 167 168 /* interrupt(s) handler */ 169 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id) 170 { 171 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id); 172 u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL); 173 174 if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) { 175 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ, 176 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); 177 rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF); 178 return IRQ_HANDLED; 179 } 180 181 return IRQ_NONE; 182 } 183 184 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled) 185 { 186 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); 187 188 if (enabled) { 189 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | 190 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN, 191 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + 192 STMP_OFFSET_REG_SET); 193 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, 194 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET); 195 } else { 196 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | 197 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN, 198 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + 199 STMP_OFFSET_REG_CLR); 200 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, 201 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); 202 } 203 return 0; 204 } 205 206 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) 207 { 208 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); 209 210 rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time); 211 return 0; 212 } 213 214 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) 215 { 216 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); 217 218 writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM); 219 220 stmp3xxx_alarm_irq_enable(dev, alm->enabled); 221 222 return 0; 223 } 224 225 static const struct rtc_class_ops stmp3xxx_rtc_ops = { 226 .alarm_irq_enable = 227 stmp3xxx_alarm_irq_enable, 228 .read_time = stmp3xxx_rtc_gettime, 229 .set_time = stmp3xxx_rtc_settime, 230 .read_alarm = stmp3xxx_rtc_read_alarm, 231 .set_alarm = stmp3xxx_rtc_set_alarm, 232 }; 233 234 static void stmp3xxx_rtc_remove(struct platform_device *pdev) 235 { 236 struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev); 237 238 if (!rtc_data) 239 return; 240 241 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, 242 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); 243 } 244 245 static int stmp3xxx_rtc_probe(struct platform_device *pdev) 246 { 247 struct stmp3xxx_rtc_data *rtc_data; 248 struct resource *r; 249 u32 rtc_stat; 250 u32 pers0_set, pers0_clr; 251 u32 crystalfreq = 0; 252 int err; 253 254 rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL); 255 if (!rtc_data) 256 return -ENOMEM; 257 258 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 259 if (!r) { 260 dev_err(&pdev->dev, "failed to get resource\n"); 261 return -ENXIO; 262 } 263 264 rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r)); 265 if (!rtc_data->io) { 266 dev_err(&pdev->dev, "ioremap failed\n"); 267 return -EIO; 268 } 269 270 rtc_data->irq_alarm = platform_get_irq(pdev, 0); 271 272 rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT); 273 if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) { 274 dev_err(&pdev->dev, "no device onboard\n"); 275 return -ENODEV; 276 } 277 278 platform_set_drvdata(pdev, rtc_data); 279 280 /* 281 * Resetting the rtc stops the watchdog timer that is potentially 282 * running. So (assuming it is running on purpose) don't reset if the 283 * watchdog is enabled. 284 */ 285 if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) & 286 STMP3XXX_RTC_CTRL_WATCHDOGEN) { 287 dev_info(&pdev->dev, 288 "Watchdog is running, skip resetting rtc\n"); 289 } else { 290 err = stmp_reset_block(rtc_data->io); 291 if (err) { 292 dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", 293 err); 294 return err; 295 } 296 } 297 298 /* 299 * Obviously the rtc needs a clock input to be able to run. 300 * This clock can be provided by an external 32k crystal. If that one is 301 * missing XTAL must not be disabled in suspend which consumes a 302 * lot of power. Normally the presence and exact frequency (supported 303 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality 304 * proves these fuses are not blown correctly on all machines, so the 305 * frequency can be overridden in the device tree. 306 */ 307 if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT) 308 crystalfreq = 32000; 309 else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT) 310 crystalfreq = 32768; 311 312 of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq", 313 &crystalfreq); 314 315 switch (crystalfreq) { 316 case 32000: 317 /* keep 32kHz crystal running in low-power mode */ 318 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ | 319 STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | 320 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; 321 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP; 322 break; 323 case 32768: 324 /* keep 32.768kHz crystal running in low-power mode */ 325 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | 326 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; 327 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP | 328 STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ; 329 break; 330 default: 331 dev_warn(&pdev->dev, 332 "invalid crystal-freq specified in device-tree. Assuming no crystal\n"); 333 fallthrough; 334 case 0: 335 /* keep XTAL on in low-power mode */ 336 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP; 337 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | 338 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; 339 } 340 341 writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + 342 STMP_OFFSET_REG_SET); 343 344 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | 345 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN | 346 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr, 347 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR); 348 349 writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN | 350 STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, 351 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); 352 353 rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev); 354 if (IS_ERR(rtc_data->rtc)) 355 return PTR_ERR(rtc_data->rtc); 356 357 err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm, 358 stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev); 359 if (err) { 360 dev_err(&pdev->dev, "Cannot claim IRQ%d\n", 361 rtc_data->irq_alarm); 362 return err; 363 } 364 365 rtc_data->rtc->ops = &stmp3xxx_rtc_ops; 366 rtc_data->rtc->range_max = U32_MAX; 367 368 err = devm_rtc_register_device(rtc_data->rtc); 369 if (err) 370 return err; 371 372 stmp3xxx_wdt_register(pdev); 373 return 0; 374 } 375 376 #ifdef CONFIG_PM_SLEEP 377 static int stmp3xxx_rtc_suspend(struct device *dev) 378 { 379 return 0; 380 } 381 382 static int stmp3xxx_rtc_resume(struct device *dev) 383 { 384 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); 385 386 stmp_reset_block(rtc_data->io); 387 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | 388 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN | 389 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE, 390 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR); 391 return 0; 392 } 393 #endif 394 395 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend, 396 stmp3xxx_rtc_resume); 397 398 static const struct of_device_id rtc_dt_ids[] = { 399 { .compatible = "fsl,stmp3xxx-rtc", }, 400 { /* sentinel */ } 401 }; 402 MODULE_DEVICE_TABLE(of, rtc_dt_ids); 403 404 static struct platform_driver stmp3xxx_rtcdrv = { 405 .probe = stmp3xxx_rtc_probe, 406 .remove = stmp3xxx_rtc_remove, 407 .driver = { 408 .name = "stmp3xxx-rtc", 409 .pm = &stmp3xxx_rtc_pm_ops, 410 .of_match_table = rtc_dt_ids, 411 }, 412 }; 413 414 module_platform_driver(stmp3xxx_rtcdrv); 415 416 MODULE_DESCRIPTION("STMP3xxx RTC Driver"); 417 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and " 418 "Wolfram Sang <kernel@pengutronix.de>"); 419 MODULE_LICENSE("GPL"); 420