xref: /linux/drivers/rtc/rtc-stmp3xxx.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale STMP37XX/STMP378X Real Time Clock driver
4  *
5  * Copyright (c) 2007 Sigmatel, Inc.
6  * Peter Hartley, <peter.hartley@sigmatel.com>
7  *
8  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
9  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
10  * Copyright 2011 Wolfram Sang, Pengutronix e.K.
11  */
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/io.h>
15 #include <linux/init.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/rtc.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23 #include <linux/stmp_device.h>
24 #include <linux/stmp3xxx_rtc_wdt.h>
25 
26 #define STMP3XXX_RTC_CTRL			0x0
27 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
28 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
29 #define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
30 #define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
31 
32 #define STMP3XXX_RTC_STAT			0x10
33 #define STMP3XXX_RTC_STAT_STALE_SHIFT		16
34 #define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
35 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
36 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
37 
38 #define STMP3XXX_RTC_SECONDS			0x30
39 
40 #define STMP3XXX_RTC_ALARM			0x40
41 
42 #define STMP3XXX_RTC_WATCHDOG			0x50
43 
44 #define STMP3XXX_RTC_PERSISTENT0		0x60
45 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
46 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
47 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
48 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
49 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
50 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
51 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
52 
53 #define STMP3XXX_RTC_PERSISTENT1		0x70
54 /* missing bitmask in headers */
55 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
56 
57 struct stmp3xxx_rtc_data {
58 	struct rtc_device *rtc;
59 	void __iomem *io;
60 	int irq_alarm;
61 };
62 
63 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
64 /**
65  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
66  * @dev: the parent device of the watchdog (= the RTC)
67  * @timeout: the desired value for the timeout register of the watchdog.
68  *           0 disables the watchdog
69  *
70  * The watchdog needs one register and two bits which are in the RTC domain.
71  * To handle the resource conflict, the RTC driver will create another
72  * platform_device for the watchdog driver as a child of the RTC device.
73  * The watchdog driver is passed the below accessor function via platform_data
74  * to configure the watchdog. Locking is not needed because accessing SET/CLR
75  * registers is atomic.
76  */
77 
78 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
79 {
80 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
81 
82 	if (timeout) {
83 		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
84 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
85 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
86 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
87 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
88 	} else {
89 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
90 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
91 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
92 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
93 	}
94 }
95 
96 static struct stmp3xxx_wdt_pdata wdt_pdata = {
97 	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
98 };
99 
100 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
101 {
102 	int rc = -1;
103 	struct platform_device *wdt_pdev =
104 		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
105 
106 	if (wdt_pdev) {
107 		wdt_pdev->dev.parent = &rtc_pdev->dev;
108 		wdt_pdev->dev.platform_data = &wdt_pdata;
109 		rc = platform_device_add(wdt_pdev);
110 	}
111 
112 	if (rc)
113 		dev_err(&rtc_pdev->dev,
114 			"failed to register stmp3xxx_rtc_wdt\n");
115 }
116 #else
117 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
118 {
119 }
120 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
121 
122 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
123 {
124 	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
125 	/*
126 	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
127 	 * states:
128 	 * | The order in which registers are updated is
129 	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
130 	 * | (This list is in bitfield order, from LSB to MSB, as they would
131 	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
132 	 * | register. For example, the Seconds register corresponds to
133 	 * | STALE_REGS or NEW_REGS containing 0x80.)
134 	 */
135 	do {
136 		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
137 				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
138 			return 0;
139 		udelay(1);
140 	} while (--timeout > 0);
141 	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
142 		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
143 }
144 
145 /* Time read/write */
146 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
147 {
148 	int ret;
149 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
150 
151 	ret = stmp3xxx_wait_time(rtc_data);
152 	if (ret)
153 		return ret;
154 
155 	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
156 	return 0;
157 }
158 
159 static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
160 {
161 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
162 
163 	writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
164 	return stmp3xxx_wait_time(rtc_data);
165 }
166 
167 /* interrupt(s) handler */
168 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
169 {
170 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
171 	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
172 
173 	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
174 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
175 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
176 		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
177 		return IRQ_HANDLED;
178 	}
179 
180 	return IRQ_NONE;
181 }
182 
183 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
184 {
185 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
186 
187 	if (enabled) {
188 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
189 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
190 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
191 				STMP_OFFSET_REG_SET);
192 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
193 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
194 	} else {
195 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
196 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
197 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
198 				STMP_OFFSET_REG_CLR);
199 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
200 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
201 	}
202 	return 0;
203 }
204 
205 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
206 {
207 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
208 
209 	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
210 	return 0;
211 }
212 
213 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
214 {
215 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
216 
217 	writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
218 
219 	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
220 
221 	return 0;
222 }
223 
224 static const struct rtc_class_ops stmp3xxx_rtc_ops = {
225 	.alarm_irq_enable =
226 			  stmp3xxx_alarm_irq_enable,
227 	.read_time	= stmp3xxx_rtc_gettime,
228 	.set_time	= stmp3xxx_rtc_settime,
229 	.read_alarm	= stmp3xxx_rtc_read_alarm,
230 	.set_alarm	= stmp3xxx_rtc_set_alarm,
231 };
232 
233 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
234 {
235 	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
236 
237 	if (!rtc_data)
238 		return 0;
239 
240 	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
241 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
242 
243 	return 0;
244 }
245 
246 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
247 {
248 	struct stmp3xxx_rtc_data *rtc_data;
249 	struct resource *r;
250 	u32 rtc_stat;
251 	u32 pers0_set, pers0_clr;
252 	u32 crystalfreq = 0;
253 	int err;
254 
255 	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
256 	if (!rtc_data)
257 		return -ENOMEM;
258 
259 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
260 	if (!r) {
261 		dev_err(&pdev->dev, "failed to get resource\n");
262 		return -ENXIO;
263 	}
264 
265 	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
266 	if (!rtc_data->io) {
267 		dev_err(&pdev->dev, "ioremap failed\n");
268 		return -EIO;
269 	}
270 
271 	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
272 
273 	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
274 	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
275 		dev_err(&pdev->dev, "no device onboard\n");
276 		return -ENODEV;
277 	}
278 
279 	platform_set_drvdata(pdev, rtc_data);
280 
281 	/*
282 	 * Resetting the rtc stops the watchdog timer that is potentially
283 	 * running. So (assuming it is running on purpose) don't reset if the
284 	 * watchdog is enabled.
285 	 */
286 	if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
287 	    STMP3XXX_RTC_CTRL_WATCHDOGEN) {
288 		dev_info(&pdev->dev,
289 			 "Watchdog is running, skip resetting rtc\n");
290 	} else {
291 		err = stmp_reset_block(rtc_data->io);
292 		if (err) {
293 			dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
294 				err);
295 			return err;
296 		}
297 	}
298 
299 	/*
300 	 * Obviously the rtc needs a clock input to be able to run.
301 	 * This clock can be provided by an external 32k crystal. If that one is
302 	 * missing XTAL must not be disabled in suspend which consumes a
303 	 * lot of power. Normally the presence and exact frequency (supported
304 	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
305 	 * proves these fuses are not blown correctly on all machines, so the
306 	 * frequency can be overridden in the device tree.
307 	 */
308 	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
309 		crystalfreq = 32000;
310 	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
311 		crystalfreq = 32768;
312 
313 	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
314 			     &crystalfreq);
315 
316 	switch (crystalfreq) {
317 	case 32000:
318 		/* keep 32kHz crystal running in low-power mode */
319 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
320 			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
321 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
322 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
323 		break;
324 	case 32768:
325 		/* keep 32.768kHz crystal running in low-power mode */
326 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
327 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
328 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
329 			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
330 		break;
331 	default:
332 		dev_warn(&pdev->dev,
333 			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
334 		fallthrough;
335 	case 0:
336 		/* keep XTAL on in low-power mode */
337 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
338 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
339 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
340 	}
341 
342 	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
343 			STMP_OFFSET_REG_SET);
344 
345 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
346 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
347 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
348 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
349 
350 	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
351 			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
352 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
353 
354 	rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
355 	if (IS_ERR(rtc_data->rtc))
356 		return PTR_ERR(rtc_data->rtc);
357 
358 	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
359 			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
360 	if (err) {
361 		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
362 			rtc_data->irq_alarm);
363 		return err;
364 	}
365 
366 	rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
367 	rtc_data->rtc->range_max = U32_MAX;
368 
369 	err = devm_rtc_register_device(rtc_data->rtc);
370 	if (err)
371 		return err;
372 
373 	stmp3xxx_wdt_register(pdev);
374 	return 0;
375 }
376 
377 #ifdef CONFIG_PM_SLEEP
378 static int stmp3xxx_rtc_suspend(struct device *dev)
379 {
380 	return 0;
381 }
382 
383 static int stmp3xxx_rtc_resume(struct device *dev)
384 {
385 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
386 
387 	stmp_reset_block(rtc_data->io);
388 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
389 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
390 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
391 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
392 	return 0;
393 }
394 #endif
395 
396 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
397 			stmp3xxx_rtc_resume);
398 
399 static const struct of_device_id rtc_dt_ids[] = {
400 	{ .compatible = "fsl,stmp3xxx-rtc", },
401 	{ /* sentinel */ }
402 };
403 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
404 
405 static struct platform_driver stmp3xxx_rtcdrv = {
406 	.probe		= stmp3xxx_rtc_probe,
407 	.remove		= stmp3xxx_rtc_remove,
408 	.driver		= {
409 		.name	= "stmp3xxx-rtc",
410 		.pm	= &stmp3xxx_rtc_pm_ops,
411 		.of_match_table = rtc_dt_ids,
412 	},
413 };
414 
415 module_platform_driver(stmp3xxx_rtcdrv);
416 
417 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
418 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
419 		"Wolfram Sang <kernel@pengutronix.de>");
420 MODULE_LICENSE("GPL");
421